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Abstract: Electrospinning bears great potential for the manufacturing of scaffolds for tissue engineer-
ing, consisting of a porous mesh of ultrafine fibers that effectively mimic the extracellular matrix
(ECM) and aid in directing stem cell fate. However, for engineering purposes, there is a need to
develop material-by-design approaches based on predictive models. In this methodological study, a
rational methodology based on statistical design of experiments (DOE) is discussed in detail, yielding
heuristic models that capture the linkage between process parameters (Xs) of the electrospinning
and scaffold properties (Ys). Five scaffolds made of polycaprolactone are produced according to
a 22-factorial combinatorial scheme where two Xs, i.e., flow rate and applied voltage, are varied
between two given levels plus a center point. The scaffolds were characterized to measure a set
of properties (Ys), i.e., fiber diameter distribution, porosity, wettability, Young’s modulus, and cell
adhesion on murine myoblast C1C12 cells. Simple engineering DOE models were obtained for all Ys.
Each Y, for example, the biological response, can be used as a driver for the design process, using the
process-property model of interest for accurate interpolation within the design domain, enabling a
material-by-design strategy and speeding up the product development cycle. The implications are
also illustrated in the context of the design of multilayer scaffolds with microstructural gradients and
controlled properties of each layer. The possibility of obtaining statistical models correlating between
diverse output properties of the scaffolds is highlighted. Noteworthy, the featured DOE approach
can be potentially merged with artificial intelligence tools to manage complexity and it is applicable
to several fields including 3D printing.

Keywords: polycaprolactone; ECM; material genome initiative; rational design; biomaterials;
electrospinning

1. Introduction

Tissue Engineering and Regenerative Medicine (TERM) has been defined as a “rapidly
growing interdisciplinary area which involves medical, biological, physical and engineering
sciences to develop advanced strategies to repair, replace or regenerate tissues or organs
damaged by traumatic events, disease or aging [1]. One of TERM’s main pursuits is the
manufacture of tissues and organs obtained by combining biomaterials and cells [2,3]. In
this field, biomaterials are used to create a scaffold emulating the extracellular matrix (ECM)
of specific tissues. The scaffold provides appropriate biochemical and biophysical cues to
support cell attachment, proliferation, and differentiation and promotes tissue regeneration
and/or new tissue formation [4].
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From a basic perspective, an engineered tissue may be represented as a compound
of three key elements: (i) a scaffold that constitutes the mechanical and morphological
backbone structure of the tissue, (ii) the cells that could be either differentiated tissue-
specific ones or progenitor cells, and (iii) some specific biological and mechanical cues that
would direct cell fate. These scaffolds are generally simpler than the ECM of organs and
tissues and exhibit biocompatibility, tunable mechanical properties similar to those of the
tissue to be replaced, and good porosity to facilitate cell infiltration [5–8]. In this paper, we
focus on scaffold design and manufacturing using electrospinning, which is an engineering
process that utilizes electrical forces to produce polymer fibers with diameters ranging
from a few nm up to several micrometers from polymer solutions of both natural and
synthetic polymers [9,10]. Electrospun scaffolds have been successfully used for a variety
of TERM applications because they are biomimetic of the natural, fibrous ECM and contain
a three-dimensional (3D) network of interconnected pores. [11]. Electrospun scaffolds can
be endowed with a desired set of mechanical and chemical properties, as well as functional
properties [11–19]. These scaffolds may be made from randomly oriented fibers, as well as
aligned ones, with anisotropy in morphological and mechanical properties that can mimic
the diverse ECM and provide an ideal substrate for specific cells to evolve into targeted
tissues. For example, electrospun fiber alignment strongly affects myoblast differentiation,
organization, and myotube formation [20–22].

Statistical design of experiments (DOE) can be used effectively towards the rationale
design of a scaffold using electrospinning. A former study by our group [23,24] illustrates
how DOE aids in establishing heuristic relationships between the process parameters (Xs)
and the scaffold properties (Ys). Some of the most common X parameters are listed in
Table 1, divided into three groups, namely: (i) materials and solution properties, (ii) pro-
cessing conditions, and (iii) ambient conditions [7]. The effects of these factors have often
been discussed in the literature with respect to the effects on the fiber diameter distribution,
focusing on the correlation between fiber diameter and changes in materials and process pa-
rameters (i.e., polymer concentration, viscosity, conductivity, surface tension and dielectric
constant of the polymer solution, flow (feed) rate of the polymer solution, nozzle diameter,
electric field strength, and nozzle–substrate distance) [25–29].

Table 1. The Xs set—material and processing parameters in electrospinning (adapted from [23]).

Solution Properties

Viscosity
Polymer concentration

Molecular weight of polymer
Electrical conductivity

Elasticity
Surface tension

Processing parameters
Applied voltage

Distance from needle tip to collector
Feeding rate

Needle diameter
Collector composition and geometry

Ambient parameters (which can be “processing parameters” in equipment with an
environmental control unit”)

Temperature
Humidity

Atmosphere pressure

So far, some effort has been devoted also to deriving mechanistic or physically based
relationships for key parameters either of the process or of the resulting electrospun product,
e.g., the critical extraction voltage marking the onset of electrospinning [30], the electrical
field as a function of the spinneret [31], or the pore distribution in a randomly oriented fiber
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mat [32]. However, considering the intrinsic complexity of the electrospinning process,
such modeling strategies are extremely complex and inherently limited in scope, whereas
conversely, statistical methods, such as the DOE, are in comparison much simpler and more
flexible and effective in mapping the electrospinning process for a given feedstock and
application for engineering purposes. Furthermore, the DOE and regression methods are
seemingly the best—if not the only—modeling option to correlate the biological response of
a cell-engrafted scaffold vs. its microstructural and macroscopic properties. The possibility
and the potential to deploy regression methods to interpret the biological response with
regard just to a subset of scaffolds from the DOE was already discussed previously [24] in
the context of the availability of incomplete or limited biological response data, which is
often the case for large designs.

