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SUMMARY

The identification of a specific target as FMRP that could
control directly the necroptosis pathway represents a novel
attractive strategy to overcoming programmed cell death
resistance in CRC.

BACKGROUND & AIMS: The fragile X mental retardation pro-
tein (FMRP) affects multiple steps of the mRNA metabolism
during brain development and in different neoplastic processes.
However, the contribution of FMRP in colon carcinogenesis has
not been investigated.

METHODS: FMRP transcripts and proteins expression were
analyzed in human colon samples derived from patients with
sporadic colorectal cancer (CRC) and healthy subjects. We used
a well-established mouse model of sporadic CRC induced by
azoxymethane to determine the possible role of FMRP in CRC.
To address whether FMRP controls cancer cell survival, we
analyzed cell death pathway in CRC human epithelial cell lines
and in patient-derived colon cancer organoid in presence or
absence of a specific FMRP antisense oligonucleotide or siRNA.

RESULTS: We document a significant increase of FMRP in hu-
man CRC relative to non-tumor tissues. Next, using an inducible
FLA 5.6.0 DTD � JCMGH695 proof � 8 N
mouse model of CRC, we observed a reduction of colonic tumor
incidence and size in the Fmr1 knockout mice. The abrogation
of FMRP induced spontaneous cell death in human CRC cell
lines activating the necroptotic pathway. Indeed, specific
immunoprecipitation experiments on human cell lines and CRC
samples indicate that FMRP binds receptor-interacting protein
kinase 1 (RIPK1) mRNA, suggesting that FMRP acts as a master
regulator of necroptosis pathway through the surveillance of
RIPK1 mRNA metabolism. Treatment of human CRC cell lines
and patient-derived colon cancer organoids with the FMR1
antisense results in up-regulation of RIPK1, which drives the
CRC human cell toward the necroptosis.

CONCLUSIONS: Altogether, these data support a role for
FMRP in sustaining colon tumorigenesis controlling the
RIPK1 expression and ultimately abrogating the activation of
the necroptotic pathway. (Cell Mol Gastroenterol Hepatol
2020;-:-–-; https://doi.org/10.1016/j.jcmgh.2020.10.009)
Keywords: Colorectal Cancer; FMRP; Necroptosis; RIPK.

olorectal cancer (CRC) is one of the most common
Ccancers worldwide, causing half-million deaths
every year.1 CRC develops in a stepwise manner from
normal mucosa to adenomatous polyps to carcinoma, a
ovember 2020 � 12:15 pm � ce CLR
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Abbreviations used in this paper: AnnV, annexin V; AOM, azoxy-
methane; CRC, colorectal cancer; CREB, cyclic adenosine mono-
phosphate responsive element-binding protein; DAPI, 4�,6-diamidino-
2-phenylindole; FMRP, fragile X mental retardation protein; FXS,
fragile X syndrome; HRP, horseradish peroxidase; KO, knockout;
MLKL, mixed lineage kinase domain-like; NT, colonic samples derived
from healthy mucosa of patients without cancer; PARP-1, poly (ADP-
ribose) polymerase; PI, propidium iodide; RBP, RNA-binding protein;
RIPK1, receptor-interacting protein kinase 1; RT-qPCR, real-time
quantitative polymerase chain reaction; SD, standard deviation; SEM,
standard error of the mean; T, tumor areas of human CRC samples;
TUNEL, deoxyuride-5�-triphosphate biotin nick end labeling.

© 2020 The Authors. Published by Elsevier Inc. on behalf of the AGA
Institute. This is an open access article under the CC BY-NC-ND
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complex and multistage process characterized by accumu-
lation of genetic changes, each conferring a selective growth
advantage to tumor cells.2 These changes ultimately result
in uncontrolled cell growth, resistance to cell death, and
clonal tumor development.2 These mechanisms are dictated
by alterations of oncogenic and/or tumor-suppressive
signaling pathways responsible for the progression from
normal mucosa to adenomatous polyp and then to carci-
noma.2 During these sequential events driving toward the
neoplastic phenotype, genetic and epigenetic changes that
disrupt the balance between cell proliferation and cell death
are crucial.2

In addition to transcriptional level, the oncogenic and/or
tumor-suppressive signaling are tightly regulated at post-
transcriptional levels such as splicing, transport to the cyto-
plasm, turnover, storage, and translation, processes largely
regulated by RNA-binding proteins (RBPs).3 RBPs are
particularly interesting in the context of cancer, because
many cancer-related proteins are encoded by mRNAs whose
expression levels are regulated by RBPs modulating both
mRNA translation and turnover.3 Recent studies demon-
strated the key contribution of several RBPs in the control of
intestinal epithelial cell homeostasis and in response to
injury.4 Among the different pathways involved in CRC, a
series of evidence highlights that colon tumor cells highjack
posttranscriptional mechanisms that enable swift and robust
adjustment of protein expression levels in response to
intrinsic andextracellular signals, leading to cell adaptation to
the local microenvironment.5 Dysregulated RBPs influence
the expression and function of pro-tumorigenic and tumor-
suppressor proteins, among others.5 Several studies have
provided evidence that RBPs are abnormally expressed in
cancer relative to adjacent normal tissues, and their expres-
sion correlates with patients’ prognosis.6,7 The fragile X
mental retardation protein (FMRP), a RBP involved in mul-
tiple steps of mRNA metabolism, is gaining a pivotal impor-
tance in controlling the development and growth of different
types of human cancer.8–10 Mutations or absence of FMRP
cause fragile X syndrome (FXS), the most frequent form of
inherited intellectual disability in humans.11 In the brain,
FMRP absence causes impaired structural and functional
synaptic plasticity due to defects in locally synthesized pro-
teins, cytoskeletal organization, and receptor mobility.11

FMRP can act as a negative regulator of translation and, in
addition, modulates the stability, transport, or editing of the
mRNAs depending on the identity of the target mRNA and the
cellular context.11,12 Of note, several of the brain-identified
FMRP-regulated mRNAs are involved in mechanisms con-
trolling cancer progression and metastasis formation.13

In cancer tissues, FMRP is highly expressed in triple
negative breast cancers and in aggressive melanoma pro-
gression.14,15 In addition, a decreased risk of different can-
cer types has been reported in a Danish and British cohort
of patients with FXS, and a case report showed an unusual
low growth of glioblastoma in a boy with FXS.16,17 Finally,
FMRP promotes astrocytoma proliferation via the MEK/ERK
signaling pathway.10 Overall, these data suggest that specific
FMRP-regulated mechanisms might affect malignant
transformation.
FLA 5.6.0 DTD � JCMGH695 proof � 8 N
In this study, we assessed the role of FMRP in human
sporadic CRC by using human and mouse models. We show
that the absence of FMRP is protective toward cancer pro-
gression and identified the underlying molecular mecha-
nism based on the control of the receptor-interacting
serine/threonine-protein kinase 1 (RIPK1), a key mediator
of the necroptosis pathway.

