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ABSTRACT

Flight delays have negatively impacted the socio-economics state of passengers, airlines and airports, resulting in huge economic losses.
Hence, it has become necessary to correctly predict their occurrences in the process of decision-making because it is important for the
effective management of the aviation industry. Developing accurate flight delays classification models depends mostly on the air
transportation system complexity and the infrastructure available in airports, which may be a region-specific issue. However, no specific
prediction or classification model can handle the individual characteristics of all airlines and airports at the same time. Hence, the need to
further develop and compare predictive models for aviation decision system of the future cannot be over-emphasized. In this research, flight
on-time data records from the United State Bureau of Transportation Statistics was employed to evaluate the performances of Deep
Feedforward Neural Network, Neural Network, and Support Vector Machine models on a binary classification problem. The research
revealed that different accuracies of flight delay classifications were achieved by the models. The Support Vector Machine had the worst
average accuracy than Neural Network and Deep Feedforward Neural Network in the initial experiment. The Deep Feedforward Neural
Network outperformed Support Vector Machines and Neural Network with best average percentage accuracies. Going further to investigate
the Deep Feedforward Neural Network architecture on different parameters against itself suggest that training a Deep Feedforward Neural
Network algorithm, regardless of data training size, the classification accuracy peaks. We examine which number of epochs works best in
our flight delay classification settings for the Deep Feedforward Neural Network. Our experiment results demonstrate that having many
epochs affects the convergence rate of the model unlike when hidden layers are increased, it does not ensure better or higher accuracy in
a binary classification of flight delays. Finally, we recommended further studies on the applicability of Deep Feedforward Neural Network in
flight delays prediction with specific case studies of either airlines or airports to check the impact on the performance of the model.
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1 INTRODUCTION
Human social life in modern times has increasingly become dependent on the aviation industry and accurate classification

of flight delays is profitable but difficult due to uncertainties and failures that might occur within the processes. Despite the
possibility of using land or sea transport for travels, the efficiency and reliability of air transportation have made it a better
option for most passengers [1]. Flight delays have increased due to the rapid increase in air traffic and have become a
prominent problem in the aviation industry [1]. A report from the Bureau of Transportation Statistics (BTS) states that one
out of four flights arrived destination later than 15 minutes [2]. Also, the annual cost of air transportation delays totals over
$30 billion and this poses a challenge to the design and development of the Next-generation Air Transportation Decision
Systems (NATDS) [3]. This is a motivation for the accurate and practical prediction of flight delays, especially on individual or
group basis.

Flight delay propagation is usually caused by the late arrival of a certain flight which may cause the same aircraft to depart
late and is beyond the limited airspace capacity delays [4]. Airlines fly their aircraft on a daily schedule itinerary requiring a
visit to other airports, aircraft arriving late in the day has a significant impact on the delay performance thereafter [5]. For
instance, an aircraft delayed for one hour from the departing airport is certainly going to delay arriving in the next airport;
the lateness in arriving will affect the subsequent departure of the aircraft, which will lead to subsequent lateness in aircraft
arrivals [6]. The United State (US) National Airspace System (NAS) is subject to delay propagation, which includes but not

limited to many resources connected such as the crew, passenger, aircraft and gate space. The slack time between departure
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and arrival is forced to reduce in the NATSDS due to increasing air traffic demands, making the NAS suffer more delay from
the networks. Therefore, modelling flight delays is key to successful and accurate flight delay predictions or classifications.

For several years, flight delays have been one of the major problems costing the airline industry. Several reasons can
cause flight delays ranging from weather conditions (strong winds, winter storm, etc.), late-arriving aircraft, NAS (heavy
traffic volume, air traffic control), security, and air carrier (aircraft cleaning, baggage loading, etc.) [7]. Additional operation
expenses are incurred when a flight delayed, which is mostly due to increased spending on crews, maintenance and increase
fuel consumption. This does not only create inconveniences to passengers but also negatively affect the overall economy [8].
Flight delays studies have been important research areas with much attraction which has led to the employment of data
analytics and machine learning methods to predict flight delays by the airlines [9]. If airlines could predict flight delays, a
proactive decision could be taken to effectively manage disruptions and minimise last-minute flight rescheduling, thus
improving travel experiences. Approximately, every year about 20% of airline flights is delayed or cancelled mainly due to
several causes [10]. These delays significantly incur a cost to both passengers and airlines. For example, in 2007 the US
economy was affected by a cost of $32.9 billion [10]. More than half of that cost accounted for passengers claims to the
airlines due to incurred delays.

