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Abstract

This paper contributes to the econometric literature on structural breaks by proposing
a test for parameter stability in VAR models at a particular frequency ω, where ω ∈ [0, π].
When a dynamic model is affected by a structural break, the new tests allow for detecting
which frequencies of the data are responsible for parameter instability. If the model is locally
stable at the frequencies of interest, the whole sample size can be then exploited despite
the presence of a break. Two empirical examples illustrate that local stability can concern
only the lower frequencies (change in the U.S. monetary policy in the early 80’s) or higher
frequencies (decrease in the postwar U.S. productivity).
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Tests for structural changes are important tools in the statistical analysis of economic time
series. In this respect, the well-known Chow (1960) test still constitutes a standard reference.
It consists of splitting the sample into two sub-periods, before and after the break, and testing
the equality of the parameters between the two sub-samples, using an asymptotic χ2 distrib-
ution. Because of its simplicity of implementation, it is still used in many empirical studies.
Nonetheless, this test was extended in several directions.1

Firstly, instead of considering the date of the break as known, the testing procedure should
treat it as an unknown parameter to be estimated. Following the seminal paper of Quandt
(1960), a recursive sequence of Chow tests is performed, dating the break at the point where the
test statistic takes the largest value. Andrews (1993) delivers the most important contribution
for this extension by defining the asymptotic distribution of the sup-Chow test, which is no
longer a χ2 distribution. A further extension in this direction is developed by Bai and Perron
(1998, 2003), who consider the case of multiple structural breaks with unknown dates. These
authors propose several iterative methods to test for the number of breaks, and derive the
asymptotic distributions of the relevant test statistics. All these procedures are valid for single
equation models with no trending regressors, such as deterministic trends or I(1) processes.

The above approaches have recently been extended to multivariate regression models. Bai et
al. (1998) generalized the single break framework in Andrews (1993) to multiple time series that
are either stationary or cointegrated in the regimes of parameter stability. They showed that
statistical inference is more precise when series having a common break are jointly analyzed.
Bai (2000) considered the issue of multiple breaks in a segmented stationary VAR model and
proved that the number of change points can be consistently estimated via information criteria,
whereas Qu and Perron (2004) proposed a quasi maximum likelihood approach to analyze
multiple breaks in multivariate regression models.

Secondly, some papers were devoted to the application of the standard Chow test to the
Vector Error Correction Model (VECM). Hansen (2003), inter alia, provided tests for a break
in the coefficients of the VECM, though his results are restricted to the case of known break
dates. In particular, a partial structural change can be present in the cointegration parameters
or in the adjustment coefficients. Such an extension has interesting economic implications, as
it is possible to interpret a structural break as affecting the long-run (partial change in the
cointegration relationships) or the short-run (partial change in the adjustment coefficients).

The present paper generalizes the previous idea by proposing a test for parameter stability in
a segmented stationary or cointegrated VAR model at a particular frequency ω, where ω ∈ [0, π].
Hence, if a VAR model is affected by a structural break, it is then possible to detect which
frequencies of the data are responsible for parameter instability. Moreover, if a researcher wishes
to concentrate on a subset of the frequencies of the data, the proposed test allows one to check
whether the whole sample size can be exploited for the analysis, despite the presence of a break.
Although the null hypothesis of local stability at frequency ω implies that the spectral density

1See Hansen (2001) for a detailed survey of the current state of the art.
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matrix at frequency ω is stable over time, the testing procedure is easily implemented in the
time domain,2 as it is based on a set of linear hypotheses on the autoregressive parameters.
The test statistic for local stability at a given frequency has a limit χ2 distribution when the
break date is either known or estimated by means of the sup-Chow test for a full structural
change. For the latter case, a bootstrap procedure is also offered. We evaluate the finite-sample
behavior of our testing procedure through a Monte Carlo study.

The test procedure is applied to two well-known examples. The first one copes with the
predictive power of the yield curve on future output growth in the U.S. It turns out that a break
is detected around July of 1980. Based on Estrella et al. (2003), we interpret this break as the
consequence of a change in monetary policy associated with the nomination of Paul Volcker
as the head of the FED. Our local stability tests confirm this hypothesis by stressing that the
relationship between the spread and future output growth remains stable at low frequencies.

The second example addresses the slowdown of the post-war United States output growth.
Following King et al. (1991), we consider a trivariate system with consumption, investment and
output to get a clearer view on this issue. Similarly to Bai et al. (1998), a structural break is
detected in the late sixties, and our local stability tests reveal that the system is stable only at
high frequencies. This evidence is consistent with the view that a negative productivity shock
is at the origin of the break.

The paper is organized as follows. In section 2, the concept of local stability at frequency
ω is developed for segmented stationary VAR systems and known break dates. The extensions
for cointegrated systems and unknown break dates are proposed in Section 3. In section 4, a
simulation study is performed to investigate the properties of the tests. Section 5 presents both
the empirical applications, and Section 6 concludes.

1 Local stability in stationary VAR models

Let us consider an n-vector time series {Xt, t = 1, . . . , T} that is generated by the following
stationary linear stochastic process

Xt = ΘDt + C(L)εt, (1)

where C(L) = In +
P∞

i=1CiL
i is such that

P∞
j=1 j |Cj | < ∞, εt are i.i.d. Nn(0,Σ) innova-

tions, and Dt is an m-vector of deterministic terms that may contain a constant and various
trigonometric functions of time.