Results
FMRP Is Up-regulated in Human CRC Tissues
and Cell Lines

To address the question whether FMRP is involved in
disease survival of patients with CRC, different publicly
online available datasets were screened for genetic alter-
ations or aberrant protein expression levels of FMRP. FMR1
mRNA and FMRP protein are highly expressed in different
tissues and in cancer cell types (http://www.cbioportal.org/;
https://www.proteinatlas.org/). The Kaplan-Meier analysis
from the human protein atlas (https://www.proteinatlas.
org/), consisting of 597 patients with CRC, showed a
reduced disease-free survival in CRC patients with low
expression of FMRP (5-year survival in high expression
group, 69%; 5-year survival in low expression group, 59%).
However, the analysis of the CRC available dataset on
CBioPortal (http://www.cbioportal.org/; 3667 patients)
reveals that patients with a nonfunctional or trunked FMRP
proteins (49 patients) have a favorable outcome (5-year
survival in mutated FMR1 gene group, 70%; 5-year sur-
vival in not mutated FMR1 gene group, 57%). Moreover,
CRC available dataset on Cancer Genome Atlas (https://
portal.gdc.cancer.gov/; 606 patients) reveals that patients
with a mutation in the FMR1 gene (48 patients) have a
favorable outcome (5-year survival in mutated FMR1 gene
group, 73%; 5-year survival in not mutated FMR1 gene
group, 62%). Although there are some discrepancies be-
tween protein expression and gene mutation of FMRP/
FMR1 and CRC survival, the absence of a functional FMRP
seems to be protective in cancer. We examined FMR1 mRNA
and FMRP protein expression level in tumor and normal
samples. FMR1 mRNA expression was analyzed by real-time
quantitative polymerase chain reaction (RT-qPCR) in tumor
areas of human CRC samples (T) and in colonic samples
derived from healthy mucosa of patients without cancer
(NT). FMR1 expression was higher in cancer samples with
ovember 2020 � 12:15 pm � ce CLR
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respect to NT, which showed a relatively lower level of
FMR1 mRNA (Figure 1A). We also analyzed FMRP protein
expression levels by Western blotting and immunohisto-
chemistry. FMRP protein was significantly up-regulated in
human CRC samples compared with NT (Figure 1B and C).
FMRP was highly expressed in approximately 60% of colon
cancer samples (T) analyzed compared with healthy sub-
jects (NT). Moreover, the majority of patients with high-
grade tumors revealed an overexpression of FMRP in CRC
samples; however, because of the low number of human
patients, the analysis did not reach statistical significance
(Figure 2A). FMRP expression was also analyzed by Western
blotting in protein extracts from 6 matched pairs of human
CRC and adjacent tissues. FMRP was significantly increased
in CRC samples, compared with non-tumor mucosa
(Figure 2B). FMRP was also highly expressed in 2 colon
cancer cell lines DLD-1 and HCT-116 when compared with
the non-cancer colonic epithelial cell line HCEC-1ct
(Figure 1D and E). These data show that FMR1 mRNA and
FMRP protein are overexpressed in colon cancer tissue.

CREB Controls FMRP Expression in Human CRC
FMRP expression is modulated by the transcription fac-

tor cyclic adenosine monophosphate responsive element-
binding protein (CREB) pathways,18 a protein closely asso-
ciated with development and progression of human colon
cancer.19 CREB mRNA and protein were significantly
increased in the areas of the colon tumor, similarly CREB
activity (Figure 3A and B). The expression of the tran-
scription factor Mef2, which is also involved in cancer and
FMRP modulation, did not show any change (Figure 2C and
D).20 Furthermore, there is a clear direct relationship in
individual samples between the expression of CREB and the
amount of FMRP in CRC samples (Figure 3C). To investigate
whether CREB levels were directly linked to FMRP levels in
CRC, CREB expression was inhibited with a specific anti-
sense oligonucleotide (ASc). In DLD-1 and HCT-116 cells
CREB antisense oligonucleotide reduced CREB levels and
showed a significant decrease of FMRP levels, whereas no
effect was observed with the control oligonucleotide (Sc)
(Figure 2E, Figure 3D). This finding suggests that in human
CRC cells CREB positively controls FMRP expression
consistent with previous studies and a CREB site on the
FMR1 gene promoter.21,22

Reduction of FMRP Results in a Better Outcome
of CRC

To determine the possible role of FMRP in CRC, we used
a well-established mouse model of sporadic CRC induced by
azoxymethane (AOM).23,24 Wild-type (WT) and Fmr1
knockout (Fmr1 KO) mice were injected intraperitoneally
with AOM and monitored for tumor formation. Endoscopy
performed on week 21 after the end of the AOM treatment
showed that WT mice developed large tumors as previously
reported.24 In contrast, the number and size of the tumors
generated in the Fmr1 KO mice were significantly reduced
(Figure 4A and B). These results were confirmed by direct
assessment of tumors in mice killed on week 22. This
FLA 5.6.0 DTD � JCMGH695 proof � 8 N
difference in tumor size and number was accompanied by a
decrease of viability by 20% in AOM WT mice compared
with all the other groups as shown in the survival curve
(Figure 4C). Histologic evaluation showed that in the
absence of AOM treatment, the cellular morphology and
organization of FMRP–deficient mice colon were compara-
ble with WT mice (data not shown). However, in AOM-
treated mice, tumors excised at 22 weeks showed that WT
mice developed well-differentiated tumors, whereas Fmr1
KO animals had a preserved normal tissue architecture
nearby dysplastic areas (Figure 4D). Consistent with the
observations in human CRC samples, Western blotting
analysis showed an increase of FMRP expression in the tu-
mor areas of WT AOM-treated mice, compared with WT
mice in the absence of AOM treatment (Figure 4E). To
investigate whether the decreased tumorigenesis observed
in the Fmr1 KO animals on AOM treatment was due to either
an increase of cell death or a decrease of tumor cell prolif-
eration, we performed a deoxyuride-5�-triphosphate biotin
nick end labeling (TUNEL) assay, and we evaluated the level
of Ki67. In addition, we evaluated the expression of the
active (cleaved form) poly (ADP-ribose) polymerase (PARP-
1), a nuclear enzyme whose products are involved in cell
death programs.25 The AOM Fmr1 KO mice showed an
increased number of TUNEL-positive cells and an increased
expression of cleaved PARP-1 compared with AOM WT mice
(Figure 4F and G), whereas no differences were observed in
the number of Ki67-positive cells (Figure 2). These obser-
vations indicate that FMRP could amplify the tumor resis-
tance to cell death, raising the possibility that FMRP can
play an important role in colon carcinogenesis.
FMRP Affects Survival in Human CRC Cells
To address whether FMRP controls cancer cell survival,

we analyzed cell death in CRC human epithelial cell lines in
presence or absence of FMRP. Treatment of DLD-1 and
HCEC-1ct cells with a specific FMR1 RNA antisense oligo-
nucleotide (AS) but not with the sense oligonucleotide (S)
significantly reduced FMRP expression (Figure 5A Q). DLD-1
cells treated with the FMR1 AS showed an induced sus-
ceptibility to spontaneous cell death; in particular the ma-
jority of the DLD-1 cells appear AnnexinV (AnnV)þ or
AnnVþ propidium iodide (PI)þ, the typical flow cytometry
stigmata of programmed cell death (Figure 5A). This effect
was cancer cell type specific and did not occur in normal
human epithelial colon cells HCEC-1ct (Figure 5B). Similar
results were obtained silencing FMR1 in DLD-1 cells by
using independent approaches, namely a specific FMR1
small interfering RNA (Figure 6A Q).

To dissect the molecular mechanism observed on FMR1
AS oligonucleotide-induced cell death, we analyzed the
activation of caspase 8 and caspase 3, which play a role in
the initiation and execution of cell apoptosis.26 Treatment of
DLD-1 cells with FMR1 AS oligonucleotide did not alter the
percentage of activated caspase 3 or caspase 8 positive cells
(Figure 7A Q). Staurosporin, a well-known inducer of
apoptosis, significantly increased the percentage of acti-
vated caspase 3 positive cells (Figure 7A). Furthermore, a
ovember 2020 � 12:15 pm � ce CLR
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pretreatment of cells with a pan-caspase inhibitor did not
alter FMR1 AS oligonucleotide-induced cell death
(Figure 7B). In addition, the treatment of DLD-1 cells with
FMR1 AS oligonucleotide did not alter mitochondrial mem-
brane potential, the expression of gasdermin D and
FLA 5.6.0 DTD � JCMGH695 proof � 8 N
glutathione peroxidase 4, two key molecules that regulate
the pyroptosis or ferroptosis pathways, respectively
(Figure 6B and C).