Several studies exist the attempt to find the most suitable solutions to flight delays using Deep Learning (DL) methods.
These methods were applied on datasets ranging from weather-caused to non-weather-caused delays. However, there is no
superior or optimal solution to the problem of flight-delay classifications and predictions to date [11]. The use of weather
data to predict Beijing Capital International Airport departure capacity was carried out by Xiangmin in [12]. Both Choi et al.
in [13] and Belcastro et al. in [14] applied weather and flight data for predicting delays. In [15], weather forecast information
of origin and destination airports were utilised for prediction, while in [16] the characteristics of weather such as the direction
of the wind, speed rate, snow depth, precipitation and visibility were used for predicting flight delays. The author in [17]
proposed a machine learning model focusing on weather-induced delays on individual flights. Binary classification accuracy
for a specific individual origin-destination pair can be improved by fine-tuning some of the parameters such as activation
function, number of hidden layers and feature selection etc. Overall, most of the previous studies have their limitation in
feature selection techniques. The goal of this work is to implement deep learning classifier for a non-weather caused flight
delays and compare the performance against other popular shallow architecture machine learning methods.

We can summarise the contribution of this paper in two points. Firstly, we introduce a new algorithm which supports
classifying both departure and arrival delays that combines a feature selection method from [18] for a multi-label
classification algorithm Deep Feedforward Neural Network (DNN). Based on the BTS flight on-time dataset, we applied a
method to be able to select a feature for optimal training of the model for high classification accuracy. Secondly, according
to the International Air Transport Association (IATA), one of the key causes of airline delays is the delayed arrival of an
aircraft. In our model, we have captured this relationship by considering the knock-on effects. Also, we made a performance
comparison for three models DNN and shallow architectures known as Support Vector Machine (SVM) and one-layer Neural
Network (NN) on a flight delay classification task.

The rest of the paper is organised as follows. Section 2 discusses related work and main concepts. Section 3 discusses the
methods implemented. Section 4 presents a discussion on data, performance metric for evaluating and assessing the model

quality. Finally, Section 5 concludes and presents future direction.

2  RELATED WORK
Flight delays have been causing numerous problems for both passengers and the aviation industry [7]. Researchers have
used collective efforts in the quest to address this problem by providing solutions through experimental findings [17]. Despite

the huge successes recorded in addressing this problem, there is no single optimal solution. Therefore, there is need for



more research and investigation of the issue [11]. The authors in [19] developed a methodology for flight schedules. A
clustering approach was employed to group airports into clusters and these clusters were used as input into the flight
scheduling system. However, the author suggests that the system can be improved using more sophisticated methods in the
future. Fei in [20] performed a factor analysis of factual data from irregular flights which combine a Gaussian Mixture Model
and Expectation Maximisation (GMM-EM) algorithm. The model was tested on the Air Traffic Management Bureau (ATMB).
It was discovered that the upstream delay has a positive effect on the quality of downstream delay prediction. The authors
in [21] applied Deep Recurrent Neural Network (DRNN) in discussing the architecture of Long Short-Term Memory (LSTM)
and RNN networks. They explored the benefit of stacking the neural networks and ways of making the architectures deeper
using RNN. The use of deep LSTM-RNN architecture improves the accuracy of the prediction model. Also, Kai-Quan Cai in
[22] investigated the problem of multi-objective air traffic network flow optimisation (MATNFO). A method for systematic
searches of flight routes and time of departure-arrival was proposed. A sequential time slot for flight routes searched to
avoid computational overhead was implemented. The result of the experiment shows that their approach performs better
than SVM.

