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Abstract

Neuronal death could be responsible for the cognitive impairments found in astronauts

exposed to spaceflight, highlighting the need to identify potential countermeasures to

ensure neuronal health in microgravity conditions. Therefore, differentiated HT22 cells were

exposed to simulated microgravity by random positioning machine (RPM) for 48 h, treating

them with a single administration of Trolox, recombinant irisin (r-Irisin) or both. Particularly,

we investigated cell viability by MTS assay, Trypan Blue staining and western blotting analy-

sis for Akt and B-cell lymphoma 2 (Bcl-2), the intracellular increase of reactive oxygen spe-

cies (ROS) by fluorescent probe and NADPH oxidase 4 (NOX4) expression, as well as the

expression of brain-derived neurotrophic factor (BDNF), a major neurotrophin responsible

for neurogenesis and synaptic plasticity. Although both Trolox and r-Irisin manifested a pro-

tective effect on neuronal health, the combined treatment produced the best results, with

significant improvement in all parameters examined. In conclusion, further studies are

needed to evaluate the potential of such combination treatment in counteracting weightless-

ness-induced neuronal death, as well as to identify other potential strategies to safeguard

the health of astronauts exposed to spaceflight.

Introduction

The presence of gravitational forces is a fundamental condition for the proper development

and maintenance of homeostasis of many physiological systems [1,2]. In fact, in the absence of

gravity, numerous structural and functional alterations occur in the various organs and sys-

tems of the body [3]. The most well-known and obvious effects of weightlessness are the reduc-

tion of bone mineral density (BMD) and loss of muscle mass and strength, conditions typical

of the major musculoskeletal disorders associated with aging, such as osteoporosis and
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sarcopenia [4–6]. In addition, the elimination of the normal hydrostatic pressure gradient

induced by weightlessness leads to cardiovascular dysfunction, depression of the immune

response and metabolic alterations [7–9].

Recently, alterations have also been reported in the central nervous system (CNS) related to

the function or expression of important biomarkers, such as receptors, ion channels, neurotro-

phins, and neurotransmitters, resulting in impaired neuronal homeostasis that could nega-

tively impact cognitive function and learning and memory processes [10]. In this regard,

Popova et al. reported that mice exposed to one month of spaceflight on the Russian biosatel-

lite BION-M1 showed significant alterations in the expression pattern of genes involved in

dopamine synthesis and degradation, while reduced expression of the serotonergic 5-HT2A

receptor was detected at the hypothalamic level [11]. In addition, reduced expression of the

gene coding for glial cell-derived neurotrophic factor (GDNF) in the striatum and hippocam-

pus and the gene coding for brain dopaminergic neurotrophic factor (CDNF) in the substantia

nigra was observed, suggesting deregulation in the control of GDNF and CDNF genes among

the main responsible of the deleterious effects of spaceflight on the dopaminergic system [12].

Changes in brain structure and function have also been reported in astronauts exposed to

long-duration spaceflight, including sleep and visual disturbances, reduced attention and exec-

utive functions, cognitive deficits, and alterations in brain morphometry, all of which are asso-

ciated with an increased rate of neuronal apoptosis [13]. Not surprisingly, B-cell lymphoma 2

(Bcl-2) expression, an anti-apoptotic marker, was found to be reduced in the striatum and

hypothalamus of mice exposed to spaceflight [14]. In addition, Wise and colleagues found

increased levels of reactive oxygen species (ROS) and the absence of reduced glutathione

(GSH) in the brainstem and frontal cortex of mice subjected to hindlimb unloading, suggest-

ing the apoptotic death process initiation underlying these events [15]. Similarly, Pani and col-

leagues evaluated the impact on cell viability by an Annessin V assay on primary murine

cerebral cortex neurons exposed to random positioning machine (RPM) for short (1 h),

medium (24 h) and long-term (10 days) [16]. The treatment resulted in a significant increase

in apoptotic neurons and a marked alteration in neuronal morphology, in terms of neurite

length and soma size. The authors also reported that the area and length of the neuritic net-

work were affected by RPM exposure, as evidenced by changes in the cellular cytoskeleton

organization [16]. In agreement, Sun et al. observed by TUNEL assays the apoptotic cells pres-

ence in the cortex and hippocampus of rats subjected to simulated weightlessness, correlating

this process of neuronal death with the impairment of cognitive functions of learning and

memory [17].

