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We compute the nucleon axial and pseudoscalar form factors using three Nf ¼ 2þ 1þ 1 twisted-mass
fermion ensembles with all quark masses tuned to approximately their physical values. The values of the
lattice spacings of these three physical point ensembles are 0.080, 0.068, and 0.057 fm and spatial sizes 5.1,
5.44, and 5.47 fm, respectively, yielding mπL > 3.6. Convergence to the ground-state matrix elements is
assessed using multistate fits. We study the momentum dependence of the three form factors and check
the partially conserved axial-vector current (PCAC) hypothesis and the pion pole dominance (PPD).
We show that in the continuum limit, the PCAC and PPD relations are satisfied. We also show that
the Goldberger-Treimann relation is approximately fulfilled and determine the Goldberger-Treiman
discrepancy. Our final results are gA ¼ 1.245ð28Þð14Þ for the nucleon axial charge, hr2Ai ¼
0.339ð48Þð06Þfm2 for the axial radius, gπNN ≡ limQ2→−m2

π
GπNNðQ2Þ ¼ 13.25ð67Þð69Þ for the pion-

nucleon coupling constant, and GPð0.88m2
μÞ≡ g�P ¼ 8.99ð39Þð49Þ for the induced pseudoscalar form

factor at the muon capture point.

DOI: 10.1103/PhysRevD.109.034503

I. INTRODUCTION

The nucleon axial form factors are important quantities
for weak interactions, neutrino scattering, and parity
violation experiments. There are currently a number of
neutrino scattering experiments that require knowledge of
the axial form factors. At Fermilab, the two neutrino
experiments, NOνA and MINERνA [1], share the same
neutrino beam. The former is designed to study neutrino
oscillations, and the latter is designed to perform high-
precision measurements of neutrino interactions on a wide

variety of materials, including helium, carbon, iron, and
lead. The MicroBooNE experiment, also at Fermilab, aims
at measuring low-energy neutrino cross sections, inves-
tigating the low-energy excess events observed by the
MiniBooNE experiment, and studying neutrinos produced
in supernovae. The T2K experiment at KEK in Japan and
the CNGS experiment in Europe investigate neutrino flavor
changes. The upcoming experiment DUNE will be the
next-generation flagship experiment on neutrino physics.
These experimental efforts need to be matched by

theoretical investigations. Computing reliably the nucleon
axial form factors provides crucial input for these experi-
ments. However, the theoretical extraction of these form
factors is difficult due to their nonperturbative nature.
Phenomenological approaches include chiral perturbation
theory that provides a nonperturbative framework suitable
for low values of Q2 up to about 0.4 GeV2 [2–4]. Other
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models used include the perturbative chiral quark model [5],
the chiral constituent quark model [6], and light-cone sum
rules [7]. Lattice QCD provides the ab initio nonperturbative
framework for computing such quantities using directly the
QCD Lagrangian. Early studies of nucleon axial form factors
were carried out within the quenched approximation [8,9] as
well as using dynamical fermion simulations at heavier than
physical pion masses [10]. Only recently, several groups
have been computing the axial form factors including
simulations generated directly at the physical value of the
pion mass [11–23]. This work is the first to use solely
simulations performed at physical values of the pion mass to
take the continuum limit, avoiding a chiral extrapolation.
The nucleon matrix element of the isovector axial-vector

current Aμ is written in terms of two form factors: the
axial, GAðQ2Þ, and the induced pseudoscalar, GPðQ2Þ.
The axial form factor, GAðQ2Þ, is experimentally deter-
mined from elastic scattering of neutrinos with protons,
νμ þ p → μþ þ n [24–26], while GPðQ2Þ is determined
from the longitudinal cross section in pion electroproduc-
tion [4,27,28]. At zero momentum transfer, the axial form
factor gives the axial charge gA ≡GAð0Þ, which is mea-
sured in high precision from β-decay experiments [29–32].
The induced pseudoscalar coupling g�P can be determined
via the ordinary muon capture process μ− þ p → nþ νμ
from the singlet state of the muonic hydrogen atom at the
muon capture point, which corresponds to momentum
transfer squared of Q2 ¼ 0.88m2

μ [33–37], where mμ is
the muon mass. We also study the nucleon matrix element
of the isovector pseudoscalar current that determines the
pseudoscalar form factor G5ðQ2Þ and from it the pion-
nucleon coupling constant gπNN .
In this work, we use three ensembles generated at

physical quark masses of the light, strange, and charm
quarks and at three values of the lattice spacing, namely
a ¼ 0.080, a ¼ 0.068, and a ¼ 0.057 fm. This same setup
has been used in the calculation of the electromagnetic
form factors [38] and transversity form factors [39]. This
allows us to directly take the continuum limit of the axial
and pseudoscalar form factors using, for the first time, only
simulations performed at the physical pion mass. This is a
major achievement since it avoids chiral extrapolation
which, for the baryon sector, may introduce an uncontrolled
systematic error. Such simulations at the physical pion
mass can be used to check important relations, such as the
partially conserved axial-vector current (PCAC) relation
that at form factor level connects GAðQ2Þ and GPðQ2Þ
with G5ðQ2Þ. At low Q2 and assuming pion pole domi-
nance (PPD) one can further relate GAðQ2Þ to GPðQ2Þ and
derive the Goldberger-Treiman relation. These relations
have been studied within lattice QCD and will be discussed
in detail in this paper.
The remainder of this paper is organized as follows.

In Sec. II, we discuss the decomposition of the nucleon
matrix elements of the axial-vector and pseudoscalar

operators in terms of form factors and the PCAC and
Goldberger-Treiman relations and the pion pole domi-
nance. In Sec. III, we give the details on the parameters
of the twisted-mass fermion ensembles analyzed, and in
Sec. IV, we discuss the extraction of the form factors from
the two- and three-point correlators including the renorm-
alization procedure. In Sec. V, we present the methods we
employ for the identification of excited states and the
extraction of the ground-state matrix element as well as the
various fits we perform and the model averaging procedure.
In Sec. VI, we discuss our procedure of fitting the
q2-dependence of the form factors and taking the con-
tinuum limit, and in Sec. VII, we give the results on the
axial form factor, GAðQ2Þ, in the continuum limit. In
Sec. VIII, we present the analogous analysis for the induced
pseudoscalar, GPðQ2Þ, and pseudoscalar, G5ðQ2Þ, form
factors. We also investigate the PCAC and Goldberger-
Treiman (GT) relations and evaluate the GT discrepancy. In
Sec. IX, we compare with other recent lattice QCD results,
and in Sec. X, we summarize and provide our conclusions.
In the Appendix, we provide values and parametrization of
form factors at the continuum limit.

II. DECOMPOSITION OF THE NUCLEON
AXIAL-VECTOR AND PSEUDOSCALAR

MATRIX ELEMENTS

In this work, we consider only isovector quantities and
neglect isospin-breaking effects due to QED interactions
and u–d quark mass difference. Any corrections arising
from such isospin-breaking effects are in fact immaterial as
compared to our present accuracy and are expected to
become relevant only at better than 1% precision. We
summarize here for completeness the various relations
using the same notation as that used in our previous
work [19]. The isovector axial-vector operator is given by

Aμ ¼ ūγμγ5u − d̄γμγ5d; ð1Þ

where u and d are the up and down quark fields, respectively.
In the chiral limit, where the pion mass mπ ¼ 0, the axial-
vector current is conserved, namely ∂μAμ ¼ 0. For a nonzero
pion mass, the spontaneous breaking of chiral symmetry
relates the axial-vector current to the pion field ψπ , through
the relation

∂
μAμ ¼ Fπm2

πψπ: ð2Þ

We use the convention Fπ ¼ 92.9 MeV for the pion
decay constant. In QCD, the axial Ward-Takahashi identity
leads to the PCAC,

∂
μAμ ¼ 2mqP; ð3Þ

where P is the pseudoscalar operator and mq ¼ mu ¼ md is
the light quark mass for degenerate up and down quarks.
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Using the PCAC relation, it then follows that the pion field
can be expressed as

ψπ ¼
2mqP

Fπm2
π
: ð4Þ

The matrix element of the nucleon axial-vector current
of Eq. (1) can be written in terms of the axial, GAðQ2Þ,
and induced pseudoscalar, GPðQ2Þ, form factors as

hNðp0;s0ÞjAμjNðp;sÞi

¼ ūNðp0;s0Þ
�
γμGAðQ2Þ− Qμ

2mN
GPðQ2Þ

�
γ5uNðp;sÞ; ð5Þ

where uN is the nucleon spinor with initial (final)
4-momentum p (p0) and spin s (s0), q ¼ p0 − p the
momentum transfer, q2 ¼ −Q2 and mN the nucleon mass.
The axial form factor is commonly parametrized as

GAðQ2Þ ¼ gA

�
1 −

hr2Ai
6

Q2

�
þOðQ4Þ; ð6Þ

where

gA ≡GAð0Þ ð7Þ

hr2Ai≡ −
6

gA

∂GAðQ2Þ
∂Q2

����
Q2→0

ð8Þ

are the axial charge and radius, respectively. A quantity of
interest for the induced pseudoscalar form factor is the
induced pseudoscalar coupling determined at the muon
capture point [40], namely

g�P ≡ mμ

2mN
GPð0.88m2

μÞ ð9Þ

with mμ ¼ 105.6 MeV the muon mass. It was computed in
chiral perturbation theory in Ref. [41].
The nucleon pseudoscalar matrix element is given by

hNðp0;s0ÞjPjNðp;sÞi¼G5ðQ2ÞūNðp0;s0Þγ5uNðp;sÞ; ð10Þ
where P ¼ ūγ5u − d̄γ5d is the isovector pseudoscalar
current. The PCAC relation at the form factors level relates
the axial and induced pseudoscalar form factors to the
pseudoscalar form factor via the relation

GAðQ2Þ − Q2

4m2
N
GPðQ2Þ ¼ mq

mN
G5ðQ2Þ: ð11Þ

Making use of Eq. (4), one can connect the pseudoscalar
form factor to the pion-nucleon form factor GπNNðQ2Þ as
follows:

mqG5ðQ2Þ ¼ Fπm2
π

m2
π þQ2

GπNNðQ2Þ: ð12Þ

Equation (12) is written so that it illustrates the pole structure
of G5ðQ2Þ and the preferred usage of mqG5ðQ2Þ, which
is a scale-independent quantity unlike G5ðQ2Þ. Substituting
mqG5ðQ2Þ in Eq. (11), one obtains the Goldberger-Treiman
relation [10,42]

GAðQ2Þ− Q2

4m2
N
GPðQ2Þ¼ Fπm2

π

mNðm2
πþQ2ÞGπNNðQ2Þ: ð13Þ

The pion-nucleon form factor GπNNðQ2Þ at the pion pole
gives the pion-nucleon coupling

gπNN ≡ lim
Q2→−m2

π

GπNNðQ2Þ; ð14Þ

which can be computed using Eq. (12) to obtain

lim
Q2→−m2

π

ðQ2 þm2
πÞmqG5ðQ2Þ ¼ Fπm2

πgπNN: ð15Þ

Equivalently, gπNN can be computed using Eq. (13),
where the pole on the right-hand side of Eq. (13) must be
compensated by a similar pole inGPðQ2Þ, sinceGAð−m2

πÞ is
finite, thus obtaining

lim
Q2→−m2

π

ðQ2 þm2
πÞGPðQ2Þ ¼ 4mNFπgπNN: ð16Þ

Additionally, close to the pole, the following relation holds,

GPðQ2Þ ¼ 4mNFπ

m2
π þQ2

GπNNðQ2Þ
����
Q2→−m2

π

; ð17Þ

due to PPD. Inserting it in Eq. (12), we obtain the relation

GPðQ2Þ ¼ 4mN

m2
π
mqG5ðQ2Þ

����
Q2→−m2

π

; ð18Þ

which relates GPðQ2Þ to G5ðQ2Þ. Substituting GPðQ2Þ in
Eq. (13), we obtain the well-known relation [43]

mNGAðQ2Þ ¼ FπGπNNðQ2Þ
����
Q2→−m2

π

; ð19Þ

which means that GPðQ2Þ can be expressed as [44]

GPðQ2Þ ¼ 4m2
N

Q2 þm2
π
GAðQ2Þ

����
Q2→−m2

π

; ð20Þ

close to the pion pole.
From Eq. (19), the pion-nucleon coupling can be

expressed as

gπNN ¼ mN

Fπ
GAð−m2

πÞ ¼
mN

Fπ
gA

����
mπ→0

; ð21Þ
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where the latter holds in the chiral limit, mπ ¼ 0. The
deviation from Eq. (21) due to the finite pion mass is known
as the Goldberger-Treiman discrepancy, namely

ΔGT ¼ 1 −
gAmN

gπNNFπ
; ð22Þ

and it is estimated to be at the 2% level [45] in chiral
perturbation theory. The Goldberger-Treiman discrepancy
is related to the low-energy constant d̄18 [46,47] via

ΔGT ¼ −
2d̄18m2

π

gA
: ð23Þ

Given the above relations, we define the following ratios to
test whether our lattice results satisfy these relations:

rPCACðQ2Þ ¼
mq

mN
G5ðQ2Þ þ Q2

4m2
N
GPðQ2Þ

GAðQ2Þ ; ð24Þ

rPPD;1ðQ2Þ ¼ m2
π þQ2

4m2
N

GPðQ2Þ
GAðQ2Þ ; ð25Þ

rPPD;2ðQ2Þ ¼ 4mN

m2
π

mqG5ðQ2Þ
GPðQ2Þ : ð26Þ

The first is based on the PCAC relation in Eq. (11). Since
PCAC is an exact operator relation, it provides a stringent
test of our analysis on the form factor level. The second
and third relations assume pion pole dominance and use
Eqs. (18) and (20), respectively, and they are only expected
to be unity near the pion pole. We note that we can use the
PCAC relation in Eq. (11) to write

rPPD;2ðQ2Þ ¼ 4m2
N

m2
π

GAðQ2Þ
GPðQ2Þ −

Q2

m2
π
: ð27Þ

Using the parametrization of GAðQ2Þ in Eq. (6) to evaluate
GAð−m2

πÞ, we obtain that near the pion pole the ratio

4m2
N

m2
π

GAðQ2Þ
GPðQ2Þ ¼

gAmN

gπNNFπ

�
1þ hr2Aim2

π

6

��
1þ Q2

m2
π

�

¼
�
1 − ΔGT þ

hr2Aim2
π

6

��
1þ Q2

m2
π

�
;

at leading order in m2
π , ΔGT, and Q2. Using the latter in

Eq. (27), we obtain [48]

rPPD;2ðQ2Þ ¼ 1þ
�hr2Aim2

π

6
− ΔGT

��
1þ Q2

m2
π

�
; ð28Þ

and therefore a deviation from unity in rPPD;2ðQ2Þ can be
related to the Goldberger-Treiman discrepancy.