This paper is a follow-up study contemplating instead the case where the biological
response is collected as one of the main responses of a DOE to investigate and optimize
polycaprolactone (PCL) scaffolds for skeletal muscle tissue regeneration. Among synthetic
polymers, PCL is a good test material for our study because it has been widely used for
scaffold fabrication in the field of musculoskeletal system regeneration, being an FDA-
approved polymer for health applications, and due to its high mechanical strength, good
biocompatibility, slow degradation rate, and the less acidic breakdown of products in com-
parison to other polyesters [33]. A “2k full-factorial” DOE was designed and implemented
to quantify both the main and interaction effects of two selected process parameters, i.e.,
applied voltage and flow rate (k = 2), on the resulting nanofiber scaffold properties. The list
of the chosen Xs and Ys in this study is summarized in Tables 2 and 3, respectively.

Table 2. Inputs (Xs)—the two selected materials and processing parameters in this investigation.

Parameter Unit LOW Level (−1) HIGH Level (+1) Mean Level (0)

X1 Voltage kV 26 32 29
X2 Flow Rate mL/h 4 6 5

Table 3. Outputs (Ys)—selected scaffold properties/functions examined in this investigation.

Parameter Unit Label

Y1 Mean FD µm FD
Y2 Spread FD µm SD
Y3 Porosity % ε%
Y4 Contact Angle ◦ CA
Y5 Young’s modulus MPa E
Y6 Cell Adhesion n◦ cells/mL -

Additionally, a “center point” is added to the basic full 22 design to check for curvature
effects. Table 4 reports the full experimental matrix displaying five treatments obtained for
each combination of the Xs (expressed in coded variables) and the corresponding output Ys.

Table 4. Summary experimental matrix with input and output data from the DOE analysis.

Treatments

Inputs (Xs) * Outputs (Ys)

Flow
Rate Voltage Mean FD

(µm)
Spread

FD (µm) ε (%) CA (◦) E (MPa) Cell
Adhesion

X1 X2 Y1 Y2 Y3 Y4 Y5 Y6

T1 −1 −1 1.63 1.56 70 123.98 8.0 0.842
T2 −1 1 0.69 0.42 90 127.44 2.7 0.502
T3 1 1 3.17 1.51 65 114.72 22.0 1.379
T4 1 −1 4.49 0.35 86 111.52 39.0 0.800
T5 0 0 2.67 1.10 75 117.25 4.4 0.714

* coded units.
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As conveyed by Tables 3 and 4, six fundamental descriptors are characterized and
investigated using DOE: (i) the mean fiber diameter (FD), (ii) the FD spread, (iii) the porosity
(ε%), (iv) the contact angle (CA), (v) the Young’s Modulus (E), and (vi) cell adhesion for a
given cell line, which are referred as Y1, Y2, Y3, Y4, Y5, and Y6 respectively. Generally, the
biological performance depends on the optimal combination of all Y1–5 values for a given
tissue type. However, determining such a combination is not trivial because each material
parameter Yj (j:1 . . . 5) depends on a set of N controllable parameters (Xi, i: 1 . . . N) related
to the process and raw materials that we express with an unknown functional (notation:
lower capital x and y are actual values for parameters X and Y):

yj = f (x1, . . . , xN) (1)

Many studies in the literature dissert about the specific effects of some Xs and Y
outputs of interest for a given application, but they rarely actually focus on methodological
aspects, nor estimate Equation (1) over a defined design domain, nor allow for a straight
comparison between results from different authors. Determining a functional dependence
Y(X) is a technological goal of consequence for enabling material-by-design manufacturing
to direct function, architecture, scalability, and tailorability of a personalized scaffold, and
ultimately develop the tissue engineering industry.

Extensive parametric studies that can provide predictive frameworks for the electro-
spinning of fibers of the desired diameter range are in fact still uncommon in the literature,
despite the potential industrial impact. As discussed here, parametric studies are one route
to obtain the specific predictive tool aiding in the design of optimized fiber mats for appli-
cations closer to clinical applications in cardiac and musculoskeletal tissue engineering.

The objective of this study is to show how a controllable electrospinning process,
designed and modeled using statistical DOE techniques, can foster the engineering of a
complex multi-compartment and layered architecture scaffold, in principle optimized for
many and diverse targeted cell types. As a proof of concept, we here propose a design of
an electrospun PCL scaffold suitable for skeletal muscle tissue regeneration using C2C12
myoblasts as a cell model for illustrative purposes.

2. Materials and Methods
2.1. Factorial Design of Experiments (DOE)

To produce linear models approximating the relationships between parameters, such
as Equation (1), and investigating the correlations among Xs and Ys, a “2k factorial” design
of experiments (DOE) (e.g., [34–36]), with k = 2 in our case (ref Table 2), was used. The
fundamentals of the DOE theory relevant to our approach are recalled below including
practical procedures to fit linear models using any modern statistical packages such as
JMP-pro JMP-pro (SAS Institute, Cary, NC, USA) or MINITAB © (Minitab Inc., State College,
PA, USA).

