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Abstract
The biological substrate of persistent post-COVID-19 hyposmia is still unclear. However, as many neurodegenerative 
diseases present with smell impairment at onset, it may theoretically reflect degeneration within the central olfactory 
circuits. However, no data still exist regarding the post-COVID-19 patients. As the olfactory neurons (ONs) mirror patho-
logical changes in the brain, allowing for tracking the underlying molecular events, here, we performed a broad analysis 
of ONs from patients with persistent post-COVID-19 OD to identify traces of potential neurodegeneration. ONs were 
collected through the non-invasive brushing of the olfactory mucosa from ten patients with persistent post-COVID-19 
hyposmia (lasting > 6 months after infection) and ten age/sex-matched controls. Immunofluorescence staining for protein 
quantification and RT-PCR for gene expression levels were combined to measure ONs markers of α-synuclein, amyloid-β, 
and tau pathology, axonal injury, and mitochondrial network. Patients and controls had similar ONs levels of oligomeric 
α-synuclein, amyloid-β peptide, tau protein, neurofilament light chain (NfL), cytochrome C oxidase subunit 3 (COX3), 
and the heat shock protein 60 (HSP60). Our findings thus did not provide evidence for synucleinopathy and amyloid-β 
mismetabolism or gross traces of neuronal injury and mitochondrial dysfunction within the olfactory system in the early 
phase of persistent post-COVID-19 hyposmia.

Keywords Post-COVID · Long-COVID · Hyposmia · Olfactory dysfunction · Olfactory neurons · Neurodegeneration

Introduction

Since the early phases of the outbreak, the risk for neurological 
sequelae of SARS-CoV-2 associate disease (COVID-19) has 
been hypothesized. Indeed, the virus may exert neuropatho-
genicity either directly, by entering into the CNS, or indirectly, 
through viral–host interactions and immune–inflammatory 
processes, inducing post-acute neurological syndromes or, 
eventually, triggering complex molecular events responsible 
for long-term consequences, such as neurodegenerative dis-
eases [1].

The higher incidence of neurological disturbances shortly 
after the infection, within the so-called long-COVID, has 
been substantially demonstrated [2]. Conversely, the risk for 
neurodegenerative disorders cannot be clearly established 
yet. Recent studies identified some preliminary associations 
between COVID-19 and possible neurodegeneration; however, 
further unbiased investigations are definitely needed [3].
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Persistent post-COVID-19 olfactory dysfunction (OD) 
consists of smell loss or impairment lasting several months 
(or years) after the acute infection and may affect up to 20% 
of COVID-19 patients [4, 5]. The pathophysiology mostly 
encompasses chronic inflammatory mechanisms in the olfac-
tory pathway [6], associated with some possible rearrange-
ments at a brain circuit level [7]. On the other side, hyposmia 
is a well-known prodromal symptom in Parkinson’s (PD), 
Alzheimer’s (AD), and other neurodegenerative diseases, 
which results from the early degeneration and dysfunction 
of the olfactory-limbic systems connections and other corti-
cal-subcortical areas [8]. Accordingly, post-COVID-19 OD 
might theoretically represent an initial stage of a clinical-
pathological trajectory leading to neurodegeneration [9].

Olfactory neurons (ONs) are the peripheral terminals 
of the olfactory system and, by the non-invasive olfactory 
mucosa brushing, can be collected to analyze in vivo the 
molecular events underlying the diseases. For example, it 
has been demonstrated that ONs accumulate neuropathologi-
cal hallmarks of PD since the premotor phase, thus serving 
as a reliable model for central neurodegeneration [10, 11].

In this study, we examined ONs from patients with per-
sistent post-COVID-19 OD for markers of main neurode-
generation pathways (α-synuclein, amyloid-β, tau, neurofila-
ments, mitochondrial network) in order to identify any cues 
supporting the risk for neurodegeneration in people with 
previous COVID-19.

Materials and Methods

Study Population

The study was conducted on a previously described cohort 
of ten patients with persistent post-COVID-19 OD and ten 
healthy sex/age-matched controls (CTRLs) enrolled at Tor 
Vergata University Hospital (Rome, Italy) in 2021–2022 
[6] and subsequently observed up to July 2023, when they 
were clinically screened to exclude the occurrence of any 
cognitive/motor disorder consistent with neurodegenerative 
diseases.