In [17], the authors developed a model with two phases of prediction as follows: (i) Delay on departure; and (ii) Delay on
arrival. This was for effective prediction of departure and arrival delays using a schedule of flight and weather forecast
features. A binary classification to forecast delay occurrence and regression to find delay value in minutes were implemented.
Gradient Boosting Classifier performed best during the classification while Extra-Tree regressor performed best in the
regression task. The departure delay prediction has a higher error rate than arrival delay prediction. In [23], the author
developed a unimodal model for predicting time delays. Neural networks and the binomial model with trees were
implemented and compared. The author realises arrival delay and ground operation time to be the most significant indicators
in predicting departure delay. In [24], the author implemented Gradient Boost model for flight delay prediction. The highest
coefficient of determination of 92.3185% for arrival and 94.8523% for departure was achieved. However, the model was
limited to only 70 airports. Also, the author in [25] implemented a Neural Network and Deep Belief Network for flight delay
prediction. The accuracies of 92% and 77% were achieved for Neural Network with three hidden layers neuron and Deep
Believe Network with four hidden layer neurons respectively.

In this work, we conducted a thorough performance comparison of three popular machine learning methods known as
DNN, NN and SVM in a flight delay classification problem task. Also, to further investigate the performance of DNN

architecture with different parameter settings.

2.1 Problem definition

Let flight F; be a tuple (Bo, By, tsd, tad tse taa) Where B, represents the origin airport, By represents the destination airport, tsy
represent the scheduled departure time, tqq represents the actual departure time, ts, represents the scheduled arrival time
to the gate, while t,orepresents the actual arrival time to the gate. All date, hours and minutes are included in time. As stated
earlier this research is for classification of non-weather induced flight delays consisting of both departure and arrival delays.
The classification takes into consideration of information related to both departure and arrival flights (origin airport,
destination airport, departure scheduled time and arrival schedule time) according to the schedule. The delay classification
of any flight F; departing from airport B, at a time ts4 and arriving at an airport By at a time t,, is an estimated arrival delay
AD(F;), while departure delay DD(F;) is when a flight depart the origin airport later than the scheduled time. If the delay

prediction is below certain threshold T3, then it is classified as an on-time flight. else, it is classified to be delayed flight.

3 METHODS



In this section, we describe the ML methods employed in our research. These are among the most popularly used ML
methods in the literature for classification problems [25, 42]. Table 1 shows the parameters and levels used in training the

three methods (SVM, NN and DNN) compared in this research.

3.1 Support Vector Machine
Support Vector Machine are belonging to general kernel methods [26, 27, 28], which depend on data only through dot
products. A kernel function n is used to replace the dot product by computing a high dimensional feature space dot product
of the data. It has two major advantages as follows: the ability to generate nonlinear decision with linear classifiers and the
ability of the kernel to allow classifiers applied to a no obvious dimensional vector space representation data. In modelling
SVM a hyperplane is constructed to form decision boundary creating margin between positive and negative class [30, 31].
Given a training set with x; € J# of input vectors with correspondingy; € {+1, -1} labels the SVM model learns the classification
into two classes.

A two-class problem of flight delays, having a label of 1 (there exist a delay) and 0 (there exist no delay). Let x be a vector
with elements x;in our case the input features containing ith vector in a dataset composing of n labelled examples (x; yi)
where y; is the label and x; denotes the input variables. A linear classifier is defined as the dot product between two vectors

also known as scalar or inner product. Equation (1) defines a linear classifier with a linear discriminant function:
f)=wlx+b (1)

where x is the input variable, w the weighted vector and b is the bias. For the case of b = 0, this means that for the set of
points x; such that w’ = 0 are points that go through the origin and perpendicular to w making a hyperplane which divides
the space according to the sign of discriminant function f(x) into two. The decision boundary of the classifier is the boundary
region classified as positive or negative. A classifier that has a linear decision boundary is referred to as a linear classifier
otherwise if dependent on non-linear data is known as non-linear classifier [31, 32]

The type of kernel function, the degree of kernel function (d: polynomial kernel; y: for the radial base kernel) and
regularisation constant c forms the parameter of an SVM. To determine efficient parameters we used the approach proposed
in [34]. In our experiment, we applied five levels of d, ten levels of y, while both four and five levels of c were tested in the
parameter settings. We then selected the best polynomial and radial basis of the SVM model for comparison with the NN

and DNN models.

