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Abstract: This contribution presents the AM/AM and AM/PM characteristics of a 6-bit Phase and
Amplitude Setting Circuit realized in Gallium Nitride technology and operating at the Ku band. A
test bench, based on three vector receivers and an absolute power reference, has been purposely
devised to capture the deviation with respect to the linear behavior (known by the S-parameters)
for both the magnitude and the phase of the vector response. The complete 64-state constellation is
reported up to a 37 dBm of input power level, at which the effects of the static AM/AM and AM/PM
distortion become evident, with about 3 dB of gain compression and 2.7 deg of phase conversion. The
key figure of merit of the proposed test bench is the capability of operating with very high driving
power levels (potentially up to 41 dBm), with possible applications in phased arrays, AESAs, and
other signal conditioning systems.

Keywords: Gallium Nitride (GaN); phase shifters; attenuators; non-linear measurements; Ku-band;
amplitude-to-amplitude (AM/AM) conversion; amplitude-to-phase (AM/PM) conversion

1. Introduction

Gallium Nitride (GaN) has become the industry standard semiconductor for mi-
crowave and millimeter-wave circuits in high-end electronic systems utilized in space
communications. More specifically, GaN technology is currently utilized for signal con-
ditioning, shaping, and generation circuits, including mixers [1,2], voltage-controlled
oscillators (VCO) [3,4], phase shifters (PS) [5–9], and attenuators (ATT) [10] at microwave
and millimeter-wave frequencies. In particular, when combined, the latter two listed func-
tionalities realize the Phase and Amplitude Setting circuits (PASs), key components in Radio
Frequency (RF) front ends, and more specifically, for phased array systems. In addition
to millimeter-wave and microwave circuits in high-end electronic systems, GaN has been
extensively utilized in the fabrication of optoelectronic devices, such as lasers [11–15], light
emitting diodes (LEDs) [16–21], and solar cells [22–24].

Phased arrays can be categorized into three architectures: passive, active, and digi-
tal [25]. Each has its proper field of application in which it is featured by better figures
of merit compared to the others. In particular, the passive architecture uses a centralized
high-power transmit amplifier capable of kW peak power levels (typically realized by a
klystron vacuum tube or a traveling wave tube amplifier) and requires the use of low-loss
beamformers and phase shifters because RF losses on the output path from the transmit
amplifier to free space translate directly into signal loss and, thus, reduced radar sensitivity.
Ferrite phase shifters are commonly used in passive arrays since they can handle very high
levels of microwave power with very low insertion loss; however, they are bulky, and the
overall system would benefit by replacing them with monolithic ones. This is why there is
an increasing interest in the realization of GaN phase shifters, and this is one of the reasons
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why the non-linear characterization of the GaN PAS control circuits is of interest. Further-
more, the availability of multifunctional monolithic microwave integrated circuits (MMICs)
allowed the Active Electronically Scanned Array (AESA) System to present a technological
breakthrough in improved reliability, reconfigurability, performance, wideband capabilities,
and ease of installation in space communication systems [26]. To follow technological
advancements, thorough characterization of RF front ends is required, as the front end
always operates at higher frequencies, owing to the ever-growing demand for spectrally ef-
ficient wireless communication chips [27–30]. In addition to measuring the linear response,
achieved through scattering parameters (S-parameters), it is also important to characterize
the performance of the signal conditioning circuits in terms of non-linear figures of merit,
such as the amplitude-to-amplitude (AM/AM) conversion and the amplitude-to-phase
(AM/PM) conversion characteristics. While the AM/AM characterization can be easily
obtained via scalar power measurements, the AM/PM characterization presents a challenge
that requires phase-detecting approaches and is usually performed by a Vector Network
Analyzer (VNA), even if some alternative approaches have been proposed using a spectrum
analyzer or oscilloscopes.

Additionally, in the case of passive Device Under Test (DUT) on GaN, capable of
high-power handling, very high input power levels are required to drive the device into its
non-linear region. Most literature has focused on AM/AM and AM/PM characterization of
power amplifiers (PAs), as discussed in [28,29,31–38]. However, only a few articles deal with
AM/AM characterization, and even fewer deal with AM/PM characterization of passive
circuits. Some examples are presented in [39–45] and [39,46,47], respectively. Specialized
test benches have been developed and somehow exploited for amplifiers [28,31–37,48,49],
but not for passive circuits. No reported works explicitly focus on AM/PM characterization
of PAS GaN HEMT circuits at such high input power (37 dBm) and frequency ranges (Ku
Band, 12 GHz to 18 GHz).