We assume that series Xt admits the following VAR(p) representation:

A(L)Xt = ΦDt + εt, t = 1, . . . , T, (2)

2Similar approaches can be found in Breitung and Candelon (2006) for Granger-causality tests, Centoni and
Cubadda (2003) for measuring the cyclical effects of permanent-transitory shocks, and Christiano and Vigfusson
(2003) for maximum likelihood analysis of business cycle models.
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where A(L) = In −
Pp

i=1AiL
i is such that det [A(c)] = 0 implies that |c| > 1, and ΦDt =

A(L)ΘDt.3

By expanding the polynomial matrix A(L) on the complex conjugate points z and z−1,
where z = exp(−iω) and ω ∈ [0, π], we obtain

A(L) = ∆ω(L)−Πω(L)L− Γω(L)∆ω(L)L, (3)

where Γω(L) is a n × n polynomial matrix of order (p − 3) if ω ∈ (0, π), (p − 2) if ω = 0 or
ω = π,4 and

∆ω(L) =

(
1− 2 cos(ω)L+ L2 if ω ∈ (0, π)
(1− zL) if ω = 0 or ω = π

.

Comparing both sides of equation (3) for L = z yields

A(z) = −Πω(z)z, (4)

and, by equating real and imaginary parts of (4), we find

Πω(L) =

(
− Im[A(z)]/ sin(ω) + (Re[A(z)] + Im[A(z)] cos(ω)/ sin(ω))L if ω ∈ (0, π)
−zA(z) if ω = 0 or ω = π

.

Finally, by inserting equation (3) into equation (2), we rewrite the VAR model as follows:

∆ω(L)Xt = ΦDt +Πω(L)Xt−1 + Γω(L)∆ω(L)Xt−1 + εt, (5)

Since the filter ∆ω(L) annihilates at L = z, the filtered series ∆ω(L)(Xt −ΘDt) have null
spectra at frequency ω. Hence the parameters Πω(L) fully characterize the stochastic behavior
of series Xt at frequency ω. Indeed, the spectral density matrix of the stochastic process
(Xt −ΘDt) at frequency ω is given by C(z)ΣC(z−1)0, where C(z) = −(Πω(z)z)−1. 5

The frequency domain properties of model (2) are also determined by the nature of the deter-
ministic vector Dt. Indeed, a linear combination of the trigonometric functions [cos(ωt), sin(ωt)]
has its spectral mass entirely concentrated at frequency ω. Hence, let us write

ΦDt = Φ1D1,t +Φ2D2,t,

3The reason we assume stationarity is twofold. First, the spectral density matrix is well-defined only for
stationary VAR processes. Second, the asymptotic theory of structural break tests does not generally allow for
unit or explosive roots (see, inter alia, Andrews 1993; Bai and Perron; 1998, 2003; Bai, 2000).

4For reasons that will be clarified later, we are assuming that p > 2.
5Notice that similar reparametrizations of the VAR model are widely used in the context of seasonal cointe-

gration analysis (see e.g. Cubadda, 2001).
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where D1,t and D2,t are respectively composed of m1 and m2 elements such that

∆ω(L)D1,t = 0,

∆ω(L)D2,t 6= 0.
It is clear that the parameters Φ1 fully characterize the deterministic behavior of series Xt at
frequency ω.

We now allow for a possible structural break at time Tb = bT , where b ∈ (0, 1). Let us
assume, for the moment, that there is only one single break and its date Tb is known. Model
(2) is then generalized by the following sub-sample models:

A−(L)Xt = Φ−Dt + εt, t = 1, . . . , Tb, (6)

A+(L)Xt = Φ+Dt + εt, t = Tb + 1, . . . , T, (7)

where A−(L) = In −
Pp

i=1A
−
i L

i, and A+(L) = In −
Pp

i=1A
+
i L

i.
Notice that we can expand both the polynomial matrices A−(L) and A+(L) on 0 and the

complex conjugate points z and z−1, thus obtaining the sub-sample analogs of model (5). Hence,
let us consider the following particular cases of the sub-sample models (6) and (7):

∆ω(L)Xt = Φ1D1,t +Φ
−
2 D2,t +Πω(L)Xt−1 + Γ−ω (L)∆ω(L)Xt−1 + εt, (8)

t = 1, . . . , Tb,

∆ω(L)Xt = Φ1D1,t +Φ
+
2 D2,t +Πω(L)Xt−1 + Γ+ω (L)∆ω(L)Xt−1 + εt, (9)

t = Tb + 1, . . . , T,

where Φ−1 = Φ
+
1 ≡ Φ1, and Π−ω (L) = Π+ω (L) ≡ Πω(L).

Since the structural break does not affect the components of series Xt that are associated
with fluctuations at frequency ω, the sub-sample models (8) and (9) are said to be locally
stable at that frequency. Notice that local stability is possible only if the polynomial parameter
matrices Γ−ω (L) and Γ+(L) can freely vary from Πω(L). Therefore, a necessary condition for
local stability at frequency ω is that p > 2 if ω ∈ (0, π) and p > 1 if ω = 0 or ω = π.

The statistical problem consists of testing for each of the following null hypotheses:

H0 (global stability): [A−(L) = A+(L)] ∩ [Φ− = Φ+],
H∗ (local stability): [Π−ω (L) = Π+ω (L)] ∩ [Φ−1 = Φ+1 ],

versus the alternative hypothesis:

H1 (global instability): [A−(L) 6= A+(L)] ∪ [Φ− 6= Φ+].