The factorial DOE is a combinatorial strategy that provides an optimized strategy to
obtain a first-order approximation of the model equation in Equation (1), capturing the
dependence of each output variable Y1–6 in Table 3 on the Xs in Table 2. One distinctive
feature of all DOE methods is the data collection using a rigidly planned, well-defined
scheme. In our case, a total of five types of PCL scaffolds, corresponding to unique
combinations of Xs levels and called “treatments”, were produced by considering all four
possible combinations of the two levels of the two parameters in Table 2, plus a center point
for the average level of all factors. All treatments were characterized experimentally to
gather data to be analyzed with analysis of variance (ANOVA). Engaging in the collection
and characterization of such a potentially large pre-determined dataset is motivated by key
benefits including an increased accuracy of statistical estimates and confidence intervals,
as well as orthogonality of the regression analysis, which are crucial for a systematic and
comprehensive mapping of the electrospinning [23,24].
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In our specific case, for any given Y output, the following linear model is fitted to the
experimental data to obtain an “ordinary least square” linear estimate for Y(X1,X2):

y = C0 + Cixi + C12x1x2 (i = 1,2) (2)

that encompasses four coefficient terms, two “main effects” for {C1,C2} and one “interaction”
up to order 2 for {C1,C2,C12}. However, DOE models are better fitted to coded variables x*
obtained from the natural variables using linear transformations:

x∗i (xi) =
xi − −

xi
(xHIGH − xLOW)/2

(i = 1, 2) (3)

with HIGH and LOW mapping to +1 and −1 levels in Table 4, respectively, with Equation
(2) rewritten as:

y = C0*+Ci*xi* + C12*x1*x2* (i = 1,2) (4)

The choice of coded variables is implied throughout the DOE discussion hereafter,
although the “*” superscripts will be dropped for readability’s sake. Table 4 renders a
summary of the five treatments in coded form along with the mean responses for Y1–6,
which allow grasping the marked variations between treatments at a glance. The actual
order of the treatments from Table 4 was “randomized” during the execution of the experi-
ment to mitigate the effect of ambient variables in Table 1, as customarily performed in the
DOE [35].

Two of the crucial advantages of using coded variables are:

• The role of each parameter is normalized so that ranking {C1,C2,C12} immediately
renders the relative importance of each parameter;

• The design is orthogonal so that each of the parameters {C1,C2,C12} can be estimated
separately and dropped if not significant.

The latter condition means that the full model in Equation (4) may contain effect or
interaction terms that are negligible in terms of statistical significance if the corresponding
“p-value” statistics (i.e., Pearson value, herein defined as the probability of observing a
certain value by chance against a reference statistical distribution) is higher than a threshold
value, i.e., the significance level, chosen by the analysts based on the specific goal of the
statistical study and nature of the dataset. A significance level of 10% is used throughout
the discussion here, as it renders an appropriate sensitivity in our analysis to discriminate
between significant and non-significant terms in Equation (4) fitted to our data. For more
details about p-value and “hypothesis testing”, the reader is redirected to [34–36].

To assess the quality of the resulting DOE model from the ANOVA, the “coefficient
of determination” R2 is the first indicator for the quality of fit and represents the percent
of the variation in Y that is explained by the regression model. Being routinely computed
by any commercial software, it increases from 0% to 100% as fit improves. Because the
R2 monotonically increases with the number of parameters p in the model (excluding the
constant term), it is often appropriate to consider also the R2-adj that is always less than R2

and is defined as:
R2

adj = 1 − (1 − R2)
p

n − p − 1
(5)

which adjusts the R2 for the number of predictors (p) relative to the number of data points (n)
in multiple regression models encompassing two or more terms. The interested reader can
reproduce the model results presented in this work for all Ys (ref. Table 5) by implementing
a “backward-elimination” search algorithm to determine the optimal regression model,
which was used systematically here in all cases and is available in many commercial
statistical software programs (e.g., MINITAB, SAS, JMP-pro, etc.).
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Table 5. Fitted coefficients for the factorial model in Equation (4) fitted in coded units for Y1–6 along
with p-values * per each term and the global R2. p-values smaller than 0.001 are displayed as “<0.001”.

Y1
Mean FD (µm)

Y2
Spread FD (µm)

Y3
ε (%)

Y4
CA (◦)

Y5
E (MPa)

Y6
Cell Adhesion

Model
Coefficients

Main
Effect/

Interaction
Cijk p Cijk p Cijk p Cijk p Cijk p Cijk p

(C0) * 2.53 <0.001 0.99 <0.001 77.20 <0.001 118.98 <0.001 15.22 0.043 0.07 0.004

C1 X1 1.34 0.004 - - - - -
6.30 0.011 12.57 0.088 - -

C2 X2 −0.56 0.023 - - - - - - - - −0.25 0.058
C12 X1·X2 - - 0.58 0.001 −10.25 0.006 - - - - - -

R2 99.28% 98.56% 94.06% 91.43% 67.48% 75.01%
R2(adj) 98.56% 98.07% 92.08% 88.57% 56.63% 66.68%

* C0 is a fitting constant not corresponding to any X or combination of Xs.

2.2. Electrospinning Process and Solution Properties

A PCL solution was prepared from medical grade PCL granules (CAPA® 6500, average
50,000 MW, Perstorp, Sweden) dissolved at 12% w/v concentration in a 65:35 solvent
mixture of Chloroform (99.2% purity, stabilized with 0.6% ethanol, VWR, Radnor, PA,
USA) and Dimethylformamide (100% purity, VWR, Radnor, PA, USA) under mild stirring
overnight at room temperature. The supplier reported a theoretical density for PCL of
$0 = 1.145 g/cm3. Non-woven scaffolds were fabricated with electrospinning using a pilot
scale electrospinning station (Fluidnatek LE100, Bioinicia, Spain) using different variations
of a process recipe, kindly provided by the Company Nanofaber srl (Rome, Italy) as
indicated in Table 4, and varying the applied voltage and flow rate (FR).