Table 1 reports some significant references dealing with the measurements of the
AM/PM for different kinds of MMICs.

Table 1. Comparison table of the different references dealing with AM/AM and AM/PM characteris-
tics for different devices.

Ref. DUT Power Frequency AM/AM Deviation AM/PM Deviation

[9] GaN-based 5-bit Phase Shifter 34.8 dBm 8–12 GHz 0.8 dB 6.4 degrees

[10] GaN-Si 100 nm
Attenuator and Phase-Shifter 28 dBm (*) 30–40 GHz 1 dB 8 degrees

[29] Doherty Power Amplifier 33 dBm 900 MHz 2 dB 14 degrees
[32] Power Amplifier 37 dBm 2 GHz ~ 9 degrees
[33] Power Amplifier 5.92 dBm 2.4 GHz 0.65 dB 1.4 degrees
[36] Power Amplifier 31 dBm 3 GHz 0.3 dB 0.25 degrees
[37] Power Amplifier 5 dBm 2 GHz 0.05 dB 0.5 degrees
[40] GaN HEMT switch–SPDT 39 dBm 2–18 GHz 0.3 dB ~
[41] GaN HEMT switch–SPDT 39 dBm 9 GHz 0.91 dB ~
[46] Mixer 5 dBm 11.5 GHz ~ 18 degrees

[T.W.] ** GaN-SiC 150 nm
PAS 37.8 dBm 12–16 GHz 3.7 dB 2.8 Degrees

(*) Estimated Value. (**) [T.W.] means “This Work”.

In this contribution, we propose a rather standard test bench based on a VNA and
aimed at characterizing the static AM/AM and AM/PM conversions of a 6-bit PAS MMIC.

AM/AM and AM/PM are standard figures of merit typically used to describe the
non-linear behavior of a device. In particular, AM/AM represents the deviation of the
amplitude response of the device from linear behavior. Typically, by increasing the input
power level of 1 dB at a certain frequency, we expect the output power level to increase by
1 dB; if this is not the case, non-linearities contribute to the amplitude response. Conversely,
AM/PM represents the deviation of the phase response from linear behavior. At a certain
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frequency, we expect a constant phase response with respect to the input power level; if
this does not occur, the phase response is affected by non-linearities.

The architecture of the considered PAS circuit is reported in Figure 1, showing the
actual position of the phase-shifting and amplitude-setting cells within the same MMIC.
Details on this kind of circuit are provided, for instance, in [10]. The peculiarity of the
measurement setup is its capability of capturing the static conversion curves of GaN
passive circuits, thus requiring a very high level of linearity of the test bench building
blocks. The manuscript is organized as follows: Section 2 is devoted to the measurement
setup, Section 3 addresses the calibration/de-embedding technique, and Section 4 presents
the measured results. Finally, some concluding remarks are given in Section 5.
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Figure 1. Block diagram of the Device Under Test (DUT).

2. Measurement Setup

The measurement test bench is based on an Anritsu 37397D VNA, together with a
power amplifier (Erzia HPA-0600-1800-40-E, capable of 41 dBm [50] of output power), two
external couplers (HP87301D), three fixed attenuators (HP8490D), and a 50 Ohm power
termination. Figure 2 depicts the photograph of the measurement setup.
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In a more detailed perspective, Figure 3 illustrates the external connections through
jumpers on the front panel of the VNA, enabling access to the internal receivers and source.
As depicted in the figure, the excitation signal was derived from port-1 of the VNA (rather
than directly from the jumpers) to take advantage of the internal attenuators [51]. Regarding
the receiver, in addition to the b1 and b2 detectors needed to sample the input and output
waves, respectively, a third receiver, a1, was also used to ease the phase lock condition,
as illustrated in Figure 4. The latter figure reports the architecture of the test bench, also
showing the power splitter internal to the VNA, whose purpose is to ease the phase lock of
the receiver (to the internal source) and to level the source. In the same figure, the power
level at the relevant sections is also reported, assuming 35 dBm at the input of the DUT.
This simple power budget analysis was required to avoid failures at the VNA internal
receivers and guarantee the required power level at the input of the DUT. Additionally, it
was ensured that the power levels do not exceed 20 dBm at peak value for the ‘a’ receiver
and 27 dBm at peak value for the ‘b’ receivers.
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Figure 3. The architecture of the test bench represented during the calibration phase (with a ‘thru’
connection in place of the DUT). The dotted line represents the alternative path required during one
of the two calibration steps.