Briefly, all patients had COVID-19 within November 
2021 in Rome region, were suffering from OD since 6 to 
10 months, and were SARS-CoV-2 negative at enrolment for 
6 months at least. Controls were healthy volunteers without 
olfaction complaints, history, and clinical signs of neuro-
logical and otolaryngological diseases, never affected by 
COVID-19. Individuals with main acute/chronic infectious/
inflammatory/internal diseases or under medications poten-
tially interfering with data interpretation were excluded. For 
all subjects, demographics, anthropometrics, and medical 
history were collected. Olfaction was quantitatively assessed 

in patients by the “identification score” (IS) of the Sniffin’ 
Sticks test (Burghardt®, Wedel, Germany).

The study was approved by the local Ethical Commit-
tee (protocol n° 16.21), following the principles of Helsinki 
Declaration. All participants signed an informed consent.

ONs Collection and Analysis

ONs were collected by olfactory mucosa brushing and pro-
cessed as previously described [11]. The following mark-
ers were assessed by different techniques comparatively in 
patients and controls: oligomeric α-synuclein (α-syn) form, 
amyloid-β peptide (Aβ), tau protein, neurofilament light 
chain (NfL), cytochrome c oxidase subunit 3 (COX3), and 
the heat shock protein 60 (HSP60) (the latter’s as markers 
of mitochondrial activity).

Immunofluorescence

Immunofluorescence analysis was performed on ONs previ-
ously fixed in Cytofix solution as reported [11]. Briefly, cells 
were cytocentrifuged onto microscope slides (Menzel Gla-
ser, Superfrost® Plus), permeabilized in 0.2% Nonidet P-40 
(Sigma-Aldrich) for 20 min, blocked in 5% normal donkey 
serum for 1 h, and incubated overnight at 4 °C with the 
following primary antibodies: rabbit anti-α-Syn33 (1:300; 
Millipore, CA) binding oligomeric α-syn; mouse anti-β-
amyloid, which is directed against residues 1–16 of Aβ and 
also binds β-amyloid peptides (1:400; 6E10, BioLegend pre-
viously Covance); rabbit anti-tau (1:400; Sigma-Aldrich); 
mouse anti-OMP as the specific ONs marker-protein (1:300; 
Santa Cruz Biotechnology); rabbit anti-β3-tubulin, as a neu-
ronal marker (TU-20; 1:300; Cell Signaling Technology); 
mouse anti-HSP60 (H-1; 1:100; Santa Cruz Biotechnology).

Slides were then washed with PBS and incubated for 1 h 
at room temperature, with anti-species IgG secondary anti-
bodies coupled to Alexa Fluor 488 or 555 (Immunological 
Sciences). Nuclei were stained with DAPI (Sigma-Aldrich). 
The fluorescent signal was acquired by an Eclipse E600 fluo-
rescence microscope (Nikon Instruments, Japan) connected 
to a QImaging camera with NIS-Elements BR 3.2 64-bit 
software.

To quantify the immunofluorescence intensity, images 
were acquired at high magnification with a × 100 or × 60 
objective maintaining exposure parameters, such as gain 
and time, constant to avoid observing differences between 
experimental groups due to artifacts. The RGB fluorescent 
signal was automatically analyzed using ImageJ software 
(version 1.53, National Institutes of Health, USA; https:// 
imagej. nih. gov/ ij/ downl oad. html) and RGB (red, green, 
blue) measure tool, which uses brightness values for the 
calculation. A number of 5–6 images were taken from each 
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sample and an average was obtained. Unit of measurements 
is pixel size predetermined by the ImageJ software.

RNA Extraction and Real‑Time PCR

Total RNA was extracted from ONs using TRIzol reagent 
and processed as previously described [11].

Briefly, 1 µg of total RNA was reverse transcribed into 
cDNA (Reverse Transcriptase, Bioline Meridian Bioscience) 
and then amplified by real-time PCR (iCycler; Bio-Rad) 
using iQ SYBR Green Supermix (Bioline Meridian Biosci-
ence) and specific sense and antisense human primers target-
ing NfL and mitochondrial gene COX3 (Eurofins Genomics, 
Ebersberg, Germany). All reactions were run in triplicate 
under the same thermal cycling conditions, and the average 
was normalized to the reference gene GAPDH. Gene expres-
sion was analyzed using the comparative  (2−ΔΔCt) method, 
and results were presented as a fold increase of the target 
gene compared to the control group.

Primer sequences:

NfL Fw 5′-CAA GAC CCT GGA AAT CGA AG-3′, Rev 
5′-TGA AAC TGA GTC GGG TCT CC-3′
COX3 Fw 5′-ATG ACC CAC CAA TCA CAT GC-3′, Rev 
5′-ATC ACA TGG CTA GGC CGG AG-3′
GAPDH Fw: 5′-TGC ACC ACC AAC TGC TTA GC-3′, Rev: 
5′-GGC ATG GAC TGT GG TCA TGA G-3′.

