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A B S T R A C T   

In medical image datasets, discrete labels are often used to describe a continuous spectrum of conditions, making 
unsupervised image stratification a challenging task. In this work, we propose VAESim, an architecture for image 
stratification based on a conditional variational autoencoder. VAESim learns a set of prototypical vectors during 
training, each associated with a cluster in a continuous latent space. We perform a soft assignment of each data 
sample to the clusters and reconstruct the sample based on a similarity measure between the sample embedding 
and the prototypical vectors. To update the prototypical embeddings, we use an exponential moving average of 
the most similar representations between actual prototypes and samples in the batch size. We test our approach 
on the MNIST handwritten digit dataset and the PneumoniaMNIST medical benchmark dataset, where we show 
that our method outperforms baselines in terms of kNN accuracy (up to +15% improvement in performance) and 
performs at par with classification models trained in a fully supervised way. Our model also outperforms current 
end-to-end models for unsupervised stratification.   

1. Introduction 

1.1. Unsupervised learning in medicine 

Large unlabeled image datasets in medicine greatly outnumber 
curated ones. When labels are available, they often describe a contin
uous spectrum of conditions using discrete labels. There is growing in
terest in developing unsupervised methods to uncover the hidden or 
latent structure of these disorders, aiming to identify disease subtypes or 
novel disease classes (see [1] for a review). However, unsupervised 
learning remains a challenging task, even in domains with large and 
curated datasets. Numerous approaches have been proposed, but they 
typically require vast amounts of data. 

1.2. Deep learning and clustering 

To make these approaches more practical, we could develop data- 
efficient unsupervised methods or increase reliance on self-supervised 
or unsupervised pretraining, followed by supervised fine-tuning, 
which would substantially reduce the need for labeled samples. In this 
context, several papers have addressed the problem of clustering using 
deep learning architectures that find a nonlinear mapping from the input 

space to the feature space where clustering is performed (see”Related 
Work” section). 

1.3. Proposed approach 

In this work, we propose an unsupervised deep learning probabilistic 
approach that projects inputs to a learned latent space with”prototype” 
points, enabling low-dimensional representations of the inputs to be 
useful for both reconstruction and subsequent tasks such as classifica
tion. Each”prototype” point is associated with a cluster in the latent 
space. During reconstruction, we condition the decoder on both a) the 
sample latent embedding and b) a soft cluster assignment based on the 
similarity of the sample embedding to all prototype vectors. We assume 
that downstream tasks, such as classification, are simplified by this 
conditioning, which provides more context on the relative position of 
the sample embedding in the latent space. The main challenge is 
defining a strategy to learn these prototype vectors, which should 
represent subsets that cluster together in the latent space. 

1.4. Objective and contributions 

The objective of this work is to augment the Variational Autoencoder 
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(VAE) framework to also learn prototype vectors, thus obtaining a better 
organization of the latent space. The prototypes are learned using a 
momentum update during training and are stored in the model’s 
memory. This conditional information about similarity during decoding 
should carry all the information needed for reconstructions and 
implicitly impose a structure in the latent space. We demonstrate that 
this approach is more effective than two-step approaches that first train 
a vanilla VAE and then cluster its latent space, for example, using 
KMeans. Our end-to-end approach outperforms these and other deep 
clustering baselines on the MNIST handwritten digit dataset [9] as a 
benchmark, and on the Pneumonia dataset from the MedMNIST 
collection [21] as an example in the field of biomedical images. 

1.5. Performance evaluation 

We quantify the performance differences using various metrics, 
related to both the alignment between the label clusters and the classi
fication obtained using kNN or linear classification, to measure the ca
pacity of the latent space to capture the fundamental characteristics of 
the encoded samples. 

2. Related work 

2.1. Large-scale unsupervised and self-supervised approaches 

General trends in unsupervised and self-supervised deep learning are 
dominated by large networks trained on hundreds of thousands of im
ages. Recent examples include student-teacher approaches such as DINO 
[6], based on knowledge distillation without labels, and contrastive- 
based approaches such as [7,8,13], where models are trained through 
a contrastive loss and a similarity metric to position similar samples 
close in the latent space and different ones far apart. These approaches 
heavily rely on different augmentations to generate positive pairs. 
However, due to the intrinsic properties of medical image datasets, these 
methods do not translate well to the medical context. 