Taking into account the coupling factors of the available directional couplers, the
attenuators required to satisfy the above-mentioned conditions were properly dimensioned
and explicitly reported in the figure.

Given the comparatively large number of states to measure, a mixed analogue/digital
Input (IO) board equipped with an ethernet interface was purposely procured and adapted
to the task, as shown in Figure 5.
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Figure 5. Relay board interface. The inset reports the circuit topology implementing the control
voltages required by the attenuation and phase-shifting cells. The relays are activated by LabView
through TTL signals provided by the digital IO board.

A LabVIEW(R) program controlled all the hardware in this measurement setup through
the General-Purpose Interface Bus (GPIB) cables and Local Area Network (LAN) cables,
whereas the post-processing was implemented in MATLAB.

In addition to the non-linear measurements needed to characterize the AM/AM and
AM/PM conversion, the PAS was preliminarily measured in terms of scattering parameters
using the Anritsu 37397D in its standard configuration and calibrated with a standard
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Short-Open-Load-Through (SOLT) calibration on a Calibration Substrate (CS)-5 from the
GGB Picoprobe. As detailed in the subsequent sections, the S-parameters allow us to
accurately determine the attenuation and phase shift values synthesized by the PAS in
linear operation.

3. Calibration of the Test Bench

The VNA detectors’ readings represent the DUT behavior only once the calibration is
performed [52]. This section describes the determination of the required correction factors
and debates the limitations of the proposed approach. The calibration process consists of
two distinct phases, as also reported in Figure 3, in which a thru connection substitutes the
DUT:

1. In the first step, acquisitions were made from 12 GHz to 16 GHz with a 1 GHz step at
a fixed −20 dBm source power level and stored in a file (labeled CALA file) collecting
the readings made by the detector-b1 and the USB power sensor U2022XA (the dotted
path in Figure 2).

2. In the second step, acquisitions were made from 12 GHz to 16 GHz with a 1 GHz
step and from −20 dBm up to 10 dBm (to verify the linearity of the driver amplifier)
while setting an exit condition at 1 dB of gain compression of the driver amplifier.
This second set of data is stored in a file (labeled CALB file), collecting the readings
made using the detectors a1, b1, and b2 (refer to Figure 3).

The first step allows for setting an absolute power reference against which the correc-
tion factors for the VNA’s readings (b1 and b2) can be computed. The additional readings
made by the a1 detector are needed only to provide a stable phase reference, as discussed
later in the text. The power sweep in the second step, even if not strictly required for
calibration purposes, allowed for ascertaining the linearity of the driver amplifier.

Off-line, during the post-processing, the raw measurements performed on the thru
and on the DUT are imported from the three files (CALA, CALB, and DUT), and then the
correction factors are computed and applied to the raw readings.

In greater detail, in the first post-processing step, the readings made by the VNA and
the power sensor are considered (with a thru in place of the DUT). Comparing these two
readings allows for obtaining a correction factor for the b1-detector, setting the reference
plane at the coaxial connection of the output probe. Then, the reference plane is shifted to
the center of the thru; in formulae, the additive correction factor C1,dB for the detector b1 is:

C1,dB = bA
dBm − bA

1,dBm + Lprobe
dB (1)

in which bA
dBm are the readings (in dBm) made by the sensor and bA

1,dBm are the readings

(in dBm) made by the VNA, both stored in the CALA file, whereas Lprobe
dB is the probe loss