Interestingly, a close association between the space environment exposure and alterations

in the expression of proteins involved in neuronal structure and metabolic function was also

recently observed by Mao et al. who characterized proteomic changes in the brains of mice

upon return from a 13-day Space Shuttle Atlantis mission. Proteomic analysis showed alter-

ation of 26 proteins involved in synaptic plasticity in gray and white matter after spaceflight,

confirming the impact of the absence of load on brain structure and integrity [18]. Finally,

Chen and colleagues investigated the effects of simulated microgravity for 7 and 21 days on the

hippocampus, cerebral cortex, and striatum in a tail suspension rat model, finding reduced

expression of brain-derived neurotrophic factor (BDNF), marked oxidative stress and atrophy

of neurons in the cerebral cortex after 21 days of exposure. Interestingly, a gradual suppression

of inflammatory cytokines was detected in the striatum, suggesting that the simulated micro-

gravity impact on the brain is closely dependent on the exposure time and brain regions

involved [19].

Despite this evidence, the mechanisms underlying the effects of simulated microgravity on

the CNS have yet to be extensively elucidated, just as potential strategies to prevent cognitive
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decline related to no load are unknown. In this context, recombinant Irisin (r-Irisin) could

provide a valuable support in the neuroprotection of astronauts, as this hormone is known to

promote BDNF up-regulation and neurogenesis, ameliorating depressive behaviour, apoptosis

and oxidative damage in various pathological conditions [20–22]. Furthermore, r-Irisin has

been shown to be effective in preventing musculoskeletal damage induced by simulated micro-

gravity in several experimental studies, highlighting its utility in the problem of neuronal death

induced by weightlessness [23]. However, Tsiani et al. reported that the half-life of this potent

substance may be limited to a few hours, suggesting its limited efficacy in medium- and long-

term treatments [24]. Therefore, additional tools are needed to ensure the neuronal health of

space crews exposed to microgravity for long periods. In this context, 2,5,7,8-tetramethylchro-

man-2-carboxylic acid (Trolox), a known water-soluble analogue of vitamin E, could represent

a valid protective strategy for neurons exposed to RPM. Indeed, vitamin E has been shown to

enhance BDNF expression, reduce oxidative stress and prevent neuronal death under different

experimental conditions [25–28]. In this regard, antioxidant strategies have shown promise in

preserving cellular health under microgravity conditions, highlighting the crucial role of oxi-

dative stress in cell death and suggesting the need for antioxidant strategies as prevention [29].

Therefore, the aim of our work was to test the efficacy of a single administration of Trolox,

r-Irisin or a combined treatment in counteracting neuronal death and cognitive impairment

associated with this condition. Specifically, we exposed differentiated HT22 cells to RPM for

48 h and analyzed the effects of these three different treatments on the expression of markers

associated with cell viability and cognitive function, proposing the combined administration

of Trolox and r-Irisin as a potential therapeutic strategy to prevent and/or counteract the cell

damage that characterizes astronauts exposed to spaceflight.

Materials and methods

Cell cultures

HT22 cells were developed from their analogous HT4 cells, immortalized from primary mouse

hippocampal neurons. Cells were maintained at 37˚C, 10%, CO2 in Dulbecco’s Modified

Eagle’s Medium (DMEM, Sigma Aldrich–D6546) supplemented with 10% heat-inactivated

Fetal Bovine Serum (FBS) and kept at less than 50% of confluence. HT22 cells under prolifera-

tion conditions do not express cholinergic and glutamatergic receptors. However, in a selective

medium, these cells can undergo a process of differentiation, changing morphology and induc-

ing the expression of specific markers of mature neurons [30,31].

Differentiation was carried out in Neuro-Basal Medium (ThermoFisher, Waltham, MA,

USA, 21103–49) containing N2 supplement (Gibco-17502048), at least for 24 h before use. In

this condition, the expression of choline acetyltransferase (ChAT), vesicular acetylcholine

transporter (VAChT), high-affinity choline transporter (HACT), muscarinic M1 and M2 sub-

units of Ach- receptors, as well as N-methyl-D-aspartate receptor (NMDARs) and monosialic

ganglioside 1 (GM1) was observed [32,33].

Immunofluorescence

An immunofluorescence analysis was conducted to verify successful differentiation in HT22

cells by investigating the expression of proteins typical of mature neurons, such as N-methyl-

D-aspartate receptor 1 (NMDAR1), microtubule associated protein 2 (MAP2) and ChAT. In

addition, the same analysis was conducted to investigate the expression of NADPH oxidase 4

(NOX4), an indicator of oxidative stress. In detail, after fixation in 4% paraformaldehyde dis-

solved in 0.9% saline solution for 30 min, cell cultures were pretreated with ethylenediamine-

tetraacetic acid (EDTA) citrate, pH 7.8 for 20 min at 95˚C, and incubated for 1 h with mouse
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monoclonal anti-NMDAR1 antibody (556308, BD Pharmingen™, United Sates), rabbit poly-

clonal anti-MAP2 antibody (ab32454, AbCam, Cambridge, United Kingdom), mouse mono-

clonal anti-ChAT antibody (CL3173, Novus Biologicals, Littleton, CO, United Sates), or rabbit

polyclonal anti-NOX4 antibody (NB110-58849, Novus Biologicals, Littleton, CO, United