2.2. Challenges in medical image domain 

Knowledge distillation approaches like DINO depend on data-hungry 
architectures like Vision Transformers [12] or ResNet50 [14], whose 
power can only be harnessed when”big data” is available. Contrastive- 
based approaches can address label scarcity by utilizing augmenta
tions. However, in medical applications, geometric augmentations like 
mirrors, zooms, and color distribution shifts fail to capture the full di
versity of pathologies. Moreover, methods like SimCLR [7] demand 
large batch sizes for negative sampling, leading to high computational 
requirements that can only be met with nonstandard hardware. This 
issue can be partly mitigated using more efficient techniques such as 
MOCO [13], where a momentum encoder is employed for negative 
sampling and stores low-dimensional representations of previous 
batches. Although promising, these approaches face challenges when 
applied directly to the medical domain. 

2.3. VAE-based approaches 

In situations with limited data, smaller models relying on self- 
supervised pretraining with autoencoders or variational autoencoders 
may be more effective. In [18], the authors trained a variational 
autoencoder using a Gaussian mixture model (GMM) as an unsupervised 
clustering algorithm. By incorporating this information into the loss 
function, they facilitated the model’s learning of a well-separated latent 
space. In [15], the authors replaced the VAE prior with a GMM-based 
prior, enforcing a similar separation more directly. In [19], a differen
tiable version of the K-Means algorithm based on the softmax function is 
proposed and integrated into a neural network. 

2.4. Medical domain adaptations 

Other unsupervised approaches have adapted these ideas for the 
medical field. Examples include the Mixture of Experts (MoE) [16], 
where a clustering network proposes a cluster and a mixture of experts 
reconstructs single-cell data, and [2], which combines a CNN with a 
KMeans approach for classifying image datasets with different modal
ities. Furthermore, contrastive learning translation incorporating multi- 
instance learning has achieved results comparable to fully supervised 
state-of-the-art algorithms [3]. However, these strategies may be sub
optimal in certain clinical or medical domains due to their reliance on 
nondifferentiable methods, the need for large data volumes, or the 
requirement of domain-specific knowledge for incorporating biologi
cally or medically relevant data augmentations. 

2.5. Our approach 

Our work combines tempered softmax similarity-based soft labels to 
inform the decoder about clustering, while using nondifferentiable 
functions to update prototype values. This approach aims to address 
some of the challenges faced by previous methods in the medical domain 
and enhance the performance of unsupervised learning for medical 
image analysis. 

3. Materials and methods 

The primary objective of VAESim is to enhance the vanilla VAE by 
conditioning the decoder on not only the latent embedding of a sample 
but also its soft cluster assignment in the latent space. This entails two 
main challenges: 1) learning a descriptive latent space that contains 
enough information to reconstruct the input samples, and 2) learning 
the prototypical vectors of the latent space. The VAESim model consists 
of three components: the encoder e, the decoder d, and the prototype 
matrix QK×q. 

First, we encode the p-dimensional vector input x with a neural 
network e : ℝp→ℝq × ℝq into a q-dimensional latent space z. Then, we 
sample a latent representation from the estimated posterior, modeled as 

a Gaussian, z ∼ N

(
zμ, e

zlogσ
2

)
. 

Next, we compute the similarity between the latent embedding and 
the prototypical vectors using cosine similarity. We then perform soft 
cluster assignment by computing the tempered softmax over the simi
larity measures. 

c = softmax
(

Qz
τ

)

(1) 

We employ τ as the temperature parameter and c as the cluster 
assignment. The decoder d receives the latent representation z along 
with the cluster assignment c, and reconstructs the original input sample 
by mapping ̃x = d(z, c) back into the input space. To enhance the vanilla 
VAE’s standard ELBO loss, we introduce an optional term promoting 
orthogonality in the prototype representations. 

The updating process for the prototype vectors follows Algorithm 1, 
with the differentiating aspects of our method being the cluster equation 
and the update function. Given the latent embeddings z and the pro
totypes QK×q, the cluster equation (Eq. 1) generates soft assignments. The 
update function, presented in Algorithm 2, constitutes a fundamental 
component of our approach. During each training iteration, we assign 
every sample in the training dataset to a cluster. To update each pro
totypical vector, we employ an exponential moving average, which is 
computed using the mean of all sample embeddings belonging to the 
corresponding cluster. 