(in dB) determined through an unterminating procedure and nearly equal to 0.6 dB all
over the measurement band. In a second post-processing step, the readings made by the
VNA through the detectors a1, b1, and b2 are considered (with a thru in place of the DUT).
Specifically, the CALB file includes the following data: aB

1 , bB
1 /aB

1 , and bB
2 /aB

1 . The readings
are normalized to a1 overcoming, in this way, the errors associated with the arbitrary phase
of the internal source and simultaneously allowing for locking the receiver. The additive
correction factor, C2,dB, for the b2 detector is:

C2,dB =
(

bB
2,dBm − aB

1,dBm

)
−
(

bB
1,dBm − aB

1,dBm + C1,dB

)
(2)

in which aB
1,dBm, bB

1,dBm, and bB
2,dBm are the magnitude readings in dBm taken by the VNA

and stored in the CALB file. The previous equation is computed at a fixed source power
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level, operating under the assumption of receivers’ linearity and encompassing a frequency
sweep from 12 GHz to 16 GHz with increments of a 1 GHz step. Similarly, for phase:

C2,deg = (∠b B
2 −∠aB

1

)
−
(
∠bB

1 −∠aB
1 + C1,deg

)
(3)

in which C1,deg is unknown since the power sensor does not provide a phase reference.
However, what is needed is not the absolute phase, but the phase shift introduced by the
DUT:

∆deg(PASX , PASR) = [(∠b D
2 (PASX) + C2,deg

)
−
(
∠bD

1 (PASX) + C1,deg

)
]−[(

∠bD
2 (PASR) + C2,deg

)
−
(
∠bD

1 (PASR) + C1,deg

)] (4)

in which both C1,deg and C2,deg cancel out and must not be known. In the previous relation,
the superscript ‘D’ stands for data stored in the DUT file, whereas the terms PASX and PASR
denote a given arbitrary state and the reference state of the 6 bits of the PAS, respectively.
In contrast, the rationale described above for the phase correction cannot be applied to
the magnitude correction, given that, in this instance, our interest is directed towards
ascertaining the output power level at which a specific degree of deviation (either in phase
or amplitude) is measured.

Recalling that the linearity of the receivers is assumed, (4) is valid independently of
the input power level. However, in the context of linear operation, higher accuracy can be
achieved in terms of scattering parameters:

∆Sdeg(PASX , PASR) = ∠s21(PASX)−∠s21(PASR) (5)

in which the forward scattering parameter s21 also considers the mismatch at the ports and
compensates for it. The comparison of (4) and (5), at a low power level, makes possible
the computation of a correction factor to be applied to (4), effectively compensating for
the mismatch; more simply, the deviation from the linearity measured by the proposed
test bench can be used to correct the S-parameters at high power levels. In the case of
the phase, for instance, this implies evaluating (4) at a low and given power level; the
difference is the deviation to be added to the phase of the S-parameter measurements.
Similar considerations apply to correct the magnitude of the S-parameters. The AM/AM
and AM/PM distortion characteristics can indeed be measured up to about 40 dBm.

It is worth stressing that the measured AM/AM and AM/PM only relate to the PAS
circuit. In fact, there are two directional couplers in the test bench, one allowing sampling of
the incident wave to the input of the PAS and the other allowing sampling of the emerging
wave from the output of the PAS. As a consequence, even if the driver amplifier distorts the
input wave, the PAS figures of merit are derived taking into account and compensating for
the effective distorted input wave (as straightforwardly derived from the relations above;
(4) in particular).

4. Test Vehicle Measurement Campaign

Measurements were acquired from 12 GHz to 16 GHz with a 1 GHz step, while the
internal source’s power was varied from −20 dBm to 10 dBm, with an exit condition on
the DUT’s gain compression set to about 3 dB. Even if additional frequency points are
available, in this section, graphical data are reported only at 15 GHz. Also, only a subset of
the graphs reports the performance of the PAS vs. the input power level (Figures 6 and 7),
i.e., the ones in which only the attenuation or phase-shifting cells are switched and not
both. Specifically, as a function of the input power level, Figure 6a,b pertain to AM/AM
distortion curves, whereas Figure 7a,b relate to AM/PM distortion trends. In contrast to
these plots, the remaining graphs, relating to the overall constellation, are shown for a fixed
input power level for better readability.
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Figure 7. Characterization of measured AM/PM responses: (a) variation in AM/PM static character-
istics across eight distinctive attenuator cell states with the phase shifter configured at minimal phase
shift value; (b) AM/PM static characteristics observed across the same eight attenuator cell states,
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available states.

