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Discontinuities Cause Essential Spectrum on
Surfaces

Oliver Butterley, Giovanni Canestrari and Roberto Castorrini

Abstract. Two-dimensional maps with discontinuities are considered. It
is shown that, in the presence of discontinuities, the essential spectrum
of the transfer operator is large whenever it acts on a Banach space with
norm that is stronger than L∞ or BV . Three classes of examples are
introduced and studied, both expanding and partially expanding. In two
dimensions, there is complication due to the geometry of the disconti-
nuities, an issue not present in the one-dimensional case and which is
explored in this work.

1. Introduction

Dynamical systems with some degree of hyperbolicity are typically known to
behave with good statistical properties, e.g. exponential decay of correlations
with respect to a physical measure, linear response, etc. A particularly strong
property for the system is to exhibit a full resonance spectrum, in the sense
that correlations can be described to arbitrary precision (see, for example,
[8,9,17] and references within). However, this is not always possible. Systems
with discontinuities often occur in physically motivated examples, e.g. in bil-
liard flows due to glancing collisions and in the Lorenz flow due to a shearing
behaviour at a singular point. To what extent can discontinuities show an
effect in the statistical properties?

The subject of this present work is to demonstrate that discontinuities re-
ally do affect the statistical properties of a dynamical system, besides causing
countless technical problems in proofs. In one-dimensional systems, there is
a rather complete description of how discontinuities cause essential spectrum
[6]. However, the restriction on dimension is unfortunate in view of applica-
tion to general systems and so here we take the step of extending to higher
dimension. For simplicity, we consider the two-dimensional case, but with the
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aim of developing the tools for higher dimensions. We work with expanding
or partially expanding systems, leaving aside for moment the equally relevant
hyperbolic case.

The question of resonance spectrum is closely related to the one of de-
termining the spectrum of the transfer operator acting on some Banach space.
Specifically, it is useful to know that the essential spectrum is small since the
spectrum outside of the essential spectrum consists of isolated eigenvalues of
finite multiplicity. In such a way, the “true” point spectrum is revealed and
not the possible “fake” part due to the choice of the particular Banach space.
In general, the spectrum of an operator depends on the choice of Banach
space but, given the statistical properties motivations, it is natural to require
the space to contain all smooth observables. On the other hand, the Banach
space cannot be too small because then the spectrum might be missing some
information about the observables of interest. The present question is closely
related to zeta functions, a notion of describing resonances inherent to a system
(see, for example, [3]). The analogous result in this context would be showing
the impossibility of meromorphically extending the zeta function to the whole
complex plane.

In the case of one-dimensional expanding interval maps, it was shown [6]
that there is a dichotomy, either the system is Markov or there exists an un-
avoidable disc of essential spectrum with radius dependent on the asymptotic
behaviour of the weight of the chosen transfer operator. In the two-dimensional
case, we have not been able to conclude such a simple story. One issue is that,
in higher dimensions, there are multiple different ways a system can fail to
be Markov (see further discussion in Sect. 3). This issue is intimately con-
nected with the fact that discontinuities in two dimensions (and higher) can
exhibit subtle and complex behaviour (see, for example, [11,12,23]). Conse-
quently, it is much harder to work with the discontinuity set compared to the
one-dimensional case where the singularities are isolated points and there is
no geometry to consider. Indeed, it is well established that controlling “com-
plexity” of the discontinuity is essential for working with such systems (see,
for example, [21] and [14, Chapter 5] concerning controlling complexity and
demonstrating that growth dominates cutting).

In the one-dimensional case [6], there were some restrictions, due to the
method, on the Banach space for which the result applies. To be precise, the
result held only for Banach spaces which are stronger than L∞. This restriction
is due to the way the technique involves the behaviour in the dual: loosely
speaking, if the space is too large, then the dual is too small to complete the
argument. However, these authors believe that this is an artificial requirement
since the claimed result is known to also hold for all other Banach spaces which
they are aware of [6, §2]. In two dimensions, the reference norm is less obvious
and the results here are presented for two separate assumptions, namely L∞

and BV . Neither of these spaces is stronger than the other in dimension two or
higher and so the estimates which follow are, depending on the system being
studied, sometimes better in one case, sometimes in the other.
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In this text, we present the main result (Theorem 1) and three distinct
example classes of system for which this applies. The first example (Sect. 6.1) is
a class of piecewise affine expanding maps of the torus where the discontinuity
propagates along lines which, iterate after iterate, change in slope and so never
overlap with each other. The second class of examples (Sect. 6.2) consists of
maps of the torus which can be written as cocycles. Here, we see that the non-
Markovness of the base map leads to a discontinuity of the two-dimensional
system and hence unavoidable essential spectrum. The third class of examples
(Sect. 6.3) are expanding maps of the torus which are smooth except for in a
very small neighbourhood. In this way, we see that a local discontinuity of the
system is sufficient to lead to large essential spectrum. In the presentation of
the main argument, we take this opportunity to isolate the abstract functional
analytic result (Proposition 2.2) which is at the core of this work and which
was also present in the one-dimensional case yet slightly obscured.

Continuing forward, there are the following pertinent questions.

Question 1 (dichotomy for the 2D case). Can a lower bound on the essential
spectral radius be proven for any two-dimensional piecewise expanding map
which fails to be Markov? The assumption used in this work is arguably nat-
ural and verifiable. Nonetheless, it would be tidy to either have no additional
assumption or to show the existence of obstacles to such a relaxation of the
assumptions (see Sect. 3).

Question 2 (hyperbolic case). Can these ideas be extended to the hyperbolic
case? Specifically, consider the two-dimensional hyperbolic map associated with
Sinai billiards. Can one prove a lower bound for the essential spectral radius of
the transfer operator associated with the SRB measure for any useful Banach
space? Such a study would need to consider Banach spaces of distributions,
specifically the anisotropic spaces suitable for studying hyperbolic systems (see
Remark 2.7).