Algorithm 1. Training VAESim model. 
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Algorithm 2. Update function.  

3.1. Variational autoencoder (VAE) 

Variational autoencoders (VAEs) offer a key advantage over tradi
tional autoencoders by imposing a well-structured, continuous latent 
space, which allows for the generation of meaningful samples from the 
latent space. Instead of merely projecting data points onto a manifold 
and reconstructing them, the encoder neural network in VAEs attempts 
to approximate the computationally intractable joint probability p(z|x)
through probabilistic encoding qz(z|x). The encoder produces the mean 
and log-variance of a multidimensional Gaussian distribution, from 
which a value is sampled and passed to the decoder to map back from z 
to x̃. 

The model is optimized by simultaneously enforcing reconstruction 
quality through a mean squared error (MSE) loss and a regularization 
term that encourages the Gaussian distribution to closely resemble a 
chosen posterior, typically a standard normal distribution. The latter 
term usually employs a weighted Kullback–Leibler (KL) divergence. 
Consequently, the model is optimized to reconstruct items with a latent 
distribution that closely approximates a standard multivariate Gaussian 
distribution. The loss function is thus L = |x − x̃|2 + βKL

(
qz,N (0, 1)

)
. 

In this work, we modify the decoder network to accept both the latent 
representation and a condition vector representing prototype similarity 
for each sample. 

3.2. Prototype matrix Q 

The prototype matrix Q is initialized based on a predetermined 
number of clusters k and the latent space dimension p. The Q matrix is of 
shape (k, p), with k rows and p dimensions per row. During the first 
forward pass, k elements from the initial batch are randomly selected 
and set as rows of the Q matrix. 

In the early stages of training, the prototype values are not particu
larly meaningful, so a tempered softmax of the similarity is used with a 
temperature schedule. For the first quarter of training steps, the tem

perature is set to a high value (> 1), flattening the similarity distribution 
across different prototypes. As the model’s reconstruction capability 
improves, the temperature decreases, resulting in more distinct condi
tioning vectors. 

The prototype matrix Q update method is a critical aspect of this 
approach. Instead of using gradient descent, the Q matrix values are 
computed separately from the computational graph by applying a mo
mentum update for all samples belonging to a specific cluster, i.e., all 
samples whose latent embeddings z are most similar to a specific column 
of the Q matrix. 

At each iteration, the batch “cluster labels” are sampled from (or 
obtained by argmaxing) the categorical distribution c. These labels are 
used to compute the update function for the Q matrix. 

3.3. Mathematical interpretation 

In summary, the fundamental objective function for a typical Vari
ational AutoEncoder (VAE) is the evidence lower bound (ELBO), 
formally defined as: 

LELBO(x, x̃) = Ez∼q(z|x)[log(p(x|z) ) ] − KL(q(z|x)‖p(z) ) (2) 

Here, q(z|x) signifies the approximate posterior, p(x|z) represents the 
likelihood, and p(z) is the prior. The initial term seeks to minimize the 
difference between the decoded samples x̃ and the input samples x, 
while the Kullback–Leibler (KL) divergence term ecourages the 
approximate posterior to mirror the prior. In our proposed VAESim 
model, we also utilize the ELBO loss. However, we incorporate an 
additional loss term to encourage orthogonality within the prototype 
representations, which acts as a regularizer on the prototype matrix Q, 
defined as: 

Lortho(Q) =
⃦
⃦QQT − I

⃦
⃦2 (3) 

Here, I is the identity matrix, and ‖⋅‖ denotes the norm. The imple
mentation of this loss term encourages each prototype vector to remain 
orthogonal to each other. Thus, the comprehensive loss function for 
VAESim can be formalized as: 
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LVAESim(x, x̃,Q) = LELBO(x, x̃) + λLortho(Q) (4) 

Here, λ serves as a hyperparameter to balance the ELBO and 
orthogonality losses. The entire procedure is outlined in Alg 2, with the 
key novelty lying in the innovative approach to updating the prototypes 
matrix Q. Here, c signifies all samples assigned to the k-th cluster, zi is 
the mean of all sample embeddings in Ci, and η is a parameter control
ling the moving average. This algorithm applies an exponential moving 
average which updates the prototypes, improving the model’s robust
ness by avoiding sudden changes. Our proposed VAESim model en
hances the basic VAE by supplying the decoder with both the latent 
representation z and the cluster assignment c. Consequently, the model 
learns a more descriptive latent space that is beneficial for input 
reconstruction and further tasks such as classification. Moreover, by 
imposing an orthogonality constraint on the prototypes, each prototype 
is encouraged to represent unique clusters within the latent space, thus 
potentially augmenting performance in downstream tasks. 