Sates). Reaction was revealed by using secondary antibodies (715-545-150, 711-545-152, Alexa

Fluor1 488, Jackson ImmunoResearch). Washing was performed with PBS/Tween20 pH 7.6

(UCS Diagnostic, Rome, Italy). Finally, cells were counteracted with 40,6-diamidino-2-pheny-

lindole (DAPI) counterstain (Kreatech Biotechnology B.V., Amsterdam, Netherlands). Images

were visualized by a Nikon upright microscope ECLIPSE Ci-S (Nikon Corporation, Tokyo,

Japan) connected to a Nikon digital camera and acquired at 40× magnification using NIS-Ele-

ments software (5.30.01; Laboratory Imaging, Prague, Czech Republic).

Simulation experiment by RPM

The RPM system (Airbus Defence and Space Netherlands B.V.) was used to simulate the bio-

logical effects of microgravity on differentiated HT22 cells [34]. All experiments were carefully

planned according to procedures previously described [35,36]. The rotating RPM frame was

placed inside a cell culture CO2 incubator. The software responsible for controlling the motion

of RPM employed a tailored algorithm, which rotated with a random speed in such a way that

the mean gravity vector reliably converged to zero over time, and it concurrently reduced fluid

motion in the culture flask. The samples were positioned compactly in the center of rotation,

to avoid artifacts and to minimize centrifugal acceleration. All cell samples were carefully pro-

cessed for in vitro cultivation. We used 24-well plates sealed with dialysis membrane (Visking

Medicell International Ltd, Liverpool Road-London code DTV12000.06.000 MWCO 12/14

KDa). The dialysis membrane was deposited on the convex liquid meniscus of the medium

inside the well, allowing it to be sealed and thus preventing the formation of air bubbles. The

nitrocellulose discs were fixed to the support by means of a rubber ring.

Differentiated HT22 cells were exposed to simulated microgravity regime for 48 h; while

plates exposed to normogravity regime were kept in incubator for the same period, so that all

cell samples shared the same experimental conditions.

Differentiated HT22 cells conditioned with Trolox, r-Irisin or combined

treatment

The role of Trolox and Irisin in preventing and/or counteracting cell damage induced by RPM

exposure was studied by treating cell cultures with Trolox, r-Irisin or both. Specifically, cells

were seeded in a 24-well plate at a density of 4 × 104 cells/well. Cell cultures were incubated

with 1 × 10−4 M Trolox (S-238815, Sigma Aldrich, St. Louis, MO, USA), 10 ng/mL r-Irisin

(AG-20B-0153, AdipoGen1 Life Sciences, Liestal, Switzerland) or combined treatment, and

exposed to RPM for 48 h. Brightfield images of differentiated HT22 cells before and after expo-

sure to RPM were acquired at 40x magnification using NIS-Elements software (5.30.01; Labo-

ratory Imaging, Prague, Czech Republic) and shown in S1 Fig for each experimental

condition. Subsequently, treated cell cultures were subjected to the same experimental proce-

dures as untreated samples.

Cell viability evaluation

A CellTiter 96 AQueous One (Promega, Madison, WI, United States) is a colorimetric method

used to identify viable cells [37]. The CellTiter 96 AQueous Assay consists of a novel tetrazo-

lium compound (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophe-

nyl)-2H-tetrazolium-MTS) and an electron-coupling reagent (phenazinemethosulfat-PMS).
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MTS is bioreduced by cells into a formazan product that is soluble in tissue culture medium.

The absorbance of formazan at 490 nm can be measured by using a microplate reader (Spark

Multimode Microplate Reader—Tecan, Austria) and it is directly proportional to the number

of living cells in the culture. Briefly, using 96-well plates, 20 μL of MTS/PMS solution was

added to 100 μL of Hank’s balanced salt solution (HBSS) in each well and incubated for at least

2 h at 37˚C. The final concentrations of MTS and PMS were 333 μg/mL and 25 μM, respec-

tively. In the case of 24-well plates, the volumes of MTS/PMS solution and HBSS were doubled

to keep the respective concentrations constant. For each condition, the experiment was con-

ducted in triplicate (n = 15 from N = 5 experiments). All data obtained from the MTS assay are

shown in S1 Table.

Trypan Blue staining (Trypan Blue solution, 0.4%, ThermoFisher Scientific, Grand Island,

New York) was used to evaluate the presence of dead cells. After RPM exposure, the cell solu-

tion was mixed 1:1 with Trypan Blue staining and then fixed with 4% paraformaldehyde for 15

min. Images were acquired at 20x magnification using NIS-Elements software (5.30.01; Labo-

ratory Imaging, Prague, Czech Republic).