3.2 Neural Network
Neural Network is a nonlinear prediction method and one of the popular methods applied in classification problems such as
stock index prediction, fraud detection etc. [34, 35] It is referred to as Multilayer perceptron (MLP) or feedforward NN. The
dense interconnected layers help the inputs to activate the neurons. In this study, we employ a one-layer feedforward NN.
The input for the model is as simple as the same in DNN. We use a single layer output neuron, and a transfer function, known
as a log function, which produces a continuous output value between 0 and 1. To determine the class of delay we use a
threshold of 0.5. If the output is greater than or equal to 0.5 then this will result in a classification of delay. Using the threshold
of 0.5 was found to be the best in producing the most accurate classification results. Additionally, in line with the work
presented in [33, 34, 35, 36], a sigmoid function was employed as a transfer function for the hidden layers because it was
the setting with the most accurate classification results in previous research. At each epoch, Gradient Descent was used to
adjust the weights for attaining a global minimum.

The NN has several numbers of hidden layers neurons (n), the learning rate value (Ir), the number of epochs (ep), and the

momentum constant (mc). To determine the most appropriate parameters we tested ten different values of n, nine different



values of mc and ten different values of ep. Then, we selected the best result for comparison with the DNN and SVM. We

found that the learning rate Ir for the top-performing settings in the model was within the interval [0.1, 0.2].

3.3 Deep Feedforward Neural Network

A Deep Feedforward Neural Network is a network consisting of at least an input layer, two or more hidden layers and an
output layer. Several functions are attached to DNNs [29, 40]For instance, we might have five functions f(1), f2), f(3), f(4) and
f(3 all in a chain connection forming a function f(x) = (f®), (4, f3), f(2), f(1)(x)). While in this case f(% is known as the first layer,
f ) is known as the second layer, and it continues until the final layer which is called the output layer. The output layer is the
same for either classification or regression task matching the output space. The depth of the model is given by the overall
length of the network of the chain. The term deep learning is from this concept. We employ classical feedforward
architecture as shown in Equation (2). The neurons in previous layers that are fully connected with all neurons in 1 + /
subsequent layer with a weighted directed edge. Also, a bias unit connected to all non-output layers of the network, serve
as subsequent layers activation threshold. Each weighted combination of y of the n; outputs of the neuron in the previous

layer I are received as input by each neuron.
v=Xil xwi+b (2)

where w; represents the weight of the output, x; and b represent the input and bias respectively. The activation function
a transforms the weighted combination y so that output signal g(y) is relayed on subsequent layer neuron which can be

represented as in equation (3).
a=gy) =g(T,xw;+b ) (3)

where a is the activation function, g(y) output signal, w; are the weights and b is the bias that we adjusted during the
training process of the network manually based on some rules until an optimal result is obtained. Following the work
proposed in [42], we used sigmoid activation function on all the other layers except the output layer where a softmax
activation function was applied to constrict real value into [0, 1] based on our target output. These activation functions can

be represented as in Equation (4) and (5) respectively.

1
1+e7Y

a=g@) = (4)

a=g0) = 5o ()

=0

where e ™Y, e and e"! are the exponential decay of input values and k, / are the initial value and terminating value during
training. But sigmoid activation function is a differentiable function as shown in equation (6) where g’(y) are the decomposed

function and all other parameters maintain their usual meanings.

e”Y 1 e”Y 1

a=gW=rrs= = (1- 555) = 90— 9») (6)

1+e Y (1+e7Y) T 1tey

Let W be the collection of Uf;ll wy, where wy is the weighted matrix that connects two consecutive layers /and / + 1 for a
network with L number of layers. Similarly, assume B to be the collection UZ] b, with ¢; column vector of biases of / layer.
The output of the entire DNN network is fully determined by the collection of W and B as shown in Equation (7). To minimize
the error in training on the data, we adapt the weight accordingly. Specifically, the objective is minimizing some loss function
L (W, B|j) forj set of training examples. We are solving a classification problem related to flight delays and the cross-entropy

loss function in Equation (7) is applied.