To verify whether FMR1 AS oligonucleotide-induced cell
death was secondary to cell growth arrest, we analyzed the
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Figure 2. Representative Ki67 (G) staining of colonic sections from WT AOM and Fmr1 KO AOM mice. Right inset in-
dicates the % of Ki67þ cells (mean ± SD, n ¼ 8 mice for Fmr1 KO and 6 mice for WT group; WT AOM versus Fmr1 KO AOM,
**P < .01). Statistical analysis of the data was performed using Mann-Whitney test.
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cell cycle in DLD-1 cell lines. The FMR1 AS oligonucleotide
incubation did not affect cell cycle before the induction of
cell death (Figure 7C). Altogether, these findings suggest
that FMRP influences CRC cell death without affecting the
apoptotic pathway or cell cycle.
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FMRP Regulates the Necroptotic Pathway
Necroptosis is a regulated necrotic cell death modality

in a caspase-independent manner and is mainly mediated
by RIPK1, RIPK3, and mixed lineage kinase domain-like
(MLKL).27–29 This core complex, called the necrosome,
mediates downstream executing molecules and events
such as reactive oxygen species burst, plasma membrane
permeabilization, and cytosolic adenosine triphosphate
reduction that drives to the irreversible necroptosis-
executing mechanisms.30,31 Next we explored the possi-
bility that the induced cell death in the absence of FMRP
could be due to the activation of necroptosis pathway. We
evaluated whether FMRP binds the mRNAs encoding the
core components of the necroptosis complex, RIPK1 and
RIPK3. FMRP was immunoprecipitated from human CRC
samples and DLD-1 cell lines, and the association of
candidate mRNAs tested by RT-qPCR (Figure 8A and B).
We showed significant enrichment of RIPK1 mRNA in the
FMRP complex from human CRC tissues and DLD-1 cell
lines, whereas RIPK3 mRNA was not (Figure 8A and B); b-
Figure 1. (See previous page). FMRP is overexpressed in h
detected by RT-qPCR in colonic samples from 18 healthy subjec
normalized to b-actinmRNA. Each point in the graph represents
.05). (B) Left, FMRP levels in representative images of Western
(NT) and 39 patients with CRC (T). b-actin was used as a loadin
ratio as measured by densitometry scanning of Western blots. E
each patient (values are expressed in arbitrary units (a.u.); NT
immunohistochemistry (IHC) and quantification for FMRP in colo
CRC patients (T) (n ¼ 10). Immunoglobulin (Ig) G was used as a
FMRP levels in representative images of Western blotting fro
epithelial cell line HCEC-1ct. b-actin was used as a loading con
(right inset) as measured by densitometry scanning of Western b
of all experiments; DLD-1 versus HCEC-1ct, ***P < .001; HCT
immunofluorescence of FMRP expression and quantification (rig
(blue) and FMRP (green). (Mean ± SD of all experiments; DLD-1
< .001). Scale bars, 50 mm (the figure showed 50 mm). Statistica
the Mann-Whitney test.

FLA 5.6.0 DTD � JCMGH695 proof � 8 N
actin, hypoxanthine phosphoribosyltransferase 1 (HPRT1),
vimentin, and E-cadherin mRNAs were used as negative
and positive controls, respectively.15 These data suggest
that FMRP binds RIPK1 mRNA and thus possibly controls
the fate of RIPK1 mRNA, an initial core element of the
necroptosis pathway. Although FMRP could act at the
level of mRNA stability and/or mRNA translation, the
stability of RIPK1 mRNA seems not to be affected (data
not shown).
572
FMRP Regulates Cell Death Modulating the
RIPK/MLKL Pathway

To examine whether FMRP is responsible for inhibiting
RIPK1 signaling in CRC, we explored RIPK1 expression in
DLD-1 cell lines treated with FMR1 AS oligonucleotide.
Treatment of DLD-1 with the FMR1 AS but not with the
sense oligonucleotide inhibited FMRP expression
(Figure 9A Q). Reduction of FMRP levels was associated
with an increase in phosphorylation of RIPK1, RIPK3, and
MLKL (Figure 9A). Of note, FMR1 AS treatment led to a
significant increase of RIPK1 protein and mRNA
(Figure 9A and B). In the healthy colon cell line HCEC-1ct
no changes in the expression/phosphorylation of RIPK1,
RIPK3, and MLKL were observed on FMR1 mRNA
silencing (Figure 9C). Finally, we exploited the effect of
FMR1 mRNA silencing in patient-derived human colon
uman CRC and in CRC cell lines. (A) FMR1 mRNA levels
ts (NT) and tumor areas from 18 CRC patients (T); values were
the value of FMR1mRNA in a single patient (NT versus T, *P <
blotting from colonic samples taken from 39 healthy subjects
g control. Right, quantitative analysis of FMRP/b-actin protein
ach point in the graph indicates the value of FMRP/b-actin in
versus T, *P < .05, **P < .01). (C) Representative images of
n sections taken from healthy subject (NT) and tumor areas of
negative control (****P < .002). Scale bars, 100 mm. (D) Left,

m DLD-1, HCT-116 CRC cell lines and from healthy colon
trol. Right, quantitative analysis of FMRP/b-actin protein ratio
lots (values are expressed in arbitrary units (a.u.), mean ± SD
-116 versus HCEC-1ct, **P < .01, n ¼ 4). (E) Representative
ht panel) in DLD-1, HCT-116, and HCEC-1ct cells, n ¼ 5. DAPI
versus HCEC-1ct, ***P < .005; HCT-116 versus HCEC-1ct, *P

Q17l analysis of the data was performed using Student t test and
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Figure 3. CREB controls FMRP expression in CRC cells. (A) CREB mRNA levels were evaluated by RT-qPCR in colonic
samples from 6 healthy subjects (NT) and 6 patients with sporadic CRC (T, tumor areas); b-actinmRNA was used as normalizer
(NT versus T, ****P < .001). (B) pCREB, CREB, and FMRP expression was evaluated by Western blotting in paired colonic
samples from 10 healthy subjects and 10 patients with sporadic CRC. Technical duplicates were performed for each individual
analyzed. pCREB/CREB and CREB/b-actin protein ratio was measured by densitometry scanning of Western blots (values are
expressed in arbitrary units (a.u.), mean ± SD of all experiments; NT versus T, *P < .05, **P < .01). (C) Correlation between
FMRP and CREB expression levels in mucosal samples from 10 CRC patients. Expression of FMRP is directly related to
expression of CREB (r ¼ 0.7841; P < .0073). (D) Representative Western blotting of DLD-1 cells unstimulated (U) or transfected
with CREB sense (Sc) or CREB antisense (ASc) oligonucleotide for 48 hours. Histograms represent the quantification of
pCREB/CREB, CREB/b-actin, and FMRP/b-actin protein ratio, as measured by densitometry scanning of Western blots
(values are expressed in arbitrary units (a.u.), mean ± SD of 3 separate experiments; pCREB/b-actin: U-cells and Sc-
transfected cells versus ASc-transfected cells, **P < .01, ***P < .001; CREB/b-actin: U-cells and Sc-transfected cells
versus ASc-transfected cells, *P < .05; FMRP/b-actin: U-cells and Sc-transfected cells versus CREB ASc-transfected cells,
**P < .01, ***P < .001). Statistical analysis of the data was performed using Student t test and Mann-Whitney test.
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cancer organoids grown. Treatment of tumor organoids
with FMR1 AS significantly reduced FMRP expression,
which led to a significant lower expression of RIPK1
(Figure 10A).

Next we evaluated the presence of RIPK1 mRNA in the
FMRP complex in the murine colon tissue. As shown in
Figure 10B, a significant enrichment of RIPK1 mRNA was
detected after FMRP immunoprecipitation, suggesting that
FMRP may regulate necroptosis in vivo during colon
tumorigenesis. The analysis of the colon tumor area from
the AOM Fmr1 KO mice revealed an increased level of
phosphorylated RIPK1, RIPK3, and MLKL (Figure 10C). To
further evaluate whether FMRP-induced cell death was
dependent from RIPK/MLKL complex activation, human
CRC cell lines were incubated with RIPK1-specific inhibitor
(NEC1) or MLKL-specific inhibitor (NSA). No difference in
cell death was observed in DLD-1 cells incubated with FMR1
AS oligonucleotide in presence of NEC1 or NSA inhibitors
(Figure 9D). These data indicate FMR1 AS oligonucleotide-
induced cell death in CRC cells is due to the RIPK/MLKL
intracellular signaling cascade.
FLA 5.6.0 DTD � JCMGH695 proof � 8 N
Discussion
The intestinal epithelium illustrates a proliferation-

differentiation gradient with a rapid renewal and turnover
of cells.32 The lifespan is based on a dynamic equilibrium
that is regulated by several factors and that allows prolif-
eration, migration, differentiation, and senescence of the
cells.32 This equilibrium can be disturbed during inflam-
mation or injury that results from cellular stress mediated
by infectious organisms, radiation, inflammatory disease, or
harmful events.2 These events trigger a rapid protective and
regenerative response that is regulated by several intracel-
lular and extracellular factors.2 Prolonged injury together
with genetic alterations can result in malignant trans-
formation.2 Similar process occurs in the development of
CRC, which results from a combination of environmental,
epigenetic, and genetic factors.33 Compelling evidence in-
dicates that CRC cells manifest enhanced activation of
various intracellular signals that ultimately promote the
expression of molecules involved in programmed cell death
resistance or in cell growth.27,34
ovember 2020 � 12:16 pm � ce CLR
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Among the factors that ensure the correct development
of intestinal cells are RBPs. RBPs act in a rapid and efficient
manner to alter gene expression, especially during changes
in the microenvironment.35 Increasing evidence indicates
that the response and adaptation of intestinal epithelium to
various types of injuries and to malignant transformation
are mediated by RBPs.35 A single RBP can bind to hundreds,
if not thousands, of targets, and a combination of several
RBPs interactions contribute to cellular identity in healthy
condition, but also in cancer, RBPs regulate a number of
mRNAs that encode for proteins involved in tumorigen-
esis.5,36 In the specific case of CRC, several RBPs have been
shown to be dysregulated and associated with survival rate
of cancer patients.35,37