3.4. Evaluation 

The regularization constraint imposed by the KL divergence in the 
loss function tends to bring all inputs closer together in the latent space. 
As a result, using traditional metrics for unsupervised clustering could 
be misleading, given that they often normalize by intercluster distance. 
Instead, we generate a visually meaningful 2D representation using t- 
SNE to examine how inputs are organized in the latent space. Subse
quently, we propose three performance evaluation approaches, all based 
on the downstream classification task. The model training is entirely 
self-supervised, and some available labels are utilized for comparison 
during the evaluation phase. We employ three standard methods for 
learning the downstream task: a statistical mapping approach between 
cluster labels and actual labels, the kNN (k-nearest neighbors) algo
rithm, and the training of a linear layer with categorical cross-entropy as 
the loss function. 

In the statistical mapping approach, clusters are determined by 
maximizing the similarity between samples and prototypes. Each cluster 
label is then associated with the most frequent label present in the 
corresponding cluster, serving as a way to quantify how well each pro
totype captures the essential elements of a class. During inference, this 
mapping is used to predict the final class. 

In the second approach, a subset of the training set is used to 
compute the”memory bank” for the kNN algorithm. During inference, 
each test set sample is compared with each element stored in the 
memory bank by calculating the pairwise Euclidean distance. The pre
dicted label is defined as the mode of the label of the k closest samples. 

In the third approach, a linear layer maps from z to the number of 
possible classes. This linear layer is trained with the Adam optimizer and 
a learning rate of 3 × 10− 4 for 200 epochs over a subset of the training 
set, using categorical cross-entropy as the loss function. 

3.5. Baselines 

To compare our probabilistic framework with conventional two-step 
approaches, we trained a VAE designed to closely resemble the VAE used 
for image reconstruction. Subsequently, we performed a KMeans eval
uation to generate cluster labels and train a kNN and linear classifier on 
the latent space, similar to other experiments. This allowed us to assess 
the VAE + KMeans method using the same metrics as our approach. We 
also evaluated two other approaches, namely VaDE [15] and GMVAE 
[11], using default parameters. Each experiment was executed 10 times 
to obtain mean accuracies and standard deviations. It is worth noting 
that the reported baseline accuracies might not match those presented in 
the original papers due to differences in training splits, random seeds, 
and particularly, distinct methods for mapping between cluster labels 
and ground truth. Specifically, both GMVAE and VaDE rely on a 

clustering accuracy measure defined by mapping N cluster labels to N 
real labels using the Hungarian matching algorithm [17], which requires 
the number of clusters to be identical to the number of unique labels. We 
opted for an alternative mapping approach between cluster and actual 
labels to allow greater flexibility in cluster numerosity selection, thus 
enabling the potential discovery of more refined structures while pre
serving the possibility of many-to-one mapping. As a comparison, we 
also report state-of-the-art results achievable through transfer learning 
from ResNet50 pretrained on ImageNet. 

3.6. Experiments 

We evaluated our model on two datasets: a classic handwritten digit 
dataset ([10]) and a medical benchmark dataset, PneumoniaMNIST, 
which is part of the MedMNIST dataset [21,22]. MedMNIST is a 
collection of medical imaging datasets curated for benchmarking pur
poses. We selected PneumoniaMNIST as a biomedical example in which 
chest X-ray images are assigned to one of two possible labels:”healthy” 
or”pneumonia.” This dataset comprises 5856 images (4708 for training 
and 1148 for testing). Motivated by the advanced data preprocessing 
methodologies delineated in the study’Segmentation of Crop Images for 
Crop Yield Prediction’ [1], which demonstrated considerable enhance
ments in predictive accuracy for crop images, we sought to extrapolate 
analogous techniques to our grayscale medical image dataset. Despite 
the fact that the aforementioned study was primarily focused on images 
rich in color variance, we specifically designed an experiment pertinent 
to our context. This involved integrating random histogram equalization 
with a series of geometric augmentations, including but not limited to, 
rotation, scaling, and translation. All code is written in PyTorch [20] and 
trained on a server equipped with an A6000 GPU and 512 GB RAM. The 
code for the VAEsim implementation and the baseline algorithms can be 
found at the following GitHub repository: https://github.com/matteo 
ferrante/VAESIM.git. 