5



In particular, the sample-split Chow test statistics (see e.g. Doornik and Hendry, 1997) for the
systems of hypotheses H0 versus H1 and H∗ versus H1 are, respectively, the following:

Ξ0|1(b) = (T − 2p− q0)

det

Ã
TP

t=p+1
bε0tbεt

!
− det

Ã
TbP

t=p+1
bε−0t bε−t + TP

t=Tb+1
bε+0t bε+t

!

det

Ã
TbP

t=p+1
bε−0t bε−t + TP

t=Tb+1
bε+0t bε+t

! d→ κ2(q0), (10)

Ξ∗|1(b, ω) = (T−2p−q∗)
det

Ã
TbP

t=p+1
eε−0t eε−t + TP

t=Tb+1
eε+0t eε+t

!
− det

Ã
TbP

t=p+1
bε−0t bε−t + TP

t=Tb+1
bε+0t bε+t

!

det

Ã
TbP

t=p+1
bε−0t bε−t + TP

t=Tb+1
bε+0t bε+t

! d→ κ2(q∗),

(11)
where {bεt, t = 1, . . . , T} are the residuals resulting from OLS estimation of the fixed parameter
model (2), {bε−t , t = 1, . . . , Tb}, { bε+t , t = Tb+1, . . . , T}, {eε−t , t = 1, . . . , Tb}, {eε+t , t = Tb+1, . . . , T}
are, respectively, the residuals resulting from OLS estimation of the sub-sample models (6), (7),
(8), (9), and

q0 = n2p+mn,

q∗ =

(
2n2 +m1n if ω ∈ (0, π)
n2 +m1n if ω = 0 or ω = π.

The statistic (10) is the usual Chow test statistic for global stability, whereas (11) is the
suggested test statistic for local stability at frequency ω. These statistics may be used in a
sequential fashion; starting with running the test based on the statistic Ξ0|1(b). If the null
hypothesis of global stability is not rejected, the sequence stops. Otherwise, one can test for
local stability at frequencies ωj = ω0(

k−j
k ) + ωk(

j
k ), for 0 ≤ ω0 < ωk ≤ π and j = 0, 1, ..., k, by

means of the test statistics Ξ∗|1(ωj , b).6

Remark 1 As correctly pointed out by a referee, the definition of the polynomial matrix Πω(L)
depends on the parameterization that is considered. We can, for instance, use an alternative
representation to model (5) such as the following

∆ω(L)Xt = ΦDt + eΠω(L)Xt−p+1 + eΓω(L)∆ω(L)Xt−1 + εt, (12)

in which the parameters of interest for local stability are the coefficients of [Xt−p−1,Xt−p] and
not those of [Xt−1,Xt−2]. However, in the appendix we show that constancy of Πω(L) is equiva-
lent to that of eΠω(L). Hence, tests for local stability are invariant to isomorphic representations
of the VAR.

6Notice that the choice of the interval [ω0, ωk] reflects the researcher’s a priori knowledge of the frequencies
at which local stability can occur. An agnostic option is to fix ω0 = 0 and ωk = π.
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Remark 2 We must notice that local stability can only occur at a finite set of frequencies.
Indeed, local stability at frequency ω requires that both the following conditions hold

A−(L) 6= A+(L), (13)

A−(z) = A+(z). (14)

Given that A−(L) and A−(L) are polynomial matrices of order p, it is clear that there can
exist, at most, p different points on the complex unit circle that satisfy (14) without violating
(13). Since we are considering real-valued processes, this implies that local stability may occur,
at most, at (bp/2c+ 1) frequencies in [0, π].

Remark 3 It may be of interest to test for the stability of a subset of parameters only. In this
case, let us write the polynomial matrix A(L) in (2) as A(L) = A1(L) + A2(L). If we assume
that the break may solely affect the parameters in A2(L), the model (2) can be generalized as:

[A1(L) +A−2 (L)]Xt = Φ−Dt + εt, t = 1, . . . , Tb,

[A1(L) +A+2 (L)]Xt = Φ+Dt + εt, t = Tb + 1, . . . , T,

where A−2 (L) = In −
Pp

i=1A
−
2 L

i, and A+2 (L) = In −
Pp

i=1A
+
2 L

i. We can then expand both the
polynomial matrices A−2 (L) and A+2 (L) on 0 and the complex conjugate points z and z−1 and
perform tests for both global and local stability of the parameters of interest.

2 Various extensions

This section extends the above framework in various directions. In particular, we consider the
cases of the cointegrated VAR and unknown break dates.

2.1 Cointegrated time series

Let us now consider an n-vector of cointegrated time series {Yt, t = 1, . . . , T} of order (1,1) that
is generated by the following VAR(p) model:

B(L)Yt = ΦDt + εt, (15)

where B(L) = In −
Pp

i=1AiL
i is such that det [B(c)] = 0 implies that |c| > 1 or c = 1,

B(1) = −αβ0 , α and β are n× r-matrices with rank equal to r, and the matrix α0⊥Γβ⊥has full
rank, where β⊥ are n× (n− r)-matrices with rank equal to (n− r) such that α0⊥α = β0⊥β = 0,
Γ = In −

Pp−1
i=1 Γi, and Γi = −

Pp
j=i+1Aj for i = 1, 2, ..., p− 1.