Question 3 (diverse notions of resonances). Recall that there are several closely
related notions:

• Obstacles to the meromorphic extension of the zeta function,
• Precision to which it is possible to describe correlations in terms of res-
onances for C∞ observables,

• Lower bound on essential spectral radius of the transfer operator for any
useable Banach space.

Is it possible to formalize completely the connection between these notions?

Question 4 (arbitrary dimension). Can these ideas be extended to arbitrary
dimension for expanding systems? The structure of this present argument sug-
gests that such would be possible in a similar way but using codimension one
linear functionals.

Section 2 contains the key definitions and our results. Section 3 is devoted
to discussion of the assumptions on the discontinuities. The proof of an abstract
functional analytic result is contained in Sect. 4. This is a result which relates
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the existence of a family of linear functionals to a lower estimate of the essential
spectral radius and so, in Sect. 5, we construct the relevant linear functionals.
Section 6 contains a description and the results related to three example classes
of systems.

2. Settings and Results

Let M be a compact, smooth and connected Riemannian manifold of dimen-
sion d = 2. We suppose that F : M → M is a Cr piecewise non-singular map,
r ≥ 1, in the sense that F is a Cr local diffeomorphism on M\Γ where Γ is
a finite union of finite length C1 curves and the derivative map is uniformly
non-singular.1 For convenience, we suppose that F is orientation preserving.

Let ϕ : M → C be C1 on M\Γ, uniformly bounded and uniformly
bounded away from zero. We call ϕ the weight of the transfer operator. The
transfer operator is defined, pointwise for any h : M → C, as

Lh(y) =
∑

Fx=y

(h · ϕ)(x). (2.1)

Keeping track of the discontinuity set will be crucial and so we introduce
the following notation. Let M denote the closure of M\Γ in the sense that M
is a smooth Riemannian manifold with boundary and the boundary comprises
of a finite union of C1 curves originating from Γ. Call F : M → M the unique
Cr extension of F to M . In this way, we have a solid way to work with the
limits from one side and the other of Γ. Let ι : M → M denote the embedding
between manifolds and observe that it is 1-to-1 except on ∂M where2 it is
mostly 2-to-1. Let

Γ1 = FΓ, Γj+1 = F jΓ1, j ∈ N, Γ̂ =
⋃

j∈N
Γj ⊂ M.

We anticipate here that the transfer operator L (2.1) involves the inverse of
F and so the location of discontinuities of the images of a smooth observable
under iterates of L is Γ̂ (see Lemma 5.3).

If A,B are two sets in M , we say that they are equivalent, and we write
A � B, if A and B are equal modulo a set of points whose 1-dimensional
Hausdorff measure is zero. For any curve γ ⊂ M and map G : M → M, let
Jac(G|γ) denote the Jacobian of G restricted to the curve γ.3

Definition 2.1 (proper discontinuity). Given F as above, we say that a C1

connected curve γ ⊂ ∂M is a proper discontinuity if, denoting4 γ1 = Fγ,
γk+1 = Fkγ1, k ∈ N, the following are satisfied:
(A–0). F is not continuous at x for all x ∈ ιγ;

1We write uniformly non-singular to mean that the determinant of the derivative map (in
some coordinate atlas) is uniformly bounded away from zero.
2Intersections of curves in Γ (at most a finite number) cause ι to be many-to-1.
3In particular, this means that if G restricted to γ is measurable and injective, then, for any
φ : γ → R,

∫
Gγ φ(y) dy =

∫
γ φ(Gx) Jac(G|γ)(x) dx.

4Recall that F is the extension of F to M .
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(A–1). There exist functions, αk : γk → C, k ∈ N, such that α1 ≡ 1 and

αk+1(Fx) = αk(x)ϕ(x)−1 Jac(F|γk
)(x)−1 for a.e. x ∈ γk;5 (2.2)

5

(A–2). γk ∩ Γ1 � ∅ for all k ≥ 2;
(A–3). F−1γk+1 ∩ Γ̂ � γk for all k ∈ N.

Notice that the right-hand side of (2.2) is well defined since ϕ(x) is uni-
formly bounded away from zero and F is non-singular. We denote by BV (M)
the usual Banach space of functions of bounded variation on M. For conve-
nience, we use the notation ϕn =

∏n−1
k=0 ϕ◦Fk. Given a map F : M → M and

transfer operator weight ϕ : M → C as above, if γ is a proper discontinuity,
we consider the following quantities6

ΛBV (F , ϕ, γ) = lim inf
k→∞

(
inf
x∈γ

∣∣∣ϕk(x) · Jac(Fk|γ)(x)
∣∣∣
) 1

k

,

ΛL∞,1 (F , ϕ, γ) = lim inf
k→∞

(
inf
x∈γ

|ϕk(x)|
) 1

k

,

ΛL∞,2 (F , ϕ, γ) = lim inf
k→∞

(
inf
x∈γ

∣∣∣ϕk(x) · Jac(Fk|γ)(x)
∣∣∣ |γk+1|−1

) 1
k

,

ΛL∞ = max (ΛL∞,1,ΛL∞,2) . (2.3)

In different settings one or the other will provide a better bound (see Re-
mark 2.7).

Our main result is the following.

Theorem 1. Let L be the transfer operator associated with a piecewise non-
singular map F : M → M and weight ϕ as above. Suppose that F admits a
proper discontinuity γ and that the Banach space (B, ‖·‖B) satisfies

• C∞(M) ⊂ B;
• L extends to a continuous operator on B.