L (W, Blj)= — Xyeo(ln ((o}(,j)) tﬁj) +iIn (1 - 0}(,]‘)) (1 - ty))) (7)

o)

where the output units are represented by y, o represents the output layers, o;,

is the predicted class, and tj(,j) is the
actual output class, for instance, j. We used Stochastic Gradient Descent (SGD) in minimising the loss function. Also, we
employed Backward Propagation to calculate the Gradient loss function L (W, B|j). Since the input variables are simple (eg.
seven variables), we used a straightforward architecture of deep feedforward neural network as shown in Figure 1, where
the input layer, hidden layers and output layer are shown. As seen from Figure 1, the interconnections between hidden
neurons can be complicated during training because of the random value generation for the weight and bias at each training

epoch. This is one of the interesting aspects of dealing with deep neural networks.
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Figure 1: Architecture of Deep Feedforward Neural Network [43]

X fo

Table 1 shows the parameter settings used for each method during the model training. These parameters are specific to each
of the architecture of the model and are fine-tuned to optimise the expected output of the models. This is important in every
machine learning task, because the parameters have the overall control of any model before applying a special optimisation
algorithm if needed. As shown in Table 1 for the three machine learning methods SVM, NN and DNN implemented in this
paper, they all have their architectural characteristics for both the linear learner (SVM) as well as the nonlinear learners (NN,
DNN). DNN is an extension of the NN in trying to improve the learnability of the model with more layers and fine-tuning

parameters.

Table 1: Parameter settings for SYVM, NN and DNN

S/No. Method Levels
1 SVM polynomials
Kernel function degree (d) 1,2,3,..,5
Kernel function Gamma (y) 0,0.1,0.2,..,5.0
Regularization (c) 1, 10, 50, 100
2 NN
Epochs (ep) 1,2,3,..,10
Learning rate (Ir) 0.1,0.2

Momentum constant (mc) 0.1,0.2,03,..,0.9



Number of neurons (n) 10, 20, 30, ..., 100

3 DNN
Epochs (ep) 1,2,3,..,10
Learning rate (Ir) 0.1,0.2

Momentum constant (mc) 0.1,0.2,0.3,..,0.9

Size of Mini Batch 56,7,..,15

Hidden layers sizes 2,3,4,..,10
Activation functions Sigmoid/SoftMax
Number of neurons (n) 10, 20, 30, ..., 100

4  DISCUSSION OF RESULTS

In this paper, we evaluated the classification of individual flight delays for each one of the methods discuss earlier. The
performance of SVM, NN and DNN was measured in the experiment in classifying flight delays to find out which of the
methods perform best in our case. We also explored the differences in data handling of these methods during model training.
To find out this we conduct a binary classification problem using the three methods with the target of classifying individual
flight delays into a class of all flights that depart or arrive 10 minutes after the scheduled period to be considered delayed,

otherwise not delayed.

4.1 Experimental setup

We conducted repeated experiments to clarify the factors influencing the predictability of the simple ML classifiers (SVM,
NN). Figure 2 shows the steps in the general experiment. The implementation was performed with the Python programming
language and relevant libraries embedded in Jupyter Notebook version 6.0.1 [40] on a Graphics Processing Unit (GPU).

Detailed information about the software environment is provided in Table 2.