Western blotting analysis

Western blotting analysis was conducted to investigate the expression levels of Akt, Bcl-2 and

BDNF in differentiated HT22 cells. Cell proteins extracted by using RIPA buffer were sepa-

rated by 8%–16% precast SDS-PAGE (Bio-Rad, Hercules, CA, United States) under reduced

conditions. Protein concentration was determined using the Pierce BCA Protein Assay Kit

(Thermo Scientific, Vilnius, Lithuania). Equal amounts of protein (25 μg) were resolved on

8%–16% precast SDS-PAGE and transferred to PVDF membrane. Then membranes were

incubated with rabbit monoclonal anti-Akt (#4685 Cell Signalling Technology), mouse mono-

clonal anti-Bcl-2 (#15071 Cell Signalling Technology), or mouse monoclonal anti-BDNF [3B2]

(clone ab205067, AbCam, Cambridge, United Kingdom) and successively with anti-rabbit IgG

coupled to HRP or anti-mouse IgG coupled to HRP, respectively. Moreover, the same mem-

branes were incubated with mouse monoclonal anti-GAPDH (ab8245, AbCam) used for nor-

malization. Immunoreactive electrophoretic bands were detected by enhanced

chemiluminescence (ECL Advance, Amersham; GE Healthcare Life Sciences, Little Chalfont,

Buckinghamshire, United Kingdom) using a VersaDoc 5,000 Imager (Bio-Rad). The expres-

sion levels of Akt, Bcl-2 and BDNF under the different experimental conditions were quanti-

fied by calculating the densitometric values of the relevant bands and normalizing the results

against the GAPDH expression, expressing them as mean ± standard deviation. The original

western blotting images are shown in S2B–S2E Fig. All data obtained from western blotting

analysis for Akt, Bcl-2 and BDNF are shown in S2, S3 and S6 Tables, respectively.

Measurement of intracellular ROS level

The fluorescent probe 2’,7’-dichlorodihydrofluorescein di-acetate (H2DCFDA) (D399, Invi-

trogenTM, ThermoFisher Scientific, USA) was used to detect any changes in the level of intra-

cellular ROS induced by RPM exposure in differentiated HT22 cells. In detail, all cell samples

were washed several times with PBS and incubated with 10 μM H2DCFDA for 40 min at 37˚C

in the dark after RPM exposure. A plate reader (Spark Multimode Microplate Reader-Tecan,

Austria) was used to measure the mean fluorescence intensity of each experimental group, rep-

resenting the intracellular ROS level [38]. For each condition, the experiment was conducted

in triplicate (n = 15 from N = 5 experiments). All data obtained from measurement of intracel-

lular ROS level are shown in S4 Table.
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Immunocytochemistry

BDNF expression was also investigated in differentiated HT22 cells by immunocytochemical

analysis. After fixation in 4% paraformaldehyde for 15 min, the cell samples were pre-treated

with EDTA citrate (pH 7.8) for 30 min at 95˚C and then incubated for 1 h with mouse mono-

clonal anti-BDNF [3B2] (clone ab205067, AbCam, Cambridge, United Kingdom; 1:100).

Washings were performed with PBS/Tween20 (pH 7.6) (UCS Diagnostic, Rome, Italy). The

immunocytochemical reaction was detected using the horse-radish peroxidase (HRP)-

3,30diaminobenzidine (DAB) detection kit (UCS Diagnostic, Rome, Italy). Specifically, 50 μL

of DAB/450 μL of substrate were incubated for 3 min. To assess the immunostaining back-

ground, we included negative controls for each reaction by incubating sections with secondary

antibodies (HRP) alone or a detection system (DAB) alone (S2A Fig). Immunopositive cells

for BDNF were detected using NIS-Elements software (5.30.01; Laboratory Imaging, Prague,

Czech Republic) and expressed as a percentage of the total analyzed for BDNF. For each condi-

tion, the experiment was conducted in triplicate (n = 15 from N = 5 experiments). All data

obtained from immunocytochemistry are shown in S5 Table.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 8 Software (Prism 8.0.1, La Jolla, CA,

USA). Data were expressed as mean ± standard deviation and were compared by one-way

ANOVA and Tukey’s multiple comparison test. For all procedures, data were considered sig-

nificantly different if p<0.05.

Results

HT22 cell differentiation promotes the expression of proteins typical of

mature neurons

The successful differentiation of HT22 cells was investigated by immunofluorescence analysis,

assessing the expression of NMDAR1, MAP2 and ChAT, which are typical proteins of mature

neurons.