Then, the essential spectral radius of L : B → B is at least

ΛBV (F , ϕ, γ) if ‖h‖BV ≤ ‖h‖B,∀h ∈ B,

ΛL∞(F , ϕ, γ) if ‖h‖L∞ ≤ ‖h‖B,∀h ∈ B.
(2.4)

In Sect. 6, this result is applied to three classes of systems and the use-
fulness of the different bounds is discussed.

The above theorem follows from the following two propositions. The first
is an abstract functional analytic result which uses the existence of a family of
linear functionals to obtain a lower bound of the essential spectral radius for
a linear operator.

5That is, for all x ∈ γ̃k where γ̃k � γk.
6In the appropriate context, as here, |·| : denotes the length of the curve.
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Proposition 2.2. Let L be a bounded linear operator on a Banach space (B, ‖·‖).
Assume that there exist h0 ∈ B, Λ > 0 and a sequence of linear functionals
{�k}∞

k=1, satisfying the following 7

(B-1). lim supk→∞ ‖�k‖
1
k ≤ Λ−1;

(B-2). �1(h0) = 1 and, for all k ∈ N, �k+1(h0) = 0;
(B-3). For all k ∈ N, L∗�k+1 = �k.

Then, the essential spectral radius of L : B → B is at least Λ.

Section 4 is devoted to the proof of the above.
At the very least, we would like to consider the set of observables, C∞(M).

However, L might not leave C∞(M) invariant, particularly in the discontinuous
case of present interest. Let A = span ({Ln(C∞(M))}∞

n=0). The following result
uses the existence of a proper discontinuity to construct a family of linear maps
which satisfy the assumptions of the above proposition.

Proposition 2.3. Let L be the transfer operator associated with a piecewise
non-singular map F : M → M and weight ϕ as above. Suppose that F ad-
mits a proper discontinuity γ. Then, there exists a sequence of linear maps
{�k : A → C}k∈N

and h0 ∈ A which satisfy8

lim sup
k→∞

(
sup {|�k(h)| : h ∈ A, ‖h‖BV ≤ 1}

) 1
k ≤ Λ−1

BV ,

lim sup
k→∞

(
sup {|�k(h)| : h ∈ A, ‖h‖L∞ ≤ 1}

) 1
k ≤ Λ−1

L∞ ;
(2.5)

And also satisfy:
• �1(h0) = 1 and, for all k ∈ N, �k+1(h0) = 0;
• For all k ∈ N, h ∈ A, �k+1(Lh) = �k(h).

Section 5 is devoted to the proof of the above.

Proof of Theorem 1. The assumptions of the theorem imply that Proposi-
tion 2.3 holds. Consider first the case in which ‖·‖BV ≤ ‖·‖B. Let A denote
the completion of A with respect to ‖·‖BV . By assumption, C∞(M) ⊂ B and
L extends to a continuous operator on B, and so A ⊂ B. Every complete
subspace of a Banach space is a Banach space and so (A, ‖·‖BV ) is a Banach
space. Furthermore, each of the statements of Proposition 2.3 concerning �k

extend to A by continuity. In particular, the estimate (2.5) implies (B-1) for
Λ = ΛBV . This means that the assumptions of Proposition 2.2 are satisfied
with respect to (A, ‖·‖BV ) and so the essential spectral radius of L : A → A

is at least ΛBV . Finally, since A ⊂ B, we use the fact that the essential spec-
tral radius of L : A → A is not greater than the essential spectral radius of

7We use the standard notation for the dual: if h ∈ B and � ∈ B∗ is an element of the
dual, i.e. a linear functional, the dual operator is (L∗�) (h) = �(Lh) and the dual norm is
‖�‖ := sup {|�(h)| : h ∈ B, ‖h‖ ≤ 1}.
8Where ΛL∞ := ΛL∞(F , ϕ, γ) and ΛBV = ΛBV (F , ϕ, γ) are as defined in (2.3). When this
does not create confusion, subsequently we may suppress the dependency on (F , ϕ, γ).
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L : B → B (see [6, §4]). Consequently, we conclude that the essential spectral
radius of L : B → B is at least ΛBV .

Alternatively, in the case in which ‖·‖L∞ ≤ ‖·‖B, we let A denote the
completion of A with respect to ‖·‖L∞ and proceed identically to obtain the
analogous conclusion. �
Remark 2.4 (observables). Understanding the statistical properties of C∞ ob-
servables typically suffices, via approximation arguments, to determine the
behaviour of less regular space of observables. For example, one could consider
Cr, Holder, or indeed any spaced defined by fixing some modulus of conti-
nuity. In such a case, the general results can be obtained by arguing about
how “rapidly” the observables can be approximated by C∞ ones (see, for ex-
ample, [2, Corollary 2.3] and [16, Corollary 1]). The reference metric is the
crucial detail we are fixing when we consider C∞(M) rather than the specific
regularity.

Remark 2.5 (disc of spectrum). The proof of Theorem 1, together with the
arguments in [6, §4], implies a slightly stronger statement, namely that the
complement of the unbounded component of the resolvent set contains a disc
of radius ΛBV or ΛL∞ .

Remark 2.6 (partitions and artificial discontinuities). Often a convenient way
to work with systems like we have here is to assume, by definition, that there
exists a finite partition Ω of a full measure subset of M such that, for each
ω ∈ Ω, F restricted to ω has no critical points, is injective and admits a Cr

extension to ω. We know that Γ ⊂
⋃

ω∈Ω ∂ω ⊂ M but this might easily be a
proper subset. We would like to assume that Ω denotes the minimal partition
of M with the aforementioned properties. Unfortunately, for some systems,
there might not be a unique such partition, e.g. a system which is smooth
apart from a short “slit” as introduced in Sect. 6.3. In other words, working
with such a definition can force artificial discontinuities to be introduced into
the setting, an issue which we wish to avoid.