2.3. Morphological Characterization and Fiber Distribution Estimate

The microstructural texture of the electrospun mats was examined using field emission
gun scanning electron microscopy (Leo 1530, ZEISS, Germany) operated at low voltage
(i.e., 1–5 kV range) to investigate the fiber diameter without metal coating. The membrane
thickness was also evaluated using SEM on the sample cross-section. Micrograph images
at 5× magnification were taken and saved to be used in the analysis of fiber diameter,
by sampling at least 30 individual fibers, with the software "ImageJ" (Rasband, W.S., Im-
ageJ, U. S. National Institutes of Health, Bethesda, MD, USA, http://imagej.nih.gov/ij/,
accessed on 30 December 2022, 1997–2022). The mean value and root mean square er-
ror (RMS) of the FD sample distribution were computed for each treatment over three
micrographs taken randomly at different locations. Each image was segmented, i.e., trans-
formed into binary images with white fibers on black background, and then analyzed after
extracting a sample distribution of fiber diameters using DiameterJ [37]. As additional
pre-processing, the segmentation was elaborated beforehand using MATLAB software (The
MathWorks, Natick, MA, USA), applying the sequence functions in Figure 1. Image his-
togram equalization was operated on the starting SEM micrograph (Figure 1A) to increase
the contrast, reduce noise, and preserve the structure edges. Moreover, local thresholding
was performed to separate the outer fiber network from the background. The sequence
of morphological operations, in the same way as described in the first strategy, followed.
Finally, the filling function was performed manually on the latter binary image using
“Image J” software. The result of this sequence of image processing steps is illustrated in
the example in Figure 1, which is a black and white image (Figure 1F) that can be further
treated in order to make the segmented object look more natural and smooth, e.g., using
Adobe Illustrator (Adobe Illustrator, Adobe Inc., San Jose, CA, USA), such as in Figure 2.

http://imagej.nih.gov/ij/
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These two output parameters provide a simple and sufficient description of the fiber 
distribution in terms of the expected value and spread, whereas higher-order descriptors 
such as kurtosis and skewness are out of scope.  

Figure 1. Sequence of image processing using MATLAB functions to prepare the input file for
DiameterJ: (A) original SEM, (B) applied “histeq” and “medfilt2” functions, (C) applied “imsharpen”,
“smoothing”, and “cleaning” functions, (D) applied “find edge” function, (E) applied “imdilate”
function, (F) performed “imfill” function using ImageJ (scalebar is the same and equal 2 µm for
all panels).
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The output parameters Y1 and Y2 in Table 4 for each treatment were obtained as
the grand mean and the pooled RMS FD from three samples, each with a number of
observations ni

RMSp =


3
∑

i=1
(ni − 1)RMS2

i

3
∑

i=1
(ni − 1)


1/2

(6)

These two output parameters provide a simple and sufficient description of the fiber
distribution in terms of the expected value and spread, whereas higher-order descriptors
such as kurtosis and skewness are out of scope.

2.4. Porosity

The porosity of the electrospun scaffolds was evaluated [7] by weighing rectangular
cut-out samples on a calibrated scale (ORMA, BCA120, UK) of known volume (Vol), such
that the apparent density of the scaffolds $∗ is calculated using the following formula

$∗ = Mass(g)/Vol (cm3) (7)
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and the percent scaffold porosity is obtained as

ε% = (1 − $∗/$0 × 100 (8)

where $0 = 1.145 g/cm3. Porosity measurements were performed in triplicate for each scaffold.

2.5. Statistical Contact Angle

The water contact angles of the PCL electrospun samples were measured using an
optical contact angle measuring system, OCA 20 (DataPhysics, Germany), equipped with
SCA 202 software, using ultra-pure water and operating at room temperature. Determina-
tions were made using the sessile drop method with 10 µL droplet volume and a deposition
rate of 10 µL/10 s in compliance to the European Standard UNI EN 15802 [38]. Ten
measurements were carried out for each sample from different locations, and the average
value is reported with its standard deviation (SD). The static contact angle ϑ, in degrees, is
estimated from the diameter of the contact surface (d) and the height of the drop (h) as:

ϑ = 2 arctg(2h/d) (9)

2.6. Mechanical Characterization

The tensile properties were evaluated using a micro-tensile loading frame (MICROTEST
200, DEBEN, UK) equipped with a 200 N load cell. The scaffolds under consideration rep-
resent randomly homogeneous materials with an in-plane isotropic linear-elastic behavior
conveyed by Young’s Modulus. Rectangular specimens with a length of 20 mm and a
width of 5 mm were cut from the electrospun sheets and submitted to quasi-static tensile
testing at a strain rate of

.
ε = 0.005. Scaffold thickness varied from sample to sample and

was measured using SEM, rendering an average thickness of 40 µm for T1, 53 µm for T2,
62 µm for T3, 57 µm for T4, and 64 µm for T5 (with accuracy within ±10%). Stresses were
computed by dividing the measured force by the apparent cross-sectional area, whereas
strain was calculated from the cross-head displacement divided by the initial gage length
at rest. Young’s modulus E was estimated as the slope of the linear fit to the initial portion
of each stress–strain curve (with R2 > 99% in all cases, ref. Supplementary Material). For
each sample type, the experiment was performed in triplicate, and the mechanical output
parameter Y5 was valorized to the mean representative value.