4. Results 

Our primary hypothesis is that our end-to-end deep clustering 
approach would yield improved performance in downstream classifi
cation tasks in comparison to a two-step approach and other baseline 
methods. For the VAE + KMeans baseline, we trained a VAE with an 
architecture closely matching the one used in our approach, specifically 
with a latent dimension of 32 and a batch size of 2048. 

Subsequently, we employed K-Means to determine the optimal 
number of clusters using the elbow method and the yellow-brick library 
[4]. VaDE and GMVAE served as baselines for deep clustering. The re
sults indicate that our model consistently outperforms (or performs on 
par across all metrics) the investigated baselines, with improvements 
over the two-step approach ranging from +13% up to +17% on the 
MNIST dataset and from +4% to +17% on the Pneumonia dataset. The 
most significant improvements are observed in kNN accuracy, suggest
ing that our modifications to the VAE framework enable the model to 
learn a latent space better suited for kNN estimations. In other words, 
our approach positions similar examples closer to each other in the 
latent space compared to a standard VAE + KMeans method. 

Examples of the prototypes are visible in Fig. 3. Qualitatively, they 
clearly represent different ways to write digits and this pattern emerges 
from the update function during training. The Fig. 4 shows a tSNE 
representation of the latent space with both the real labels and the 
cluster labels. (See Figs. 1 and 2.) (See Table 1.) 

Prototypes and t-SNE representations for Pneumonia datasets are 
visible in the Fig. 6 and Fig. 5. The prototype representations include 
both some artefactual structures and some realistic X-ray chest images, 
where in many images pneumonia-related opacities are visible. 
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5. Discussion 

5.1. Overview of the proposed framework 

In this work, we introduced a probabilistic framework that adapts 
the standard training of a variational autoencoder (VAE) to generate 
representations of prototypes or modes present in the dataset. After 
encoding, the representations are compared with a memory bank of 
prototypes, and a measure of similarity is passed to a conditional 
decoder, along with the latent representation, to generate re
constructions. The update method for the prototype values is detached 
from the computational graph, enabling the use of nondifferentiable 
functions for aggregation and updates. As a proof of concept, we 
employed an exponential moving average of the closest samples to the 
cluster prototype. 

5.2. Training and latent space organization 

During the initial phase of training, the encoder focuses on indirectly 
generating robust prototypes. This indirect process relies on the prox
imity and similarity of same-class labels in the latent space. By forcing 
the decoder to work with the conditioning vector and utilizing the up
date procedure, we establish an organization in the latent space that 
surpasses the results from standard VAEs. As training progresses, the 
temperature of the similarity conditioning vector decreases, leading to 
harder assignments. The encoder then concentrates on exploiting fea
tures concerning differences between samples and prototypes, 
improving the latent space organization for downstream classification 
tasks. 

5.3. Comparison with baselines and potential applications 

Our continuous conditional learning approach with decreasing 
temperature outperforms the baselines of other deep clustering VAE- 
based methods and demonstrates better performance compared to 
two-step approaches. The model retains VAE properties, allowing for 
sampling from the latent space and rejecting poor samples based on their 
similarity to a specific cluster. This capability enables various applica
tions, such as generating similar digits from handwritten digit datasets 
or reconstructing specific modes of healthy or pathological medical 
images for further investigation. Our research presents a novel approach 
to image stratification with a focus on grayscale medical images. How
ever, the concept of prototype discovery within our architecture can 
have significant implications for a variety of other domains, and 
studying these could be a promising direction for future research. For 
instance, agricultural imagery, as exemplified by the study ‘Enhancing 
assessment of corn growth performance under various experimental 
management practices using Unmanned Aerial Vehicles (UAVs) and 
deep learning’ [20], involves analysis of complex color patterns and 
spatial structures. Our prototype-based approach might help in identi
fying characteristic patterns associated with various crop conditions, 
leading to more accurate prediction and better management strategies. 

Fig. 3. Prototypes for MNIST. These are the reconstruction of the Q ma
trix rows. 