Of note, IMP1, CELF1, and HUR constitute a new set of
regulatory RBPs, playing a role in intestinal homeostasis,
adaptation to injury, and participation in malignant
transformation.35

Here we show that FMRP expression is significantly
increased in human CRC. Although the number of human
cancer samples in this study does not allow us to analyze
the relationship of FMRP expression with colon cancer pa-
tient outcome, previous observations indicate that FMRP
levels are predictive of poor survival in multiple solid tu-
mors.14,15 The analysis of different cancer atlases (http://
www.cbioportal.org/; https://www.proteinatlas.org/)
revealed a high FMRP expression level in CRC tissues,
further confirming and extending our observation. In addi-
tion, the available dataset on CRC (http://www.cbioportal.
org/) reveals that patients with a mutation in the FMR1
gene, encoding a nonfunctional or trunked FMRP proteins,
have a favorable outcome (http://www.cbioportal.org/).
Therefore, absence of a functional FMRP seems to be pro-
tective in cancer. However, analysis on public dataset of
human protein atlas (https://www.proteinatlas.org/)
showed a reduced disease-free survival in CRC patients with
low expression of FMRP. Therefore, the analysis of different
datasets showed some discrepancies about protection vs
risk, suggesting that further analyses on a larger cohort of
patients with CRC are required to evaluate whether FMRP
levels correlate with prognostic indicators of aggressive
CRC, metastases probability, and response to cancer
therapies.

The expression of the FMR1 gene is regulated at multiple
levels, first among all by transcription factors,21,38 and for
example, the FMR1 gene contains a CREB binding site.21

Previous studies indicate that CREB affects colonic tumori-
genesis, and neoplastic progression and suppression of
CREB activity in cancer cells may also have a therapeutic
effect.19 Our data indicate that the transcription factor
CREB, overexpressed in human CRC, controls positively
FMRP expression in human colon cancer cells.

Using a well-established mouse model of CRC, we show
that FMRP controls colon cancer progression. In AOM-
treated Fmr1 KO mice, colonic tumor incidence and size
were significantly reduced compared with WT mice. How-
ever, because FMRP is relatively ubiquitously expressed, we
cannot exclude the possibility that the anti-cancer effect
detected in the Fmr1 KO mice is also partly due to a control
FLA 5.6.0 DTD � JCMGH695 proof � 8 N
of the function of other mucosal cell types (eg, immune
cells). However, the colon tissue analysis revealed an
increased presence of tumor cell death in Fmr1 KO mice,
suggesting, as indicated by the in vitro experiments, that the
pro-tumorigenic function of FMRP is linked to a control of
epithelial cancer cells survival.

Resistance to cell death is a crucial hallmark acquired
during cancer progression, and a better understanding of
deregulated pathways affecting cell death led to the devel-
opment of therapeutic strategies that have been used with
some success in CRC patients.34 In normal tissues, pro-
grammed cell death plays a pivotal role in the development
and maintenance of tissue homeostasis.39 During the last 2
decades, several functional studies established that cell
death serves as a natural barrier to cancer development.40

CRC cells evolve a variety of strategies to limit or circum-
vent programmed cell death. Tumor cells may block
apoptosis process by increasing expression of antiapoptotic
regulators such as Bcl-2 and Bcl-xL, by down-regulating
proapoptotic factors (Bax, Bim, Puma), or by short-
circuiting the extrinsic ligand-induced death pathway.2

RBPs can modulate the expression of genes implicated in
cell survival,35,36 and this prompted us to suppose that the
pro-survival effect of FMRP could be controlled by inhibition
of caspase/apoptotic mechanisms. However, the inhibition
of caspase or cell cycle did not have an effect on cell death
after a decrease of FMRP. In addition, inhibition of 2 key
pathways of programmed cell death such as ferroptosis or
pyroptosis also was not influenced by FMRP levels. These
findings suggest that anti-survival effect of FMR1 AS oligo-
nucleotide is not due to the apoptotic, ferroptotic, pyroptotic
mechanisms or secondary to cell cycle arrest. Necroptosis, a
regulated cell death caspase-independent, could be an
alternative way to eradicate resistant cell death in cancer
cells.27 Here we demonstrated that CRC cells incubated with
FMR1 AS oligonucleotide regain a normal activity of the
necroptosis machinery that drives to programmed cell death
(Figure S5 Q). Specific immunoprecipitation experiments
suggest that FMRP binds RIPK1mRNA, indicating that FMRP
acts as a master regulator of the necroptosis pathway
through the regulation of RIPK1 mRNA metabolism at sta-
bility and/or mRNA translation levels. Of note, the applica-
tion of high throughput approaches allowed the
identification of hundreds of putative FMRP mRNA targets
in brain (>1000) and in non-neuronal HEK293 cells
(>6000).41–44 FMRP has 4 RNA-binding domains: the Tudor
domains and the K homology domains in the N-terminus
region, 2 additional K homology domains in the central re-
gion, and in the C-terminal region of FMRP, an RGG box
crucial for the interaction with some mRNAs containing a G-
quartet structure.45,46 So far, FMRP can bind mRNAs
directly or indirectly via different types of sequences/
structures.47 In this study we provide for the first time the
presence of RIPK1 mRNA in the FMRP complex, indicating
that FMRP could regulate its metabolism. Interestingly, us-
ing an available G-quadruplex prediction approach, namely
G4CatchAll, we found 4 putative G-quadruplex structures in
the RIPK1 mRNA that represent a possible FMRP binding
site. Although this is a predictive approach, the data are
ovember 2020 � 12:16 pm � ce CLR
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Figure 5. Knockdown of
FMRP triggers cell death
in CRC cell line. Repre-
sentative blot showing
FMRP expression in DLD-1
(A) or HCEC-1ct (B) cells
unstimulated (U) or trans-
fected with FMR1 sense
oligonucleotide (S) or
FMR1 antisense oligonu-
cleotide (AS). Representa-
tive dot blot of AnnV and
PI-positive DLD-1 or
HCEC-1ct cells stimulated
as indicated above (mean
± SEM, n ¼ 5; U-cells and
S-transfected cells versus
AS-transfected cells, *P <
.05, **P < .01). Statistical
analysis of the data was
performed using Mann-
Whitney test.
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Figure 4. (See previous page). Fmr1 KO mice present decreased colorectal tumorigenesis compared with WT. (A)
Representative images of endoscopic examination performed in WT and Fmr1 KO mice at week 21 after injection with AOM.
(B) Graphs show the number and size of colon tumors in WT and Fmr1 KO AOM mice (WT AOM versus Fmr1 KO AOM, *P <
.05, **P < .01). (C) Kaplan-Meier curve of WT and Fmr1 KO mice treated or not with AOM. (D) Representative staining with
hematoxylin-eosin of tumor area from WT and Fmr1 KO mice treated with AOM. Scale bars, 100 mm. (E) Representative
Western blotting of FMRP expression in colon tissue from WT and WT mice treated with AOM. b-actin was used as a loading
control. Right, quantitative analysis of FMRP/b-actin protein ratio (value is expressed in arbitrary units (a.u.), mean ± SD of all
experiments; WT versus WT AOM, ****P < .0001). (F) Representative images of TUNEL staining of colonic sections from WT
AOM and Fmr1 KO AOM mice. Right inset indicates the number of TUNELþ cells (mean ± SD, n ¼ 8 mice for each group; WT
AOM versus Fmr1 KO AOM, **P < .01). Scale bars, 50 mm. (G) Representative Western blotting of full-length and cleaved
PARP-1 in colonic sections taken from WT AOM and Fmr1 KO AOM mice. Data are representative of 3 experiments where
similar results were obtained (n ¼ 8 mice for each group). b-actin was used as loading control. Right panel, quantification of
cleaved PARP-1/b-actin protein ratio (values are expressed in arbitrary units (a.u.), mean ± SD; WT AOM versus Fmr1 KO
AOM, ***P < .001). Statistical analysis of the data was performed using Student t test and Mann-Whitney test. Survival analysis
was performed using the Kaplan-Meier curve.
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Figure 6. (A) DLD-1 cells unstimulated (U) or transfected with siCTRL or siFMR1. Middle inset shows representative dot
blot of AnnV and PI-positive DLD-1 cells (mean ± SEM, n ¼ 5; U-cells and siCTRL-transfected cells versus siFMR1-transfected
cells, *P < .05). (B) DLD-1 cells unstimulated (U) or transfected with FMR1 sense (S) or FMR1 antisense (AS) oligonucleotide or
positive control valinomycin, stained with JC-1, and analyzed by flow cytometry. Mitochondrial membrane potential loss was
observed as a decrease in JC-1 red fluorescence and an increase in JC-1 green fluorescence. Inset shows representative dot
blot (mean ± SEM, n ¼ 3; U cells, S cells and AS cells versus vanilomycin cells, *** Q18P < .001). (C) Representative Western
blotting of GSDMD (upper panel) and GPX4 (lower panel) in DLD-1 cells unstimulated (U) or transfected with FMR1 sense (S) or
FMR1 antisense (AS) oligonucleotide. b-actin was used as loading control. Right panels, quantification of GSDMD/b-actin
(upper panel) and GPX4/ b-actin (lower panel) protein ratio (values are expressed in arbitrary units (a.u.), mean ± SD). Statistical
analysis of the data was performed using Mann-Whitney test. GPX4, glutathione peroxidase 4; GSDMD, gasdermin D.