Fig 1 shows that treatment of undifferentiated HT22 cells with Neurobasal medium con-

taining N2 supplement successfully promoted differentiation. Indeed, a marked fluorescent

signal for NMDAR1 (Fig 1D), MAP2 (Fig 1E) and ChAT (Fig 1F) was detected in differenti-

ated HT22 cells, whereas the expression of these proteins was absent or nearly absent in undif-

ferentiated HT22 cells (Fig 1A–1C).

Efficacy of different treatments on cell viability after RPM exposure

The effects of treatment with Trolox, r-Irisin, or both on cell viability were evaluated in differ-

entiated HT22 cells after RPM exposure by MTS assay, Trypan Blue staining, western blotting

analysis, measurement of intracellular ROS levels and immunofluorescence for NOX4.

First, a dose-response curve was constructed to estimate the dose of Trolox for which non-

toxic effects are detected by treating differentiated HT22 cells with increasing concentrations

of the substance and then assessing cell viability by MTS assay. As shown, treatment did not

affect cell viability up to a dosage of 1 × 10−4 M, whereas a progressive reduction was observed

at higher concentrations of Trolox. Importantly, half inhibitory concentration (IC50) was

obtained at a dosage of 1 × 10−3 M (Fig 2A). Based on these results, differentiated HT22 cells

were treated with Trolox, r-Irisin or both and exposed to RPM for 48 h.

Cell viability was investigated by MTS assay and the results are shown in Fig 2B. Not sur-

prisingly, a significant reduction in cell viability was detected in cells exposed to RPM
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(71.2 ± 9.9; ****p<0.0001) compared to cells in normogravity (100.0 ± 6.6). A partial recovery

of cell viability was observed in RPM-exposed cells treated with Trolox (86.6 ± 7.1;

****p<0.0001) or r-Irisin (91.8 ± 8.9; *p<0.05) compared to the normogravity regime. Inter-

estingly, the combined treatment with Trolox and r-Irisin completely counteracted the damage

induced by RPM exposure, with significantly elevated cell viability values (119.3 ± 7.1;

****p<0.0001) respect to control cells.

These results were confirmed by Trypan Blue staining, which allowed a qualitative analysis

to distinguish viable from dead cells, both under normal conditions and after exposure to

RPM (Fig 2C–2G). In fact, Trypan Blue is a dye that can selectively stain dead cells, whereas

live cells do not allow it to penetrate the cytoplasm because they have an intact cell membrane.

In normogravity conditions, Trypan Blue staining revealed the presence of few dead cells

within a well-defined neuronal network formed by viable differentiated HT22 cells (Fig 2C).

In contrast, a pronounced increase in the presence of dead cells was detected after RPM expo-

sure, in association with the tendency to form cell clusters, as evidenced by the large areas of

cell aggregation where blue staining increased in intensity (Fig 2D). Interestingly, treatment

with Trolox or r-Irisin promoted partial recovery of cell viability (Fig 2E and 2F), while the

combined treatment of Trolox and r-Irisin was effective in preserving cell viability (Fig 2G).

These results were confirmed by western blotting analysis with anti-Akt and anti-Bcl-2 anti-

bodies (Fig 3A–3C). Particularly, densitometric analysis shown in Fig 3B shows a dramatic

reduction in Akt expression in RPM-exposed cells compared with control cells (1.75 ± 0.07 vs
0.99 ± 0.03, ****p<0.0001). In contrast, Trolox treatment preserved the expression of this pro-

tein, the levels of which were like those of control cells (1.76 ± 0.05); while a significant

Fig 1. Evaluation of the differentiation process in HT22 cells by immunofluorescence analysis. (a–c) Nuclei are stained with DAPI (blue) in HT22

undifferentiated cells. (d–f) N-methyl-D-aspartate receptor 1 (NMDAR1), microtubule associated protein 2 (MAP2) and choline acetyltransferase (ChAT)

immunostaining is depicted in red in HT22 differentiated cells. 40× images, scale bar represents 100 μm.

https://doi.org/10.1371/journal.pone.0300888.g001
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increase in Akt expression was detected in r-Irisin-treated cells (1.82 ± 0.08, *p<0.05). Impor-

tantly, the highest expression of Akt was detected in the differentiated HT22 cells undergoing

combined treatment, with significantly higher values than in control cells (2.17 ± 0.08,

****p<0.0001). In agreement, the Bcl-2 expression (Fig 3C) was significantly reduced after

RPM exposure (0.24 ± 0.01, ****p<0.0001) compared to the normogravity condition

(0.47 ± 0.03). In contrast, treatment with Trolox (0.49 ± 0.02, *p<0.05) or r-Irisin (0.48 ± 0.01)

preserved the levels of this protein, with values like those of control cells. Interestingly, a signif-

icant increase in Bcl-2 expression was detected in cells exposed to combined treatment, as the

values obtained by densitometric analysis were significantly higher (0.68 ± 0.04,