Fig. 4. tSNE visualization of the latent space. Left: colors are real labels. Right: colors are cluster labels, with superimposed cluster prototypes.  
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Similarly, in the field of sports analytics, which often involves the study 
of dynamic video data, the feature extraction techniques illustrated 
in’Camera Position Estimation using 2D Image Dataset’ [?] could 
potentially be adapted in conjunction with our model. By identifying 
prototypical movement patterns or game situations, coaches and ana
lysts could gain deeper insights into player performance and game 
strategy. Moreover, the exploration of our method can be extended to 
fields such as geospatial analysis, urban planning, and even astrophys
ics. In these domains, the discovery of prototypes could assist in un
derstanding common patterns or anomalies, which could lead to more 
effective decision-making and forecasting. While the application of our 
modified VAE architecture in these domains would require appropriate 
adaptation and validation, we believe that the fundamental principle of 
prototype discovery could offer significant benefits across a wide range 
of fields. 

5.4. Challenges and considerations in applying self supervised deep 
learning to medical imaging 

A critical aspect in the application of deep learning methods to 
medical imaging is understanding and addressing the inherent chal
lenges associated with these images. Medical imaging modalities often 
produce images characterized by low resolution, high noise levels, low 
contrast, and potential geometric deformations. Such issues can impose 
significant difficulties for machine learning models, potentially 
impacting the quality of feature extraction, model generalization, and 
ultimately, performance in medical imaging tasks. High noise levels, 
often resulting from the imaging equipment, patient movement, or other 
environmental factors, may obscure important features in the images, 
thereby affecting the precision of prototype discovery. Similarly, low 
resolution and contrast can result in the loss of critical information, 
compromising the quality of the latent representations our model learns. 
Furthermore, geometric deformations, whether introduced during the 
imaging process or resulting from the patient’s unique anatomy, can 
present challenges in generalizing learned patterns to unseen data. 
However, our self-supervised approach and the inherent properties of 
the Variational Autoencoder (VAE) architecture may provide a degree of 
robustness against these issues. By learning to encode salient informa
tion in a latent space, the model might counterbalance the effects of 
noise and resolution issues to some extent. Still, integrating specialized 
pre-processing steps such as noise reduction, contrast enhancement, and 
geometric correction could further enhance the performance of our 
model. Future work should focus on the development and integration of 
such tailored pre-processing techniques, as well as exploring architec
tures that are more resilient to these challenges in medical imaging. 
Acknowledging and addressing these inherent difficulties will be critical 
for the continued advancement and successful application of deep 
learning methods in the field of medical image analysis. 

Fig. 5. Prototypes for Pneumonia. These are the reconstruction of the Q ma
trix rows. 

Fig. 6. tSNE visualization of the latent space. Left: colors are real labels. Right: colors are cluster labels, with superimposed cluster prototypes.  
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5.5. Hyperparameters and future work 

One challenge of our model is the need to initialize several hyper
parameters, particularly the number of prototypes. Selecting the optimal 
number of prototypes and determining the best way to initialize the Q 
matrix in terms of values and dimensions are subjects for future in
vestigations. While increasing the number of prototypes may improve 
performance, it also requires a larger batch size due to the greater 
number of samples per cluster. Identifying the optimal balance between 
these factors will be crucial for the success of our approach in various 
applications, including guided data augmentation and patient 
stratification. 

6. Conclusion 

We proposed a probabilistic framework that enhances the latent 
space organization for both reconstruction and downstream tasks by 
learning to reconstruct images through a latent representation condi
tioned on similarity measures to learned prototypes that represent 
modes present in the dataset. Our dynamic representation updating 
procedure implicitly incorporates features that enhance similarities and 
differences between samples and prototypes, leading to a well-organized 
latent space. We demonstrated the superiority of our approach over a 
two-step approach based on the combination of a VAE and KMeans, as 

well as other baselines based on different modifications of the VAE 
framework for deep clustering. Our end-to-end approach consistently 
outperformed these baselines on multiple metrics, resulting in up to +
10% improvement on average. The latent space produced by our model 
also generalizes well when used for downstream tasks, as shown by our 
evaluation of cluster label recall, kNN classification, and separability 
using a linear classifier. Finally, we showed that our approach achieves 
performances similar to fine-tuning very large models in a supervised 
way by starting with a self-supervised pretraining of our modified VAE. 