Statistical Analysis

Variable distribution was preliminarily examined by the 
Shapiro–Wilk test. Non-normally distributed variables 
were  Log10+1 transformed when necessary for analysis. 
Categorical variables were compared by chi-square test, the 
continuous ones instead by parametric (Student’s T-test) or 
non-parametric tests, as appropriate. Statistical significance 
was set at p < 0.05. Analysis was run in blind, by using IBM-
SPSS-23 and GraphPad Prism 7.

Results

Study Population

The post-COVID-19 OD group included seven females and 
three males with mean ± st.dev age of 43 ± 13 years. The 
control group included six females and four males with an 
age of 50 ± 14 years. Sex and age did not differ between the 
groups. The Sniffin’ Sticks test IS was significantly lower 
in patients (10.5 ± 3.2) than in controls (15.6 ± 0.7, U = 2.5, 
p < 0.001). Further details were previously published [6] and 
available in a supplementary Table for convenience.

Evaluation of Neurodegeneration‑Related Markers

The double immunostaining of oligomeric α-syn and OMP 
showed a similar immunofluorescence signal in patients and 
controls (Fig. 1A), as further confirmed by immunofluores-
cence analysis (RGB pixels analysis): OD patients (n = 10, 
2.8 ± 0.51) versus CTRLs (n = 10, 3.3 ± 0.85) (Fig. 1B).

As well, the double immunofluorescence staining of tau 
with OMP and Aβ with β3-tub excluded significant differ-
ences between patients and controls (Fig. 1C, E), as dem-
onstrated by RGB immunofluorescence analysis: Tau, OD 
(n = 10, 2.2 ± 0.46) versus CTRLs (n = 9, 1.8 ± 0.56; Aβ, 
OD (n = 10, 2.3 ± 0.41) versus CTRLs (n = 8, 1.9 ± 0.49) 
(Fig. 1D, F). The immunofluorescence expression patterns 
observed for tau and Aβ were consistent with previous data 
reported by Brozzetti and colleagues [10]. Tau positivity 
presented a homogenous intracytoplasmic distribution, 
while Aβ positivity showed a dot-like positivity, distributed 
in the proximity of the nucleus.

NfL mRNA expression levels were similar in patients 
and controls: OD (n = 8, 1.11 ± 0.25) versus CTRLs (n = 7, 
1.04 ± 0.37) (Fig.  2A). As well, the NfL protein levels 
measured through the immunofluorescence assay did not 
differ: OD (n = 9, 37,930 ± 2012) versus CTRLs (n = 10, 
35,380 ± 1819) (Fig. 2B, C). The fluorescent signal of NfL 
localized in the cytoplasm of ONs (Fig. 2B). No intersex 
differences resulted in patients and controls.

Evaluation of Mitochondrial Network

COX3 mRNA expression levels were similar in patients and 
controls: OD (n = 10, 2.03 ± 0.73) versus CTRL (n = 10, 
1.72 ± 0.55) (Fig. 3A). As well, the HSP60 localization 
pattern analyzed by immunofluorescence did not differ. 
The characterization of the mitochondrial reticulum of the 
neuronal cells, identified by the β3-tub staining, exhibited 
a similar pattern between patients and controls, without sig-
nificant changes in morphology and subcellular distribution 
(Fig. 3B).

Discussion

The olfactory system is critical in pathogenic trajectories 
underlying neurodegenerative diseases. In particular, some 
authors hypothesized that the olfactory route may serve 
as an entry site for external factors (viruses or toxicants) 
triggering synucleinopathy in PD [12]. As well, it results 
as early affected by tau and amyloid-β pathology in AD 
[13, 14]. In parallel with these pathological changes, also 
the olfactory function declines such that hyposmia may 
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long precede classical manifestations of PD and AD, rep-
resenting a prodromal marker or a readout for pathological 
progression in these conditions [9, 13].

Theoretically, even persistent post-COVID-19 OD might 
thus origin from the impairment of the olfactory system, which 
can imply a simple signaling dysfunction or cell loss with 

Fig. 1  Neurodegeneration-associated marker expression levels. 
Representative immunofluorescent images showing the expres-
sion pattern of oligomeric α-syn (green) (A), tau protein (green) 
(C) and Aβ (green) (E) in ONs from healthy controls (CTRL) and 
post-COVID-19 OD patients. Nuclei were stained with DAPI (blue). 