****p<0.0001) than in untreated cells maintained under normal conditions.

Finally, measurement of intracellular ROS levels (Fig 3D) showed a significant increase in

oxidative stress in differentiated HT22 cells exposed to 48 h of RPM compared with those

maintained under normogravity (100.0 ± 13.9 vs 177.4 ± 24.6, ****p<0.0001). Surprisingly,

combined treatment with Trolox and r-Irisin completely counteracted this increase, returning

intracellular ROS levels to values like control (105.6 ± 14.9). Treatment with Trolox or r-Irisin

also reduced the oxidative stress induced by RPM exposure, albeit partially, maintaining intra-

cellular ROS levels at significantly higher values than those found under normogravity (Trolox

Treatment: 121.9 ± 14.9, **p<0.01; r-Irisin Treatment: 121.0 ± 22.3, *p<0.05).

Fig 2. Effects of treatment with Trolox, r-Irisin or both on viability in differentiated HT22 cells. (a) A dose-response curve was constructed to establish the

nontoxic dose of Trolox, and cell viability was assessed by MTS assay (n = 15 from N = 5 experiments). The half inhibitory concentration (IC50) was obtained

at a dose of 1 × 10−3 M. (b) Cell viability by MTS assay was significantly reduced after RPM exposure compared to the normogravity regime (****p<0.0001).

Treatment with Trolox (****p<0.0001) or r-Irisin (*p<0.05) promoted a partial recovery of cell viability, whereas the combined treatment completely

preserved the viability of RPM-exposed cells with significantly higher values compared to the normogravity regime (****p<0.0001) (n = 15 from N = 5

experiments). Data were expressed as mean ± standard deviation and were compared by one-way ANOVA and Tukey’s multiple comparison test. (c–g) Trypan

Blue staining: In normogravity (c), HT22 cells were viable and well differentiated, whereas RPM exposure (d) promoted neuronal death and a tendency to form

deep blue stained cell clusters (arrows); treatment with Trolox (e) and r-Irisin (f) partially preserved cell viability, while complete recovery was observed after

combined treatment (g).

https://doi.org/10.1371/journal.pone.0300888.g002
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In agreement, immunofluorescence analysis detected marked NOX4 expression in RPM-

exposed cells respect to normogravity regime (Fig 3E and 3F). Noteworthy, cells treated with

Trolox (Fig 3G) or r-Irisin (Fig 3H) were characterized by a reduced fluorescent signal;

Fig 3. Effects of treatment with Trolox, r-Irisin or both on expression of cell viability markers and the oxidative stress in differentiated HT22. (a–c)

Western blotting analysis for Akt and B-cell lymphoma 2 (Bcl-2): RPM exposure significantly reduced Akt and Bcl-2 expressions, while treated cells showed

similar or higher levels of these proteins compared with the normogravity regime. (d) Intracellular levels of reactive oxygen species (ROS) measurement (n = 15

from N = 5 experiments): RPM exposure promoted a significant increase in oxidative stress (****p<0.0001), which was completely counteracted by combined

treatment; whereas treatment with Trolox or r-Irisin only partially reduced the oxidative stress induced by RPM exposure. Data were expressed as

mean ± standard deviation and were compared by one-way ANOVA and Tukey’s multiple comparison test. (e–i) Immunofluorescence analysis for NADPH

oxidase 4 (NOX4): Nuclei are stained with DAPI (blue) in HT22 cells, while NOX4 immunostaining is depicted in red (arrows) in HT22 cells. 40× images, scale

bar represents 100 μm.

https://doi.org/10.1371/journal.pone.0300888.g003
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whereas NOX4 expression comparable to that of the control was observed in cells receiving

combined treatment (Fig 3I).

BDNF expression is preserved in treated cells exposed to RPM

The potential efficacy of treatment with Trolox, r-Irisin or both in counteracting cognitive

decline induced by RPM exposure was evaluated by investigating the BDNF expression, a neu-

rotrophin essential for neuronal development and survival, synaptic plasticity, and cognitive

function, by immunocytochemistry and western blotting.

Immunocytochemical analysis revealed marked differences in BDNF expression depending

on the experimental condition (Fig 4A–4F). First, a significant reduction in BDNF expression

was observed in cells exposed to RPM compared with those maintained in normogravity

(67.7 ± 5.2 vs 61.3 ± 5.2, *p<0.05). Fortunately, this effect was neutralized by Trolox or r-Irisin

treatment, with BDNF expression values like those of cells in normogravity (70.9 ± 5.1 and

72.6 ± 6.47, respectively). Noteworthy, the higher expression of neurotrophin was observed in

differentiated HT22 cells treated with Trolox and r-Irisin, since the percentage of cells positive

for BDNF was significantly higher than control cells (81.3 ± 6.6, ****p<0.0001).