w
e
b
4
C
=
F
P
O

10 Di Grazia et al Cellular and Molecular Gastroenterology and Hepatology Vol. -, No. -

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178
promising, and future studies should further investigate
whether FMRP could directly bind RIPK1 mRNA.48,49

While our study was ongoing, Zhuang et al50 showed
that FMRP plays a central role in the inhibition of tumor
necrosis factor (TNF)–mediated necroptosis during infec-
tion and liver disease. They demonstrated that FMRP is
critically important for regulating key molecules in TNF
receptor 1–dependent necroptosis including CYLD, c-FLIPS,
and JNK, which contribute to prolonged RIPK1 expression
and necrosome activation. Therefore, our findings together
FLA 5.6.0 DTD � JCMGH695 proof � 8 N
with the above-mentioned previous observations strengthen
the hypothesis of targeting FMRP as an anti-cancer
approach affecting both RIPK1 expression and the TNF-
mediated necropoptosis.

Cancer cells are able to eradicate necroptosis machinery
by down-regulation of the necroptotic core pathway and
activate downstream executing molecules and events.27,31

The identification of a master regulator such as FMRP
could explain the molecular mechanism that allows to
down-regulate RIPK1 expression in colon cancer. Moreover,
ovember 2020 � 12:16 pm � ce CLR



Figure 7. FMRP-triggered CRC cell death is caspase activation and cell cycle-independent. (A) Representative dot blot
showing percentage of activated caspase 8 (Cas8) or activated caspase 3 (Cas3) positive DLD-1 cells unstimulated (U) or
transfected with FMR1 sense oligonucleotide (S) or antisense oligonucleotide (AS) for 36 hours. Staurosporin (Stauro) was
used as positive control. Right, percentage of activated caspase3þ cells (grey bar) or activated caspase 8þ cells (black bar)
measured by flow cytometry (mean ± SD, n ¼ 3; U-cells, S-transfected cells, and AS-transfected cells versus Stauro-treated
cells, ***P < .001). (B) Percentage of AnnV and/or PI-positive DLD-1 cells preincubated with pan-caspase inhibitor (Cas in) Z-
VAD-FMK unstimulated (U) or transfected with FMR1 sense oligonucleotide (S) or antisense oligonucleotide (AS) (mean ±
SEM, n ¼ 4; U-cells and S-transfected cells versus AS-transfected cells, **P < .01; U-cells, S-transfected cells versus Stauro,
*P < .05). (C) Left, representative flow cytometric analysis of cell cycle progression in DLD-1 cells treated with FMR1 sense (S)
or antisense (AS) oligonucleotide. Right, percentages of cells in the different phases of cell cycle (mean ± SD, n ¼ 3). Statistical
analysis of the data was performed using Mann-Whitney test. BrdU, bromodeoxyuridine.
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our results are consistent with the observation that over-
expression of RIPK1 has been reported to suppress prolif-
eration, migration, and invasion of human CRC cell lines.51,52

Proapoptotic therapy (eg, using cisplatin, carboplatin,
paclitaxel, 5-fluorouracil, and gemcitabine), a major form of
chemotherapy, is the principal method for cancer treatment,
but the effectiveness of this therapy is limited by drug
resistance and toxic effects. The discovery of necroptosis as
an inducible, alternative form of programmed cell death has
opened up novel and exciting perspectives to kill resistant
FLA 5.6.0 DTD � JCMGH695 proof � 8 N
cancer cells. Therefore, the control of necroptosis by defined
signal transduction pathways offers the opportunity to
target this cellular process for anti-cancer therapy.

Several strategies exist to trigger necroptosis in other
human cancer types; the natural compound shikonin has
been shown to bypass deficiencies in apoptosis pathways,53

whereas Smac mimetics and the alkaloid staurosporine
induce necroptosis in acute myeloid leukemia and different
carcinoma cell lines.54 Moreover, traditional chemothera-
peutic or molecular targeted drugs approved for marketing
ovember 2020 � 12:16 pm � ce CLR



Figure 8. RIPK1mRNA is part of the FMRP complex. (A) Left, representative Western blotting of FMRP immunoprecipitation
from colonic samples taken from 3 CRC patients. FXR2P, a well-known FMRP interactor, is detected as part of the FMRP
complex; b-actin was used as a negative control. Input (1/20) of the total extract, FMRP immunoprecipitation (IP-FMRP), and
mock immunoprecipitation (IP-IgG). Right, quantification by RT-qPCR of b-actin, E-cadherin, RIPK3, and RIPK1 mRNAs. b-
actin and E-cadherin mRNAs are negative and positive controls, respectively (mean ± SEM, n ¼ 3; E-cadherin: IP-IgG versus
IP-FMRP, *P < .05; RIPK1: IP-IgG versus IP-FMRP, **P < .01). (B) Left, representative Western blotting of FMRP immuno-
precipitation from DLD-1 cell samples. FXR2P, a well-known FMRP interactor, is detected as part of the FMRP complex; b-
actin is used as a negative control. Input (1/20) of the total extract, FMRP immunoprecipitation (IP-FMRP), and mock
immunoprecipitation (IP-IgG). Right, quantification by RT-qPCR of HPRT1, vimentin, RIPK3, and RIPK1 mRNAs in FMRP
immunoprecipitation/total protein extracted from DLD-1 cells. HPRT1 and vimentin mRNAs were used as negative and
positive controls, respectively (mean ± SEM, n ¼ 3; vimentin: IP-IgG versus IP-FMRP, *P < .05; RIPK1: IP-IgG versus IP-
FMRP, *P < .05). Statistical analysis of the data was performed using Student t test.
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or in clinical trials have been recently identified as cancer
necroptosis inducers such as TRAIL, obatoclax, or 3-
bromopyruvate plus chloroquine.27,55,56 These drugs have
been proven to be safe for human use, and induction of
necroptosis in cancer cells does not have toxic effect in
normal cells or lead to severe side effects in vivo. Therefore,
the identification of a specific target such as FMRP that
could control directly the necroptosis pathway could further
enhance the specificity and selectivity of pro-necroptosis
strategy. In conclusion, our data indicate that down-
regulation of FMRP drives colon cancer cells to switch to
necroptosis and represents a novel attractive strategy to
overcoming programmed cell death resistance in CRC.
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Methods
Patients and Human Samples