III. GAUGE ENSEMBLES AND STATISTICS

We employ the twisted-mass fermion discretization
scheme [49,50], which provides automatic OðaÞ-
improvement [51]. The bare light quark parameter μl is tuned
to reproduce the isosymmetric pion mass mπ ¼ 135 MeV
[52,53], while the heavy quark parameters, μs and μc are
tuned using the kaon mass and an appropriately defined
ratio between the kaon and D-meson masses as well as the
D-meson mass, following the procedure of Refs. [52,53].
The action also includes a clover term that reduces isospin-
breaking effects due to the twisted-mass fermion discre-
tization. The values of the parameters of the ensembles
analyzed in this work can be found in Table I. The lattice
spacings and pion masses are taken from Ref. [54]. The
values of the lattice spacing are determined both in the
meson and nucleon sectors. We quote the ones from
the meson sector which are compatible with the values
determined from the nucleon mass in Ref. [55]. The
resulting tuned pion masses, given in Table I, deviate
by up to 4% from the isosymmetric pion mass. This
deviation is comparable with the mass difference between
charged and neutral pion. Thus, we expect any correction
on the form factors arising from such a deviation to be of
the same order of magnitude as isospin-breaking effects
and, thus, immaterial as compared to our present accuracy.
The nucleon matrix elements of the axial-vector and

pseudoscalar operators are obtained via appropriate
combinations of three- and two-point nucleon correlation
functions, as will be explained in more detail in the
following section. In Table II, we give the statistics
used for computing the two- and three-point functions
in terms of the number of configurations analyzed and the
number of point sources employed per configuration.
The statistics of the three-point functions are increased
at increasing source-sink separation such that the errors
are kept approximately constant among all the time
separations. For the twisted-mass formulation employed
here, the disconnected quark loop contributions are of
order a2 and, thus, vanish in the continuum limit [49].
For this reason, we can safely neglect them in the
present work.

TABLE I. Parameters for the Nf¼2þ1þ1 ensembles ana-
lyzed in this work. In the first column, we give the name of the
ensemble; in the second, we give the lattice volume; in the third,
we give β¼6=g2 with g the bare coupling constant; in the fourth,
we give the lattice spacing; in the fifth, we give the pion mass; and
in the sixth, we give the value of mπL. Lattice spacings and pion
masses are taken from Ref. [54].

Ensemble V=a4 β a (fm) mπ (MeV) mπL

cB211.072.64 643×128 1.778 0.07957(13) 140.2(2) 3.62
cC211.060.80 803×160 1.836 0.06821(13) 136.7(2) 3.78
cD211.054.96 963×192 1.900 0.05692(12) 140.8(2) 3.90
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IV. EXTRACTION OF NUCLEON
MATRIX ELEMENTS

To evaluate the nucleon matrix elements of the operators
given in Eqs. (5) and (10), we compute three- and two-point
correlation functions. The two-point function is given by

CðΓ0; p⃗; ts; t0Þ ¼
X
x⃗s

e−iðx⃗s−x⃗0Þ·p⃗

× Tr½Γ0hJ Nðts; x⃗sÞJ̄ Nðt0; x⃗0Þi�; ð29Þ

where x0 is the source, xs is the sink positions on the lattice,
and Γ0 is the unpolarized positive parity projector
Γ0 ¼ 1

2
ð1þ γ0Þ. States with the quantum numbers of the

nucleon are created and destroyed by the interpolating field

J Nðt; x⃗Þ ¼ ϵabcuaðxÞ½ubTðxÞCγ5dcðxÞ�; ð30Þ

where C is the charge conjugation matrix. By inserting the
unit operator in Eq. (29) in the form of a sum over states of
the QCD Hamiltonian, only states with the quantum
numbers of the nucleon survive. The overlaps between
the interpolating field and the nucleon state jNi, such as
hΩjJ N jNi, need to be canceled to access the matrix
element. It is desirable to increase the overlap with the
nucleon state and reduce it with excited states so that the
ground state dominates for as small as possible Euclidean
time separations. This is because the signal-to-noise ratio
decays exponentially with the Euclidean time evolution.
To accomplish ground-state dominance, we apply Gaussian
smearing [56,57] to the quark fields entering the interpolat-
ing field,

q̃ðx⃗; tÞ ¼
X
y⃗

½1þ αGHðx⃗; y⃗;UðtÞÞ�NGqðy⃗; tÞ; ð31Þ

where the hopping matrix is given by

Hðx⃗; y⃗;UðtÞÞ ¼
X3
i¼1

½UiðxÞδx;y−î þ U†
i ðx − îÞδx;yþî�: ð32Þ

The parameters αG and NG are tuned [58,59] in order to
approximately give a smearing radius for the nucleon of
0.5 fm. For the links entering the hopping matrix,
we apply APE smearing [60] to reduce statistical errors
due to ultraviolet fluctuations. In Table III, we give the
APE and Gaussian smearing parameters used for each
ensemble.
For the construction of the three-point correlation func-

tion, the current is inserted at time slice tins between the
time of the creation and annihilation of the states with the

TABLE II. Statistics used in the computation of the isovector
matrix elements for the cB211.072.64 (left table), the
cC211.060.80 (middle table), and the cD211.054.96 (right
table) ensemble. In each table, we provide the sink-source
separations used in lattice units (first column) and physical
units (second column) and the number of source positions per
configuration (third column). For each ensemble, the bottom
row indicates the number of source positions used for the
two-point functions.

cB211.072.64

750 configurations

ts=a ts (fm) nsrc

8 0.64 1
10 0.80 2
12 0.96 5
14 1.12 10
16 1.28 32
18 1.44 112
20 1.60 128

Nucleon 2 point 477

cC211.060.80

400 configurations

ts=a ts (fm) nsrc

6 0.41 1
8 0.55 2
10 0.69 4
12 0.82 10
14 0.96 22
16 1.10 48
18 1.24 45
20 1.37 116
22 1.51 246

Nucleon 2 point 650

cD211.054.96

500 configurations

ts=a ts (fm) nsrc

8 0.46 1
10 0.57 2
12 0.68 4
14 0.80 8
16 0.91 16
18 1.03 32
20 1.14 64
22 1.25 16
24 1.37 32
26 1.48 64

Nucleon 2 point 480
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nucleon quantum numbers, t0 and ts, respectively. The
expression for the three-point function is given by

CμðΓk; q⃗; p⃗0; ts; tins; t0Þ
¼

X
x⃗ins;x⃗s

eiðx⃗ins−x⃗0Þ·q⃗e−iðx⃗s−x⃗0Þ·p⃗0

× Tr½ΓkhJ Nðts; x⃗sÞjμðtins; x⃗insÞJ̄ Nðt0; x⃗0Þi�; ð33Þ

where Γk ¼ iΓ0γ5γk and jμ is either the axial-vector current
Aμ needed for computing the matrix elements in Eq. (5) or
P for computing the pseudoscalar form factor in Eq. (10).
The Euclidean momentum transfer squared is given by
Q2 ¼ −q2 ¼ −ðp0 − pÞ2. The connected three-point func-
tions are computed using sequential propagators inverted
through the sink, i.e. using the so-called fixed-sink method.
This requires new sequential inversions for each sink
momentum. Therefore, we restrict to p⃗0 ¼ 0, meaning
the source momentum p⃗ is determined via momentum
conservation by the momentum transfer as p⃗ ¼ −q⃗, and in
the following, we drop the usage of p⃗0. Without loss of
generality, we also take, in the following, ts and tins relative
to the source time t0, or equivalently t0 is set to zero.

A. Excited states contamination and large time limit

The interpolating field in Eq. (30) creates a tower of
states with the quantum numbers of the nucleon. The
spectral decomposition of the two- and three-point func-
tions are given, respectively, by

CðΓ0; p⃗; tsÞ ¼
XNst−1

i

ciðp⃗Þe−Eiðp⃗Þts and ð34Þ

CμðΓk; q⃗; ts; tinsÞ ¼
XNst−1

i;j

Ai;j
μ ðΓk; q⃗Þe−Eið0⃗Þðts−tinsÞ−Ejðq⃗Þtins :

ð35Þ

The coefficients of the exponential terms in the two-point
function of Eq. (34) are overlap terms given by

ciðp⃗Þ ¼ Tr½Γ0hΩjJ N jNiðp⃗ÞihNiðp⃗ÞjJ̄ N jΩi�; ð36Þ

where spin indices are suppressed. The i-index denotes
the ith state with the quantum numbers of the nucleon
that may also include multiparticle states. The coefficients
Ai;j appearing in the three-point function of Eq. (35) are
given by

Ai;j
μ ðΓk; q⃗Þ ¼ Tr½ΓkhΩjJ N jNið0⃗ÞihNið0⃗ÞjAμjNjðp⃗Þi

× hNjðp⃗ÞjJ̄ N jΩi�; ð37Þ

where hNið0⃗ÞjAμjNjðp⃗Þi is the matrix element between
ith and jth states. In practice, one truncates the sums in
Eqs. (34) and (35) up to some stateNst. Finally, Eiðp⃗Þ is the
energy of the ith state carrying momentum p⃗. For the
ground state, we use the dispersion relation to obtain
E0ðp⃗Þ, namely

E0ðp⃗Þ ¼ ENðp⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ p⃗2

q
; ð38Þ

where the nucleon mass mN is determined from the zero
momentum projected two-point function.
To extract the nucleon matrix element that we are

interested in, any contribution from nucleon excited states
and/or multiparticle states has to be sufficiently suppressed.
How fast ground-state dominance is achieved depends on
the smearing procedure applied on the interpolating fields
and the current type entering the three-point function.
Since the noise increases exponentially with increasing
ts, establishing from the data convergence to the asymptotic
ground-state matrix element is very difficult. For this
reason, we employ a multistate analysis by fitting the
explicit contribution of the first Nst − 1 excited states. Our
fitting strategy is described in Sec. V and aims at determin-
ing reliably the values of c0 and A0;0

μ .
In order to cancel unknown overlaps of the interpolating

field in Eq. (30) with the nucleon state, one commonly
constructs an appropriate ratio of three-point to a combi-
nation of two-point functions [61–64],

RμðΓk; q⃗; ts; tinsÞ

¼ CμðΓk; q⃗; ts; tinsÞ
CðΓ0; 0⃗; tsÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðΓ0; q⃗; ts − tinsÞCðΓ0; 0⃗; tinsÞCðΓ0; 0⃗; tsÞ
CðΓ0; 0⃗; ts − tinsÞCðΓ0; q⃗; tinsÞCðΓ0; q⃗; tsÞ

s
: ð39Þ

The ratio in Eq. (39) is constructed such that it converges to
the nucleon ground-state matrix element in the limit of
large time separations ΔEðts − tinsÞ ≫ 1 and ΔEtins ≫ 1,
where ΔE is the energy difference between the first excited
state and ground state, namely

TABLE III. The number of Gaussian smearing iterations nG
and the Gaussian smearing coefficient αG used for each ensem-
ble. We also provide the number of APE-smearing iterations nAPE
and parameter αAPE applied to the links that enter the Gaussian
smearing hopping matrix. The resulting source rms obtained is
given in the last column, where the error is due to the uncertainty
in the lattice spacing.

Ensemble nG αG nAPE αAPE
ffiffiffiffiffiffiffiffiffiffiffi
hr2iψ

q
(fm)

cB211.072.64 125 0.2 50 0.5 0.461(2)
cC211.060.80 140 1.0 60 0.5 0.516(2)
cD211.054.96 200 1.0 60 0.5 0.502(3)
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RμðΓk;q⃗;ts;tinsÞ⟶
ΔEðts−tinsÞ≫1

ΔEtins≫1
ΠμðΓk;q⃗Þ: ð40Þ

By substituting Eqs. (34) and (35) into Eq. (39), we obtain

ΠμðΓk; q⃗Þ ¼
A0;0

μ ðΓk; q⃗Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0ð0⃗Þc0ðq⃗Þ

q : ð41Þ

The ground-state matrix elements are extracted from the
ratio of the amplitude A0;0

μ ðΓk; q⃗Þ of the three-point
function and the amplitudes c0ð0⃗Þ and c0ðq⃗Þ of the two-
point functions. In this work, we determine these ampli-
tudes from a simultaneous fit to two- and three-point
functions as described in Sec. V, so that the energy
spectrum is the same for two- and three-point functions.
For visualization purposes only, we use the following
variant of the ratio in Eq. (39),

R0
μðΓk; q⃗; ts; tinsÞ ¼

CμðΓk; q⃗; ts; tinsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðΓ0; 0⃗; tsÞCðΓ0; q⃗; tsÞ

q ; ð42Þ

which has the same large time-separation limit as the
ratio of Eq. (39) when tins ¼ ts=2 while avoiding potential
excited-state contaminations in the two-point functions for
small values of tins.