Series Yt also admits the following Wold representation:

∆Yt = ΘDt + F (L)εt, (16)
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where F (L) = In +
P∞

i=1 FiL
i is such that

P∞
j=1 j |Fj | <∞, and ΘDt = F (L)ΦDt.

In this case, a difficulty emerges in testing for local stability at the zero frequency. Since
F (1) = β⊥ (α0⊥Γβ⊥)

−1 α0⊥ (see e.g. Johansen, 1996), the spectral density matrix of series ∆Yt
is singular at ω = 0. Thus, the coefficient matrix B(1) does not fully characterize the long-
run behavior of series Yt. However, we can reparameterize model (15) in order to avoid such
singularity.

Suppose that the cointegration matrix β is fixed over time and known. Then we can trans-
form series Yt such that Xt = T (L)Yt, where T (L) = (β0,∆β0⊥). Model (15) can thus be written
as in equation (2), where A(L) = B(L)T (L)−1. Notice that if a super-consistent estimate of the
cointegration matrix is available, one can simply use the estimate of β instead of the unknown
population values without affecting the asymptotic distributions of the test statistics (10) and
(11).

However, the cointegration matrix may be affected by the structural break at time Tb as
well. In this case, series Yt can be transformed as Xt = T (L, t)0Yt, where

T (L, t) =

(
(β−,∆β−⊥)

0, t = 1, . . . , Tb
(β+,∆β+⊥)

0, t = Tb + 1, . . . , T
.

Again, one can substitute the matricies β− and β+ with their super-consistent estimates.
Inference on time-varying cointegration relationships is discussed, inter alia, by Hansen (2003),
and Andrade et al. (2005).

2.2 Unknown break date

In the previous sections of the paper, the date of the break was considered as known beforehand.
However, it is especially relevant to extend our procedure to the case where the break date is
determined by means of the data itself. In such a case, Quandt (1960) proposed performing
the Chow (1960) test recursively, using the supremum of the statistics. It is possible to apply
this approach to the test based on (10) by considering the following statistic:

Ξ0|1(bb) = sup[Ξ0|1(b)],
where t = [bT ], and b ∈ (0, 1). Based on Andrews (1993), Bai et al. (1998) provided the
asymptotic distribution of the above test statistic in the multivariate case.

We recommend testing for local stability at the various Fourier frequencies fixing b = bb. A
rationale for this procedure lies in the fact that the limit distribution of the break date estimator
is unaffected by the imposition of valid restrictions on the other parameters of the model, see
Qu and Perron (2004). This implies that imposing local stability at a given frequency provides
no efficiency gains for the break date estimation in large samples. Formally, we then propose
using the test statistics:

Ξ∗|1(bb, ωj) (17)
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where ωj = ω0(
k−j
k ) + ωk(

j
k ) for 0 ≤ ω0 < ωk ≤ π and j = 0, 1, ..., k.

Since Bai et al. (1998) proved that the estimators of the segmented VAR parameters have
the same asymptotic distribution when the break date is either known or estimated, the test
statistic (17) converges in distribution to the same as that of (11) under the null hypothesis.
Nevertheless, the χ2 distribution is sometimes a poor approximation of the exact distribution
even when the break date is known, see, e.g., Candelon and Lütkepohl (2001). Hence, we
propose the following bootstrap procedure:

1. Compute the usual Chow test statistic Ξ0|1(b) and find bb = arg{sup[Ξ0|1(b)]} for b ∈
[0.15, 0.85].

2. Save the unrestricted residuals of the sub-sample models under H1 conditional on b = bb.
Then obtain one matrix of residuals bε.

3. Save the estimated parameters of the full-sample model under H0.

4. Save the estimated parameters of the sub-sample models under H∗ conditional on b = bb.
5. Sample from bε h times. Then, take the estimated parameters in (3) to rebuild the data
that are used to bootstrap Ξ0|1(bb), and use the estimated parameters in (4) to rebuild the
data that are used to bootstrap Ξ∗|1(bb, ωj).

6. Obtain the bootstrap distributions of Ξ0|1(bb), and Ξ∗|1(bb, ωj) for j = 1, ..., k.
The testing procedure for local stability can be extended to the case of multiple breaks with

unknown dates. As shown by Bai and Perron (2003), a dynamic programming algorithm can
be used to search for an optimal partition that globally maximizes the likelihood function for
any given number of breaks. The number of breaks can then be determined by means of either
information criteria, see Bai (2000) or testing procedures, see Qu and Perron (2004). After
fixing the number and dates of the breaks to their estimated values, the tests for local stability
can be applied to any pair of adjacent regimes. In principle, a bootstrap procedure could also
be used for the case of multiple breaks. However, the combined use of dynamic programming
algorithms and resampling techniques is, admittedly, rather time consuming.