Remark 2.7 (comparison of estimates). The different bounds (2.3) are more
or less useful in different settings, as illustrated by the following: if |γk| is
uniformly bounded, as is the case for the cocycle examples of Sect. 6.2, then
ΛBV = ΛL∞,2; if Jac(Fk|γ) ≡ 1, as could be arranged for a cocycle exam-
ple of Sect. 6.2 by choosing the fibre map S(x, y) to be a circle rotation, then
ΛBV = ΛL∞,1; and on the other hand, if there is contraction along γk, for ex-
ample a suitable piecewise smooth Anosov endomorphism, then ΛBV will be
strictly smaller than ΛL∞ . However, this framework is unsuitable for studying
general systems with a contracting direction since one would need to consider
the connection with anisotropic Banach spaces which permit distribution-like
behaviour in the contracting direction. Nevertheless, we expect that many
ideas developed in this work, particularly defining linear functionals by inte-
gration, will be useful for tackling the hyperbolic case.

Remark 2.8 (Quasi-Hölder spaces). Other than the BV spaces [20,22], rele-
vant examples of Banach spaces used to prove a spectral gap for the transfer
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operator associated with multidimensional expanding maps with singularities
are the quasi-Hölder spaces introduced in [21]. By [21, Proposition 3.4], these
spaces are continuously injected into L∞, and therefore, Theorem 1 applies in
this case with the second lower bound.

3. Discussion of the Proper Discontinuity Assumptions

Differently from the one-dimensional case, where failing to be Markov (see [6]
for further details) was sufficient to prove the lower bound on the essential
spectral radius, in the present two-dimensional setting the geometry of the
discontinuities led us to impose some extra assumptions. These assumptions
were used to construct the linear functionals in Sect. 5 and are satisfied for three
rather general examples presented in Sect. 6. Here, we discuss the distance
between the proper discontinuity assumption (Definition 2.1) and failing to be
Markov. Let M, F and Γ be as specified in Sect. 2 but without requiring the
existence of a proper discontinuity.

In the following, we see that a combination of certain assumptions of a
proper discontinuity implies that the γk curves are essentially pairwise disjoint.

Lemma 3.1. Suppose that, with respect to a curve γ ⊂ Γ, (A–2) and (A–3) are
satisfied. Then, γj ∩ γk � ∅ whenever j, k ∈ N, j 
= k.

Proof. We first show, as a consequence of (A–3), that for all j, k ∈ N,

γj ∩ γk � ∅ implies that γj+1 ∩ γk+1 � ∅. (3.1)

According to (A–3), F−1γj+1 ∩ Γ̂ � γj . Let γ̃j+1 ⊂ γj+1 satisfy γ̃j+1 � γj+1

and F−1γ̃j+1∩Γ̂ ⊂ γj . In order to prove the above (3.1), it suffices to show that
γk+1 ∩ γ̃j+1 ⊂ F(γk ∩ γj). Let y ∈ γk+1 ∩ γ̃j+1. Since γk+1 = Fγk, there exists
x ∈ γk such that y = Fx. However, as observed above, F−1γ̃j+1 ∩γk ⊂ γj . We
know that x ∈ F−1γ̃j+1 ∩ γk and so this shows that x ∈ γj . This completes
the proof of the above statement (3.1).

We now take advantage of (A–2). Without loss of generality, suppose that
j < k. Iterating what we just proved (3.1), we know that,

γj ∩ γk � ∅ whenever γ1 ∩ γk−j+1 � ∅.

Observe that k−j+1 ≥ 2 and that γ1 ⊂ Γ1 and so, by (A–2), γ1 ∩γk−j+1 � ∅.
Consequently, we have shown that γj ∩ γk � ∅. �

We recall that the map F is said to be Markov if it admits a Markov
partition. Such a partition Ω is a finite set of subsets of M which are each
open, connected, have boundary consisting of a finite union of finite length C1

curves and together form a partition of a full measure subset of M. Moreover,
F is Cr and injective on each ω ∈ Ω and ω ∩ ω′ 
= ∅ implies F(ω) ⊃ ω′, for
each ω, ω′ ∈ Ω.

Lemma 3.2. Suppose that, with respect to γ ⊂ Γ, (A–0), (A–2) and (A–3) are
satisfied and |γk| is uniformly bounded from below. Then, F is not Markov.
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Proof. Suppose, for sake of a contradiction, that F is Markov and let Ω denote
the associated partition. For convenience, let ∂Ω =

⋃
ω∈Ω ∂ω. We know that

γ ⊂ Γ ⊂ ∂Ω since F is Cr on each ω ∈ Ω. The Markov partition has the
property that F(∂Ω) ⊂ ∂Ω and so γk ⊂ ∂Ω for all k ∈ N. By Lemma 3.1, we
know that γj ∩ γk � ∅ whenever j 
= k. Since we assumed a uniform lower
length for the γk, we obtain a contradiction. �

Observe that assuming F to be expanding might not guarantee that
|γk| is uniformly bounded from below since F|γk

need not be injective and
indeed will not be in many basic examples (see Sect. 6.2 for such examples
and [23] for an illustration of the singular possibilities of piecewise expanding
maps). Without modifying the argument, the assumption of the lemma can be
weakened to requiring that

∑
k |γk| is a divergent series. However, this is still

not sufficient to deal with all cases.

Assumption (A–0)
In general, if the map has no discontinuity (or is Markov) and is Cr, then
the essential spectral radius can be made smaller and smaller for bigger and
bigger r (see, for example, [15,18]). Consequently, some assumption like (A–0)
is required to obtain a result such as Theorem 1.

Assumption (A–0) could be weakened to permit the higher dimensional
version of the over-lapping mechanism which is seen in “W-maps” [19, §6] and
unimodal expanding maps [5]. These exhibit behaviour typically seen with
discontinuities whilst being continuous.9 It appears that the results obtained
in this work would continue to hold for such a weakened assumption.