2.7. Biological Evaluation

To verify the biocompatibility of the scaffolds, a murine myoblast C2C12 cell line
was utilized. Cells were cultured in Dulbecco’s modified Eagle medium (DMEM, Gibco)
containing 15% fetal bovine serum (FBS, Gibco), L-glutamine 2 mM, and gentamicin
50 µg/ml (Sigma Aldrich, Inc., St. Louis, MO, USA). Before cell seeding, disks were cut
out for each scaffold to fit tightly into 24-multiwell plates. The scaffolds were soaked in
90% ethanol solution for 30 min, then dried in a sterile ventilated biological hood and
irradiated with UV light for 15 min. Subsequently, the scaffolds were washed with sterile
phosphate-buffered saline (PBS) and equilibrated with DMEM containing 20% FBS for 24 h
at 37 ◦C and 5% CO2 [39] to ensure the scaffolds was fully wet. A total of 4 × 104 C2C12
cells was seeded for each scaffold using 24-well plates. The C2C12 cells cultured into wells
without scaffolds were considered as the control group. After 48 h of culture, the cells were
detached using a solution containing trypsin 0.05% in EDTA (Sigma Aldrich) and counted
using a Bürker chamber after Trypan blue staining. Each value was normalized by cell
number adhering on the bottom of the corresponding well and taken as the cell adhesion
output parameter Y6, taken here as an indicator of the biocompatibility of a scaffold. After
4 days of cell culture, the cell morphology and cell viability were investigated on the
selected scaffolds using immunofluorescence analysis. The cells seeded on scaffolds were
fixed with ice-cold methanol (−20 ◦C) for 10 min. After saturation with Bovine serum
albumin (BSA) 3%, the cells were incubated with tetra-rhodamine-conjugated phalloidin,
directed against F-actin (Invitrogen Corp, Waltham, MA, USA) for 1 h at room temperature.
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The nuclei were stained with 4’,6’-diamidino-2-phenylindole (DAPI; Sigma-Aldrich). The
images were taken using a Leica DMRB microscope (Wetzlar, Germany) equipped with a
digital camera. Experiments were repeated 3 times. Data are expressed as the mean ± SD.
Statistical analyses were performed with GraphPad Prism Software (GraphPad Software,
San Diego, CA, USA). Differences were analyzed using a one-way analysis of variance
(ANOVA). p-values < 0.05 were considered to indicate significance.

3. Results
3.1. Scaffold Characterization Results

The results of the characterization of the five electrospun scaffolds are reported in
Table 4 and show evidence of significant changes in scaffold properties across the treatments.
While it is generally reported, for example, that smaller diameter fibers are obtained by
either decreasing polymer concentration in the solution, decreasing the solution viscosity,
increasing the solution conductivity, or decreasing surface tension and increasing the field
strength (e.g., [25,40,41]), our analysis clearly highlights that the effects of interactions terms
can deeply change the main effects of single parameters and can indeed revert such trends
between the process parameters and scaffolds properties. After examining the scaffold
properties, a statistical analysis is presented in Section 3.2 to support this statement.

3.1.1. Fiber Diameter Distribution: Y1 and Y2

The distribution of fiber diameters (FDs) is nearly universally regarded and inves-
tigated as the prime property to steer electrospun scaffold performance in terms of cell
response. Common electrospun scaffolds usually exhibit a unimodal statistical distribution,
the mean and spread of which represent the two minimal statistical descriptors of mi-
croscale architecture (i.e., Y1 and Y2 here) and can be tweaked using the process parameters.
The different scaffold types exhibit very distinctive microstructures as revealed using SEM
(Figure 3), which underlines the broadly different estimates of Y1 from DiameterJ ©, as
displayed in Figure 4 at a glance. The largest and smallest fiber diameters were obtained
for treatment T4 (4.49 µm) and T2 (0.69 µm). Noteworthy, at the given value of the FR, a
decrease in fiber diameter for higher V is observed by comparing the pair T1–T2 (@FR = −1)
vs. the pair T3–T4 (@FR = +1), in agreement with the literature [42,43]. As discussed later,
though, the interplay (interaction) between the FR and V is crucial to determining the large
differences in the FD spread, ranging from hundreds of nanometers for T2-T4 to above
1 micrometer for T1–T3.

Materials 2023, 16, x FOR PEER REVIEW 11 of 23 
 

 

 
Figure 3. SEM micrographs of the samples (a) T1, (b) T2, and (c) T4. 

 
Figure 4. The mean value and spread of the first five scaffolds from DiameterJ. The histogram 
shows simultaneously the 𝑌1 and 𝑌2 of each scaffold from Table 4. Data are expressed as the mean ± 
SD (p-values < 0.05 is the significance interval). 

3.1.2. Porosity, Wettability, and Mechanical Properties: Y3, Y4, and Y5 
The porosity ε% (Y3) is the third independent geometrical descriptor of these scaf-

folds and conveys relevant information about fiber density and scaffold function. It is in 
fact linked to the efficient transport of nutrients, gases, and waste products [7,23,41,44]. 
Because porosity is crucial to cell migration and engraftment, it can be the controlling 
factor of scaffold performance and adversely affect cell viability. Scaffold porosity varies 
considerably in Table 4, in the range of 65–90%. The most porous scaffold is T2 (90%), 
followed by T5 (86%). Minimum porosity was obtained for T4 (65%). It is known that 
porosity is closely related to cell mobility and promotes cell adhesion, in conjunction with 
the high surface area density of electrospun scaffolds [7,44,45]. Bioactive scaffolds in the 
literature often have a porosity greater than 80%, which is a requirement achievable by 
properly controlling the FR and V in the case presented in this study. 

The next scaffold descriptor is wettability vs. water, quantified using the contact 
angle (CA), which affects the way a biomaterial surface interacts with the biological en-
vironment [46]. Thus, a superficial characterization of the contact angle (𝑌4) provides a 
potentially important descriptor for understanding the observed biological effects. The 
average CA for each treatment is between 111.52° (T4) and 127.44° (T2), confirming a 
rather hydrophobic behavior of all scaffolds, typical of PCL [47]. As expected, the lower 
values of CA in Table 4 correspond to higher values of fiber diameters [39]. Noteworthy, 
this hydrophobicity does not hinder cell adhesion since scaffolds are conditioned before 
biological testing as described in Section 2.7.  

The last descriptor (Y5) relates to the elastic response of the polymeric scaffold ex-
pressed in terms of Young’s modulus E. The mechanical (elastic) properties are instru-

Figure 3. SEM micrographs of the samples (a) T1, (b) T2, and (c) T4.



Materials 2023, 16, 1539 10 of 20

Materials 2023, 16, x FOR PEER REVIEW 11 of 23 
 

 

 
Figure 3. SEM micrographs of the samples (a) T1, (b) T2, and (c) T4. 