3 Simulation study

In this section, a Monte Carlo experiment is conducted to evaluate the finite-sample perfor-
mances of the proposed testing procedure. In particular, we examine in a simple univariate
framework, the size and power of both the asymptotic and bootstrap tests for local stability, at
frequency ω (H∗) versus global instability (H1).7

7For a detailed analysis of the bootstrapped version of the global stability test (H0 vs H1), the reader can
refer to Diebold and Chen (1996) or Candelon and Lütkepohl (2001).
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To this aim, we start by considering the following simple stationary AR(3) model:

Xt = a1Xt−1 + a2Xt−2 + a3Xt−3 + εt ,

where εt ∼ N(0, σ2). We assume that the DGP under the hypothesis H1 has the following form:

Xt = a1Xt−1 + a2Xt−2 + a3Xt−3 + εt, t = 1, . . . , Tb (18)

Xt = τ(µ+ a1Xt−1 + a2Xt−2 + a3Xt−3) + εt, t = Tb + 1, . . . , T (19)

While the DGP under the null hypothesis H∗ of local stability at frequency ω is of the form:

∆ω(L)Xt = Πω(L)Xt−1 + a3∆ω(L)Xt−1 + εt, t = 1, . . . , Tb, (20)

∆ω(L)Xt = Πω(L)Xt−1 + τ∗a3∆ω(L)Xt−1 + εt, t = Tb + 1, . . . , T (21)

where Πω(L) = a1 − a3 − 2cos(ω) + [1 + a2 + 2a3 cos(ω)]L.

The design parameters are set at the following values: a1 = 0.15, a2 = −0.05, a3 = 0.1,

σ = 1, µ = 0.15, T = 200, 500, b ≡ Tb/T = 0.25, 0.50, 0.75, τ = 2, 3, 4, τ∗ = 2, 3, and
ω = π/4, π/2, 3π/4.

Some comments on the choices of the parameter values are in order. We let the breaks occur
at three different fractions of the sample and take three different sizes. Indeed, previous results
in the literature suggest that the parameters b and τ are the most important in determining the
performances of structural change tests, see, inter alia, Candelon and Lütkepohl (2001), and
Bai and Perron (2004). Notice that the break fraction b is treated as an unknown parameter to
be estimated, and we use a trimming parameter equal to 15%. The AR parameters are chosen
such that the process is stationary in both of the regimes and for all the considered sizes of the
break. We let the constant term vary across the regimes because both the models, (18-19) and
(20-21), are locally unstable at the zero frequency.

The rejection rates of the tests for local stability are based on both the asymptotic and
bootstrap critical values at the 5% level. In each experiment, 500 series of length T + 50 are
generated with initial values set to zero. The first 50 observations are discarded to eliminate
dependence resulting from the starting conditions. For the bootstrap tests, 500 bootstrap draws
are performed in each of the 500 replications.

Table 1 shows the rejection frequencies of the tests at the 5% level when the DGP is given
by the processes (20-21). We see that the rejection rates of the bootstrap test are always quite
close to the nominal size, while we also see that the asymptotic test tends to be oversized,
especially when T = 200, τ∗ = 2, and Tb/T differs from 0.50. With T = 200, the bootstrap test
is better sized than the asymptotic one for all the eighteen experiments, and fifteen differences
between the rejection rates are indeed significant.8 Even with T = 500 the bootstrap test is less

8We consider a difference between the rejection frequencies as insignificant when it is less large than twice the
Monte Carlo standard error at the nominal 5% level, i.e., 0.02.
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size-distorted in seventeen experiments and twelve differences between the rejection rates are
significant. Interestingly, the empirical sizes of the two tests are more similar when the model
is locally stable at frequency 3π/4.

Table 1: Rejection rates of 5% level tests under the
null hypothesis of local stability at frequency ω

Asymptotic test Bootstrap test
Tb/T = 0.25 0.50 0.75 0.25 0.50 0.75

T = 200 ω = π/4 0.192 0.164 0.186 0.052 0.050 0.054
τ∗ = 2 ω = π/2 0.172 0.160 0.184 0.056 0.078 0.076

ω = 3π/4 0.134 0.134 0.160 0.068 0.064 0.068
T = 200 ω = π/4 0.136 0.100 0.108 0.056 0.060 0.052
τ∗ = 3 ω = π/2 0.130 0.082 0.102 0.060 0.058 0.062

ω = 3π/4 0.070 0.056 0.070 0.068 0.054 0.062
T = 500 ω = π/4 0.166 0.120 0.140 0.064 0.054 0.058
τ∗ = 2 ω = π/2 0.132 0.136 0.124 0.054 0.074 0.062

ω = 3π/4 0.092 0.086 0.090 0.046 0.054 0.054
T = 500 ω = π/4 0.088 0.076 0.074 0.058 0.056 0.056
τ∗ = 3 ω = π/2 0.072 0.076 0.072 0.062 0.056 0.062

ω = 3π/4 0.073 0.060 0.062 0.062 0.064 0.060

In order to evaluate the effects of the break at frequencies π/4, π/2, and 3π/4 under the
alternative hypothesis H1, Table 2 reports the spectra of the processes (18-19) at those frequen-
cies. It emerges that the effect of the break, as measured by the relative change in the spectrum
at the frequency of interest, is the strongest at frequency 3π/4.

Table 2: Spectrum of model (19)

Frequencies
Break size π/4 π/2 3π/4

τ = 1 0.992 1.105 0.696
τ = 2 0.972 1.220 0.494
τ = 3 0.942 1.342 0.362
τ = 4 0.905 1.471 0.274

We report in Table 3 the rejection rates of both the asymptotic and bootstrap tests at the
5% level when the DGP is given by the processes (18-19).