B. Analysis of nucleon correlators

The ground-state matrix elements, Πμ, are decomposed
into form factors. In the following, we provide their
decomposition in Euclidean space and for p⃗0 ¼ 0. In the
case of the matrix element of the axial-vector current,
we have

ΠiðΓk; q⃗Þ ¼
iK
4mN

�
qkqi
2mN

GPðQ2Þ − δi;kðmN þ ENÞGAðQ2Þ
�

ð43Þ

for the case that μ ¼ i. For the temporal direction, the
corresponding expression is

Π0ðΓk;q⃗Þ¼−
qkK
2mN

�
GAðQ2ÞþðmN−ENÞ

2mN
GPðQ2Þ

�
: ð44Þ

One can then form a 2 × 2 matrix of kinematical coef-
ficients multiplying GAðQ2Þ and GPðQ2Þ, given by

GμðΓk; q⃗Þ ¼

0
B@ −qk K

2mN
−qk

KðmN−ENÞ
4m2

N

−iδi;k
KðmNþENÞ

4mN
iqkqi

K
8m2

N

1
CA; ð45Þ

where the first row of the matrix is for μ ¼ 0 and the second
row is for μ ¼ i, while the first column gives the kinematic
coefficients multiplying GAðQ2Þ and the second column
gives those multiplying GPðQ2Þ. For the case of the matrix
element of the pseudoscalar current, we have

Π5ðΓk; q⃗Þ ¼ −
iqkK
2mN

G5ðQ2Þ: ð46Þ

In the above expressions, EN is the energy of the nucleon,
and K is a kinematic factor given by

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2
N

ENðEN þmNÞ

s
: ð47Þ

Given the above momentum dependence of the decom-
position, we can average over all momentum components
for a given Q2 value, namely

Π0ðQ2Þ ¼ −
Xk
qk≠0

1

qk
Π0ðΓk; q⃗Þ

¼ K
2mN

�
GAðQ2Þ þmN − EN

2mN
GPðQ2Þ

�
ð48Þ

ΠAPðQ2;p2Þ ¼ i
Xk
q2k¼p2

ΠkðΓk; q⃗Þ

¼ K
4mN

�
ðEN þmNÞGAðQ2Þ− p2

2mN
GPðQ2Þ

�
ð49Þ

ΠPðQ2Þ ¼ −i
Xi;k
i≠k

qkqi≠0

1

qkqi
ΠiðΓk; q⃗Þ ¼

K
8m2

N
GPðQ2Þ ð50Þ

Π5ðQ2Þ ¼ i
Xk
qk≠0

1

qk
Π5ðΓk; q⃗Þ ¼

K
2mN

G5ðQ2Þ; ð51Þ

where p2 runs over the possible q2k values, the symbol Σ̄
stands for the average, and we indicate above the symbol
the indices of the sum, which are always spatial, and below
the symbol the conditions to be satisfied such that values
are included in the sum. We note that, while GPðQ2Þ
and G5ðQ2Þ can be extracted directly from Π̄P and Π̄5,
respectively, GAðQ2Þ is always coupled to GPðQ2Þ in Π̄0

and Π̄AP forQ2 > 0. On the other hand,GAðQ2Þ is the only
form factor accessible at zero momentum transfer, while all
others need to be extrapolated to Q2 ¼ 0. Our strategy for
extracting the three form factors is to perform a combined
fit of the Π̄s at fixedQ2 and express the ground-state matrix
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elements in Eq. (41) in terms of the above linear combi-
nations of form factors.

C. Renormalization

Matrix elements computed in lattice QCD need to be
renormalized in order to relate to physical observables.
In the twisted-mass fermion formulation, we need the
renormalization functions ZS for the renormalization of
the pseudoscalar form factor G5ðQ2Þ, ZP for the renorm-
alization of the bare quark mass, and ZA for the renorm-
alization of the axial-vector current. We note that we do not
use ZS since G5ðQ2Þ is evaluated in the scale-independent
and ultraviolet finite combination mqG5ðQ2Þ. In Figs. 7
and 11 where G5ðQ2Þ is shown without mq, it is only done
for visualization purposes. In those cases, we use ZS
computed as ZP=ðZP=ZSÞ with ZP computed in the RI0
scheme. This is because a direct evaluation of ZS in RI0 is
more difficult than for ZP due to increased hadronic
contamination effects observed in the case of ZS.
We use methods based on Ward identities or on the

universality of renormalized hadronic matrix elements,
which are often referred to as hadronic methods, in order
to compute ultraviolet finite renormalization factors, such
as ZA and ZP=ZS. Hadronic methods are fully nonpertur-
bative and require no gauge fixing, unlike the RI0 scheme.
For more details, we refer to Appendix B of Ref. [54],
where this approach is used to extract the renormalization
constants for the ensembles employed here. This approach
is preferred to the usual RI0 scheme because it provides
much more accurate results on ZA and ZP=ZS. The RI0
scheme is employed for the determination of ZP, as
discussed in Ref. [55]. For completeness, the values of
the renormalization constants used in this work are col-
lected in Table IV.
In what follows, we will denote by GAðQ2Þ and GPðQ2Þ

the renormalized form factors obtained by multiplying the
lattice three-point functions of the axial-vector current by
ZA. For G5ðQ2Þ, we consider the combination mqG5ðQ2Þ
that renormalizes with μZS=ZP, involving only the
ratio ZS=ZP that is determined accurately from hadronic
matrix elements. The light bare quark mass μ takes
values aμ ¼ 0.00072, 0.00060, and 0.00054 for the

cB211.72.64, cC211.60.80, and cD211.54.96
ensembles, respectively.

V. EXTRACTION OF FORM FACTORS

As described in Sec. IV B, bare form factors at each
value of Q2 are extracted from combined fits to the values
of the two- and three-point functions, after we construct the
averages given in Eqs. (48)–(50). Two-point functions are
available for all source-sink separations, ts, while three-
point functions are measured at selected values of ts, listed
in Table II, and available for all tins ∈ ½0; ts�. Since the
optimal fit range in ts and tins may vary for each case, as
well as the number of states needed to describe the
correlation functions, we explore a wide parameter space
in the fitting ranges and number of excited states included.
Results are then combined using model averaging as
described below. Specifically, at each value of Q2, we
use the following fitting approach:

Nst: We perform either two- or three-state fits of all
quantities, cutting the sum in Eqs. (34) and (35), to a
maximum of imax ¼ Nst − 1 with Nst ∈ f2; 3g.

t2pt;min: We vary t2pt;min, the lower bound in the fit of the
two-point functions. The upper bound is taken to be
the source-sink separation where the correlator be-
comes compatible with zero within 5σ. This upper
maximum value varies from approximately 2.5 fm at
Q2 ¼ 0 to 1.5 fm at Q2 ¼ 1 GeV2.

t3pt;min: We vary t3pt;min, the smallest value of ts used
for fitting the three-point functions. We fit to all
ts ≥ t3pt;min available.

tins;0 and tins;S: We vary the number of insertion time
slices from the source and the sink kept in the fit, using
tins ∈ ½tins;0; ts − tins;S�. We only allow for tins;0 ≥ tins;S
since the energy gap at the source, where we have
momentum, is expected to be smaller than the energy
gap at the sink, where there is no momentum. At
Q2 ¼ 0, we fix tins;0 ¼ tins;S.

NO: We vary the number of exponential terms when we
perform three-state fits to the three-point functions,
since certain overlaps may be sufficiently suppressed.
The suppression rate is ordered according to the
energy gaps of the first and second excited-state
energies. Beyond the ground state A0;0

μ , the suppres-
sion increases for the terms containing the overlaps
A1;0

μ , A0;1
μ , A1;1

μ , A2;0
μ , A0;2

μ , A2;1
μ , A1;2

μ , and A2;2
μ . We

use either the first four, six, or all parameters; namely,
we take NO ∈ f4; 6; 9g. NO ¼ 4 corresponds to a full
two-state fit.

In summary, Nst and NO affect the number of parameters
in the fit, while t2pt;min, t3pt;min tins;0, and tins;S affect the
number of data used in the fit. We fit together the data for
Q2 ¼ 0 and for the lowest nonzero value of Q2 obtained
when the momentum transfer in one spatial direction is
2π=L. After performing the model averaging for the zero

TABLE IV. Values of the scheme-independent renormalization
constants ZA and ZP=ZS taken from Ref. [54] and of the scheme-
dependent ZP given in MS at μref ¼ 2 GeV computed in
Ref. [55].

Ensemble ZA ZP=ZS ZP (MS 2 GeV)

cB211.072.64 0.74294(24) 0.79018(35) 0.4746(49)
cC211.060.80 0.75830(16) 0.82308(23) 0.4771(49)
cD211.054.96 0.77395(12) 0.85095(18) 0.4871(49)
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and for the lowest nonzero value of Q2, we extract mN and
use it as a prior to fit independently each larger Q2 value.
We note that the summation method is not used since
taking into account only the ground state fails to describe
the results in the case of GPðQ2Þ and G5ðQ2Þ, where
excited-state effects are large. We find that for the sum-
mation method to converge, one would require source-sink
time separations larger than 2 fm which are not available.

A. Model average

Results obtained using the different fit approaches are
averaged using the Akaike Information Criterion, and we
refer to Refs. [65,66] for a detailed introduction to the
method. In the following, we summarize the practical
aspects of our implementation. To each fit i, we assign a
weight wi, defined as

logðwiÞ ¼ −
χ2i
2
þ Nd.o.f.;i; ð52Þ

where Nd.o.f. ¼ Ndata − Nparams is the number of degrees of
freedom, given as the difference between the number of
data, Ndata, and the number of parameters, Nparams, used in
the corresponding fit. We use correlated fits, and, therefore,
the χ2 is defined as

χ2i ¼ r⃗iTC−1
i r⃗i with r⃗i ¼ y⃗i − fiðx⃗iÞ; ð53Þ

where, for each fit i, Ci is the covariance matrix between
the selected data y⃗i and r⃗i is the residual computed using
the selected fit approach fi evaluated on the selected data
range xi. From the weights in Eq. (52), we define the
probability

pi ¼
wi

Z
with Z ¼

X
i

wi: ð54Þ

The model-averaged value of an observable O is given as

hOi ¼ meanðerrorÞ with mean ¼
X
i

Ōipi

and error2 ¼
X
i

ðσ2i þ Ō2
i Þpi −mean2; ð55Þ

where Ōi and σi are, respectively, the central value and the
error of the observableOmeasured using the parameters of
the ith fit.

B. Selection of data and fits

We first illustrate our fitting procedure by considering
the zero-momentum nucleon two-point function. In Fig. 1,
we show the nucleon effective mass for each ensemble. We
observe an impressive agreement among the data using the
three ensembles showing very mild cutoff effects and

compatible excited-state contamination. This confirms that
maintaining the radius constant of the Gaussian smearing,
as shown in Table III, is a good strategy.
In Fig. 2, we show the nucleon effective mass separately

for each of the three ensembles as well as the values of the
nucleon mass obtained via fits to two- and three-point
functions keeping only those fits with model probability
≥ 1%. Note that, since we perform a combined fit of the

FIG. 1. Nucleon effective mass using the three physical point
ensembles. The dashed line is the value of the nucleon mass
mN ¼ 0.938 GeV.

FIG. 2. Nucleon effective mass versus the time separation (left
column) and results for the nucleon mass obtained via fits that
have a model probability (fit prob.) larger than 1% (right column).
The horizontal bands spanning both the left and right panels are
the results of the model average among all fits using two states
(red points and red band) and three states (blue points and blue
band). The most probable fit is depicted with open symbols. In
the left panel, we show for all ensembles the result of the most
probable fit using two states (red curve) and three states (blue
curve) over the range used in the fit. Panels from top to bottom are
for the cB211.72.64, cC211.60.80, and cD211.54.96
ensembles, respectively.
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nucleon two- and three-point functions, for Q2 ¼ 0 and the
lowest nonzero value of Q2 as described at the beginning
of this section, the values depicted in the figure are not
obtained by fitting only the nucleon effective mass data

shown in these figures. We observe a good distribution of
the probabilities of the fits with the most probable fit having
a probability between 10% to 50%.
Similarly, in Figs. 3 and 4, we show, respectively, results

for Q2 ¼ 0 and the lowest momentum transfer for the axial
form factor. The data shown in these figures are those
obtained from the ratio Π̄APðQ2; 0Þ defined in Eq. (49). We
note that the results for the lowest nonzero value of the
momentum transfer also have information from Π̄0ðQ2Þ
and Π̄APðQ2; ð2π=LÞ2Þ given in Eqs. (48) and (49). Results
on the latter two are shown in Figs. 5 and 6, respectively,
from which GPðQ2Þ is extracted for the lowest nonzero
value of Q2. In Fig. 7, we show the corresponding results
for G5ðQ2Þ for the lowest nonzero Q2 value.
We note that in most cases, the model average gives a

central value and error that is compatible with the corre-
sponding ones of the most probable fit. In the few cases
where there is a discrepancy, as e.g. in the three-state fit
results for GA;1 in Fig. 4, the outcome of the model average
has a Gaussian distribution, and thus the model average
procedure, given in Eq. (55), properly accounts for the
systematics arising from the model choices. We demon-
strate this by depicting in Fig. 8 the cumulative distribution
of the Gaussians associated with each fit and the resulting
Gaussian distribution outcome of the model average. We
observe excellent agreement.

C. Determination of axial charge and radius

Before presenting the analysis of the Q2-dependence of
form factors, we perform fits to the zero and the lowest
nonzero momentum transfers. For Q2 ¼ 0, only GAðQ2Þ
can be extracted, yielding the isovector axial charge gA.

FIG. 3. The ratio R0 of Eq. (42) that yields gA versus tins − ts=2
(left column) and versus ts for tins ¼ ts=2 (middle column). In the
header of the figure, we give the symbols used to denote the
various values of ts=a. In the right column, we show the value of
the nucleon isovector axial charge obtained via fits, as in Eq. (41),
versus the fit probability, using the notation of Fig. 2. In the left
and middle panels, the curves correspond to the fit results, which
have the largest probability among all two-state (blue) or three-
state (red) fits.

FIG. 4. The same as in Fig. 3, but for GAðQ2Þ obtained via
Π̄APðQ2; 0Þ for the lowest nonzero value of Q2.

FIG. 5. Π̄0ðQ2Þ for the lowest nonzero value of Q2 using the
notation of Fig. 3.
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Computing the slope using the values of GAðQ2Þ at these
two values yields the radius hr2Ai, namely

hr2Ai ¼ −
6

Q2
1

�
GAðQ2

1Þ
GAð0Þ

− 1

�
; ð56Þ

where Q2
1 is the lowest nonzero momentum transfer

squared. Results obtained using two- or three-state fits
are analyzed separately. The results on gA and r2A extracted
after model averaging for each ensemble are collected in Table V and depicted in Fig. 9. We also include the results

obtained for mN. We perform a linear extrapolation in a2 to
the continuum limit. We observe very good agreement at
the continuum limit between the results from fits using two
and three states for all three quantities. On the other hand,

FIG. 7. G5ðQ2Þ for the lowest nonzero value of Q2 using the
notation of Fig. 3.

FIG. 8. Cumulative distributions of the results from three-state
fits weighted by the fit probability. The black curve represents the
cumulative distribution; the colored curves are the Gaussian
distributions associated with each fit; and the dashed red curve
depicts the Gaussian distribution associated with the outcome
of the model average given in Eq. (55). For each panel, all
distributions are normalized with the maximum value of the
cumulative distribution, and we have doubled the height of the
colored curves for visualization purposes.

TABLE V. Values for the nucleon isovector axial charge gA,
radius hr2Ai, and nucleon mass mN for each ensemble and
extrapolated to the continuum limit using a linear function
in a2. These results are referred to as obtained via the “direct
approach” in the text. Results are given separately for values
extracted from a two- and a three-state fit analysis.