Raw on-time dataset

v

Data cleaning

—

Feature extraction —p Data pre-processing
Training set j Test set
{ Data set construction
Model parameters Classification Results
Models —»

Classification Modelling

Figure 2: An overview of the experiment steps

Table 2: Software environment information

S/No Name of library Version

1 keras 2.3.1



2 numpy 1.19.5
3 pandas 0.25.1
4 itertools 0.25.1
5 matplotlib 3.1.1
6 sklearns 0.22.2.post1
7 tensorboard 2.1.1
8 tensorflow 2.1.0
9 tensorflow-gpu 2.0.0
10 ipython 7.8.0

4.1.1 Dataset Description

Table 3 contains the factors considered to influence the predictability of the flight delay classification. Real-world dataset for
flight on-time data from the US BTS (https://www.transtats.bts.gov/) was used for the three models evaluated in this
research. The flight on-time dataset used covers a time span from January to December 2018. More than 100 arrival and
departure airports are covered in the data with more than 150,000 training samples. The weather feature was not considered
because of its low impact on predictive accuracy improvement [13]. A preliminary dataset with a high probability of flight
departure and arrival delay was selected. The original dataset contains 21 factors. However, some factors were removed due

to their irrelevance in our targeted output. The summary of the employed factors is presented in Table 3.

Table 3: Dataset factors information

S/No. Factor Unit Detail
1 Flight departure Text 3 letters code eg. LHR
and arrival
airport
2 Scheduled flight Hours and In four digits formats eg.
departure and Minutes 1456
arrival time
3 Flight number Numeric Flights number eg. 1454
4 Actual departure Hours and In four digits formats eg.
and arrival time Minutes 1456
5 Unique carrier Numeric 3 letters code eg. PS
6 Scheduled and Numeric In two digits formats eg.
actual elapse 94
time
7 Departure and Numeric Number of flights eg. 14
arrival delay

4.1.2 Dataset Cleaning
The data may not have a complete record due to message transmission problems. We deleted incomplete data. Also, obvious
abnormal data were deleted in the quest to improve the accuracy of the model classification in the training set:

e Duplicate data in the departure and arrival airport.

e  Data with very long delay time.



4.1.3 Feature Extraction

The feature extracted for this research is from the factors affecting the classification of flight delays using Algorithm 1. Flight
plan formulation is subject to many departments such as airlines and airports, which all parties are interested in, even with
their restricted factors. The features are extracted based on theirimpact on either the departure or arrival flight delay before

applying some pre-processing techniques to fine-tune the input dataset for the ML model training.

Algorithm 1: Feature extraction approach

1: Procedure:
begin
Read data
for 1 to N features do
select the best feature subset
apply learning algorithm
evaluate selected feature subset

end for

L o N Y AW

return final selected feature subset

=
=4

end

4.1.4 Dataset Pre-processing

Because SVM works with numerical values and NN/DNN work with both text and numerical values of data input, we had to
pre-process the data differently. We define the delay time as the differences between the scheduled time and actual
departure time, and in turn, we then calculate median delay time. We consider the delays of scheduled arrival and departure
time according to the hour of the day and date of the month. Finally, the model considers the arrival and departure airports.
4.2 Results

We conducted a binary classification on individual flights departure, and arrival on-time record, the comparison of the results
of the three ML approaches evaluated for the flight delay classification problem is discussed in this section.

4.2.1 Performance Metrics

To evaluate the quality of our results, we are using a number of metrics. The most significant metric to measure the
performance of classification machine learning models is that of Accuracy [32, 40). Precision and Recall are also important
metrics because they help evaluate further the true effectiveness of a model. These metrics use the notions of True positive

(TP), True Negative (TN), False Positive (FP), and False Negative (FN). More precisely, these metrics are defined as follows:

Accuracy (AC) measures the fraction of predictions that the model classified correctly [44]. Formally, accuracy can be defined

as shown in Equation (8):

TP+ TN

Accuracy (AC) = TP+FP+TN+FN

(8)

Precision (P) measures the exactness of a classifier as the truly classified percentage of positives. Is the weighted average of
negative and positive precision [44]. Therefore, high precision means less False Positive and a good model. As expressed in
equation (9) and equation (10) respectively.