11



Table 3: Rejection rates of 5% level tests under
the alternative hypothesis of global instability

Asymptotic test Bootstrap test
Tb/T = 0.25 0.50 0.75 0.25 0.50 0.75

T = 200 ω = π/4 0.222 0.206 0.200 0.068 0.064 0.068
τ = 2 ω = π/2 0.170 0.176 0.198 0.066 0.070 0.078

ω = 3π/4 0.282 0.256 0.234 0.144 0.136 0.112
T = 200 ω = π/4 0.278 0.286 0.206 0.114 0.184 0.146
τ = 3 ω = π/2 0.154 0.158 0.174 0.084 0.104 0.116

ω = 3π/4 0.360 0.400 0.296 0.274 0.336 0.230
T = 200 ω = π/4 0.432 0.538 0.404 0.272 0.512 0.372
τ = 4 ω = π/2 0.134 0.198 0.180 0.120 0.198 0.170

ω = 3π/4 0.636 0.672 0.456 0.608 0.690 0.456
T = 500 ω = π/4 0.264 0.236 0.192 0.126 0.136 0.088
τ = 2 ω = π/2 0.168 0.160 0.188 0.082 0.090 0.074

ω = 3π/4 0.312 0.348 0.286 0.172 0.226 0.158
T = 500 ω = π/4 0.502 0.614 0.438 0.416 0.596 0.412
τ = 3 ω = π/2 0.158 0.216 0.206 0.134 0.196 0.174

ω = 3π/4 0.692 0.800 0.600 0.638 0.778 0.572
T = 500 ω = π/4 0.888 0.968 0.863 0.878 0.968 0.851
τ = 4 ω = π/2 0.306 0.432 0.335 0.296 0.442 0.297

ω = 3π/4 0.954 0.966 0.942 0.944 0.972 0.934

Given the size distortions of the asymptotic test, caution is needed in comparing the em-
pirical power of the two tests. However, the asymptotic test rejects more often in almost all
the experiments. The two tests tend to have similar power as the parameters τ and T increase,
as well as when the null hypothesis is local stability at frequency π/4. For both the tests, it
appears that for a shock of 2 or 3 times the standard deviation of the residuals, the power is
relatively low even if a large sample is considered. This result indicates that the size of the
shock should be large enough to make the distinction between local and global stability. As in
Candelon and Lütkepohl (2001), it is observed that the rejection frequency is generally lower
when the break is located at the borders of the sample (i.e. Tb/T = 0.25, 0.75). The results
reveal to us that the frequency at which the break occurs is also important for the empirical
power. As expected in view of Table 2, the power is the highest when the break occurs at
frequency 3π/4 since the relative change in the spectrum under H1 is the strongest at that
frequency.

In empirical applications, the order of the AR process is unknown. It is thus of interest to
investigate the robustness of the local stability test at frequency ω when the model dynamics
are misspecified.9 The test would clearly be inconsistent if the true order is underestimated.

9We thank an anonymous referee for pointing out this issue.
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Hence, it is of interest to examine the implications of choosing the AR order in a liberal fashion.
However, simulations would become too time-consuming if we allow for estimating the AR order
within the bootstrap procedure. Hence, we analyze the effects of using an AR order which has
one lag more than the true one, on the size and power of our stability tests. The experiments
are performed for the case T = 200 and τ = 3, which is quite representative of the other DGP’s,
and the results on the size and power of the test are reported in Table 4 and 5 respectively.
It turns out that the effect of over-parametrization on size is rather limited. Indeed, only few
rejection rates in Table 4 are significantly larger than the corresponding ones in Table 1. It
also appears that when the model is over-parametrized, the bootstrap version has lower size
distortion than the asymptotic one.

Table 4: Rejection rates of 5% level tests under the null hypothesis
of local stability at frequency ω based on an AR(4) model

Asymptotic test Bootstrap test
Tb/T = 0.25 0.50 0.75 0.25 0.50 0.75

T = 200 ω = π/4 0.156 0.116 0.136 0.072 0.072 0.064
τ∗ = 3 ω = π/2 0.102 0.070 0.082 0.066 0.056 0.050

ω = 3π/4 0.088 0.072 0.060 0.074 0.080 0.052

We also notice that power is slightly affected by the over-parametrization of the AR model,
in particular for the case of the bootstrap test. Overall, these results suggest that local stability
tests are quite robust to a liberal choice of the AR order.

Table 5: Rejection rates of 5% level tests under the alternative
hypothesis of global instability based on an AR(4) model

Asymptotic test Bootstrap test
Tb/T = 0.25 0.50 0.75 0.25 0.50 0.75

T = 200 ω = π/4 0.248 0.258 0.206 0.126 0.172 0.142
τ = 3 ω = π/2 0.144 0.132 0.240 0.086 0.108 0.098

ω = 3π/4 0.414 0.412 0.274 0.314 0.344 0.206

4 Empirical applications

4.1 The predictive power of the yield curve on output growth

There is an extensive literature documenting the predictive power of the yield curve slope for
future economic activity. Several factors can explain this stylized fact. As the yield curve
describes the relationship between yields and maturities, it is determined by financial markets’
expectation of future interest rate and the term premium. In front of a recession, the central
bank may take the decision to stimulate activity, using the traditional instrument of monetary
policy, i.e. by seeking to lower short-run interest rates. Consequently, the long-run interest rate
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will also decrease, but to a lesser degree, because of the expectations hypothesis of the term
structure, leading to an increase in the yield curve. As the monetary expansion is expected
to increase future activity, the correlation between the yield curve and future output growth
is positive. The same relationship can be found using a Consumption Capital Asset Pricing
model (Campbell and Cochrane, 1999), a Real Business Cycle model, or even a simple IS-LM
model , see Estrella et al. (2003).