Samples of human CRC areas were derived from 67 pa-
tients who had undergone colonic resection for sporadic
CRC, whereas healthy (normal) mucosa samples include
colonic mucosal biopsy from 67 patients with irritable
FLA 5.6.0 DTD � JCMGH695 proof � 8 N
bowel syndrome from the University Hospital of Tor Ver-
gata (Rome, Italy). FMRP and FMR1 mRNA expression was
evaluated by immunohistochemistry, Western blotting, and
RT-qPCR. Paired tissue samples were derived from the tu-
moral area and the macroscopically unaffected, adjacent
colonic mucosa of 6 patients who underwent colon resec-
tion for sporadic CRC at the Tor Vergata University Hospital
(Rome, Italy) and used for FMRP expression by Western
blotting. Patients with sporadic CRC received neither
radiotherapy nor chemotherapy before surgery. Written
informed consent was obtained from all patients. The study
protocol was approved by the Tor Vergata University Hos-
pital Review Board (protocol number 129/17).

Experimental Model of CRC
Mice were housed in a ventilated, temperature

controlled (23�C) room with a 12-hour light/dark cycle.
Starting at 6 weeks of age, male FVB.129P2 WT and Fmr1
KO mice were injected with the alkylating agent AOM (10
mg/kg; Sigma-Aldrich, Milan, Italy) intraperitoneally once a
week for 5 weeks to induce tumor formation.23 Mice were
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Figure 9. FMRP regulates the necroptotic pathway. (A) Left, representative Western blotting showing FMRP, pRIPK1,
RIPK1, pRIPK3, RIPK3, pMLKL, MLKL, and b-actin in DLD-1 cells either untreated or treated with FMR1 sense (S) or antisense
(AS) oligonucleotide. Right, quantification of total pRIPK1, pRIPK3, pMLKL, and RIPK1 proteins in DLD-1 cells as measured by
densitometry scanning of Western blotting (values are expressed in arbitrary units (a.u.), mean ± SD, n ¼ 4; pRIPK1/RIPK1: U-
cells and S-transfected cells versus AS-transfected cells, **P < .01; pRIPK3/RIPK3: U-cells and S-transfected cells versus AS-
transfected cells, **P < .01; pMLKL/MLKL: b-actin, ****P < .0001; RIPK1/b-actin; U-cells and S-transfected cells versus AS-
transfected cells, **P < .01; ***P < .001). (B) RIPK1 mRNA levels in DLD-1 cells untreated or treated with FMR1 sense (S) or
antisense (AS) oligonucleotide, normalized for b-actin (mean ± SD, n ¼ 4; U-cells and S-transfected cells versus AS-
transfected cells, **P < .01). (C) Representative Western blotting showing FMRP, pRIPK1, RIPK1, pRIPK3, RIPK3, pMLKL,
MLKL, and b-actin in HCEC-1ct cells unstimulated (U) or transfected with FMR1 sense (S) or antisense (AS). (D) Percentage of
AnnV and/or PI-positive DLD-1 cells pretreated with a specific RIPK1 inhibitor. Left, DLD-1 treated with RIPK1-specific in-
hibitor (NEC1). Right, human CRC cell lines treated with MLKL-specific inhibitor (NSA) and then transfected with FMR1 sense
(S) or antisense (AS) oligonucleotide (mean ± SD, n ¼ 4; NEC1 plus S-transfected cells and NEC1 plus AS-transfected cells
versus AS-transfected cells, ***P < .001; NSA plus S-transfected cells and NSA plus AS-transfected cells versus AS-
transfected cells, ***P < .001, ****P < .0001). Statistical analysis of the data was performed using Student t test and Mann-
Whitney test.
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monitored for tumor formation and were endoscopically
screened 1 week before being euthanized using a high-
resolution endoscopic system. At week 22 after last AOM
injection, mice were killed by cervical dislocation, and
FLA 5.6.0 DTD � JCMGH695 proof � 8 N
colonic tissues were collected for the different analyses. All
experiments using animals were performed according to
Italian and European legislation on animal experimentation
(protocol number: 1138/2016-PR, 494/2017-PR).
1532
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Figure 10. (A) Representative immunostaining images of
FMRP (upper panels) and RIPK1 (lower panels) in human
CRC organoids unstimulated (U) or transfected with sense
(S) or FMR1 antisense (AS) oligonucleotide, n[ 2. (B) Left,
representative Western blotting of FMRP immunoprecipita-
tion from colon samples of 3 WT mice. FXR2P, a well-known
FMRP interactor, is detected as part of the FMRP complex.
Input (30 mg) of the total extract, FMRP immunoprecipitation
(IP-FMRP), and mock immunoprecipitation (IP-IgG). Right,
quantification by RT-qPCR of Hprt1, E-cadherin, and RIPK1
mRNAs. Hprt1 and E-cadherin mRNAs are negative and
positive controls, respectively (mean ± SD, n ¼ 3; E-cadherin:
IP-IgG versus IP-FMRP, **P < .01; RIPK1: IP-IgG versus IP-
FMRP, ***P < .001). (C) Left, representative Western blot-
ting showing pRIPK1, RIPK1, pRIPK3, RIPK3, pMLKL, MLKL,
and b-actin in colon tissue of AOM WT and AOM Fmr1 KO
mice. Right, quantification of total pRIPK1, pRIPK3, pMLKL,
and RIPK1 proteins in colon tissue AOM WT and AOM Fmr1
KO mice as measured by densitometry scanning of Western
blotting (values are expressed in arbitrary units (a.u.), mean ±
SD of all experiments, n ¼ 8 mice per group; *P < .05, **P <
.01, ***P < .001). Statistical analysis of the data was per-
formed using Student t test and Mann-Whitney test.
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Mouse Endoscopy
Colonoscopy was performed blinded to the genotype by

using the COLOVIEW (Karl Storz, Tuttlingen, Germany)
FLA 5.6.0 DTD � JCMGH695 proof � 8 N
high-resolution mouse endoscopic system.57 The number of
tumors was counted during endoscopic examination and
performed at week 21 after the last AOM injection. All tu-
mors were evaluated on the basis of their size and scored as
previously described.57 Tumors were graded as follows:
grade 1 (very small but detectable tumor), grade 2 (tumor
covering up to one-eighth of the colonic circumference),
grade 3 (tumor covering up to one-fourth of the colonic
circumference), grade 4 (tumor covering up to half of the
colonic circumference), and grade 5 (tumor covering more
than half of the colonic circumference).
Immunohistochemistry
All reagents were from Sigma-Aldrich (Milan, Italy) un-

less specified. Immunohistochemistry was performed on
formalin-fixed, paraffin-embedded sections of normal tis-
sues and tumoral samples of CRC patients. Sections were
deparaffinized and dehydrated through xylene and ethanol,
and the antigen retrieval was performed in Tris-EDTA cit-
rate buffer (pH 7.8) for 30 minutes in a thermostatic bath at
98�C (Dako Agilent Technologies, Santa Clara, CA). Immu-
nohistochemical staining was performed by using a mono-
clonal antibody directed against human FMRP (final dilution
1:5000; LifeSpan BioSciences, Seattle, WA) incubated at
room temperature for 1 hour, followed by a biotin-free
horseradish peroxidase (HRP) polymer detection technol-
ogy with 3,30diaminobenzidine as a chromogen MACH 4
Universal HRP-Polymer Kit (Biocare Medical, Pacheco, CA).
Immunohistochemistry was performed on colonic cry-
osections of WT and Fmr1 KO mice. The slides were incu-
bated with a mouse monoclonal antibody directed against
mouse Ki67 clone MIB-5, final dilution 1:100 (Dako, Agilent
Technologies) at room temperature for 30 minutes, fol-
lowed by biotin-free HRP polymer detection Ultravision
Detection System (Thermo Scientific, Waltham, MA) with
3,3�diaminobenzidine as a chromogen (Dako, Agilent Tech-
nologies). Histopathologic analysis was performed on
mouse colonic cryosections taken from WT and Fmr1 KO
mice in tumor and peritumor areas after H&E staining.
TUNEL Assay
In colonic cryosections taken from WT and Fmr1 KO

mice, TUNEL assay was performed to detect apoptotic cells
using the in situ Cell Death Detection kit (Roche Applied
Science, Penzberg, Germany) according to the manufac-
turer’s instructions.
RNA Extraction, RT-PCR
RNA was extracted using PureLink mRNA mini kit