 
Figure 4. The mean value and spread of the first five scaffolds from DiameterJ. The histogram 
shows simultaneously the 𝑌1 and 𝑌2 of each scaffold from Table 4. Data are expressed as the mean ± 
SD (p-values < 0.05 is the significance interval). 

3.1.2. Porosity, Wettability, and Mechanical Properties: Y3, Y4, and Y5 
The porosity ε% (Y3) is the third independent geometrical descriptor of these scaf-

folds and conveys relevant information about fiber density and scaffold function. It is in 
fact linked to the efficient transport of nutrients, gases, and waste products [7,23,41,44]. 
Because porosity is crucial to cell migration and engraftment, it can be the controlling 
factor of scaffold performance and adversely affect cell viability. Scaffold porosity varies 
considerably in Table 4, in the range of 65–90%. The most porous scaffold is T2 (90%), 
followed by T5 (86%). Minimum porosity was obtained for T4 (65%). It is known that 
porosity is closely related to cell mobility and promotes cell adhesion, in conjunction with 
the high surface area density of electrospun scaffolds [7,44,45]. Bioactive scaffolds in the 
literature often have a porosity greater than 80%, which is a requirement achievable by 
properly controlling the FR and V in the case presented in this study. 

The next scaffold descriptor is wettability vs. water, quantified using the contact 
angle (CA), which affects the way a biomaterial surface interacts with the biological en-
vironment [46]. Thus, a superficial characterization of the contact angle (𝑌4) provides a 
potentially important descriptor for understanding the observed biological effects. The 
average CA for each treatment is between 111.52° (T4) and 127.44° (T2), confirming a 
rather hydrophobic behavior of all scaffolds, typical of PCL [47]. As expected, the lower 
values of CA in Table 4 correspond to higher values of fiber diameters [39]. Noteworthy, 
this hydrophobicity does not hinder cell adhesion since scaffolds are conditioned before 
biological testing as described in Section 2.7.  

The last descriptor (Y5) relates to the elastic response of the polymeric scaffold ex-
pressed in terms of Young’s modulus E. The mechanical (elastic) properties are instru-

Figure 4. The mean value and spread of the first five scaffolds from DiameterJ. The histogram shows
simultaneously the Y1 and Y2 of each scaffold from Table 4. Data are expressed as the mean ± SD
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3.1.2. Porosity, Wettability, and Mechanical Properties: Y3, Y4, and Y5

The porosity ε% (Y3) is the third independent geometrical descriptor of these scaffolds
and conveys relevant information about fiber density and scaffold function. It is in fact
linked to the efficient transport of nutrients, gases, and waste products [7,23,41,44]. Because
porosity is crucial to cell migration and engraftment, it can be the controlling factor of scaf-
fold performance and adversely affect cell viability. Scaffold porosity varies considerably in
Table 4, in the range of 65–90%. The most porous scaffold is T2 (90%), followed by T5 (86%).
Minimum porosity was obtained for T4 (65%). It is known that porosity is closely related to
cell mobility and promotes cell adhesion, in conjunction with the high surface area density
of electrospun scaffolds [7,44,45]. Bioactive scaffolds in the literature often have a porosity
greater than 80%, which is a requirement achievable by properly controlling the FR and V
in the case presented in this study.

The next scaffold descriptor is wettability vs. water, quantified using the contact
angle (CA), which affects the way a biomaterial surface interacts with the biological en-
vironment [46]. Thus, a superficial characterization of the contact angle (Y4) provides a
potentially important descriptor for understanding the observed biological effects. The
average CA for each treatment is between 111.52◦ (T4) and 127.44◦ (T2), confirming a
rather hydrophobic behavior of all scaffolds, typical of PCL [47]. As expected, the lower
values of CA in Table 4 correspond to higher values of fiber diameters [39]. Noteworthy,
this hydrophobicity does not hinder cell adhesion since scaffolds are conditioned before
biological testing as described in Section 2.7.

The last descriptor (Y5) relates to the elastic response of the polymeric scaffold expressed
in terms of Young’s modulus E. The mechanical (elastic) properties are instrumental in fine-
tuning the scaffold function and driving cell differentiation in tissue engineering [48–53].
Young’s modulus varies greatly, spanning over one order of magnitude range, largely. The
highest E value is obtained for T4 (39 MPa), whereas T2 showed the lowest value (3 MPa).
Expectedly, electrospun materials made of thicker fibers tend to be stiffer, with higher yield
stresses. Instead, no obvious correlation between E and scaffold porosity can be identified
at a glance from raw data.

3.1.3. Biological Evaluation: Y6

The cellular adhesion in Table 4 is a useful indicator of cell vitality and the toxicity
of a biomaterial. As such, in our study, a cell adhesion assay (Y6) represents the basic
way to probe and compare the biocompatibility of the scaffolds. The adhesion of C2C12
cells on different PCL scaffolds (normalized by cell number adhering on the bottom of the
well area) at 48 h after seeding is shown in Figure 5. The results show that cell adhesion
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was maximum on the T3 scaffold. Moreover, the values of cells adhesion for T1-T3-T4
were higher than for the control (polystyrene plate). Figure 6 provides some DAPI/F
actin-stained cells over the scaffold, demonstrating the good cell viability of C2C12 cells on
all these PCL scaffolds.
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3.2. ANOVA Models for Ys