Future work could investigate different strategies for prototype 
initialization and update. Further improvements could be obtained by 
exploring the use of different nondifferentiable functions for updating 
prototypes, as well as evaluating our approach on more challenging and 
diverse datasets in the medical domain. We believe that our model can 
be extended to address other problems in medical imaging beyond 
classification, such as clustering based on disease subtype, disease 
severity, or genetic information. Our work represents a step toward 
developing data-efficient unsupervised methods that can augment the 
interpretability and generalizability of medical imaging datasets. 
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Appendix A. Impact of hyperparameters 

This section explores the impact of different hyperparameters on the performance of our proposed model. Specifically, we investigate the effects of 
varying the latent dimension, number of prototypes, and batch size, which are key factors in determining the model’s performance. 

To evaluate the impact of these hyperparameters, we performed a sweep over different values while keeping all other configurations fixed. We used 
the Weights & Biases library for this purpose [5]. We employed a fixed architecture consisting of an encoder with three convolutional layers using 
ReLU activation and batch normalization, followed by flattening and dense linear layers to output zμ and zlogσ . The convolutional layers have a stride of 
2, kernel size of 4, and padding of 1. The Q matrix of prototypes is a PyTorch matrix, and its values are updated using different functions that are 
detached from the computational graph. The decoder is almost symmetrical to the encoder, using transposed convolutions instead of standard 
convolutions. A linear layer maps the conditioning vector and the latent vector to the features of the first convolutional layer by concatenating them. 
The output convolutional layer has as many channels as the input image (1 for grayscale images and 3 for RGB images) with sigmoid activation. 

Fig. 7 shows the impact of varying the latent dimension, batch size, and number of prototypes on classification accuracy, evaluated using the 
MNIST dataset. The statistical accuracy, kNN accuracy, and linear accuracy are reported as functions of the investigated parameter.

Fig. 7. Comparison between different metrics across values of latent dim (Left), number of prototypes (Center) and batch size (Right) for the MNIST dataset. Blue line 
report the accuracy computed with the statistical classification, the orange line the accuracy obtained with the kNN approach while the green line is related to the 
classification obtained with the linear classification. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Our results suggest that a latent dimension of around 32 is optimal, as it produces a peak in both the statistical and kNN accuracy, and the linear 
accuracy begins to converge to the optimal value. Increasing the number of prototypes improves the statistical accuracy, as more clusters reduce the 
variance within each assignment, but has little influence on kNN and linear accuracy. Increasing the batch size has a beneficial effect on all metrics. 

These findings indicate that careful selection of hyperparameters is crucial for obtaining optimal performance of our proposed model. Further 
investigations are necessary to determine the optimal hyperparameter values for different datasets and applications. 

Table 1 
Results on MNIST and PneumoniaMNIST datasets. The results are compared to different baselines and evaluated with accuracy measured with the statistical mapping 
approach to evaluate overlap between cluster labels and real labels, kNN to measure the closeness between similar samples in the latent space, and the classification 
done with a linear layer. The last column refers to the accuracy of a fine-tuned model from ResNet50 pre-trained on ImageNet.  

Approach dataset statistical acc knn acc linear acc resnet50 acc (supervised) 

VAE ± KMeans MNIST 0.68 ± 0.01 0.80 ± 0.004 0.68 ± 0.04 0.99 
GMVAE MNIST 0.76 ± 0.01 0.91 ± 0.001 0.76 ± 0.01 0.99 
VaDE MNIST 0.81 ± 0.05 0.964 ± 0.001 0.83 ± 0.008 0.99 
VAEsim MNIST 0.83 ± 0.01 0.970 ± 0.001 0.81 ± 0.003 0.99 
VAEsim (aug) MNIST 0.40 0.90 0.72 0.99 
VAE ± KMeans Pneumonia 0.631 ± 0.01 0.613 ± 0.014 0.451 ± 0.033 0.85 
GMVAE Pneumonia 0.625 ± 0.001 0.627 ± 0.041 0.429 ± 0.061 0.85 
VaDE Pneumonia 0.625 ± 0.001 0.747 ± 0.012 0.590 ± 0.116 0.85 
VAEsim Pneumonia 0.677 ± 0.001 0.778 ± 0.024 0.671 ± 0.010 0.85  
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