Assumption (A–1)
Suppose that γ ⊂ Γ is a curve and that F : γk−1 → γk is injective, with the
exception of a countable set of points, for every k ∈ N. Assumption (A–1)
can easily be satisfied by choosing α0 ≡ 1 and then defining the other αk

inductively. On the other hand, when F : γk−1 → γk is many-to-one, then we
require the correct relationship between ϕ and Jac(F|γk

) at preimages; else it
would be impossible to satisfy the required relationship (2.2). It is unreasonable
to imagine that such a problem will not exist for some map which fails to be
Markov and yet satisfies all other properties.

Assumptions (A–2), (A–3)
Recall that (A–2) specified that γk ∩ Γ1 � ∅ for all k ≥ 2 and that (A–3)
specified that F−1γk+1 ∩ Γ̂ � γk for all k ∈ N. Lemma 3.2 tells us that this,
together with (A–0) and a lower bound on |γk|, these assumptions suffice to
imply that F is not Markov. These assumptions are not as tight as desired,
as illustrated with the following example. This is the same possibility that
already exists in the one-dimensional case [6]. For example, suppose that f :
[0, 1] → [0, 1] is an expanding interval map and that f is discontinuous at two

9The reason is that since these maps preserve orientation on one side and reverse orientation
on the other side, the push-forward of a smooth density will have jump discontinuities.



O. Butterley et al. Ann. Henri Poincaré

distinct points a, b ∈ [0, 1] which satisfy f(a+) = f(b+) but that {fn(a+)}n∈N

is an infinite set of points. In such a way, the required assumption holds for the
second iterate, although not from the very first. A two-dimensional example
can then be built from this as a product or cocycle (as per Sect. 6.2).

4. Essential Spectrum: An Abstract Result

In this section, we prove Proposition 2.2. Suppose that λ ∈ C, |λ| < Λ and
define,

Ξλ =
∞∑

k=1

λk�k.

Take Λ ∈ (|λ|,Λ). Assumption (B-1) implies that there exists C > 0 such that
|�k(h)| ≤ CΛ−k‖h‖ for all k ∈ N, h ∈ B. Consequently,

|Ξλ(h)| ≤ C
∞∑

k=1

|λ|k Λ−k‖h‖

and so Ξλ defines a linear functional on B. By (B-2), Ξλ(h0) = λ�1(h0) = λ
and so Ξλ is nonzero. We also define the rank-one operator K : B → B,

Kh = �1(Lh)h0. (4.1)

Using assumption (B-3), we calculate that,

L∗Ξλ =
∞∑

k=1

λkL∗�k = λL∗�1 +
∞∑

k=2

λk�k−1

= λL∗�1 + λ
∞∑

k=1

λk�k = λL∗�1 + λ Ξλ.

Since Ξλ(h0) = λ, we know that, for all h ∈ B, Ξλ(Kh) = λ�1(Lh), i.e.
K∗Ξλ = λL∗�1. Consequently, we have shown that,

(L − K)∗Ξλ = λ Ξλ,

whenever |λ| < Λ. This means that the essential spectral radius of (L − K) :
B → B is at least10 Λ and since compact perturbations do not change the
essential spectral radius, the same holds for L. �

5. Linear Functionals

In this section, we construct a sequence of linear functionals and hence prove
Proposition 2.3. Let F : M → M, ϕ : M → C be fixed for the remainder of
this section, satisfying the assumptions of the proposition. In particular, this
means that F has a proper discontinuity γ such that (A–0), (A–1), (A–2) and
(A–3) are each satisfied with respect to the curves {γk} and associated {αk}.

10Indeed, the spectrum of L − K equals that of (L − K)∗. Therefore, since the set {λ ∈ C :
|λ| < Λ} is not discrete, it is contained in the essential spectrum of L − K.
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The proof will consist of defining the linear functionals and then proving that
the required properties are satisfied.

For each h ∈ A, let us define the “jump” of h at a point x ∈ M in the
direction v ∈ TxM as, 11

J(h, x, v) = lim
ε→0

[h (expx(εv)) − h (expx(−εv))] .

Recall that γ ⊂ Γ ⊂ M is part of the boundary of the manifold M . For x ∈ γ,
let v(x) ∈ TxM denote the unit vector which is orthogonal to γ and such that
expx(εv) is in M for small ε > 0. For each k ∈ N, y ∈ γk, let vk(y) ∈ TyM be
defined as vk(y) = DFk(x) v(x) where y = Fkx. For each k ∈ N, h ∈ A, we
define12 the linear functional �k : A → R,

�k(h) =
∫

γk

αk(x)J(h, x, vk(x)) dx. (5.1)

In the remainder of this section, we prove the required properties of these
linear functionals.

Proof of Proposition 2.3, part 1. Before dividing into cases, we will prepare a
couple of estimates which follow directly from (A–1).

Let x ∈ γ1, k ∈ N and y = Fkx ∈ γk+1. Iterating the assumed relation-
ship (A–1) and recalling that α1 ≡ 1 imply that

αk+1(y) = ϕk(x)−1 Jac(Fk|γ1
)(x)−1. (5.2)

It may happen that a given y ∈ γk+1 has more than one preimage in γ1.
However, the assumed relationship (A–1) means that we are working in the
case where the term ϕk(·) Jac(Fk|γ1

)(·) is equal at each such preimage, as
implied by this calculation. The above (5.2) implies that,

sup
y∈γk+1

|αk+1| (y) ≤
(

inf
x∈γ1

∣∣∣ϕk(x) · Jac(Fk|γ1
)(x)

∣∣∣
)−1

. (5.3)

For convenience, let γ̃1 ⊂ γ1 be such that Fk is injective from γ̃1 to γk+1.
Using again the above formula (5.2),

∫

γk+1

|αk+1(y)| dy =
∫

γ̃1

∣∣αk+1(Fkx)
∣∣ Jac(Fk|γ1

)(x) dx

≤
(

inf
x∈γ1

|ϕk(x)|
)−1 ∫

γ̃1

dx.