The results from fitting a full 22 factorial model to each Y1–6 are reported in Table 5,
showing the coefficients of Equation (4) and the corresponding p-values to decide whether
that term is significant or not based on the selected significance level of 10%. The R2

and R2-adj are displayed at the bottom for each output Y, with R2 values in the 67–99%
range, indicating “good” to “very good” agreement with the experimental data. R2-adj
values just moderately decrease and are acceptable, with the Y5 model exhibiting the most
modest performance (R2 = 67.50%, R2-adj = 56.63%). The reported R2 values are obtained by
removing terms from Equation (4) in favor of a simpler model (also called a non-hierarchical
model) and retaining only the most relevant effects and interactions using a “step-wise
backward” regression approach [35].
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Let us discuss the procedure to select a reduced model for Y1. As mentioned above,
one major benefit of the DOE factorial approach is the possibility to quickly refine the
analysis and identify the simplest model by removing non-significant terms. By proceeding
step wise from a full model, the backward elimination algorithm starts with all predictors
in the model and removes the least significant variable for each step one at a time. The
MINITAB algorithm stops when all variables in the model have p-values that are less than
or equal to the specific significance value, i.e., 10% in our case. Table 6 provides the Y1
model generated by “dropping” all terms that exhibit a p-value > 0.1, where two terms
are found to be significant. Note that the coefficients of the “kept” terms do not need
to be re-estimated because of the orthogonality property of the DOE. The relevant terms
can be ranked by importance either by their (decreasing) p-values or, more intuitively, via
their (increasing) t-values [34–36]. For coded models, the absolute value of each t-value
conveys a standardized measure of the associated effect/interaction and can be arranged
in a Pareto histogram as portrayed in Figure 7, which offers an overall pictorial perspective
that is more convenient to comprehend and analyze than Table 5. The model explains
99.28% of the variability in Y1 and can predict the mean FD to within ±0.348 µm (±2·MSE),
corresponding to a 90% confidence level. In terms of the t-value, any effect in Figure 7 that
exceeds the reference line for t0 = 2.92 is significant at a 10% significance level, consistent
with Table 6. The single most important effect on Y1 is the FR (ref. A = X1), followed by
V (ref. B = X1). The FR and V are the real controlling variables of the FD, whereas the
interaction term between the FR and V is negligible, as correctly concluded in Section 3.1.1.

Table 6. Model in coded units for output variable Y1 obtained by dropping terms with p-value > 0.1.

Y1—Mean FD (µm)

Cij
Main Effect/
Interaction Model Standardized Effect

(t-Value) p Keep/Drop Rank by
Significance

(C0) 2.53 32.50 <0.001 (Keep) (0)
C1 X1 1.34 15.34 0.004 Keep 1
C2 X2 -0.56 -6.49 0.023 Keep 2
C12 X1·X2 - - - Drop -

R2 99.28%
Variance 0.174
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Figure 8 illustrates how the FD changes when the FR changes from its low level (−1)
to its high level (+1), assuming the other factor, i.e., V is kept constant, and vice versa.
Remarkably, since C2 is negative, increasing the V (X2) does increase the FD. Hence, through
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the DOE, it is possible to not only identify but also quantify the role of each input parameter
on the selected output properties.
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The rationale holds identical for Y2, Y3, Y4, Y5, and Y6. By repeating the same search
procedure for Y2, the reduced model in Table 5 is achieved, where the interaction between
the FR and V turns out to be the most and only significant term affecting the spread of the
fiber distribution (Table 7). The Pareto ranking for Y2 is on display in Figure 9. Thus, while
neither main effect V nor FR is crucial per se in the determination of the FD RMS, each of
them can completely revert the impact of the other main effect, as highlighted in Figure 10.
The primary role of the interactions has received little attention in the literature, but it is an
elusive aspect that cannot be pinpointed without a systematic DOE study. Here, Table 7
indicates that the fitted model is appropriate (with a high coefficient of determination of
about 99.99%) and can estimate (interpolate) data trends very accurately for engineering
purposes.

For Y3, Y4, Y5, the analysis yields the results in Table 5 (additional tables and figures
are reported in the Supplementary Material). Briefly, (i) in the case of porosity Y3, the
scenario is analogous to Y2 since the interaction FR·V is again most relevant; and (ii) for the
contact angle Y4 and for the mechanical property Y5, the main effect FR is dominant, with
no significant interaction. For Y5, the relatively low R2 (67.50%) may suggest running a
refined factorial design and checking for lack of fit due to curvature in our data, for example
implementing a response surface DOE design such as a central composite design [35].

Table 7. Model in coded units for output variable Y2 obtained by dropping terms with p-value > 0.1.

Y2—RMS FD (µm)

Cij
Main Effect/
Interaction Model Standardized Effect

(t-Value) p Keep/Drop Rank by
Significance

(C0) 0.99 27.49 <0.001 (Keep)
C1 X1 - - - Drop -
C2 X2 - - - Drop -
C12 X1·X2 0.14 14.31 0.001 Keep 1

R2 98.56%
Variance 0.080
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Figure 10. (Left) The main effects plot and (right) the interaction plot for the spread of FD (only the
interaction term is significant and retained in the final model as per Table 7).

Finally, focusing on the last output parameter in our analysis Y6, the biocompatibility
of the PCL scaffolds is captured using a reduced model where only the main effect V
is significant, according to Table 8. The Pareto ranking and the factor plots for Y6 are
displayed in Figures 11 and 12. The modest R2 (75%) is an acceptable result for engineering
purposes, also considering the extreme simplicity of 1-term model, but it also means that
more information (e.g., more observations, more regressors, or higher terms) could be
included in future analysis to substantially improve the statistical fitting.

Table 8. Model in coded units for output variable Y6 obtained by dropping terms with p-value > 0.1.