(Thermo Fisher Scientific), according to the manufacturer’s
instructions. RNA (1 mg per sample) was reverse tran-
scribed into complementary DNA (cDNA), and this was
amplified using the following conditions: denaturation for 1
minute at 95�C; annealing for 30 seconds at 59�C for human
FMR1; 60�C for human CREB and human/mouse b-actin;
61�C for human RIPK1, 30 seconds of extension at 72�C.
Gene expression was calculated using the DDCt formula.
ovember 2020 � 12:16 pm � ce CLR



Figure 11. (A) Correlation between FMRP immunoreactivity and low or high risk of cancer progression in a cohort of
human CRC (n [ 67). Number of cases with weak-moderate FMRP or high FMRP expression and the percentage of FMRP-
positive cases (%) are reported in each patient subgroup. Low grade is stage I/II, high grade is stage III/IV of CRC. (B) Total
proteins extracted from both tumoral (T) and nontumoral (NT) areas of 6 patients with sporadic CRC were evaluated for FMRP
expression by Western blotting. b-actin was used as loading control. Right inset, quantitative analysis of FMRP/b-actin protein
ratio in total extracts of T and NT tissues taken from 6 patients with sporadic CRC, as measured by densitometry scanning of
Western blots. Values are expressed in arbitrary units (a.u.) (***P< .03). (C)Mef2mRNA detected by RT-PCR and normalized to
b-actin in colonic samples from 6 heathy subjects (NT) and tumoral areas (T) of 6 patients with sporadic CRC. (D) Repre-
sentative Western blotting of Mef2 protein expression in paired colonic samples from 10 healthy subjects (NT) and 10 patients
with sporadic CRC (T) (tumor areas). Blots are representative of 4 paired colonic samples. (E) Left, representative Western
blotting of CREB levels in HCT-116 cells unstimulated (U) or transfected with CREB sense (Sc) or CREB antisense (ASc)
oligonucleotide. Right, quantification of CREB/b-actin and FMRP/b-actin protein ratio (values are expressed in arbitrary units
(a.u.), mean ± SD, n ¼ 3; CREB/b-actin: U-cells and Sc-transfected cells versus ASc-transfected cells, *P < .05; FMRP/b-
actin: U-cells and Sc-transfected cells versus CREB AS-transfected cells, **P < .001, ***P < .01). Statistical analysis of the
data was performed using Student t test, Mann-Whitney test, and c2 test.
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Sequences of the primer used were the following: human
FMR1 (forward 5�-GTTGAGCGGCCGAGTTTGTCAG-3�, reverse
5�-CCCACTGGGAGAGGATTATTTGGG-3�); human CREB (for-
ward 5�-CCACTGATGGACAGCAGATC-3�, reverse 5�-
CGGACCTCTCTCTTTCGTG-3�); human RIPK1 (forward 5�-
CACAAGGACCTGAAGCCTGAA-3�, reverse 5�-
TGCTTGTTTTGAGCTGTAGCC-3�); human and mouse b-actin
(forward 5�-AAGATGACCCAGATCATGTTTGAGACC-3�, reverse
5�-AGCCAGTCCAGACGCAGGAT-3�).
FLA 5.6.0 DTD � JCMGH695 proof � 8 N
Protein Extraction and Western Blotting
Total proteins were extracted in buffer containing 10

mmol/L HEPES (pH 7.9), 10 mmol/L KCl, 0.1 mmol/L EDTA,
0.2 mmol/L ethylene glycol-bis (b-aminoethyl ether)-
N,N,N�,N�-tetraacetic acid, and 0.5% Nonidet P40 supple-
mented with 1 mmol/L dithiothreitol, 10 mg/mL aprotinin,
10 mg/mL leupeptin, 1 mmol/L phenylmethylsulfonyl
fluoride, 1 mmol/L Na3VO4, and 1 mmol/L NaF. Lysates
were clarified by centrifugation and separated on sodium
1768
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dodecyl sulfate polyacrylamide gel electrophoresis. Mem-
branes were incubated with antibodies against anti-human
FMRP, CREB, MEF2a (Cell Signaling, Danvers, MA);
pRIPK3, RIPK3, pMLKL, MLKL, RIPK1 (Abcam, Cambridge,
UK); pRIPK1 (SAB, Maryland, WA) (final dilution 1:1000);
anti-mouse FMRP, pRIPK3, RIPK3, pMLKL, MLKL, RIPK1
(Abcam); pRIPK1 (SAB), and PARP-1 (Cell Signaling), fol-
lowed by a secondary antibody conjugated to HRP (Dako,
Agilent Technologies). A mouse anti-b-actin antibody was
used to detect b-actin and for normalization. A computer-
assisted scanning densitometry was used to analyze the
intensity of the immunoreactive bands.

Immunofluorescence
CRC cell lines and HCEC-1ct were fixed by 3.7% form-

aldehyde for 10 minutes at 4�C and permeabilized with
0.1% Triton for 10 minutes at room temperature, and
nonspecific labeling was blocked (bovine serum albumin
1%, Tween 0.1%, glycine 2%) for 1 hour at room temper-
ature. Anti-FMRP monoclonal antibody (1:500; Cell
Signaling) was incubated overnight at 4�C. After washing
with phosphate-buffered saline (PBS) 1 time, the secondary
antibody goat anti-rabbit Alexa 488 (1:2000; Invitrogen,
Carlsbad, CA) was applied for 1 hour at room temperature.
Slides were washed with PBS 1 time, mounted using Pro-
long gold antifade reagent with DAPI (Invitrogen), and
analyzed by a Leica DMI4000 B (Wetzlar, Germany) mi-
croscope with Leica application suite software (V4.6.2).

Flow Cytometry Analysis
Cells were untreated or transfected with either FMR1

sense oligonucleotide (S) (final concentration 100 nmol/L)
or FMR1 antisense oligonucleotide (AS) (final concentration
0.5 nmol/L and 100 nmol/L) and were incubated with
necrosulfonamide (final concentration 1mmol/L; Calbio-
chem, Milan, Italy) or necrostatin1 (final concentration 10
mmol/L; Cayman Chemical, Ann Arbor, MI). After 24 hours
cells were collected, washed 2 times in AnnV buffer, stained
with FITC-AnnV (final dilution 1:100; Immunotools, Frie-
soyte, Germany) according to the manufacturer’s in-
structions, and incubated with 5mg/mL PI for 30minutes at
4�C. Cell death was quantified by flow cytometry; viable
cells were considered as AnnV–/PI– cells.

Cells untreated or transfected with either FMR1S or
FMR1AS oligonucleotide (final concentration 100 nmol/L)
were incubated with Q-VD-OPh (final concentration 1mmol/
L; R&D Systems, Minneapolis, MN). After 36 hours cells
were collected, and caspase activation was quantified by
flow cytometry using the specific antibody for cleaved cas-
pase 3 and caspase 8 (final concentration 1:100; Biovision,
Milpitas, CA). Staurosporin was used as apoptotic cell death
positive control (final concentration 1 mmol/L; Sigma-
Aldrich).

For cell cycle distribution, cells were left untreated or
transfected with either FMR1 S or FMR1 AS oligonucleotide
(final concentration 100 nmol/L). After 48 hours, cells were
pulsed with 10 mol/L bromodeoxyuridine for 60 minutes,
fixed in 70% cold ethanol, and stored at 20�C for at least 3
FLA 5.6.0 DTD � JCMGH695 proof � 8 N
hours. Next, cells were denatured in 2 mol/L HCl and
stained with anti–bromodeoxyuridine monoclonal antibody
(Immunotech, Marseille, France), followed by fluorescein
isothiocyanate–conjugated secondary anti-mouse immuno-
globulin G (Molecular Probes, Milan, Italy). Cells were
stained with 100 g/mL PI and analyzed by flow cytometry.