Ensemble gA hr2Ai (rm2) mN (GeV)

2-state fit cB211.72.64 1.253(21) 0.240(52) 0.9464(30)
cC211.60.80 1.228(14) 0.220(37) 0.9436(25)
cD211.54.96 1.255(20) 0.300(39) 0.9414(29)

a ¼ 0 1.244(45) 0.354(96) 0.9362(65)

3-state fit cB211.72.64 1.322(40) 0.408(67) 0.9290(50)
cC211.60.80 1.241(19) 0.300(37) 0.9346(27)
cD211.54.96 1.277(17) 0.395(34) 0.9261(35)

a ¼ 0 1.264(52) 0.415(97) 0.9237(89)

FIG. 6. Π̄APðQ2Þ for the lowest nonzero value of Q2 using the
notation of Fig. 3.
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there are slight deviations at finite lattice spacings be-
tween two- and three-state fits. For this reason, we ana-
lyze separately all quantities using two- and three-state
fits. We take as our mean value the one extracted using the
two-state fit, and we give as a systematic error the differ-
ence between the central values using two- and three-state
fits. We find

gA ¼ 1.244ð45Þð20Þ
r2A ¼ 0.354ð96Þð61Þ fm2:

ðdirect approachÞ ð57Þ

D. Energy spectrum and dispersion relation

As customarily done in similar studies [12,18,19,23], we
analyze the first excited state at the source and sink, E1;p⃗

and E
1;0⃗, respectively. These are obtained using two-state

fits to the three-point functions. Our results are depicted in
Fig. 10 for the three ensembles, where we also depict the
dispersion relation for the nucleon energy EN. We observe
the following:

(i) Since the dispersion relation is included using priors
when fitting each Q2 value larger than the lowest
nonzero, it is not surprising that we see excellent
agreement between the extracted energy and the
dispersion relation.

(ii) The first excited state at zero momentum transfer is
compatible with the Roper.

(iii) E
1;0⃗ for low values of the momentum is compatible

with the lowest energy of the πN system in the rest
frame, namely π and N moving with momentum

p back to back. The dependence on the momentum
is due to the strong enhancement of the πN excited
state due to the pion pole [18]. As the momentum
grows, the lowest energy of πN becomes larger than
the mass of the Roper, and then E

1;0⃗ becomes
approximately constant somewhat above the mass
of the Roper, which is expected since in a two-state
fit the first excited energy is contaminated by higher
states.

(iv) E1;p⃗ is compatible with Nð0Þ þ πðp⃗Þ for all nonzero
values of p⃗2 ≤ 0.6 GeV2. After that, the energy of
the Roper denoted by Rðp⃗Þ becomes smaller, and the
results tend to be in between the energy of the Roper
and the energy of the Nð0Þ þ πðp⃗Þ system. These
are, indeed, the two lowest one-particle and two-
particle excited-state energies.

(v) Excited-state contamination is similar for all three
ensembles, and this is in line with the observation of
mild cutoff effects for the nucleon mass.

E. Comparison of results extracted
with two- and three-state fits

The renormalized form factors obtained using two- and
three-state fits are compared in Fig. 11, where we also

FIG. 10. Nucleon ENðp⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ p⃗2
p

(top) and first excited
state E

1;0⃗ (middle) at sink and E1;p⃗ (bottom) at source as a

function of p⃗2. These are determined by performing a two-state
fit to the two- and three-point functions. To guide the eye, we
depict the expected dispersion relations: the energy of a boosted
nucleon EN (top); a noninteracting πN state with either total
momentum zero, Nð−p⃗Þ þ πðp⃗Þ (middle), or with momentum p⃗,
Nð0⃗Þ þ πðp⃗Þ (bottom); and the energy or the first excited state of
the nucleon, the Roper with mR ¼ 1.44 GeV, either at rest [Rð0Þ,
middle] or moving with momentum p⃗ [Rðp⃗Þ, bottom].

FIG. 9. Continuum limit of the nucleon isovector axial charge
gA (top), radius rA (middle), and nucleon massmN (bottom) using
a linear extrapolation in a2. The dashed line in the top panel is the
experimental value gA ¼ 1.27641ð56Þ [67] and in the bottom
panel is the nucleon mass mN ¼ 938 MeV.
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depict the difference Δ between the results extracted using
two- and three-state fist normalized such that errors are
unity, namely

δ≡ hG2st −G3sti and ΔðQ2Þ≡ δðQ2Þ
σδðQ2Þ ; ð58Þ

with σδ the jackknife error on the difference δ. We observe
very good agreement between the results extracted
using two- and three-state fits with all differences Δ lying
within three standard deviations. We note that we only
perform three-state fits to extract the form factors up to
Q2 ≃ 0.5 GeV2, despite the fact that the stability of the

three-state fits improves because time separations become
more dense as the lattice spacing decreases. Since we
observe consistency between the results from two- and
three-state fits and the two-state fits do not suffer from
instabilities at large values of Q2, we opt to take the results
from two-state fits up to Q2 ≃ 1 GeV2. The three-state fits
are only considered up to Q2 ≃ 0.5 GeV2, which is the
largestQ2 where the three-state fits for the cB211.72.64
are stable.

VI. Q2-DEPENDENCE AND CONTINUUM LIMIT

We will first discuss the parametrization of the
Q2-dependence of form factors that are free from the pion

FIG. 11. Results for the three form factors obtained using a two- (red squares) or a three-state (blue crosses) fit analysis. From left to
right, we show results for the cB211.72.64, cC211.60.80, and cD211.54.96 ensembles. From top to bottom, we show results
for the axial, induced pseudoscalar, and pseudoscalar form factors. In the lower panel of each plot, we include the differenceΔ defined in
Eq. (58) between the results extracted using two- and three-state fits. The difference Δ is normalized such that errors are unity, and the
dashed line represents a three standard deviation difference. Three-state fits are stable forQ2 < 0.465 GeV2 for all three ensembles. For
larger values, the fits become unstable. We display these points by using lighter blue color, and we thus do not use them in the extraction
of form factors.
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pole such as the axial form factor. Typically, two functional
forms are employed, the dipole ansatz and the model
independent z-expansion [68,69]. The dipole ansatz,
given by

GðQ2Þ ¼ g�
1þ Q2

m2

	
2
; ð59Þ

has two parameters, the charge g and the dipole mass m. In
this case, the radius defined in Eq. (8) is given by

r2 ¼ 12

m2
: ð60Þ

We parametrize cutoff effects of the charge and of the
radius using a linear function in a2, namely

gða2Þ ¼ g0 þ a2g2 and r2ða2Þ ¼ r20 þ a2r22; ð61Þ

and obtain for the dipole ansatz the following combined
ðQ2; a2Þ-dependence,

GðQ2; a2Þ ¼ gða2Þ�
1þ Q2

12
r2ða2Þ

	
2
; ð62Þ

which we will use to fit all form factors after factoring in
any pion pole dependence for a given lattice spacing.
In the case of the z-expansion, the form factor is

parametrized as

GðQ2Þ ¼
Xkmax

k¼0

akzkðQ2Þ; ð63Þ

where

zðQ2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þ t0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tcut þ t0
p ð64Þ

with −tcut < t0 < ∞ and t0 an arbitrary number and tcut the
particle production threshold. For tcut, we use the three-pion
production threshold, namely tcut ¼ ð3mπÞ2 [69] with
mπ ¼ 0.135 GeV. For t0, we use a vanishing value such
that the charge is given by a0 and the radius is proportional
to the ratio a1=a0, namely

g ¼ a0 and r2 ¼ −
3a1

2a0tcut
with t0 ¼ 0: ð65Þ

We introduce the dependence on the lattice spacing by
writing

GðQ2; a2Þ ¼ gða2Þ
Xkmax

k¼0

ckða2ÞzkðQ2Þ; ð66Þ

where ck ¼ ak=a0 and

c0ða2Þ ¼ 1; c1ða2Þ ¼ −
2tcut
3

r2ða2Þ and

ckða2Þ ¼ ck;0 þ a2ck;2 for k ≥ 2: ð67Þ

The coefficients ck can be further constrained by requiring
that the z-expansion converges smoothly to zero at infinite
momentum, namely [70]

Xkmax

k¼0

ck
dnzk

dzn

����
z¼1

¼ 0 with n ¼ 0; 1;… ð68Þ

This suggests that priors centered around zero should be
used to help enforce this condition at various orders with a
width that falls like 1=k [25]. Additionally, an examination
of the explicit spectral functions and scattering data [69]
motivates the bound of jckj ≤ 5. We, therefore, use the
following Gaussian priors,

ck;0 ∼ 0ðw=kÞ; ck;2 ∼ 0ð20w=kÞ for k ≥ 2; ð69Þ

where w ≤ 5 is a fitting parameter that we vary together
with the order of the expansion kmax ∈ ½1; 4�.
In both the dipole and z-expansion fits that follow, we

will refer to one- and two-step fits. In two-step fits, we first
fit the Q2-dependence for each lattice spacing separately
and then take the continuum limit of the parameters, while
in the one-step fits, the three ensembles are fitted together.
The one-step approach provides for a global χ2.

VII. AXIAL FORM FACTOR GAðQ2Þ
We first present the analysis of the axial form factor,

which at Q2 ¼ 0 yields the axial charge already discussed
in Sec. II.

A. Dipole ansatz

An example fit using the dipole ansatz is shown in
Fig. 12, where we depict the results of using Eq. (62) to
perform a combined fit of the form factors for the three
ensembles, i.e. following a one-step approach. The values
for GAðQ2Þ shown in this figure are obtained using two-
state fits in the range 0 ≤ Q2 < 1 GeV2.
As already mentioned, an alternative to the two-step

approach is to perform a simultaneous fit to the Q2-
dependence for all three ensembles. To demonstrate that
taking a global fit in a one-step approach is equivalent to
performing a two-step approach, we show in Fig. 13 the
continuum limit of the axial charge and the radius extracted
from the one- and two-step approaches. In Table VI, we
give the corresponding values extracted when using the
one- and two-step approaches, including their reduced χ2.
As can be seen, the continuum values are in perfect
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agreement both in terms of the central value and in terms of
the error. The reduced χ2 for the two-step procedure only
refers to the linear extrapolation to the continuum limit.
The one-step approach provides for a single value of χ2

that reflects the quality of the fit to the combined Q2- and
a2-dependence, and it is thus more practical to compute the
relative weights between the various fits when carrying out
our model averaging. Therefore, from now on, we will
proceed with the one-step approach.
Using the one-step approach, we perform dipole fits

to results obtained using two- and three-state fits to the
correlators. We vary the largest Q2 included in the fits, and
for the two-state fit results, which are more precise, we also

repeat the fits omitting the result at Q2 ¼ 0. The reasoning
is that at Q2 ¼ 0 only GAð0Þ survives, which can affect the
determination of the energy extracted for the first excited
state, as already shown in Fig. 10. A comparison of the
results obtained using these variations is shown in Fig. 14.
We perform a model average of the results separately for
the cases of using two- and three-state fits on the corre-
lators. We find

gA ¼ 1.196ð24Þ ðtwo statesÞ
¼ 1.228ð34Þ ðthree statesÞ

hr2Ai ¼ 0.210ð17Þ fm2 ðtwo statesÞ
¼ 0.300ð59Þ fm2: ðthree statesÞ

ðdipole ansatzÞ

ð70Þ
Since the values are compatible, we opt to quote the model-
averaged values obtained from data that were extracted

FIG. 12. The axial form factor obtained on each of the three
ensembles using two-state fits (blue circles, orange downward-
pointing triangles, and green triangles). The continuum limit form
factor (red curve and band) and value for the axial charge (red
cross) are obtained via dipole fits within the one-step approach.
Also shown are the form factor curves obtained at the three
values of the lattice spacing (blue, orange, and green curves,
respectively).

FIG. 13. The axial charge (top) and radius (bottom) obtained
via a dipole fit to each ensemble (blue circles, orange down-
wardpointing triangles, and green triangles). The filled red
asterisks and corresponding bands show the continuum limit
using the two-step approach, i.e. via fits linear in a2 to the axial
charge and radius obtained at each value of a2. At a2 ¼ 0, we
compare with results obtained from a one-step approach (open
stars), as described in the text.

FIG. 14. Results for the axial charge and radius extracted using
the dipole ansatz, versus Q2

max, i.e. the maximum value of Q2

included in the fit.We show separately dipole fits to results obtained
from two-state (red squares) and three-state (blue diamonds) fits to
the three- and two-point correlation functions. For the two-state fit
case,we include a variation inwhich thevalues of the form factors at
Q2 ¼ 0 are not included in the fit (open squares).

TABLE VI. Values for the nucleon isovector axial charge gA,
radius rA, and reduced χ2 obtained using a dipole ansatz to fit
each ensemble (first three rows). We also give the continuum
limit values using the one-step (second to last row) and two-step
(last row) approaches.

Ensemble gA hr2Ai (fm2) χ2=Nd.o.f.

cB211.72.64 1.216(11) 0.2632(67) 3.72
cC211.60.80 1.2120(85) 0.2519(47) 1.61
cD211.54.96 1.2174(95) 0.2476(59) 1.16
a ¼ 0, 1-step 1.218(22) 0.231(14) 2.04
a ¼ 0, 2-step 1.217(22) 0.230(14) 0.19
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using two-state fits to the correlators. We then give as a
systematic error the difference between the central values
of the model-averaged results obtained from data extracted
using two- and three-state fits to the correlators. We find

gA ¼ 1.196ð24Þð32Þ
hr2Ai ¼ 0.210ð17Þð90Þ fm2:

ðdipole ansatzÞ ð71Þ

B. z-expansion

1. First-order z-expansion

We repeat the same procedure using a first-order z-
expansion that has the same number of parameters as the
dipole ansatz, and where no priors are employed. In Fig. 15,
we demonstrate the one-step approach as an example, with
the same notation as Fig. 13; in Fig. 16 and Table VII, we
similarly demonstrate that our one-step approach is equiv-
alent to the two-step approach; and in Fig. 17, we depict the
results as a function of Q2

max for the case of data extracted
using two- and three-state fits to the correlators. After
model averaging, we find

gA ¼ 1.283ð31Þ ðtwo statesÞ
¼ 1.249ð37Þ ðthree statesÞ

hr2Ai ¼ 0.421ð18Þ fm2 ðtwo statesÞ
¼ 0.435ð81Þ fm2 ðthree statesÞ:

ðz1-expansionÞ

ð72Þ

Again, we observe that the values are compatible whether
we use results from the two- or three-state fits to the
correlators, and thus we quote the model-averaged value for
the case of using two-state fits and take as a systematic error
the difference between the central values obtained when
using two- and three-state fits to the correlators. We find

gA ¼ 1.283ð31Þð34Þ
hr2Ai ¼ 0.421ð18Þð14Þ fm2:

ðz1-expansionÞ ð73Þ

2. Convergence of the z-expansion

In order to check the stability of the z-expansion fits, we
study the convergence of the z-expansion as a function of
the order and the amplitude of the priors used in Eq. (69).