TP
TP+FP

Precisiongesitive (Pp) =

()

TN
TN+FN

Precisionnegative (Pn) = (10)



Recall (R) measures the completeness of a classifier as the truly classified percentage of actual positives [44]. Is the weighted
average of negative and positive recall. Therefore, high recall means less False Negative and a good model. As expressed in

equation (11) and equation (12) respectively.

TP

Recallpositive (Rp) = m (11)
TN

Recallnegative (Rn) = TNTFP (12)

4.2.2 Model Evaluation
We implemented and evaluated SVM, NN and DNN in this research to compare their performance on flight delay

classification modelling task. The results in terms of the earlier defined metrics are presented in Table 4.

Table 4: Performance comparison of SVM, NN and DNN on flight delays prediction using BTS dataset

S/No. Model Precision Recall Accuracy
1 SVM 0.6695 0.8619 0.6618
2 NN 0.7206 0.8990 0.7432
3 DNN 0.9070 0.9003 0.9001

In our experiment, the average recall, precision, and accuracy of the SVM are 86.19%, 66.95% and 66.18%. The measures for
the NN are 89.90%, 72.06% and 74.32% respectively, while for the DNN the same measures are 90.03%, 90.70%, and 90.01%.
Therefore, the DNN model outperformed the SVM and NN for all metrics. SVM as a non-parametric model performs worse
than the parametric models NN and DNN.

In our investigation, we also wanted to find out if there are any advantages to having a deep neural network as opposed
to other shallow models in flight delay binary classification when using DNN. The experiment shows that there is a huge
improvement when having a deep neural network in the results, having at least 10% improvement in the recall, 20% in
precision and 20% in accuracy when compared to the NN. This implies that in different classification problems there can be
varied results for a method having many parameters to be fitted during training than other shallow methods.

In our study, we went further to investigate the accuracy performance of the DNN based on different parameters level during
training, validation and testing. The results of this study are presented Table 5. We investigated the characteristics at
different levels of the model building with the same number of features as inputs. Varying the number of hidden layers
between 2 to 6 with an epoch of 100 to 500, we observed that when we used 2 hidden layers with 5 neurons and 150 epochs
the accuracy was 80.00%. However, interestingly when there was an increase in the number of hidden layers, neurons,
epochs, then the testing accuracy increased up to a maximum of 99.82%. Therefore, there were several experiments with
different setups to check the ability of classification of the models to perform better. Surprisingly, the accuracy of the
experiments was not too different on training, testing and validation with same parameters combination. But increasing the
number of hidden layers does not have much significant impact on accuracy. Therefore, we can conclude that when the
number of hidden layers increased it does not ensure better or higher accuracy. However, in our experiment, we achieved a
91.00% accuracy classifying flight delays, which is a significant improvement compared to a similar experiment presented in
[25] where the accuracy was 76.76% with the use of a Deep Believe Network (DBN) using a sigmoid function. Our accuracy
is also better when compared with the results presented in [45]. There are several reasons for this improvement which could
be: feature availability, data quality or settings of the parameters of the algorithm. Summarily, even when fewer features
are applied to DNN, the results are better compared to the other shallow ML algorithms (SVM, NN) implemented in this

paper.



Table 5: Performance comparison of DNN on flight delays prediction using BTS dataset with different settings

S/No Number of hidden Number of neurons in Epoch Accuracy
layers hidden layers Training Validation Testing
1 2 5 150 0.8201 0.8221 0.8101
2 6 5 100 0.8267 0.8593 0.8213
3 3 50 150 0.8812 0.8991 0.8798
4 4 25 500 0.9701 0.9832 0.9982
5 5 13 200 0.9629 0.9734 0.9945

We then set out to further investigate the DNN model’s performance on the same 500 epochs with different parameters. We observed that
the model performance when we used 2 hidden layers with 50 neurons was better in terms of training and validation accuracy with 98.12%
and 98.94%, respectively. However, on the testing, the best performance settings are observed when we used 4 hidden layers and 20
neurons with 99.85% accuracy. Finally, we observed that with smaller number of hidden layers and neurons generally the model
performance dropped in training, validation and testing.