At an empirical level, several papers have provided evidence in favor of a positive correlation
between the yield curve slope and future output growth in the United States.10 Nevertheless,
Estrella et al. (2003) have questioned the stability of this relationship, finding evidence of a
break around September 1983. They justify the presence of this rupture by pointing to the
effects of the change in the US monetary policy. It became more oriented towards inflation
control since the nomination in 1979 of Paul Volcker as the head of the Federal Reserve Bank.

For this example, we propose using the local stability test to investigate the stability of the
predictive power of the yield curve slope on output growth in the US. We use monthly data of
industrial production (IP ), 10-year treasury rate (10TT ), and the Federal fund rate (FFR) for
the US economy, as extracted from the Saint-Louis Federal Reserve Bank. The sample covers
the period 1955M1-2003M12. As IP presents unit roots, we compute the future growth rate of
industrial production at a forecast horizon k (∆IPt,k) as:

∆IPt,k = (1200/k) ln(IPt+k/IPt)

Since Estrella et al. (2003) showed that the predictive power of the spread is at its maximum
maximum at a horizon of one year, we also consider this horizon (k = 12) in the rest of the
subsection. The interest rate spreads are given as the difference between the long-run and the
short-run interest rate, i.e. Spread = (10TT − FFR).11 We then build a bivariate VAR of the
following form:

A3(L)

Ã
∆IPt,12

Spreadt

!
= Φ3 + ε3,t,

where A3(L) is a polynomial matrix of order 4,12 Φ3 is a vector of constant terms and ε3,t are
N2(0,Σ3) innovations.

The parameter stability of the above model will thus been investigated using the bootstrap
procedure for unknown breaks that was discussed in subsection 3.2. Following Andrews (1993),
the trimming region is [0.15, 0.85]. In view of Table 6, we observe that a break is detected in
1980M7.

10See, inter alia, Estrella and Hardouvelis (1991), Plosser and Rouwenhorst (1994), Bonser-Neal and Morley
(1997), Kozicki (1997), Dotsey (1998), Breitung and Candelon (2006).
11 It has been checked that the results are robust if we consider the 3-month treasury rate instead of the FFR.

Results are available from authors upon request.
12The lag length is chosen according to the Akaike information criterion. Other choices of the lag length do

not qualitatively modify the results.
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Table 6: Stability Test for H0 vs H1
break date statistic bootstrap p-value asymptotic p-value

1980.07 80.221 < 0.02% < 0.01%

Note: The bootstrapped p-value is obtained after 5000 replications.

This result indicates that the polynomial matrix A3(L) taken as a whole is unstable. Never-
theless, it does not imply that the same conclusion necessarily holds for a subset of coefficients.
In particular, it does not clearly indicate that the break has altered the relation between the
spread and future output growth.13 Hence, we tested for the stability of the polynomial a12(L)
in the segmented VAR model, where aij(L), for i, j = 1, 2, denotes the generic element of matrix
A3(L). The LR test rejects the stability of the coefficients of a12(L) with a p-value of 3.77%,
which suggests that the relationship spread-future output growth changed in 1980M7.

This break date is earlier than the one found by Estrella et al. (2003) in 1983M9. Nev-
ertheless, our dating of the break seems more closely associated with the change in monetary
policy regime associated with the appointment of Volcker as the head of the FED in late 1979.
A possible explanation for the differences between our result and that of Estrella et al. (2003)
is that we consider a bivariate system, whereas Estrella et al. (2003) investigate the stability
of a single-equation model where future output growth is the endogenous variable.

The study of global instability is then performed, making it possible to investigate the local
stability around the break date that was previously obtained. Local stability tests are computed
for the frequencies ωj = (

j
100)π, for j = 1, 2, ..., 99. In Figure 1, we plot the test statistics along

with their bootstrap and asymptotic 95% critical values.
It appears that the system is locally stable for frequencies lower than 0.3, i.e. for a wave-

length longer than 21 months. This evidence is consistent with the view that this break has a
"nominal" origin. Indeed, the new orientation of US monetary policy, being more concerned
by inflation control, has apparently affected the stability of the spread-future output growth
relationship at the higher frequencies while leaving unchanged the low-frequency components
of the data.

It must be noticed that the empirical results seem to indicate that local stability holds for
an interval of frequencies, which is contradicted by Remark 2. We think that this phenomenon
is due to a sort of leakage problem of local stability tests, namely power is likely to be low for
frequencies that are close to the ones for which the model is stable. Breitung and Candelon
(2006) documented a similar problem for their causality test via a local power analysis.

4.2 Output, consumption, and investment.

Several studies have been devoted to the analysis of the productivity slowdown in postwar U.S.
output. As the univariate analysis of the output series by Bai et al. (1998) lead to inconclusive
results, these authors considered a trivariate system composed of consumption (C), investment

13We thank an anonymous referee for pointing out this issue.
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Figure 1: Tests for local stability - The yield curve

(I), and output (Y ). Following King et al. (1991), the rationale behind this idea is that a break
in the productivity process should also be present in variables possessing strong long-run links
with output, in particular consumption and investment. Indeed, Bai et al. (1998) proved that
if the stochastic growth model by King et al. (1998) is augmented with a break in the average
growth rate of productivity, such a break will affect the three variables c = ln(C), i = ln(I),
and y = ln(Y ), but not the "great ratios" (c− y) and (i− y).