The immunocytochemistry results were confirmed by western blotting analysis, which

showed a positive band at approximately 14 kDa, corresponding to the molecular weight of

monomeric BDNF, in the protein extracts of all cell samples (Fig 4G). Specifically, BDNF

expression, which was significantly reduced after RPM exposure (0.42 ± 0.04, *p<0.05), was

preserved by Trolox (0.51 ± 0.03, **p<0.01) or r-Irisin treatment (0.52 ± 0.03, **p<0.01), with

Fig 4. Effects of treatment with Trolox, r-Irisin or both on brain-derived neurotrophic factor (BDNF) expression in differentiated HT22 cells. (a–f)

Immunocytochemical analysis: RPM exposure significantly reduced the percentage of BDNF-positive cells respect to normogravity regime (a,b), which was

unchanged after treatment with Trolox (c) and r-Irisin (d). The highest BDNF expression was observed when cells were subjected to combined treatment (e).

In each panel, arrows indicate the presence of BDNF-positive cells (n = 15 from N = 5 experiments). 40× images, scale bar represents 100 μm. (g) Western

blotting analysis for BDNF: RPM exposure significantly reduced BDNF expressions, while treated cells showed higher levels of these proteins compared with

the normogravity regime. Data were expressed as mean ± standard deviation and were compared by one-way ANOVA and Tukey’s multiple comparison test.

https://doi.org/10.1371/journal.pone.0300888.g004
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values significantly higher than those observed in untreated cells (0.46 ± 0.02). Interestingly,

the highest BDNF expression levels were detected in the differentiated HT22 cells under com-

bined treatment, as the values obtained from densitometric analysis were significantly higher

than in the normogravity regime (0.61 ± 0.03, ***p<0.001).

Discussion

Although there are numerous physiological changes induced by exposure to microgravity, the

occurrence of neurological deficits is certainly one of the most worrisome [39]. The brain defi-

cits observed in astronauts exposed to spaceflight are structural and functional, including

reduced postural and locomotor control [40], upward displacement of the brain within the

skull [41], disruption of structural white matter connectivity [42], increased fluid volume [43],

as well as alterations in adaptive plasticity [44].

From a molecular perspective, oxidative stress has been suggested as an important culprit

responsible for death in numerous cell types [45–47]. Indeed, our results clearly show that dif-

ferentiated HT22 cells exposed to RPM undergo a dramatic increase in intracellular ROS and

undergo marked apoptotic death, as shown by altered expression of Akt, Bcl-2 and NOX4.

Interestingly, the biological effects of microgravity on nerve cells also include reduced expres-

sion of BDNF, an important marker of brain health, neurogenesis, and cognitive function, sug-

gesting the possibility of extensive systemic alterations in the CNS induced by weightlessness

[48,49].

Therefore, a potential countermeasure should include antioxidant strategies aimed at coun-

teracting increased ROS production and preventing neuronal death. In this regard, Trolox has

been reported to be a potent, fat-soluble, fast-acting free radical scavenger with more potent

antioxidant efficacy than its original compound, vitamin E [50]. Morabito et al. have previ-

ously observed the efficacy of Trolox in the osteoblastic MC3T3-E1 cell line exposed to RPM

in terms of intracellular ROS, intracellular calcium, and mitochondrial function [51]. Irisin,

whose expression increases with exercise, has also been suggested to play a neuroprotective

role by stimulating neurogenesis and increasing BDNF expression [52]. These two strategies,

alone or in combination, could be valuable countermeasures to counteract neuronal depletion

in microgravity and pave the way for further research aimed at preserving brain health under

adverse conditions.

The Trolox dose-response curve establishment was instrumental in identifying the appro-

priate concentration to be administered. In agreement with Morabito et al. [51], the dose-

response curve showed that the optimal administration concentration was 1 × 10−4 M and that

cell viability was reduced by 50% at the concentration of 1 × 10−3 M. Notably, at the concentra-

tion of 1 × 10−4 M, Trolox strongly reduced intracellular ROS levels and NOX4 expression in

differentiated HT22 cells, although these were still significantly higher than those in cells main-

tained in normogravity regime. In addition, Trolox treatment promoted a significant increase

in the Akt and Bcl-2 expressions, resulting in a gain in the capacity for cell proliferation and

survival. BDNF expression was also preserved by Trolox treatment, suggesting a role of this

antioxidant in counteracting the cognitive decline induced by weightlessness.