FIG. 15. The same as in Fig. 13, but using the first-order z-
expansion to fit the Q2-dependence.

FIG. 16. The axial charge (top) and radius (bottom) obtained
via first-order z-expansion fits to each ensemble. The notation is
the same as in Fig. 13.

TABLE VII. Values for the nucleon isovector axial charge gA,
radius rA, and reduced χ2 obtained using a first-order z-expansion
fit on each ensemble and extrapolated to the continuum limit
using our one- or two-step approach.

Ensemble gA hr2Ai (fm2) χ2=Nd.o.f.

cB211.72.64 1.277(12) 0.4349(54) 1.43
cC211.60.80 1.2739(90) 0.4248(41) 1.34
cD211.54.96 1.281(10) 0.4214(52) 0.79
a ¼ 0, 1 step 1.292(24) 0.431(12) 1.32
a ¼ 0, 2 step 1.291(24) 0.431(12) 0.29

FIG. 17. Results for the axial charge and radius extracted using
the first-order z-expansion, versusQ2

max. The notation is the same
as in Fig. 14.
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Priors are used to ensure convergence of the z-expansion
[70] being centered around zero with a width that decreases
with 1=k. We observe convergence for kmax ≥ 3 for all
cases. We vary the amplitude of the prior using w∈ ½1; 5�.
In Fig. 18, we depict the extracted axial charge and radius
as a function of the prior width and Q2

max, the largest Q2

used in the fit. We observe that the results obtained by
changing the width of the priors are all consistent. The
result of the model average is

gA ¼ 1.245ð28Þ ðtwo statesÞ
¼ 1.231ð34Þ ðthree statesÞ

hr2Ai ¼ 0.339ð48Þ fm2 ðtwo statesÞ
¼ 0.333ð72Þ fm2 ðthree statesÞ;

ðz3-expansionÞ

ð74Þ

quoting again the value from the data extracted from two-
state fits with a systematic error in the difference between
the central values of the model-averaged results when using
data from two- and three-state fit to the correlators

gA ¼ 1.245ð28Þð14Þ
hr2Ai ¼ 0.339ð67Þð06Þ fm2:

ðz3-expansionÞ ð75Þ

Following a procedure similar to the one-step approach,
we perform the fits in two steps; namely, we first perform
the fits and model average for each ensemble and then take
the continuum limit. This two-step approach yields results
that are compatible with the one-step approach, as depicted
in Fig. 19 with results provided in Table VIII.

C. Final results

Having presented the variations used to extract the axial
charge and radius at the continuum limit, we continue here
to discuss the consistency among them and how we choose
our final values. To summarize the variations, we have used
(i) in Sec. V C a direct determination using the matrix
element atQ2 ¼ 0 and, for the radius, the matrix element at
the lowest nonzeroQ2 value yielding the results of Eq. (57);
(ii) in Sec. VII A the dipole ansatz to describe the
Q2-dependence resulting in the values given in Eq. (71);
(iii) in Sec. VII B 1 the first-order z-expansion to describe
theQ2-dependence resulting in the values given in Eq. (73);
and (iv) in Sec. VII B 2 the higher-order z-expansion with
the resulting values given in Eq. (75). In Table IX, we
collect these values and depict them in Fig. 20. In all cases,
the central value and first error are obtained via model
averaging of the two-state fit data, while the second error is
a systematic obtained as the difference between the central
values when model averaging the two- or three-state fit
data. We note the following:

(i) We opt to take as our final values the results
extracted from using the two-state fits because

FIG. 18. Results for the axial charge and radius as a function of
Q2

max obtained from using the z3-expansion to parametrize the
Q2-dependence. For each Q2

max, we depict five points having
prior width w ¼ 1, 2, 3, 4, 5. The points are shifted to the right as
w increases with an increasing symbol size.

FIG. 19. The axial charge (top) and radius (bottom) obtained
via third-order z-expansion fits and model average for each
ensemble. The notation is the same as that in Fig. 13.

TABLE VIII. Values for the nucleon isovector axial charge gA
and radius rA and reduced χ̃2 of the best fit obtained using a
model average over third-order z-expansion fits on each ensemble
and extrapolated to the continuum limit using the one- or two-step
approaches.

Ensemble gA hr2Ai (fm2) χ2=Nd.o.f.

cB211.72.64 1.291(12) 0.455(20) 0.80
cC211.60.80 1.284(12) 0.417(20) 0.64
cD211.54.96 1.274(12) 0.398(25) 0.58
a ¼ 0, 1-step 1.245(28) 0.339(48) 0.69
a ¼ 0, 2-step 1.256(27) 0.333(51) 0.05
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they are in general more stable, having fewer fit
parameters and smaller errors and, thus, allowing a
better study of the convergence to the ground state.
We reiterate that we observe very good agreement
between results extracted using data determined
by fitting correlators to two- or three-states, as
depicted in Fig. 11.

(ii) All results agree with the value extracted using the
zk-expansion with k ¼ 3 within error bars. Results
using the dipole ansantz and the z1-expansion yield,
respectively, smaller and larger values as compared
to those using the z3-expansion. This observation is
compatible with what has been found in another
study [23].

(iii) Furthermore, the results using the z3-expansion are
completely consistent with those from the direct
approach. Since the direct approach uses the matrix
element atQ2 ¼ 0 for gA and for hr2Ai the slope using
also the lowest nonzero value of Q2, it does not
depend on any ansatz used to fit the Q2-dependence
of the form factor. The fact that the z3-expansion
yields the same results shows that indeed it provides
a model-independent approach to extract the same
information on these two quantities. The error when
using the z3-expansion is smaller compared to the
errors when using the direct approach since the
z-expansion makes use of more information.

Given the above observations, we quote as our final values
the results from the zk-expansion that has shown conver-
gence for k ¼ 3 and is model independent. Thus, we take as
our final values for the axial charge and radius

gA ¼ 1.245ð28Þð14Þ½31�
hr2Ai ¼ 0.339ð48Þð06Þ½48� fm2;

ðfinal valueÞ ð76Þ

where in the square brackets we have combined quadrati-
cally the two errors. We also collect all our final values in
the conclusions in Eq. (97).
In Figs. 21 and 22, we show the model-averaged results

as a function of Q2 when using the z3-expansion for two-
and three-state fits to the correlators, respectively. As can be
seen, in Fig. 11, the data extracted using two- and three-
state fits are compatible. However, small statistical fluctu-
ations and the lack of data in the case of the three-state
fit analysis for Q2 > 0.5 GeV2 can affect the fits of the
Q2-dependence and thus the continuum limit, given that we
only have three lattice spacings. We remind the reader that
we perform simultaneously fits to the Q2-dependence for
each ensemble and at the same time take the continuum
limit. We compare the resulting GAðQ2Þ in the continuum
limit for these two cases in Fig. 23, where we give the
continuum fits only. The fit parameters of the curves
corresponding to the standard form of the z-expansion in

TABLE IX. Results for the isovector axial charge and radius
extracted using four different approaches as described in the text.
The values are depicted in Fig. 20.

Method gA hr2Ai (fm2)

Direct approach 1.244(45)(20) 0.354(96)(61)
Dipole ansatz 1.196(24)(32) 0.210(17)(90)
z1-expansion 1.283(31)(34) 0.421(18)(14)
z3-expansion 1.245(28)(14) 0.339(48)(06)

FIG. 20. Results for the isovector axial charge and radius
extracted using four different approaches as described in the text.
Numerical values are given in Table IX.

FIG. 21. Continuum limit of GAðQ2Þ using the z3-expansion
and data from the two-state fit analysis of the correlators up
to Q2 ¼ 1 GeV2 for the three ensembles with the symbols as
indicated in the header of the figure.

FIG. 22. Continuum limit of GAðQ2Þ using the z3-expansion
and data from the three-state fit analysis of the correlators up to
Q2 ¼ 0.47 GeV2 for the three ensembles with the symbols as
indicated in the header of the figure.
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Eq. (63) with kmax ¼ 3, tcut ¼ ð3mπÞ2, mπ ¼ 0.135 GeV,
and t0 ¼ 0 GeV2 are

a⃗2-state ¼ ½1.245ð28Þ;−1.19ð18Þ;−0.54ð55Þ;−0.13ð59Þ�
a⃗3-state ¼ ½1.231ð34Þ;−1.16ð27Þ;−0.80ð47Þ;−1.23ð58Þ�:

ð77Þ

As can be seen, the resulting curve for the three-state fit
case is in agreement with that for the two-state fit for
Q2 ≤ 0.5 GeV2. Also, the parameters of the two fits are
in good agreement. Since, however, the three-state fits
become unstable for Q2 > 0.5 GeV2, we take a2-state as our
central values and the difference between the central values
of a2-state and a3-state as the systematic error to account for
systematics due to excited states. Our final parametrization
for the form factor is then

a⃗A ¼ ½1.245ð28Þð14Þ½31�;−1.19ð18Þð03Þ½18�;
− 0.54ð55Þð26Þ½61�;−0.13ð59Þð1.1Þ½1.3��

corra⃗;A ¼

0
BBB@

1.0 −0.421 0.247 −0.246
−0.421 1.0 −0.918 0.799

0.247 −0.918 1.0 −0.952
−0.246 0.799 −0.952 1.0

1
CCCA; ð78Þ

where we have used the correlation matrix of the param-
eters from two-state fit data. More information on the form
factors at the continuum limit is provided in the Appendix.
We include the resulting GAðQ2Þ when we assign this

systematic error to the parameters of the continuum fit in
Fig. 23. We consider the values of GAðQ2Þ including the
systematic uncertainty as our final results. Our final results
for the form factor GAðQ2Þ are given in Table XII. We will

adopt the same strategy for the analysis of the other two
form factors and for checking the PCAC and PPD relations.

VIII. INDUCED PSEUDOSCALAR GPðQ2Þ AND
PSEUDOSCALAR G5ðQ2Þ FORM FACTORS

We perform a similar analysis to determine GPðQ2Þ and
G5ðQ2Þ to the one discussed in detail above for GAðQ2Þ.
The additional complication in the case of GPðQ2Þ and
G5ðQ2Þ is that both form factors have a pole, atQ2 ¼ −m2

π ,
which needs to be removed before proceeding to apply
similar fit functions to the ones applied for GAðQ2Þ.
Therefore, before proceeding with the Q2-dependence
analysis of these form factors, we present a detailed study
of pion pole dominance.

A. Pion pole dominance

The pion pole dominance hypothesis introduced in
Sec. II can be tested by forming two ratios of form factors,
one of which is

GAðQ2Þ
GPðQ2Þ ¼

Q2 þm2
π

4m2
N

����
Q2→−m2

π

; ð79Þ

arising from Eq. (20) and the second rPPD;2 derived in
Eq. (26) assuming a nonzero Goldberger-Treiman discrep-
ancy. Using the results for the form factors from the
two-state fits to the correlators, we find the ratios depicted
in Fig. 24. We indeed observe for both ratios a linear
dependence in Q2, as expected from Eqs. (27) and (79),
respectively. We also observe clear cutoff effects for the
first ratio, whereas for the second, the results from the three
ensembles are consistent among them. To capture the
a-dependence, we fit the ratios using the functional form

fðQ2; a2Þ ¼ b0 þ b2a2 þ ðc0 þ c2a2ÞQ2; ð80Þ

where we include the leading-order a-dependence to both
the intercept and the Q2-slope. We also perform fits where
we set b2 and c2 to zero to account for the fact that the
second ratio rPPD;2 shows no detectable cutoff effects to the
accuracy of our data. We then perform a model average
over all fits where we both include and exclude cutoff
effects as well as change the largestQ2 value,Q2

max, used in
the fit. The resulting continuum fits are shown in Fig. 24.
The conclusions drawn from Fig. 24 are as follows:
(i) The pion pole dominance hypothesis is satisfied for

both ratios at the pole since we obtain the expected
value at Q2 ¼ −m2

π, namely

GAð−m2
πÞ

GPð−m2
πÞ

¼ 0.0004ð15Þ ≈ 0

rPPD;2ð−m2
πÞ ¼ 1.015ð12Þ ≈ 1: ð81Þ

FIG. 23. Results on GAðQ2Þ at the continuum limit when fitting
data extracted from the two-state (red band) and three-state (blue
band) fit analysis of the correlators. The darker blue curve
indicates up to which Q2 we had data for the three-state fit
analysis. The yellow band is when we added systematic errors to
the parameters that define the red curve as discussed in the text.
The parameters of the fit are given in Eq. (78).
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(ii) For the first ratio, GAðQ2Þ=GPðQ2Þ, we find a slope
and intercept in the continuum limit consistent with
the PPD hypothesis. Namely, from the intercept at
Q2 ¼ −m2

π , we find a value of the pion pole mass at
the continuum limit of

mpole
π ¼ 0.141ð20Þ GeV ≈ 0.135 GeV ð82Þ

compatible with the physical pion mass, and from
the Q2-slope, whose value is expected to be 1=4m2

N ,
we find a nucleon mass of

mN ¼ 0.9401ð39Þ GeV ≈ 0.938 GeV; ð83Þ

when the fit is done with Q2
max ¼ 0.3 GeV2. Thus,

we conclude that the ratio GAðQ2Þ=GPðQ2Þ satisfies
the PPD relation close to the pole.