To assess mitochondrial membrane potential, we used
JC-1 dye according to the manufacturer’s instructions
(Thermo Fisher Scientific).

Analysis was performed by using the Kaluza software
(Beckman Coulter Life Sciences, Pasadena, CA).

Cell Culture, FMR1, and CREB Silencing
All reagents were from Sigma-Aldrich (Milan, Italy) un-

less otherwise specified. Human CRC cell line DLD-1 was
obtained from the American Type Culture Collection (Man-
assas, VA) and cultured in RPMI 1640 and McCoy’s 5A
medium, respectively. All media were supplemented with
10% fetal bovine serum, 1% penicillin/streptomycin (both
from Lonza, Verviers, Belgium). The healthy (normal) hu-
man colon epithelial cell line (HCEC-1ct) was obtained from
EVERCYTE GmbH (Vienna, Austria) and cultured in ColoUp
medium (EVERCYTE GmbH). Cells were maintained in a
37�C, 5% CO2, fully humidified incubator. Phosphorothioate
single-stranded oligonucleotide of the human FMR1 com-
plementary DNA sequence was synthesized in the antisense
orientation (5�-TCCACCACCAGCTCCTCCAT-3�). CRC cell lines
and HCEC-1ct were transfected with either FMR1 antisense
(AS) (final concentration 0.5–100 nmol/L) or FMR1 sense
(S) oligonucleotide (5�-AACACGTCTATACGC-3�, final concen-
tration 100 nmol/L) for 24, 36, and 48 hours using Opti-
MEM medium and lipofectamine 3000 reagent (both from
Thermo Fisher Scientific) according to the manufacturer’s
instructions. CRC cell lines were transfected with either
CREB antisense (ASc) (5�-GCATCTCCACTCTGCTGGTT-3�) or
CREB sense (Ss) (5�-AACACGTCTATACGC-3�at final concen-
tration 200 nmol/L) for 24/48 hours.

Intestinal Crypt Isolation, Organoid Formation,
and Immunostaining

Surgically resected intestinal tissues were obtained from
colon cancer patients who underwent colon resection for
sporadic CRC (all with TNM stages II–III) at the Tor Vergata
University Hospital (Rome, Italy). Intestinal tissues were
washed in Hanks’ balanced salt solution (Lonza) containing
1% penicillin/streptomycin (Lonza) and chopped into
approximately 5-mm pieces. Tissue fragments were placed
in a tube, incubated in Advanced DMEM/F12 medium
(Gibco, Monza, Italy) containing 15 mmol/L EDTA (Sigma-
Aldrich), and rocked at 4�C for 30 minutes. Large chunks of
tissue were then removed, and remaining crypts were
centrifuged at 200g for 3 minutes, embedded in Matrigel
(Becton Dickinson, Franklin Lakes, NJ), and seeded in
warmed 48-well plates. Matrigel was allowed to solidify for
15 minutes at 37�C and overlaid with complete medium
(advanced Dulbecco modified Eagle medium/F12 supple-
mented with 1% penicillin/streptomycin, 1% amphotericin
B [Lonza], 0.1% gentamycin [Lonza], 1� B27 [Invitrogen],
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HEPES [15 mmol/L; Lonza], 1� GlutaMAX-I [Gibco], rh-EGF
[100 ng/mL; R&D Systems], rh-Noggin [100 ng/mL; R&D
Systems], rh-R-Spondin [50 ng/mL; R&D Systems], and
nicotinamide [10 mmol/L; Sigma-Aldrich]). The entire me-
dium was replaced every 3 days. Organoids were trans-
fected with either FMR1 antisense (AS) (final concentration
200 nmol/L) or FMR1 sense (S) oligonucleotide (final con-
centration 200 nmol/L) for 48 hours using Opti-MEM me-
dium and lipofectamine 3000 reagent (both from Thermo
Fisher Scientific) according to the manufacturer’s in-
structions. Culture medium was removed, and organoids
were washed with PBS and incubated with organoid har-
vesting solution (Trevigen, Winooski, VT) for 1 hour at 4�C
with gentle shaking. Released organoids from depoly-
merized Matrigel were then collected and transferred into a
Tissue-Tek Cryomold (Sakura Finetek Europe B.V., Alphen
aan den Rijn, the Netherlands) containing optimal cutting
temperature (OCT), frozen, and stored at –80�C. Immuno-
histochemical staining was performed using a monoclonal
antibody directed against human RIPK1 (final dilution
1:250; Abcam), incubated at room temperature for 1 hour,
followed by a biotin-free HRP-polymer detection technology
with 3,30diaminobenzidine as a chromogen MACH 4 Uni-
versal HRP-Polymer Kit (Biocare Medical). Sections were
counterstained with hematoxylin, dehydrated, and mounted.
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RNA Immunoprecipitation
All reagents were from Sigma-Aldrich unless specified.

Human tumor samples, DLD-1 cells, and colon mouse tis-
sues were lysed in ice-cold buffer (250 mmol/L NaCl, 20
mmol/L Tris/HCl pH 7.4, 10 mmol/L MgCl2, 1% Triton X-
100, 10 mL/mL protease inhibitor cocktail [Roche Applied
Science, Penzberg, Germany], 10 mL/mL phosphatase in-
hibitor cocktails II and III, and 40 U/mL RNaseOUT [Invi-
trogen]). Dynabeads (Invitrogen) were incubated with a
specific anti-FMRP antibody58 or anti-rabbit immunoglob-
ulin G (Santa Cruz Biotechnology, Santa Cruz, CA) in pres-
ence of 1% bovine serum albumin for 1 hour at room
temperature. The beads were washed in wash buffer (250
mmol/L NaCl, 10 mmol/L Tris-HCl pH 7.4, 10 mmol/L
MgCl2, and 0.1% Triton X-100), and 800mg of protein
extract derived from 3 different human tumor samples,
800mg of protein extract derived from DLD-1 cells, and 5
mg of protein extracts derived from colon tissues of 9 mice
were added to the Dynabeads and incubated for 1–2 hours
at 4�C. Proteins and RNA were eluted in Laemmli buffer and
TRIzol, respectively. On immunoprecipitation, the co-
immunoprecipitated RNA was extracted and analyzed by
RT-qPCR using the StepOne Plus 7500 instrument (Life
Technologies, Carlsbad, CA). Sequences of the primers used
were the following: human HPRT1 (forward 5�-TGCTGAG-
GATTTGGAAAGGGT-3�, reverse 5�-TCGAGCAA-
GACGTTCAGTCC-3�); human b-actin (forward 5�-
ACCGAGCGCGGCTACAG-3�, reverse 5�-CTTAATGTCACGCAC-
GATTTCC-3�); human E-cadherin (forward 5�-CGAGAGCTA-
CACGTTCACGG-3�, reverse 5�-CTTTGTCGACCGGTGCAATC-3�);
human vimentin (forward 5�-GCTTCAGAGAGAGGAAGCCG-3�,
reverse 5�-AAGGTCAAGACGTGCCAGAG-3�); human RIPK3
FLA 5.6.0 DTD � JCMGH695 proof � 8 N
(forward 5�-CAGTGTGCAACAGGCAGAAC-3�, reverse 5�-
TCAGTCCTTCTAAGCCGGGA-3�); human RIPK1 (forward 5�-
CACAAGGACCTGAAGCCTGAA-3�, reverse 5�-
TGCTTGTTTTGAGCTGTAGCC-3�); mouse Hprt1 (forward 5�-
CAGCCCCAAAATGGTTAAGGTTGC-3�, reverse 5�-TCCAA-
CAAAGTCTGGCCTGTATCC-3�); mouse E-cadherin (forward
5�-GTGACGCTGAAGTCCATGG-3�, reverse 5�-TTCA-
GAGGCAGGGTCGCG-3�); mouse RIPK1 (forward 5�-
GTCCACCGCCCGTCCT-3�, reverse 5�-GCTCAGAATCTCCAACA-
CACC-3�).
Statistical Analysis
Values are expressed as mean ± standard deviation (SD)

or ± standard error of the mean (SEM). Statistical analysis
of the data was performed by using Student t test, Mann-
Whitney test, or c2 test. GraphPad Prism 6 (GraphPad
Software, La Jolla, CA) was used for statistical and graphical
data evaluations. P values <.05 were considered statistically
significant.
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