Importantly, similar results have been obtained by treatment of differentiated HT22 cells

with r-Irisin. Although a role for it in counteracting the neuronal alterations induced by weight-

lessness has not yet been demonstrated, several evidences have proposed irisin as a critical regu-

lator of cognitive function [53], being able to inhibit oxidative stress [54], promote BDNF

accumulation in hippocampal neurons [55,56], improve synaptic plasticity in mouse models of

Alzheimer’s disease [57] and prevent neurodegeneration in mouse models of Parkinson’s
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disease [58]. Therefore, its therapeutic potential might not be limited to neurodegenerative dis-

eases but also extend to preventing neuronal deficits that occur during spaceflight.

However, the efficacy of r-Irisin could be limited over time due to the short half-life of the

protein [24]. Therefore, we hypothesised that a combined treatment with Trolox and r-Irisin

may provide greater protection against damage induced by RPM exposure. Surprisingly, better

effects were observed with the combination treatment, as intracellular ROS levels and NOX4

expression were restored to control values. Noteworthy, preservation of cell viability was asso-

ciated with increased BDNF expression, with values above those observed under normogravity

conditions.

To our knowledge, few studies aim to identify a potential strategy for counteracting neuro-

nal death induced by unloading. Among these, Qu and colleagues in 2010 investigated the effi-

cacy of flavonoids, substances with antioxidant power, in counteracting ROS increase in the

neuroblastoma line SH-SY5Y, demonstrating a crucial role of oxidative stress in neuronal

death induced by simulated microgravity [59]. Furthermore, Jiang et al. recently evaluated the

efficacy of some steroid components of ginseng in preserving memory in a simulated micro-

gravity model. Specifically, the authors administered diol-type ginseng saponin (Rb1) and

triol-type ginseng saponin (Rg1) to rats subjected to limb unloading and observed a reduction

in ROS in the prefrontal cortex, concomitant with a reduction in markers of apoptosis and an

increase in BDNF expression compared to untreated rats [60]. This evidence confirms the

responsibility of oxidative stress in microgravity-induced neuronal death and suggests the exis-

tence of a worrying alteration in the mechanisms underlying memory and learning processes.

Overall, the results obtained show that a combined treatment with Trolox and r-Irisin may

be an effective solution in reducing oxidative stress and apoptotic death and preserving BDNF

expression. However, further research should be conducted to determine whether this combi-

nation is also effective for longer periods of time or whether further administration is needed.

In addition, the development of further countermeasures requires a more thorough elucida-

tion of all biological mechanisms involved in weightlessness-induced neuronal death, includ-

ing determining the molecular basis of the potential synergistic action between Trolox and r-

Irisin.

Conclusions

Among the many challenges to ensuring adequate safety during space travel, nerve and cogni-

tive alterations are among the most important. The biological effects of microgravity on the

nervous system include increased oxidative stress, apoptotic death of neurons and reduced

BDNF expression. Identifying strategies to counteract these alterations should be the main

concern of space biomedicine. In this context, a combined treatment with Trolox and r-Irisin

could provide a viable defense strategy to safeguard the health of neurons. Although the com-

bined treatment of Trolox and r-Irisin has shown positive results, further studies are needed to

thoroughly evaluate the effectiveness of this combination and identify further countermea-

sures to ensure cognitive health during spaceflight.

Limits of the study

The main limitation of this study is that the administration of substances with effects on hip-

pocampal neurons could have significantly different effects in vivo. Indeed, the complexity of

the nervous tissue, characterized by glial cells, blood vessels and supporting structures, could

profoundly influence the absorption of the substances analyzed in vitro. Therefore, it should

be emphasized that our results demonstrate the beneficial effect of r-Irisin and Trolox on the
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health of neurons in culture, without considering the complex network of the nervous system

that could influence neuronal responses to treatment.

Furthermore, although RPM is a widely accepted tool for simulating weightlessness, it can-

not reproduce the same microgravity conditions experienced by space crews. Indeed, such an

instrument is an excellent solution for reproducing the biological effects of microgravity, but

the evidence should be corroborated by experiments conducted outside Earth orbit in real

microgravity conditions.

Supporting information

S1 Fig. Brightfield images of differentiated HT22 cells before and after exposure to RPM.
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treated with r-Irisin. HT22 cells before (g) and after exposure to RPM (h) treated with Trolox
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HT22 cells for brain-derived neurotrophic factor (BDNF) by immunocytochemistry. 40×
images, scale bar represents 100 μm. (b–e) Original western blotting images: (b) The band

shown corresponds to Akt, with a molecular weight of 60 kDa; (c) The band shown corre-

sponds to B-cell lymphoma 2 (Bcl-2), with a molecular weight of 26 kDa; (d) The band shown

corresponds to BDNF, with a molecular weight of 14 kDa; (e) The band shown corresponds to

GAPDH, with a molecular weight of 36 kDa.

(TIF)
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