Scale bar, 10 µm. Graphs showing immunofluorescence signal quan-
tification of oligomeric α-syn (B), tau protein (D), and Aβ (F) in each 
group evaluated by ImageJ software. Data points represent the mean 
value ± SEM

Fig. 2  Neurofilament light chain (NfL) expression levels. A The NfL 
mRNA expression level in ONs from post-COVID-19 OD patients 
and controls. B Representative immunofluorescence analysis of NfL 
protein (green) in ONs. Nuclei were stained with DAPI (blue). Scale 

bar, 10 µm. C Graphs showing immunofluorescence intensity of NfL 
staining in each group evaluated by ImageJ software. Data points rep-
resent the mean value ± SEM
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neurodegeneration; however, no definitive data still exist. Recent 
studies showed that peripheral ONs may express some of the 
neurodegenerative diseases’ biological hallmarks, thus emerg-
ing as a potential model to assess molecular stages of neurode-
generation in vivo [10, 11]. Accordingly, here, we performed a 
broad characterization of ONs from patients with persistent post-
COVID-19 hyposmia to ascertain (or exclude) the presence of 
neurodegeneration-associated markers, including synucleinopa-
thy, amyloid-β mismetabolism, neuronal injury, and mitochon-
drial dysfunction. Specifically, we assessed ONs for oligomeric 
α-synuclein, a pathological α-synuclein specie characterizing 
PD neuropathology and accumulating in PD patients [11]; 
amyloid-β peptide, one of the core determinants of AD pathol-
ogy [15], which can locate in the olfactory epithelium either in 
patients or in animal models [16, 17]; tau protein, a cytoskeletal 
component associated with neuronal loss and AD pathology that 
can settle within the olfactory system of AD patients [18]; NfL, a 
marker of non-specific neuroaxonal injury [19]; COX3, a mito-
chondrial respiratory chain enzyme [20]: and HSP60 [21], both 
serving as readouts of the mitochondrial function. Of relevance, 
we found that none of these markers was differently expressed in 
patients and healthy controls, excluding the pathological activa-
tion of these pathways associated with main neurodegenerative 
diseases in symptomatic hyposmic post-COVID-19 patients dur-
ing the first period after the infection.

The pathophysiology of persistent post-COVID-19 hypos-
mia is not clearly understood yet. In a previous paper similarly 
analyzing ONs, we demonstrated that the substance P (SP) over-
expression, consistent with a long-lasting inflammation within 
the olfactory system, was contributing to smell impairment; 

conversely, prokineticin-2 (PK2), an inducible inflammatory 
mediator exerting neuroprotective and olfactogenesis functions, 
was mitigating or supporting the recovery [6].

SP and PK2 might play the same differential roles even 
in PD pathogenesis (and neurodegeneration at all). In fact, 
in ONs from PD patients, SP levels rise proportionally with 
the clinical severity, operating as a pathogenic force [22–24], 
while PK2 expression follows oligomeric α-synuclein accu-
mulation, providing a sort of defensive response [11, 25, 26].

Merging these data together, we could thus hypothesize that, 
in the early phase of persistent post-COVID-19 hyposmia (e.g., 
up to 1 year from the onset), the olfactory system only exhibits 
inflammatory events but not overt proteinopathy-related neu-
rodegeneration. Then, the individual capacity to resolve such 
inflammation, as the occurrence of dual activation of pro- and 
anti-inflammatory pathways (SP and PK2, respectively) sug-
gests, determines the possibility of future neurodegeneration.

This study has some limitations, including the sample 
size and the exiguity of the neurodegeneration-associated 
marker panel, which indeed prevents a wider assessment 
of different pathological cascades. Moreover, an integra-
tion with measuring marker levels (especially NfL [19]) 
in fluids (serum) might have better reflected ongoing pro-
cesses. Nevertheless, we showed no gross traces of the 
main neurodegenerative cascades, especially those related 
to proteinopathy, in the olfactory system of patients with 
persistent post-COVID-19 hyposmia within the first year 
from the onset. Further observation is thus needed to assess 
the possibility of neurodegeneration as a long-term conse-
quence of COVID-19.

Fig. 3  Mitochondrial network markers. A COX3 mRNA expression 
levels in ONs from post-COVID-19 OD patients and controls. Data 
points represent the mean value ± SEM. B Representative immuno-

fluorescence analysis of the mitochondrial protein HSP60 (green) 
with the β3-tubulin (red) and in ONs. Nuclei were stained with DAPI 
(blue). Scale bar, 10 µm
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