Consequently, observing that |γ̃1| ≤ |γ1|, we have shown that
∫

γk+1

|αk+1(y)| dy ≤
(

inf
x∈γ1

|ϕk(x)|
)−1

|γ1| . (5.4)

11Here, expx(v) denotes the exponential map based at x, i.e. the application that sends v

to η(1), where η is the geodesic with η′(x) = v.
12If h : γ → C and γ ⊂ M is a C1 curve, we systematically write

∫
γ A(x) dx as shorthand

for
∫ |γ|
0 A(x(t)) dt with the understanding that x : [0, |γ|] → γ is a parametric representation

of the curve γ which respects arc length.
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Having prepared the above estimates, we now divide the argument into the
three cases (2.3).
Case 1: Suppose that ‖h‖BV ≤ ‖h‖B, ∀h ∈ A. The control given by the BV
norm implies that there exists.13 C > 0 such that, for each k ∈ N, h ∈ BV (M),

∫

γk

|J(h, x, vk(x))| dx ≤ C‖h‖BV ≤ C‖h‖B. (5.5)

In particular, the bound does not depend on the length of γk. Since

|�k+1(h)| =

∣∣∣∣∣

∫

γk+1

αk+1(x)J(h, x, vk+1(x)) dx

∣∣∣∣∣

≤ sup
y∈γk+1

|αk+1| (y)
∫

γk

|J(h, x, vk(x))| dx,

the above estimates (5.5), (5.3) imply that

|�k+1(h)| ≤ C

(
inf

x∈γ1

∣∣∣ϕk(x) · Jac(Fk|γ1
)(x)

∣∣∣
)−1

‖h‖B.

Case 2: Suppose that ‖h‖L∞ ≤ ‖h‖B, ∀h ∈ A. We take advantage of the trivial
estimate,

|J(h, x, vk(x))| ≤ 2‖h‖L∞ ≤ 2‖h‖B. (5.6)
Since

|�k+1(h)| =

∣∣∣∣∣

∫

γk+1

αk+1(x)J(h, x, vk+1(x)) dx

∣∣∣∣∣

≤
∫

γk+1

|αk+1(y)| dy sup
x∈γk+1

|J(h, x, vk+1(x))| ,

we use the above (5.4) and obtain the estimate,

|�k+1(h)| ≤ 2 |γ1|
(

inf
x∈γ1

|ϕk(x)|
)−1

‖h‖B.

This corresponds to ΛL∞,1(F , ϕ, γ) in (2.3).
Case 3: Again suppose that ‖h‖L∞ ≤ ‖h‖B, ∀h ∈ A. Estimating as above (5.6),

|�k+1(h)| =

∣∣∣∣∣

∫

γk+1

αk+1(x)J(h, x, vk+1(x)) dx

∣∣∣∣∣

≤ 2
∫

γk+1

|αk+1(y)| dy ‖h‖B.

Using also the prior estimate (5.3),

|�k+1(h)| ≤ 2
(

inf
x∈γ1

∣∣∣ϕk(x) · Jac(Fk|γ1
)(x)

∣∣∣
)−1

|γk+1| ‖h‖B.

This corresponds to ΛL∞,2(F , ϕ, γ) in (2.3). �
13See, for example, [1, Definition 3.67, Theorem 3.86] For this, it is essential that the linear
function is defined by integrating along a curve rather than considering jumps at points.
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Before proving the next claim of Proposition 2.3, we will introduce a few
further lemmas.

Lemma 5.1. The cardinality of F−1y is bounded, uniformly for y ∈ M.

Proof. Let {Uj}j be the connected components of M\Γ. This is a finite set
since Γ is the union of a finite number of smooth curves of a finite length. Let
δ > 0. For each j, let {Vj,k}k be a finite cover of Uj comprising of subsets of Uj

of diameter less than δ. Since the derivative of F is bounded, we may choose
δ sufficiently small such that F|Vj,k

is 1-to-1. Consequently, the cardinality of
F−1y is bounded by the cardinality of {Vj,k}j,k. �

Let σ ⊂ Γ ⊂ M denote the finite set of points of intersection of the curves
in Γ. Consequently, for any point in Γ\σ, there exists a neighbourhood such
that the intersection of this neighbourhood with Γ is a curve.

Lemma 5.2. Let y ∈ M and set14 A1(y) = ∂M∩F−1y and A2(y) = F−1y\A1(y).
There exists U , a neighbourhood of y, and, for x ∈ F−1y, there exist mutually
disjoint neighbourhoods15 Vx of x, F : Vx → U injective, such that, for all
h ∈ A, on U\Γ1,

Lh =
∑

x∈A2(y)

(ϕ · h) ◦ F|−1
Vx

+
∑

x∈A1(y)

(ϕ · h) ◦ F|−1
Vx

· 1FVx
. (5.7)

Moreover, if y ∈ γ1\F (ι−1σ), there exists x0 ∈ A1(y) such that x̃0 /∈ A1(y)
where x̃0 ∈ ∂M denotes16 the point such that x0 
= x̃0 yet ι(x0) = ι(x̃0).

Proof. The form of the transfer operator follows from the definition (2.1), and
the only thing to note is that the term 1FVx

can be removed from the first
sum. This is because x ∈ A2(y) means that FVx is a neighbourhood of y (as
a point in M). Consequently, since A2(y) is a finite set, U can be chosen so
that FVx covers U for all x ∈ A2(y).