Figure 6a depicts the measured AM/AM static characteristics for the eight possible
states of the attenuator cells with the phase shifter configured to its minimum phase shift
value. Under these operating conditions, the maximum measured AM/AM deviation is
in the range of 3.2–3.6 dB when the device is driven at 37 dBm of input power. Similarly,
Figure 6b reports the measured AM/AM static characteristics for the eight possible states
of the phase-shifting cells and the attenuators set to its minimum attenuation value. Under
this operating conditions, the maximum measured AM/AM deviation is in the range
3.1–3.7 dB.

Figure 7a,b outline the AM/PM conversion curves for a fixed configuration of the
phase-shifting cells and for a fixed configuration of the attenuation cells, respectively.
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Figure 7 encompasses the response across the 8 + 8 orthogonal states: 8 on the phase axis
and 8 on the attenuation axis. Independently of the internal configuration of the MMIC,
measurements start deviating from linear behavior at 25 dBm of input power. As can be
deducted, the maximum deviation is observed when the 180 deg cell is switched on, with
about 2.5 deg at about 3 dB of gain compression.

To provide a clear picture of the non-linear effects on the overall 64 states, for two
different power levels (7 dBm and 37 dBm), Figure 8 reports the synthesized attenuation
and phase shift values against the nominal (desired) attenuation and nominal phase shift
levels. For this purpose, two different kinds of axes were adopted: Figure 8a adopts a
Cartesian plot, whereas Figure 8b a polar one, with the latter being more suited to highlight
the phase deviation compared to the Cartesian plot. Measurements at 7 dBm of input
power level are denoted by asterisks, whereas circles stand for 37 dBm.
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Conversely, Figure 9a,b depict, on a 3D plot, the AM/AM and AM/PM conversion,
respectively, with regard to the nominal phase shift and nominal attenuation at 37 dBm.
The insights provided by Figure 9a reveal that the AM/AM conversion’s behavior is mainly
influenced by the activation status of individual phase cells, demonstrating a relatively
subdued response to amplitude cell switching.
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Different considerations apply to Figure 9b, where it is evident that the AM/PM con-
version presents a dependence on both the amplitude- and phase-cell switching. However,
in the case of the phase cells, the behavior is monotonic with respect to the increasing
attenuation values. In contrast, there is no correlation between the AM/PM deviation
(also for the AM/AM deviation) and the absolute phase shifting value, which is mainly
dependent on the given cell and not on the value synthesized by the cell.

5. Conclusions

The AM/AM and AM/PM characteristics of a 6-bit PAS circuit realized in GaN
technology operating at Ku-band are reported in this contribution. The deviation from
the linear behavior of the DUT, known by the measured S-parameters, was calculated
through a test bench comprising three vector receivers and an absolute power reference.
The linear 64-states constellation at 7 dBm input power level and the distorted one at a
37 dBm input power level are reported: the first, computed by the S-parameters, and the
second, derived by the S-parameters, plus the deviation captured by the non-linear test
bench. The effectiveness of this contribution relies on further addressing the gap in the
research, focusing on the non-linear characterization of passive circuits capable of high-
power handling, such as PAS circuits on GaN. Although the proposed implementation
presents the advantage of being easily implemented, a more complex calibration algorithm
should be considered in possible future implementations for a full vector calibration.

Author Contributions: Conceptualization, W.C. and A.D.; measurement acquisition, F.B. and E.D.A.;
software, S.C.; validation, W.C. and P.E.L.; formal analysis, W.C. and A.D.; Device Under Test, P.E.L.;
data curation, W.C. and A.D.; writing—original draft preparation, A.D. and W.C.; writing—review
and editing, A.D. and W.C.; supervision, E.L.; project administration, E.L. All authors have read and
agreed to the published version of the manuscript.
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A0375-2020-36755, Progetti di Gruppi di Ricerca 2020.

Data Availability Statement: Data is contained within the article.
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