(iii) Examining the pion pole mass determined from the
fits to a given ensemble at finite lattice spacing, we
find a significantly different pion pole mass. It is
well known that the twisted-mass fermion formu-
lation has significant cutoff effects in the pion
mass [71] but much milder ones in other quantities
such as other hadron masses [72] or hadronic
operator matrix elements [71]. In Table X, we give
the pion masses that we find per ensemble as well as

the values of the unitary pion mass, denoted by mTM
π

and the Osterwalder-Seiler (OS) pion mass [73,74],
denoted by mOS

π . We would like to clarify that the
difference between the charged pion mass mTM;þ=−

π

and its neutral counterpartmTM;0
π is anOða2Þ artifact

due to the breaking of isospin symmetry in the
clover twisted-mass fermion lattice action formu-
lation. We find that the mass difference between
charged and neutral unitary pions mTM;−=þ

π −mTM;0
π

is of order 20–40 MeV at the lattice spacings
employed here. The uncertainty in the determination
of this mass difference arises due to the statistical
error of the disconnected quark contribution entering
in the computation of mTM;0

π . While the larger
difference between mTM;þ=−;0

π and mOS
π is also an

Oða2Þ cutoff effect of the OS mixed action, the
coefficient is different. Technically, the difference
between the neutral mTM;0

π and mOS
π can be traced

back to the presence in the two-point correlator of
the neutral TM pion of quark-disconnected contri-
butions of Oða2Þ that are absent in the two-point
correlator of the OS pion.

We observe that the pion pole mass that we find is
very close to mOS

π . This is because, in our evaluation
of GPðQ2Þ, we use the flavor diagonal isovector
current and neglect the noisy Oða2Þ quark discon-
nected contributions, which in turn corresponds to
computing the three-point correlators in the OS
mixed action formulation. We, thus, obtain a neutral
pion pole with mass given by the OS pion mass,
mOS

π . In this way, indeed, we can understand the
large cutoff effects observed for form factors that
have a pion pole behavior within the twisted-mass
formulation with OS-type valence quarks in contrast
to other fermion discretization schemes that observe
similar cutoff effects in both GAðQ2Þ and GPðQ2Þ,
as when e.g. using Clover Wilson fermions [23],
although in their formulation, the form factors have
OðaÞ discretization errors.

(iv) We demonstrate that cutoff effects are due to the
pion pole in Fig. 25, where we show results for the
ratio rPPD;1 defined in Eq. (25) removing the pole
using either the unitary or the OS pion mass. Data
obtained using the OS pion mass show, indeed,

FIG. 24. GAðQ2Þ=GPðQ2Þ (top) and rPPD;2 (bottom) for the
three ensembles. The blue, orange, and green curves show the
results of combined linear fit in Q2 for the cB211.72.64,
cC211.60.80, and cD211.54.96, respectively, using the
form of Eq. (80) to take into account cutoff effects. The red band
is the continuum extrapolation after performing the model
average as described in the text. The dashed line shows the
expected value of the ratios if PPD close to the pion pole is
satisfied, namely a slope of 1=4m2

N from Eq. (79) for the first ratio
and unity for the second.

TABLE X. Pion pole mass extracted from the ratio GAðQ2Þ=
GPðQ2Þ for each ensemble, compared to the simulated unitary
pion mass and the Osterwalder-Seiler pion mass.

Ensemble mpole
π (MeV) mTM

π (MeV) mOS
π (MeV)

cB211.72.64 299.3(4.5) 140.2(2) 297.5(7)
cC211.60.80 266.7(3.2) 136.6(2) 248.9(5)
cD211.54.96 235.8(4.8) 140.8(3) 210.0(4)
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very mild cutoff effects and yield a value of rPPD;1
close to unity as expected by PPD and as observed
by other groups using clover fermions.

(v) The deviation from unity observed for the ratio,
rPPD;2, is connected to the Goldberger-Treiman
discrepancy as given in Eq. (28) where we followed
a similar analysis to that of Ref. [48]. Using the slope
of our fit at the continuum limit to extract ΔGT from
Eq. (28) and d̄18 from Eq. (23), we find

ΔGT ¼ −0.0213ð38Þ or ≈ 2%

d̄18 ¼ −0.73ð13Þ GeV−2: ð84Þ

We note that in extracting these values, we use our
final values for gA and hr2Ai given in Eq. (76). For
both ΔGT and the low-energy constant d̄18, we find
values that are compatible with chiral perturbation
theory, which predicts for ΔGT ∼ 2% and for
−1.40ð24Þ GeV−2 < d̄18 < −0.78ð27Þ GeV−2 de-
pending on the type of fit used in the determination
[46]. Our determination gives a more precise value
and provides valuable input for chiral perturbation
theory.

(vi) The mild cutoff effects observed for the ratio rPPD;2
in Fig. 24 is understood by the fact that this ratio
involves GPðQ2Þ and G5ðQ2Þ, both of which have
the same pion pole mass dependence, thus canceling
the cutoff effects.

B. Parametrizations for the fits at the continuum
of GPðQ2Þ and G5ðQ2Þ

In the previous section, we made three important
observations; namely, (i) GPðQ2Þ and G5ðQ2Þ have the
same pion pole mass dependence at each lattice spacing;
(ii) the pion pole mass obtained using valence OS quarks in

the mixed action twisted fermion mass formulation
shows significant cutoff effects, much larger than the
mass splitting between the unitary charged and neutral
pion; and (iii) in the continuum limit, we obtained a
pion pole consistent with the physical pion mass of
mπ ¼ 0.135 GeV. Based on these observations, we use
the following functional form,

GwpoleðQ2; a2Þ ¼ 1

Q2 þm2
π þ ba2

GresðQ2; a2Þ; ð85Þ

to fit GPðQ2Þ and G5ðQ2Þ, where for Gres we used the
zk-expansion and repeat the same analysis presented for
GAðQ2Þ in Sec. VI. Instead of fitting G5ðQ2Þ, we fit the
scaled form factor G̃5ðQ2Þ given by

G̃5ðQ2Þ ¼ 4mN

m2
π
mqG5ðQ2Þ: ð86Þ

The combination mqG5ðQ2Þ is scale independent and
renormalizes with ZS=ZP, which is accurately determined.
Furthermore, scaling by 1=m2

π takes into account the slight
difference in the unitary pion mass for each ensemble (see
Table I) and by mN makes the whole combination dimen-
sionless. Since the pion pole mass is the same for both
GPðQ2Þ and G5ðQ2Þ, we, in addition, perform a combined
fit of both form factors taking the parameter “b” of the pole
to be a common fit parameter. Since, as demonstrated in
the previous section, the PPD relation is satisfied at the
continuum limit, we perform fits where we enforce the
value of gπNN extracted from both form factors to take
the same value at the continuum limit. This is implemented
by using a z3-expansion with t0 ¼ −m2

π and, therefore,

Gresð−m2
π; 0Þ ¼ a0; ð87Þ

since, according to Eq. (64), zð−m2
πÞ ¼ 0 and a0 is a fit

parameter as given in Eq. (63). The coupling constant gπNN
is then the same for both form factors if

aðPÞ0 ¼ ãð5Þ0 ¼ a0; ð88Þ

namely by making a0 a common fit parameter for both
GPðQ2Þ and G̃5ðQ2Þ.

C. Convergence of the z-expansion

As for the analysis performed for GAðQ2Þ, we study the
convergence of the zk-expansion as a function of the order
k, the width of the priors used, and the largestQ2 employed
in the fit. We first discuss results when we fit separately
GPðQ2Þ and G̃5ðQ2Þ without enforcing to have the same
pole or the same value of gπNN , and we monitor con-
vergence by looking at the values it takes fitting GPð2Þ

FIG. 25. The ratio rPPD;1 for the cB211.72.64 (blue circles),
cC211.60.80 (orange downward-pointing triangles), and
cD211.54.96 (green upward-pointing triangles) ensembles
when using the unitary pion mass mTM

π (open symbols) and
the OS pion mass mOS

π (filled symbols) to remove the pion pole.
The pion mass values are given in Table X. The dashed line shows
the expected value rPPD;1 ¼ 1 based on PPD.
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and G̃5ðQ2Þ. We also monitor the value of g�P, which is
extracted from GPðQ2Þ using Eq. (9). In Fig. 26, we show
results on these quantities when we use data determined
from the two- and three-state fit analysis to the correlators.
We observe convergence for kmax ≥ 3, stability in the
values we extract as a function of Q2

max, and the width
of the priors for both data from the two- and three-case
analysis fits. After model averaging, we find

g�P ¼ 8.87ð66Þ ðtwo statesÞ
¼ 8.9ð1.1Þ ðthree statesÞ

gπNN ¼ 13.0ð1.2Þ ðtwo states; fromGPÞ
¼ 13.5ð1.3Þ ðtwo states; from G̃5Þ
¼ 13.3ð2.0Þ ðthree states; fromGPÞ
¼ 11.9ð1.7Þ ðthree states; from G̃5Þ: ð89Þ

All values determined using data from the two- and
three-state fit analyses are in good agreement with each
other. The values of gπNN extracted from GPðQ2Þ and
G̃5ðQ2Þ are also in agreement within error bars.
If we enforce the pion pole and gπNN to have the same

value as determined fromGPðQ2Þ andG5ðQ2Þ and perform
the same analysis, we obtain

g�P ¼ 8.99ð39Þ ðtwo statesÞ
¼ 8.50ð51Þ ðthree statesÞ

gπNN ¼ 13.25ð67Þ ðtwo statesÞ
¼ 12.56ð87Þ ðthree statesÞ: ð90Þ

These results are in agreement with those where we did not
enforce the value of gπNN and have smaller uncertainties
thanks to the combined fit approach. Since we have
demonstrated that the PPD relation is satisfied at the
continuum limit, we opt to quote these as our final results
for these quantities. We follow the same strategy as for
GAðQ2Þ and quote the model-averaged value determined
from using the data from the two-state fit analysis of
the correlators and take as a systematic error the
difference between the model-averaged central values of
the data from the two- and three-state fits. We find the
following values,

g�P ¼ 8.99ð39Þð49Þ½63�
gπNN ¼ 13.25ð67Þð69Þ½96� ðfinal valueÞ; ð91Þ

where in the square brackets we have summed in quad-
rature the two errors in parentheses. In Figs. 27 and 28,
we depict results on GPðQ2Þ obtained after taking the
model average using the data from the two- and three-state
fit analyses, respectively. In Figs. 29 and 30, we show the
corresponding results for G5ðQ2Þ.
In Table XI, we quote the values of the pion pole masses

per ensemble as extracted from the individual or combined
fit of GP and G̃5 from two- or three-state fit data. We
observe overall good agreement within errors, and the
values confirm the agreement already discussed in
Sec. VIII A with the OS pion mass reported in Table X.

FIG. 26. Induced pseudoscalar coupling, g�P, and pion-nucleon
coupling, gπNN , from a z3-expansion fit as a function of the largest
Q2 used in the fit, Q2

max, and the width of the priors. For
each Q2

max, we depict five points having prior width of w ¼ 1, 2,
3, 4, 5. The points are shifted to the right as w increases with an
increasing symbol size.

FIG. 27. Results on GPðQ2Þ for each ensemble (blue band for
the cB211.72.64, orange band for the cC211.60.80, and
green band for the cD211.54.96 ensemble) and at the
continuum limit (red band) using the z3-expansion to fit the
Q2-dependence of the data determined from the two-state fit
analysis up toQ2 ¼ 1 GeV2. The inner panel shows a zoom-in of
the region marked by the red square.
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One can drastically reduce cutoff effects by considering
for GPðQ2Þ and G5ðQ2Þ the following modified
expression:

GimprovedðQ2; a2Þ ¼ Q2 þm2
π;OS

Q2 þm2
π;TM

GwpoleðQ2; a2Þ: ð92Þ

In Fig. 31, we show the improved expressions for form
factors per ensemble. We observe that upon using the
improved expression defined in Eq. (92), the results
per ensemble are compatible with each other and with
those obtained in the continuum limit by extrapolating
GwpoleðQ2Þ. These findings further confirm the interpreta-
tion that the sizable cutoff artifacts in GPðQ2Þ and G5ðQ2Þ
stem from the cutoff effects in using the OS pion mass for
the pole. Since at finite a we neglect disconnected Oða2Þ
terms in our form factor computation, this is indeed the
expected behavior and fully justifies our fit ansatz
in Eq. (85) for the continuum extrapolation of the data
when using Gwpole.

D. Continuum results for GPðQ2Þ and G5ðQ2Þ
We follow the same procedure as the one for GA in

Sec. VII C to arrive at the Q2 parametrization of GPðQ2Þ

FIG. 29. Results on G̃5ðQ2Þ as defined in Eq. (86) for each
ensemble (blue band for the cB211.72.64, orange band for the
cC211.60.80, and green band for the cD211.54.96 en-
semble) and at the continuum limit (red band) using the z3-
expansion to fit the Q2-dependence of the data determined from
the two-state fit analysis up to Q2 ¼ 1 GeV2. The inner panel
shows a zoom-in of the region marked by the red square.

FIG. 30. Results on G̃5ðQ2Þ as defined in Eq. (86) using the
z3-expansion to fit the Q2-dependence of the data determined
from the three-state fit analysis of the correlators up to
Q2 ¼ 0.47 GeV2. The notation is the same as that of Fig. 29.

FIG. 28. Results on GPðQ2Þ using the z3-expansion to fit the
Q2-dependence of the data determined from the three-state fit
analysis of the correlators up toQ2 ¼ 0.47 GeV2. The notation is
the same as that for Fig. 27.

TABLE XI. Pion pole masses per ensemble extracted from the
individual or combined fit of GP and G̃5 from two- or three-state
fit data.