The final statement follows from assumption (A–0). Suppose this state-
ment was false, then, for any x0 ∈ A1(y), there exists x̃0 ∈ A1(y) such that
x0 and x̃0 are equal as points in M. Let x = ι(x0) = ι(x̃0) ∈ M, and let
Wy ⊂ M be a neighbourhood of y = Fx. Notice that any neighbourhood of x
is covered by ι(Wx0 ∪ Wx̃0) where Wx0 ⊂ M , Wx̃0 ⊂ M are neighbourhoods
of x0, x̃0, respectively. Shrinking the neighbourhoods, we can guarantee that
F(ι(Wx0 ∪ Wx̃0)) ⊂ Wy. Consequently, F is continuous at x in contradiction
of (A–0). �

The following result concerns the structure of elements of A.

Lemma 5.3. Lng is uniformly C1 on M\
⋃n

p=1 Γp for all n ∈ N0, g ∈ C∞(M).

Proof. The case n = 0 is immediate. Let us now suppose the statement is
true for n and consider the n + 1 case. Let h = Lng and so Ln+1g = Lh. By

14The finite set of preimages of y, divided into those in ∂M and those in the interior.
15Although Vx ⊂ M , writing F|Vx

, we consider Vx as a subset of M, discarding ∂M .
16That is, x̃0 ∈ M denotes the point that is equal to x0 as points in M yet distinct in M .
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the inductive assumption, we know that h is uniformly C1 on M\
⋃n

p=1 Γp.
Consider y /∈

⋃n+1
p=1 Γp. To complete the proof, it suffices to show that Lh is

uniformly C1 in a neighbourhood of any such y. Using Lemma 5.2, there exists
U , a neighbourhood of y and, for each x ∈ F−1y, a neighbourhood Vx such
that, on U ,

Lh =
∑

x∈F−1y

(ϕ · h) ◦ F|−1
Vx

where F : Vx → U is bijective for each x. We can consider this reduced version
of the formula (5.7) because of the following. Since y /∈ Γ1, the second sum
from the lemma, the one corresponding to A1(y), can be omitted and we can
assume that U ⊂ M\Γ1. Moreover, shrinking the neighbourhoods as required,
we may choose Vx ⊂ M\

⋃n
p=1 Γp since y /∈ F(

⋃n
p=1 Γp) =

⋃n+1
p=2 Γp. As such,

ϕ · h is uniformly C1 on each Vx. Finally, observe that F−1 : U → Vx is
uniformly C1 since F is Cr and uniformly non-singular. �

Remark 5.4. Since M is a manifold with boundary, the boundary is locally
homeomorphic to the half-space {(x, y) ∈ R

2 : y ≥ 0}. We also know that
F : M → M is Cr. If V ⊂ M is a small neighbourhood of an interior point
x ∈ M , then FV ⊂ M will be a neighbourhood of Fx. On the other hand, if
W ⊂ M is a small neighbourhood of a boundary point x ∈ M , then FW ⊂ M
will not be a neighbourhood of Fx, and it will only be “half”.

Proof of Proposition 2.3, part 2. We will construct h0 ∈ A such that

�1(h0) = 1 and �k(h0) = 0 for all k ≥ 2. (5.8)

Let h ∈ C∞(M), to be chosen shortly, and let h0 = Lh. By Lemma 5.3, Lh
is C1 on M\Γ1. Whenever k ≥ 2, assumption (A–2) tells that γk ∩ Γ1 � ∅.
Consequently, J(Lh, x, vk(x)) = 0 for all x in a full measure subset of γk. We
have thereby shown that �k(Lh) = 0 whenever k ≥ 2. It remains to fix h0 and
show that �1(h0) = 1.

Fix y ∈ γ1\F (ι−1σ). Lemma 5.2 tells us that, in U\Γ1, where U is a
neighbourhood of a point y0 ∈ γ1,

Lh =
∑

x∈A2

(ϕ · h) ◦ F|−1
Vx

+
∑

x∈A1

(ϕ · h) ◦ F|−1
Vx

· 1FVx
.

The first sum of terms contributes nothing to J(Lh, y, v1(y)) because they are
all continuous in U (recall that h ∈ C∞(M)). Let x0 ∈ A1 ⊂ M , x0 ∈ γ, be as
given by Lemma 5.2. We ensure that y0 was chosen such that the intersection
of Vx0 with Γ is a simple curve, a subset of ιγ. We choose h ∈ C∞(M) such that
ϕ ·h is positive in Vx0 , the neighbourhood of ιx0 ∈ M, and zero elsewhere. We
may assume that this neighbourhood is sufficiently small that it does not inter-
sect any other curves in Γ except for γ. This means that J(Lh,Fx0, v1(Fx0)) =
ϕ(x0)h(x0) (or −ϕ(x0)h(x0)). Consequently, J(Lh, y, v1(y)) is positive (or neg-
ative, but say positive) for a positive measure subset of y ∈ γ1, given by
γ1 ∩FVx0 . Furthermore, we can even ensure that J(Lh, y, v1(y)) is everywhere
nonnegative in γ1 since, by eventually making ϕ · h positive in even a smaller
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neighbourhood of x0 and zero elsewhere, we can consider points in γ1 coming
from just one side of Γ (so that J(Lh, y, v1(y)) does not change sign varying
y ∈ γ1). This in turn implies that �1(Lh) is nonzero. Scaling appropriately, we
insure that �1(h0) = 1. �

It remains to prove the final claim of Proposition 2.3 which, together with
Lemma 5.2, makes use of the following two results.