We thus investigate local and global stability in the following dynamic model:

A4(L)

 ct − yt

it − yt

∆(ct + yt + it)

 = Φ4 + ε4,t,

where A4(L) is a polynomial matrix of order 4, Φ4 is a vector of constant terms and ε4,t are
N4(0,Σ4) innovations. Quarterly data are obtained from the Saint-Louis Federal Reserve Bank
and cover the period 1954Q1-2004Q4. Yt is the private GDP per capita, Ct the real personal
consumption expenditures per capita, and It the private fixed investment per capita. The
variables are seasonally adjusted and divided by the civilian non-institutional population aged
16 and over.

As in the previous example, the global stability test is implemented using a 15% trimming,
and the outcome is reported in Table 7. Similar to Bai et al. (1998), a break is detected in
1968Q3. Interestingly, the break is dated earlier than the first oil shock.
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Table 7: Stability Test H0 vs H1
break date statistic bootstrap p-value asymptotic p-value

1968q3 51.576 3.92% < 1.00%

Note: The bootstrap p-value is obtained after 5000 replications.

In order to gain a deeper insight into the origin of the break in 1968Q3, the local stability
tests are performed for the frequencies ωj = ( j

100)π, for j = 1, 2, ..., 99. The tests statistics,
along with their bootstrap 95% and asymptotic critical values, are plotted in Figure 2.

Figure 2: Tests for local stability - The "great ratios" system

It turns out that this system is locally stable for frequencies higher than 1, i.e. with a
wavelength lower than 6 quarters, but it becomes unstable at lower frequencies, in particular
when ω approaches zero.

The empirical evidence suggests that the break in 1968Q3 can be labelled as "real" as it
affects the long-run properties of the variables. However, unlike the prediction of the theoretical
model by Bai et al. (1998), the stochastic components of the data are also unstable at low
frequencies. Therefore, a simple break in the productivity average growth rate is not, apparently,
the only origin of this break.
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5 Conclusions

In this paper, we develop a new testing procedure for parameter stability in a segmented
stationary or cointegrated VAR model at a particular frequency. By doing so, it is possible
to determine the range of frequencies which are responsible for the parameter instability in
a dynamic model. The local stability tests can provide a deeper insight into the origin of a
structural break. The two examples presented in this study highlight the practical value of
this procedure in empirical studies. A structural break is detected at 1980M7 for the spread-
future output growth relationship, and around 1968Q3 in the case of an output-consumption-
investment system. The application of the local stability tests reveals that in the first case, the
model is only stable at lower frequencies, whereas in the second case the stability exclusively
concerns the high frequency components of the data. From these characteristics, it follows
that a nominal shock, that being the change in the U.S. monetary policy in the early 80’s, has
led to the modification of the predictive power of the interest rate spread for future output
growth, whereas a real productivity shock is likely to be at the origin of the instability of the
output-consumption-investment system.
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6 Appendix

In thix appendix we show that tests for local stability are invariant to reparametrizations of the
VAR such as that in equation (12). Indeed, the considered alternative representation is based
on the following expansion

A(L) = ∆ω(L)− eΠω(L)Lp−1 − eΓω(L)∆ω(L)L,

which yields at L = z

A(z) = −eΠω(z)zp−1.
By comparing the above equation with equation (4), we obtain the following relation

eΠω(z) = z2−pΠω(z), (22)

which immediately reveals that eΠω(L) = Πω(L) when ω = 0 or ω = π and p is even, andeΠω(L) = −Πω(L) when ω = π and p is odd. Hence, in the following we concentrate on the case
ω ∈ (0, π).

By equating real and imaginary parts of both sides of equation (22) we find

Re{eΠω(z)} = Re{Πω(z)} cos[(2− p)ω] + Im{Πω(z)} sin[(2− p)ω], (23)

Im{eΠω(z)} = Im{Πω(z)} cos[(2− p)ω]−Re{Πω(z)} sin[(2− p)ω]. (24)

Moreover, by writing Πω(L) = Πω,0 +Πω,1L, we obtain for L = z

Re{Πω(z)} = Πω,0 +Πω,1 cos(ω),

Im{Πω(z)} = −Πω,1 sin(ω).
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Substituting the above equations into (23) and (24) yields

Re{eΠω(z)} = [Πω,0 +Πω,1 cos(ω)] cos[(2− p)ω]−Πω,1 sin(ω) sin[(2− p)ω], (25)

Im{eΠω(z)} = −Πω,1 sin(ω) cos[(2− p)ω]− [Πω,0 +Πω,1 cos(ω)] sin[(2− p)ω]. (26)

Similarly, by writing eΠω(L) = eΠω,0 + eΠω,1L, we obtain for L = z

Re{eΠω(z)} = eΠω,0 + eΠω,1 cos(ω),
Im{eΠω(z)} = −eΠω,1 sin(ω).

Substituting the above equations into (26) and (25) yields the following linear system" eΠω,0eΠω,1
#
= Υ

"
Πω,0

Πω,1

#
,

where

Υ =


cos[(2− p)ω]+

cos(ω) sin[(2− p)ω]/ sin(ω)

sin(ω) sin[(2− p)ω]+

[cos(ω)]2 sin[(2− p)ω]/ sin(ω)

− sin[(2− p)ω]/ sin(ω)
cos[(2− p)ω]−

cos(ω) sin[(2− p)ω]/ sin(ω)

 .
Since |Υ| = 1, we conclude that coefficients of eΠω(L) are a non-singular linear transformation

of those of Πω(L). Hence, constancy of Πω(L) is equivalent to that of eΠω(L). ¥
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