Ensemble mGP
π (MeV) mG5

π (MeV) mGP;G5
π (MeV)

2-state cB211.72.64 279(27) 295(27) 284(21)
cC211.60.80 249(22) 262(22) 254(17)
cD211.54.96 221(17) 231(17) 224(13)

3-state cB211.72.64 306(45) 317(44) 292(35)
cC211.60.80 271(37) 281(37) 260(29)
cD211.54.96 238(29) 246(29) 229(23)

FIG. 31. Results per gauge ensemble for GPðQ2Þ (left) and
G̃5ðQ2Þ (right) when using the data for GwpoleðQ2Þ (open
symbols) compared to those when using GimprovedðQ2Þ (filled
symbols) of Eq. (92) by correcting for the pole OS pion mass. The
continuum limit form factors (red band) are those determined in
Figs. 27 and 29 using the data for Gwpole.
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and G5ðQ2Þ. In particular, in Fig. 32, we show the
corresponding results for GPðQ2Þ as those shown for
GAðQ2Þ in Fig. 23 showing the comparison of results
obtained when using data from the two- and three-state fit
analysis after removing the pole; namely, we show results
for ðQ2 þm2

πÞGPðQ2Þ. As in the case of GAðQ2Þ, the data
from the three-state analysis of the correlators are in
agreement with those from the two-state fit analysis.
However, after the continuum, extrapolated results using
the data from the three-state fit analysis yield systematically
smaller values for GPðQ2Þ for higher Q2 values. As we
already pointed out, the three-state fit analysis becomes
unstable for Q2 > 0.5 GeV affecting the fits to the
Q-dependence. Since cutoff effects are larger for GPðQ2Þ,
the slope in linear a2 extrapolation is larger and thus more
affected by small fluctuations in the data given that we also
only have three lattice spacings. This explains why the
continuum results in the two cases differ by up to a standard
deviation at large Q2 while the lattice data for the three
ensembles are compatible. Having higher statistics will
enable us to extract more reliable results using the three-
state fit procedure, and having more lattice spacings will
better control the continuum extrapolation, something that
we plan to do in the future when more computational
resources are available.
In the following, we provide parameters for the standard

form of the z-expansion in Eq. (63) with kmax ¼ 3,
tcut ¼ ð3mπÞ2, mπ ¼ 0.135 GeV, and t0 ¼ −m2

π . The fit
parameters of the two- and three-state fit data curves are
given by

a⃗2-state ¼ ½4.62ð23Þ;−3.0ð1.2Þ;−4.7ð2.5Þ;−0.1ð2.4Þ�
a⃗3-state ¼ ½4.38ð30Þ;−3.1ð1.5Þ;−5.9ð2.6Þ;−2.9ð2.0Þ�:

ð93Þ

As can be seen, the parameters are in agreement, albeit
some carry large statistical errors, and, thus, we follow the
same strategy as for GAðQ2Þ for determining the best
parametrization of the continuum results and for estimating
the errors. Our final parametrization that takes into account
systematic errors is

⃗aP ¼ ½4.62ð23Þð24Þ½33�; −3.0ð1.2Þð0.1Þ½1.2�;
− 4.7ð2.5Þð1.2Þ½2.8�; −0.1ð2.4Þð2.8Þ½3.7��

corr ⃗a;P ¼

0
BBB@

1.0 −0.812 0.414 0.151

−0.812 1.0 −0.819 0.23

0.414 −0.819 1.0 −0.713
0.151 0.23 −0.713 1.0

1
CCCA:

ð94Þ

The values of GPðQ2Þ that result from this parametrization
are given in Table XIII of the Appendix.
Repeating the same analysis for G̃5ðQ2Þ, we find the

results shown in Fig. 33, after removing the pole; namely,
we show results for ðQ2 þm2

πÞG̃5ðQ2Þ. The behavior of the
continuum limit results is the same as that observed for
GPðQ2Þ since both have similar cutoff effects due to the
pion pole dominance. The fit parameters of the two- and
three-state fit data curves are given by

a⃗2-state¼½4.62ð23Þ;−2.2ð1.2Þ;−2.9ð2.4Þ;−1.2ð2.4Þ�
a⃗3-state¼½4.38ð30Þ;−4.3ð1.6Þ;−0.1ð2.7Þ;−0.7ð2.0Þ�: ð95Þ

Our final parametrization that takes into account systematic
errors is

FIG. 32. Results on ðQ2 þm2
πÞGPðQ2Þ at the continuum limit

when fitting data extracted from the two-state (red band) and
three-state (blue band) fit analysis of the correlators. The darker
blue curve indicates up to which Q2 we had data for the three-
state fit analysis. The yellow band is when we added systematic
errors to the parameters that define the red curve as discussed in
the text. The parameters of the fit are given in Eq. (94).

FIG. 33. Results on ðQ2 þm2
πÞG̃5ðQ2Þ at the continuum

limit when fitting data extracted from the two-state (red
band) and three-state (blue band) fit analysis of the corre-
lators. The darker blue curve indicates up to which Q2 we
had data for the three-state fit analysis. The yellow band is
when we added systematic errors to the parameters that
define the red curve as discussed in the text. The parameters
of the fit are given in Eq. (96).
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a⃗5 ¼ ½4.62ð23Þð24Þ½33�;−2.2ð1.2Þð2.1Þ½2.5�;
− 2.9ð2.4Þð2.8Þ½3.7�;−1.2ð2.4Þð0.5Þ½2.4��

corra⃗;5 ¼

0
BBB@

1.0 −0.804 0.435 0.14

−0.804 1.0 −0.825 0.217

0.435 −0.825 1.0 −0.694
0.14 0.217 −0.694 1.0

1
CCCA: ð96Þ

The values of G̃5ðQ2Þ that result from this parametrization
are given in Table XIV of the Appendix, where we also
provide more information on the form factors at the
continuum limit.

E. Continuum limit of the PCAC and PPD relations

Having determined the three form factors GAðQ2Þ,
GPðQ2Þ, and G5ðQ2Þ, we can check the PCAC relation
at the continuum limit. We use the values of the fit
parameters of the z3-expansion to the Q2-dependence after
taking the model average for each ensemble. We use the
form factors extracted from the two-state fits to correlators.
We also repeat using the three-state fits correlators. In both
cases, we also take the continuum limit of the parameters
determined at each lattice spacing, as previously discussed.
In Fig. 34, we depict the resulting rPCAC as a function ofQ2

using data from the two- and three-state fit analysis, upper
and lower panels, respectively. As can be seen, in both
cases, the PCAC relation is recovered in the continuum
limit. In addition, we obtain the PCAC ratio in the
continuum limit by using the final parametrizations of
the form factors that take into account the systematic
uncertainty due to how we treat excited states, i.e. differ-
ence of central values when we use two- or three-state
fits, namely the results shown by the yellow band of
Figs. 23, 27, and 29 for GAðQ2Þ, ðm2

π þQ2ÞGPðQ2Þ,
and ðm2

π þQ2ÞG̃5ðQ2Þ, respectively. As expected, the
PCAC relation is recovered, but the systematic error due
to the treatment of excited states increases the error band.
For comparison, we plot in Fig. 35 in the same format the
results for the ratio rPPD;1. It is no surprise that it also fulfills
the PPD dominance in the continuum limit, as already
discussed in relation to Fig. 24. As in the case of rPCAC, we
show both the continuum limit curve extracted using the
data from the two-state fit analysis and the one when we
include the systematic uncertainty difference between the
central values of the fit parameters determined by using
data from to the two- and three-state fit analysis.

IX. COMPARISON WITH OTHER RESULTS

Before comparing with other lattice QCD studies, we
compare in Fig. 36 our older results [19] where only the
cB211.72.64 ensemble was used to the ones obtained
in this work. As can be seen, the central values are in
agreement, showing that cutoff effects are mild for these

FIG. 34. Top: rPCAC as defined in Eq. (24). The blue,
orange, and green curves are the result of the combined fits
to GAðQ2Þ, ðm2

π þQ2ÞGPðQ2Þ, and ðm2
π þQ2ÞG̃5ðQ2Þ for the

cB211.72.64, cC211.60.80, and cD211.54.96 ensem-
bles, respectively. The fits are done using the z3-expansion to fit
the Q2-dependence of the data determined from the two-state fit
analysis up to Q2 ¼ 1 GeV2. The red curve and band show the
results at the continuum limit. The yellow band shows the errors
on the curve when systematic effects are taken into account, i.e.
using the final parametrization of the form factors given in
Eqs. (78), (94), and (96) for GAðQ2Þ, ðm2

π þQ2ÞGPðQ2Þ, and
ðm2

π þQ2ÞG̃5ðQ2Þ, respectively. Bottom: same as top panel, but
using three-state fit data and the respective z3-expansion to fit the
Q2-dependence up to Q2 ∼ 0.5 GeV2.

FIG. 35. rPPD;1 as defined in Eq. (25). The notation is the same
as that in the top panel of Fig. 34.
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quantities. The error on gA increases after taking the
continuum limit, while the error on the axial radius is
approximately the same. The fact that the errors on g�P and
gπNN are much smaller is a combination of two things:
(i) taking the continuum limit and (ii) in our previous work
having used the PCAC and PPD relation and lattice QCD
data on GAðQ2Þ which is more precisely determined. The
reason was that with one lattice spacing, we could not
account for the large cutoff effects on GPðQ2Þ and G5ðQ2Þ
leading to a violation of the PCAC relation. In this work, g�P
and gπNN are determined directly from our data on GPðQ2Þ
and G5ðQ2Þ, although, as shown in this work, in the
continuum limit, the PCAC relation holds and could be
used to determine them. We note that the trend that we
observe of errors becoming larger in a number of quantities
highlights the importance of having results using ensem-
bles with smaller lattice spacings. However, as it is well
known, simulations for lattice spacing a < 0.05 fm
become difficult due to the increase in the autocorrelation
time. There are ongoing efforts to address the critical
slowing down of Hybrid Monte Carlo simulations [75–77].
The nucleon axial charge and radius as well as the

coupling constants g�P and gπNN are compared to other
recent lattice QCD results in Fig. 37. We selected studies

that provide results at the continuum limit and at the
physical pion mass, either computed directly like ours or
via a combined chiral and continuum extrapolation. There
is nice agreement among all lattice QCD results on these
quantities, which are defined either at Q2 ¼ 0 or at the
limit Q2 → 0.
In Fig. 38, we compare our final parametrization of

GAðQ2Þ given in Eq. (78) with fits to experimental data on
GAðQ2Þ and with fits to data computed by other lattice
QCD groups. When compared to experimental data, our
results fall off slower than the fits to experimental data.
While our results are within two standard deviations as
compared to the recent results from the Minerνa experi-
ment [1], they show more tension with the fit to the
deuterium bubble-chamber data [25]. In addition, our
results are in good agreement with the results by the
Mainz group [22] and close to the results by PNDME [23]
and NME [48,80].
We comment below on some aspects of the lattice QCD

calculations:
(i) The results of this work are the only ones that are

extrapolated to the continuum limit using only en-
sembles simulated directly with physical pion mass.

(ii) The rest of the collaborations combined results
extracted using ensembles simulated with larger

FIG. 37. From left to right, we show recent lattice QCD results
on gA, hr2Ai, g�P, and gπNN . Our results are shown with the red star
and red error band. The blue triangles show the recent results by
PNDME [23], the green triangles show the results by RQCD
[18,78], the yellow squares show the results by NME [48], the
gray diamonds show the results by the Mainz group [22], and the
magenta square shows the results by CalLat [14]. The cyan circle
shows the FLAG21 average of lattice results published at the time
of the report [79].

FIG. 36. From left to right, we show our lattice QCD results
from this work on gA, hr2Ai, g�P, and gπNN (red stars). The open
circles show results extracted using only the cB211.72.64
[19] and the PCAC and PPD relations to extract g�P and gπNN

from GAðQ2Þ.

FIG. 38. Top: GAðQ2Þ determined within this work using the
parameters a2-state (red solid line and band) and when including
the systematic uncertainty as the difference in the central values
of a2-state and a3-state (yellow band). We compare to the fit to the
deuterium bubble-chamber data [25] shown by the green dashed
line with error band and with the fit to the recent MINERνA
antineutrino-hydrogen data [1] shown by the blue dot-dashed line
with error band. Bottom: GAðQ2Þ determined within this work
compared to two recent lattice QCD calculations: (i) by the Mainz
group [22] shown with the gray dashed line with its error band
and (ii) by PNDME [23] shown with the blue dashed line with its
error band.
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than physical pion masses to extrapolate to the
physical pion mass and to the continuum limit.
Specifically, NME [48] uses no physical point
ensembles, the Mainz group [22] uses one with
their physical point results having large errors, and
RQCD [18] and PNDME [23] use two physical pion
mass ensembles.

(iii) In the case of the RQCD [18] and PNDME [23],
results using the physical pion mass ensembles have
larger statistical errors as compared to those of
ensembles with heavier than physical mass. This
means that results at the physical point weigh less in
the extrapolation. Additionally, in both studies, the
form factors are computed using the physical pion
mass ensembles only for Q2 ≲ 0.3 GeV2, and in-
formation at high Q2 is provided by a subset of the
ensembles. We instead compute the form factors up
to Q2 ¼ 1 GeV2.

(iv) The PNDME Collaboration [23] uses a Nf ¼ 2þ
1þ 1 mixed action of clover fermions on a staggered
sea. They have employed 13 ensembles simulated at
four values of the lattice spacing, three values of the
pion mass (135, 220, and 310 MeV), and volumes
with 3.7 ≤ mπL ≤ 5.5. Their axial-vector current is
unimproved, which means they have OðaÞ cutoff
effects. Nevertheless, they observe mild dependence
on the lattice spacing. They also do not observe any
significant lattice volume dependence, while they do
see a stronger dependence on the pion mass. In this
work, we use ensembles with approximately the same
volume, namely with 3.6 ≤ mπL ≤ 3.9. Given the
volume study by PNDME [23], we expect finite size
effects on our results to be small.
PNDME also carried out an elaborate study of

excited states highlighting the effects of πN states and
concluded that an approach compatible with the one
employed in this work is the most suitable. Namely,
they propose performing a combined fit of all matrix
elements at the sameQ2 using common fit parameters
for the excited states. However, they do not include
a systematic error due to excited states, and this
explains why their results have a smaller error band.

(v) The Mainz group [22] has used 14 coordinated
lattice simulations (CLS) Nf ¼ 2þ 1 ensembles
simulated with clover-improved Wilson fermions
at four values of the lattice spacing, pion masses
in the range 130 MeV ≤ mπ ≤ 350 MeV, and vol-
umes with 3.9 ≤ mπL ≤ 5.9. Their current is OðaÞ
improved, and they observe a mild dependence on
the lattice spacing and the lattice volume, while a
stronger dependence on the pion mass, which
requires the inclusion of higher-order corrections
that are not considered by PNDME. The Mainz
group also includes a systematic error in a way
similar to what we do.

(vi) The RQCD Collaboration [18] uses the same CLS
ensembles as the Mainz group but 37 of them,
having five values of the lattice spacing, pion masses
in the range 130 MeV ≤ mπ ≤ 420 MeV, and vol-
umes with 3.5 ≤ mπL ≤ 6.4. Their physical point
limit also involves a limit to the physical strange
quark mass that is not required in the set of
ensembles used by the Mainz group. They perform
a thorough study of excited states including the
effect of πN states. They also observe a strong
dependence on the pion mass. They have provided
results using dipole fits (labeled !2P) or using
z-expansion (labeled !z4þ3), without selecting one
of the two as the final value. For this reason, we
report two sets of points in Fig. 37 for RQCD19. In
their recent work [78], they have provided a new
value for the axial charge extracted from the analysis
of matrix elements at zero momentum transfer and
from an analysis of ten additional ensembles having
four at the physical pion mass.