Table 6: Performance comparison of DNN on flight delays prediction using BTS dataset with different settings and 500 epochs

S/No Number of hidden Number of neurons in Accuracy
layers hidden layers Training Validation Testing
1 2 5 0.9201 0.9221 0.9011
2 6 5 0.9265 09173 0.9152
3 3 50 0.9812 0.9894 0.9887
4 4 20 0.9610 0.9662 0.9985
5 5 13 0.9412 0.9504 0.9950

We used 500 epochs to train the model for the classification of the flight delays. Figure 3 shows how the DNN model can
correctly classify 99.82% of the class of flights that are delayed and 78.42% of the class that are not delayed. This
classification contains more than 150,000 flight records and the model correctly classified 128,609 of them in the delay class

and 63,436 in the no delay classes respectively which is very good performance for any flight delay decision support system.
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Figure 3: Confusion matrix of testing classification using DNN with an epoch=500

We then reduced the number of epochs to 200 when training the model for the same classification of the flight delays. Figure
4 shows how the DNN model can correctly classify 99.45% of the class of flight that are delayed and 81.54% of the class that

are not delayed. This classification contains more than 150,000 flight records and the model correctly classified 128,129 of



them in the delay class and 65,958 in the no delay class respectively which is again very good performance for any flight

delay decision support system.
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Figure 4: Confusion matrix of testing classification using DNN with an epoch=200

Figure 5 shows the training and validation accuracy of the DNN model. We observed that the model performs very well

during both the training and the validation phase, with consistently good performance across every example of the training

set, which is an advantage when developing a flight delay decision support system.
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Figure 5: Model accuracy plot for DNN with epoch=500

Figure 6 shows the training and validation loss of the DNN model. We observed that the model again performs very during

both the training and the validation phase, with consistently good performance across every example of the training set,

which is an advantage when developing a flight delay decision support system.
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Figure 6: Model loss plot for DNN with epoch=500



Figure 7 shows the final model of the DNN and the architecture with all the elements as applied in the training of the model with 500 epochs.
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Figure 7: Final DNN Model architecture

5 CONCLUSION AND FUTURE DIRECTION

Major advances of deep learning have been recorded in solving problems that might have been difficult for years. Discovering
the intricate structures in high-dimensional datasets made it possible. DNNs have recorded more successes and are predicted
to have more robustness in the future of big data because they largely require little engineering by hand. DNN largely take
advantage of data and computational ability consequently. Despite this huge success, not many have applied DNN in flight
delay binary classification problems. Our research is among the few that has applied DNN and compares with other shallow
architectures such as SVM and NN to study their performance in a classification-related problem. We set out to clearly
understand if the performance will keep to the track in other experiments by comparing the predictive accuracy of the widely
used DNN with other shallow methods at different epochs and parameter tunings. The main aim of our research was to
identify the best conditions under which DNN performs better than SVM and NN.

Our experimental results show that the data size has a relative effect on the performance ability of the three classifiers
DNN, NN and SVM at different parameter adjustments. However, the classification accuracy of DNN is better when it learns
the underlying structure of the datasets. We observed that when the epochs were increased, there was a significant increase
in the predictive accuracy. The comparison of the performance of DNN, NN and SVM on classifying delays using the BTS on-
time dataset is a topic of continuous research due to the need for more flexible flight delay predictions.

Overall, this paper has contributed to the aviation industry and the air transportation unit specifically in improving
passengers experience through better flight delay decision support systems. Empirically, it is evident that most deep learning
approaches are more likely to outperform the shallow architectures in a classification task due to their ability to have
flexibility in terms of parameters tuning. Based on our results, we believe that DNN can be further investigated in other

predictive analysis such as aircraft maintenance. Finally, as evidenced from our experiments, we cannot claim that on its own



merit any algorithm is inferior to another. Instead the ability of researchers to understand and tune these algorithms will go

a long way in impacting their performance.
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