Y6—Cell Adhesion

Cij
Main Effect/
Interaction Model Standardized Effect

(t-Value) p Keep/Drop Rank by
Significance

(C0) 0.60 8.02 0.004 (Keep)
C1 X1 - - - Drop -
C2 X2 −0.25 −3.00 0.058 Keep 1
C12 X1·X2 - - - Drop -

R2 75.01%
Variance 0.167
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3.3. Implication of DOE for Design of Multilayer Electrospun Scaffold: T-MIX Example

In order to reproduce the typical cell environment, sometimes a scaffold has to be
designed with multiple length scales across its thickness, with multiple zones or with com-
partments optimized for specific cell types. The information accrued using the modeling
analysis proposed above may have a profound impact in this respect since it can be used
to aid in the design and manufacturing of such complex scaffolds using electrospinning.
For illustrative purpose, let us suppose we create a “derived two-layer scaffold”, labelled
as scaffold T-MIX in Table 9 and obtained from parent scaffolds T1 and T3. The latter two
are here chosen arbitrarily, although they correspond to the DOE treatments exhibiting the
best biological performances while being quite different from the microstructural point of
view, making for an interesting case study aiming at a compound microstructure with high
morphological and mechanical gradients.

Table 9. Input and output data of the samples T-MIX, T1, and T3, to directly compare the by-layer
system vs the parent scaffolds. All T1, T3, and T-MIX were electrospun for 10 min with “layer T1”
and “layer T3”.

Treatment Inputs (XS) Outputs (YS)

FR V Mean FD
(µm)

Spread SD
(µm) CA (◦) Cell

Adhesion

T-MIX
layer T1 −1 −1 1.98 1.89

116.00 * 1.471 *layer T3 1 1 4.23 1.54
T1 −1 −1 1.63 1.56 123.98 0.400
T3 1 1 3.17 1.51 114.72 1.379

* effective properties of the T-MIX scaffold.
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The process parameters and the Ys of the T-MIX vs. parent scaffolds T1 and T3 are
summarized in Table 9, indicating that the T-MIX scaffold indeed inherited some of their
key properties. The mean FD and RMS FD values of each “layer T1” and “layer T3” of the
T-MIX are remarkably similar to the respective values of the scaffolds T1 and T3 (Figure 13),
confirming that T-MIX is endowed with marked through-thickness gradients. The other
reported metrics in Table 9 (i.e., the contact angle and the cell adhesion) are on average
intermediate between T1 and T3. While the T-MIX scaffold retains a good biological
response in spite of the microstructural (and thus mechanical) gradients across the two
layers, the possibility to create layer-by-layer scaffolds with the controlled fiber distribution in
each layer is perhaps the most telling result from this example here, paving the way to the
deployment of the rationale design of TE scaffolds using electrospinning aided by the DOE.
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3.4. Additional Remarks about ANOVA and Correlations between Ys

Generally speaking, establishing correlations between the Ys is useful for engineering
purposes and represents a valid challenge for future studies to improve the DOE results, as
already pointed out in a previous paper [24]. The DOE analysis of the Y–X relationships can
be augmented indeed with additional regression studies exploring the Y–Y relationships
between outputs in the given multi-response dataset (ref. Table 5). For example, it is
possible to run an ANOVA to correlate Y5 with Y1, especially since scaffolds with larger
FDs were discussed to be generally stiffer in Section 3.1.2. The linear model (R2 > 78.6%)
in Figure 14 in fact confirms this trend but also points out that the data may suggest a
curvature effect. A quadratic model actually improves the data fit considerably (R2 > 90%)
and renders a better model for predicting Young’s modulus from the mean FD for the
scaffolds and vice versa. Such a model hence provides an alternative option that can be
used either synergistically or in place of the DOE models, depending on the design or
manufacturing task at hand.
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Yet, the pursuit of Y–Y models is not a trivial task. In this regard, for example,
in this specific study, none of the physical properties (Y1–5) appear to correlate easily
with the biological response (Y6), and no satisfactory reduced model can be identified
for Y6 regressed on Y1–5. Similar to the DOE, larger datasets, more regressors, and—if
necessary—higher-order linear models need to be accounted for to improve the likelihood
of a satisfactory regression analysis.

4. Conclusions

The results of this study support that the implementation of statistical process mapping
of electrospinning is possible and that the resulting statistical models can be useful to
develop better TE scaffolds.

While expanding and reinforcing the conclusions from an earlier study [23,24], the
DOE approach described herein represents a flexible and modular design platform that
can be expanded or reduced in scope and size, depending on the complexity and design
goals case-by-case. The methodology is quite powerful considering that the case discussed
in this paper was elaborated on a rather limited dataset of five unreplicated treatments
only, yet yielding statistical correlations and regression models of high significance. The
data obtained from this study encourage the adoption of the DOE strategy in the design
and manufacturing of TE scaffolds using electrospinning. As far as electrospinning is
concerned, the findings reveal that the flow rate (FR) is often the most important process
parameter (main effect) for several scaffold properties but that the importance of interaction
effects can be even larger than any single main effect, as confirmed by the Pareto plots
(Figure 9). Therefore, a DOE-like method is a proper way to characterize and understand
an electrospinning process at hand and the resulting electrospun scaffolds, thus enabling
accurate interpolation within the design domain and the implementation of a material-by-
design approach to manufacturing.

Additionally, once understood how the process parameters influence the scaffold
properties, it appears possible to pursue multiscale layer-by-layer scaffolds with desired
microstructural gradient, useful to reproduce a complex ECM environment and direct
cellular response for regenerative purposes. In this regard, the rapid increase in the size
of DOE datasets with a number of Xs and Ys may pose some constraints, which, in our
view, can be effectively addressed either using reduced designs (e.g., “fractional” designs,
“subsets analysis”) or using “artificial intelligence” tools.

Finally, the far-reaching impact of our findings goes beyond electrospinning since the
proposed approach per se is applicable to scaffolds produced using any other advanced
manufacturing techniques (e.g., 3D printing or chemical self-assembling).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma16041539/s1, Figures S1–S3: Pareto and interaction plots, respec-
tively, for Y3, Y4, and Y5. Tables S1–S3: ANOVA table, respectively, for Y3, Y4, and Y5. Figure S4: The
provided stress–strain curves.
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