(vii) NME [48] has used seven Nf ¼ 2þ 1 Wilson-
clover fermions ensembles simulated at five values
of the lattice spacing, with pion masses in the range
166 MeV ≤ mπ ≤ 285 MeV and volumes with
3.9 ≤ mπL ≤ 6.2. Their axial-vector current is not
OðaÞ improved, and they observe strong lattice
spacing effects and pion mass dependence. The
analysis of the excited states is compatible with
the one carried out by PNDME, and they include an
elaborated study of excited states using priors
around the πN excited states. For this case, we only
show the values of the coupling constants and axial
radius in Fig. 37.

(viii) The PACS Collaboration computed GAðQ2Þ,
GPðQ2Þ, and G5ðQ2Þ using Nf ¼ 2þ 1 clover-
improved fermions and a large spatial volume of
length L ¼ 8.1 fm [17] and pion mass of 146 MeV
and lattice spacing of a ¼ 0.085 fm. However, they
only have time separations up to ts ∼ 1.3 fm and
only perform plateau fits to individual form factors.
They also have results for these form factors for
lower Q2 values up to ∼0.25 GeV2. Since their
results are given only at one lattice spacing, they are
not included in the comparisons.

WhileGAðQ2Þ is determined by a number of lattice QCD
collaborations, there are scarce results on GPðQ2Þ, and to
our knowledge, this work is the first to compute G5ðQ2Þ at
the continuum limit. Experimental studies also probe
GAðQ2Þ, and one could use PCAC and PPD to estimate
GPðQ62Þ. In Fig. 39, we show our results from a direct
evaluation of GPðQ2Þ in comparison with the ones obtain
using our data on GAðQ2Þ and Eq. (20) to extract GPðQ2Þ.
As can be seen, the results are in perfect agreement with the
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uncertainties. Therefore, one would be justified to use
Eq. (20) and the experimental data on GAðQ2Þ to esti-
mate GPðQ2Þ.

X. CONCLUSIONS

In this work, we present results on the axial, induced
pseudoscalar, and pseudoscalar form factors in the
continuum limit. This study is performed using three
Nf ¼ 2þ 1þ 1 twisted-mass ensembles with all quark
masses tuned to their physical value and simulated at three
values of the lattice spacing. Our analysis is also done up to
Q2 ¼ 1 GeV2 as compared to some other lattice QCD
studies where, for physical point ensembles, only smaller
values of Q2 were accessible. Our final values for the
nucleon axial charge and radius as well as the coupling
constants g�P and gπNN are

gA ¼ 1.245ð28Þð14Þ½31�
hr2Ai ¼ 0.339ð48Þð06Þ½48� fm2

g�P ¼ 8.99ð39Þð49Þ½63�
gπNN ¼ 13.25ð67Þð69Þ½96�; ð97Þ

where the central values and the first error in the
parentheses are obtained from an analysis of data
extracted from the two-state fits to the correlators, the
second error is the systematic error due to the excited
states computed as the difference between the central
values from using the data extracted from the two- and
three-state fit analysis of the correlators, and the third
error in the square brackets is the total error obtained by
summing in quadrature the first two. In the Appendix, we
provide the final parametrization and values of the form
factors at the continuum limit with and without systematic
uncertainties due to the excited states.

From our analysis of the ratio rPPD;2 defined in Eq. (27),
we also determine the values of the Goldberger-Treiman
discrepancy and the low-energy constant d̄18,

ΔGT ¼ 2.13ð38Þ%
d̄18 ¼ −0.73ð13Þ GeV−2: ð98Þ

Our results on GAðQ2Þ are in good agreement with other
recent lattice QCD studies. Having taken the continuum limit
using only ensembles at the physical point mass, we avoid a
chiral extrapolation that in the nucleon sector can lead to an
uncontrolled systematic error. An advantage of this setup is
that it allows us to directly access cutoff effects. We find that
for GAðQ2Þ, cutoff effects for the range of lattice spacings
used are mild, ranging from not detectable within our errors
at low Q2 to slightly positive at high Q2. On the other hand,
the induced pseudoscalar and the pseudoscalar form factors
exhibit similar large cutoff effects that can be traced back to
the knownOða2Þ artifacts on the pionmass pole. Such cutoff
effects are expected in the twisted-mass fermion formulation
used in this work for the computation of these form factors,
and as such, they can be conveniently parametrized in our
continuum extrapolation fits. Alternatively, they can be also
substantially reduced by consideringmodified expression for
the pole of the form factors. As shown in this work, the
important conclusion is that in the continuum limit, all cutoff
effects are safely eliminated as expected. In particular,
both the pion pole dominance close to Q2 ¼ −m2

π , with
mπ ¼ 135 MeV, and the fundamental PCAC relation that
follows from QCD chiral Ward identities are fully recovered.
Regarding finite volume effects, we would like to point out
that the PNDME Collaboration [23] and the CLS-Mainz
group [22] investigated finite volume effects for these
quantities and found that for the range of mπL > 3.5 of
our three ensembles, no detectable finite volume effects were
observed within the accuracy of their lattice data, which is
similar to ours.
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APPENDIX: RESULTS ON THE AXIAL AND
PSEUDOSCALAR FORM FACTORS

In this appendix, we collect our results on the two axial
form factors GAðQ2Þ and GPðQ2Þ and the pseudoscalar
form factor G5ðQ2Þ computed at the continuum limit. The
Q2-dependence of the form factors is parametrized using a
z3-expansion of the form

GðQ2Þ ¼
X3
k¼0

akzkðQ2Þ; ðA1Þ

where

zðQ2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þ t0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tcut þ t0
p ðA2Þ

with tcut ¼ ð3mπÞ2, mπ ¼ 0.135 GeV, and t0 chosen at
convenience as discussed below. As discussed, taking
kmax ¼ 3, we obtained results that are stable as compared
to taking higher orders in the z-expansion.

1. Axial form factor GAðQ2Þ
In Table XII, we provide values for GAðQ2Þ up to

1 GeV2. For this form factor, we use t0 ¼ 0 GeV2. The
values of the fit parameters of two-state fit data are given by

a⃗2-state¼½1.245ð28Þ;−1.19ð18Þ;−0.54ð55Þ;−0.13ð59Þ�

corr2-state¼

0
BBB@

1.0 −0.421 0.247 −0.246
−0.421 1.0 −0.918 0.799

0.247 −0.918 1.0 −0.952
−0.246 0.799 −0.952 1.0

1
CCCA: ðA3Þ

The fit parameters of three-state fit data are given by

a⃗3-state¼½1.231ð34Þ;−1.16ð27Þ;−0.80ð47Þ;−1.23ð58Þ�

corr3-state¼

0
BBB@

1.0 −0.575 0.116 −0.051
−0.575 1.0 −0.5 0.046

0.116 −0.5 1.0 −0.52
−0.051 0.046 −0.52 1.0

1
CCCA: ðA4Þ

TABLE XII. Values for GAðQ2Þ in the continuum limit as a
function of Q2. We provide values for 21 points uniformly
distributed in the range Q2 ∈ ½0; 1� GeV2. The central values and
first errors are obtained from the z3-expansion fitted to the two-
state fit data. The second error is the systematic error due to
excited states, computed as explained in the text, namely by the
difference between the central values of the z3-expansion
parameters when fitting the two- or three-state fit data. The third
error is the total error obtained by summing in quadrature the
first two.

Q2 (GeV2) GA

0.00 1.245(28)(13)[31]
0.05 1.164(25)(12)[28]
0.10 1.097(24)(12)[27]
0.15 1.040(24)(12)[27]
0.20 0.990(24)(12)[27]
0.25 0.946(24)(14)[28]
0.30 0.907(24)(14)[28]
0.35 0.871(24)(16)[29]
0.40 0.838(24)(18)[30]
0.45 0.808(23)(22)[32]
0.50 0.781(23)(25)[34]
0.55 0.755(23)(27)[36]
0.60 0.731(23)(30)[38]
0.65 0.709(23)(33)[41]
0.70 0.687(23)(36)[43]
0.75 0.668(23)(39)[46]
0.80 0.649(23)(43)[49]
0.85 0.631(23)(46)[52]
0.90 0.614(23)(49)[55]
0.95 0.598(23)(53)[58]
1.00 0.582(23)(56)[61]

NUCLEON AXIAL AND PSEUDOSCALAR FORM FACTORS … PHYS. REV. D 109, 034503 (2024)

034503-29



The fit parameters of the final curve, when we include the
systematic error taken as the difference ja2-state − a3-statej
that quantifies systematic uncertainties in the analysis of the
excited states, are given by

a⃗final¼½1.245ð31Þ;−1.19ð18Þ;−0.54ð61Þ;−0.1ð1.3Þ�

corrfinal¼

0
BBB@

1.0 −0.421 0.247 −0.246
−0.421 1.0 −0.918 0.799

0.247 −0.918 1.0 −0.952
−0.246 0.799 −0.952 1.0

1
CCCA: ðA5Þ

The final form factor reproduces the quoted values of gA
and hrAi, namely

gA ¼ 1.245ð31Þ
hr2Ai ¼ 0.339ð49Þ fm2: ðA6Þ

GAðQ2Þ and its derivative G0
AðQ2Þ also have the correct

limit as Q2 → ∞, taking the values

GAð∞Þ ¼
X
k

ak ¼ −0.62ð82Þ

G0
Að∞Þ ¼

X
k

kak ¼ −2.7ð2.8Þ; ðA7Þ

both compatible with zero.

2. Induced pseudoscalar axial form factor GPðQ2Þ
In Table XIII, we provide values for ðQ2 þm2

πÞGPðQ2Þ
up to 1 GeV2. For this form factor, we use t0 ¼ −m2

π . The
values of the fit parameters of two-state fit data are given by

a⃗2-state¼½4.62ð23Þ;−3.0ð1.2Þ;−4.7ð2.5Þ;−0.1ð2.4Þ�

corr2-state¼

0
BBB@

1.0 −0.812 0.414 0.151

−0.812 1.0 −0.819 0.23

0.414 −0.819 1.0 −0.713
0.151 0.23 −0.713 1.0

1
CCCA: ðA8Þ

The fit parameters of three-state fit data are given by

a⃗3-state¼½4.38ð30Þ;−3.1ð1.5Þ;−5.9ð2.6Þ;−2.9ð2.0Þ�

corr3-state¼

0
BBB@

1.0 −0.795 0.342 0.214

−0.795 1.0 −0.712 −0.292
0.342 −0.712 1.0 0.129

0.214 −0.292 0.129 1.0

1
CCCA: ðA9Þ

The fit parameters of the final curve, when we include the
systematic error taken as the difference ja2-state − a3-statej
that quantifies systematic uncertainties in the analysis of the
excited states, are given by

a⃗final¼½4.62ð33Þ;−3.0ð1.2Þ;−4.7ð2.8Þ;−0.1ð3.7Þ�

corrfinal¼

0
BBB@

1.0 −0.812 0.414 0.151

−0.812 1.0 −0.819 0.23

0.414 −0.819 1.0 −0.713
0.151 0.23 −0.713 1.0

1
CCCA: ðA10Þ

The final form factor reproduces the quoted values of gπNN
and g�P, namely

gπNN ¼ 13.25ð96Þ and g�P ¼ 8.99ð63Þ: ðA11Þ

3. Pseudoscalar form factor G5ðQ2Þ
In Table XIV, we provide values for ðQ2 þm2

πÞG̃5ðQ2Þ
up to 1 GeV2. The G̃5ðQ2Þ is defined as

G̃5ðQ2Þ ¼ 4mN

m2
π
mqG5ðQ2Þ; ðA12Þ

mN ¼ 0.938 GeV, and mq ¼ 3.636ð89Þ MeV [55] in the
MS (2 GeV) scheme at the continuum limit. For this form
factor, we use t0 ¼ −m2

π. The values of the fit parameters of
two-state fit data are given by

a⃗2-state¼½4.62ð23Þ;−2.2ð1.2Þ;−2.9ð2.4Þ;−1.2ð2.4Þ�

corr2-state¼

0
BBB@

1.0 −0.804 0.435 0.14

−0.804 1.0 −0.825 0.217

0.435 −0.825 1.0 −0.694
0.14 0.217 −0.694 1.0

1
CCCA: ðA13Þ

TABLE XIII. Values for ðQ2 þm2
πÞGPðQ2Þ. We provide

values for 21 points uniformly distributed in the range Q2 ∈
½−mπ ; 1� GeV2. The notation is the same as that of Table XII.

Q2 (GeV2) ðQ2 þm2
πÞGPðQ2Þ

−0.018 4.62(23)(23)[33]
0.033 4.37(17)(20)[27]
0.084 4.14(14)(18)[23]
0.135 3.94(12)(17)[21]
0.185 3.76(11)(15)[19]
0.236 3.59(10)(14)[18]
0.287 3.44(9)(14)[17]
0.338 3.30(9)(14)[17]
0.389 3.17(9)(14)[17]
0.440 3.05(9)(14)[17]
0.491 2.94(8)(15)[17]
0.542 2.84(8)(15)[17]
0.593 2.74(8)(15)[17]
0.644 2.64(8)(16)[18]
0.695 2.56(8)(16)[18]
0.745 2.47(8)(17)[19]
0.796 2.40(9)(17)[20]
0.847 2.32(9)(17)[20]
0.898 2.25(9)(18)[21]
0.949 2.18(9)(20)[22]
1.000 2.12(9)(21)[23]
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The fit parameters of three-state fit data are given by

a⃗3-state ¼ ½4.38ð30Þ;−4.3ð1.6Þ;−0.1ð2.7Þ;−0.7ð2.0Þ�

corr3-state ¼

0
BBB@

1.0 −0.782 0.422 0.265

−0.782 1.0 −0.802 −0.338
0.422 −0.802 1.0 0.117

0.265 −0.338 0.117 1.0

1
CCCA:

ðA14Þ

The fit parameters of the final curve, when we include the
systematic error taken as the difference ja2-state − a3-statej
that quantifies systematic uncertainties in the analysis of the
excited states, are given by

a⃗final ¼ ½4.62ð33Þ;−2.2ð2.5Þ;−2.9ð3.7Þ;−1.2ð2.4Þ�

corrfinal ¼

0
BBB@

1.0 −0.804 0.435 0.14

−0.804 1.0 −0.825 0.217

0.435 −0.825 1.0 −0.694
0.14 0.217 −0.694 1.0

1
CCCA:

ðA15Þ
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