Lemma 5.5. Let h ∈ A. For any k ∈ N, there exists γ̃k with γ̃k � γk such that
for all x ∈ γ̃k and any vector v ∈ TxM, v not parallel to γ′

k(x) and v 
= 0, we
have

lim
ε→0+

h ◦ F (expx(εv)) = lim
ε→0+

h (expFx(εv)) , (5.9)

where v = DxFv ∈ TFxM.

Proof. Suppose that h = Lng for some g ∈ C∞(M). Consider the two paths,

ρ(ε) = F (expx(εv)) , ρ̃(ε) = expFx(εv).

We have to show that limε→0 h ◦ ρ(ε) is equal to limε→0 h ◦ ρ̃(ε). Observe that
ρ(0) = ρ̃(0) = Fx and the two paths are tangent at 0. We still need to work a
little because h might fail to be continuous at any point in

⋃n
j=1 Γj . For the

purpose of this proof, we say that a point y ∈ γk+1 is a regular point if there
exists η > 0 such that the η-size neighbourhood of y, Uη(y) ⊂ M satisfies
Uη(y) ∩

⋃n
j=1 Γj = γk+1. Since

⋃n
j=1 Γj is composed of a finite number of

finite length curves, there can be at most a finite number of points which
fail to be regular. Let γ̃k ⊂ γk be the set of all points x such that y =
Fx ∈ γk+1 is regular. By the above considerations, γ̃k � γk. Observe that
Uη(Fx)\γk+1 consists of two connected components, the boundary between
the two given by the curve γk+1. By Lemma 5.3, h is continuous in each of
these two components. Now, the fact that v ∈ TxM is not parallel to γ′

k(x),
implies that v is not parallel to γ′

k+1(Fx) and the ranges of ρ(ε) and, for all
ε small enough, ρ̃(ε) belong to the same connected component of Uη(Fx) on
which h is continuous. Consequently, the two limits coincide. �

Lemma 5.6. For all k ∈ N, there exists γ̃k+1 � γk+1 such that for all y ∈ γ̃k+1,
h ∈ A,

J(Lh, y, vk+1(y)) =
∑

x∈γk,
Fx=y

ϕ(x)J(h, x, vk(x)).

Proof. Let h = Lng for some g ∈ C∞(M). By Lemma 5.3, h is uniformly
C1 on M\

⋃n
p=1 Γp. By (A–3), F−1γk+1 ∩ Γ̂ � γk. Additionally, by (A–2),

γk+1 ∩ Γ1 � ∅. Consequently, let γ̃k+1 � γk+1 denote the subset of γk+1 such
F−1γ̃k+1 ∩ Γ̂ ⊂ γk and γ̃k+1 ∩ Γ1 = ∅.

Applying Lemma 5.2, for a point y ∈ γ̃k+1 ⊂ γk+1, we obtain neighbour-
hoods which, following the notation of the lemma, are denoted U , {Vx}, such
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that J(Lh, y, vk+1(y)) is equal to the limit as ε → 0 of
∑

x∈F−1y

[
(ϕ · h) ◦ F|−1

Vx

(
expy(εvk+1(y))

)
· 1FVx

(
expy(εvk+1(y))

)

− (ϕ · h) ◦ F|−1
Vx

(
expy(−εvk+1(y))

)
· 1FVx

(
expy(−εvk+1(y))

)]
.

(5.10)

Recall the notation from before (Lemma 5.2) that A1 = ∂M ∩F−1y and
A2 = F−1y\A1. As mentioned above, by (A–2) we know that γ̃k+1 ∩ Γ1 � ∅
and so, in this case, A1 is an empty set and we need only to consider A2. This
means that, for all x ∈ F−1y, FVx is a neighbourhood of y so the indicator
functions in the above sum can be discarded.

Since F−1γ̃k+1 ∩ Γ̂ ⊂ γk, if x ∈ F−1γ̃k+1, then x ∈ γk or x /∈ Γ̂. In
the above (5.10), all the summands are zero, except the ones corresponding to
x ∈ γk. This is because if x /∈ Γ̂, then ϕ · h is C1 in a neighbourhood of x and
so the positive and negative part of the summand cancel out. Here, we have
used the fact that h is C1 on M\

⋃n
p=1 Γp and x /∈

⋃n
p=1 Γp.

Taking advantage of Lemma 5.5, J(Lh, y, vk+1(y)) is equal to, for all
y ∈ γ̃k+1,

∑

x∈γk
Fx=y

lim
ε→0+

[(ϕ · h) (expx(εvk(x))) − (ϕ · h) (expx(−εvk(x)))] . (5.11)

We conclude since ϕ is continuous in x (with the exception of at most a finite
set of points, which we can always remove by redefining γ̃k+1). Indeed, since
γ̃k+1 ∩ Γ1 = ∅, for all y ∈ γ̃k+1, the above (5.11) is equal to

∑

x∈γk
Fx=y

ϕ(x) lim
ε→0+

(
h (expx(εvk(x))) − h (expx(−εvk(x)))

)

=
∑

x∈γk
Fx=y

ϕ(x)J(h, x, vk(x))

as required by the statement of the lemma. �

Proof of Proposition 2.3, part 3. Recalling the definition (5.1) of the linear
functionals �k, Lemma 5.6 implies that

�k+1(Lh) =
∫

γk+1

αk+1(y)J(Lh, y, vk+1(y)) dy

=
∫

γk+1

αk+1(y)
∑

x∈γk,
Fx=y

ϕ(x) J(h, x, vk(x)) dy.

Changing variables, the above is equal to
∫

γk

αk+1(Fx) ϕ(x) J(h, x, vk(x)) Jac(F|γk
)(x) dx.
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The relationship (2.2) for the αk (A–1) means that,

�k+1(Lh) =
∫

γk

αk(x) J(h, x, vk(x)) dx = �k(h),

as required for the final claim of Proposition 2.3. �

6. Examples

In this section, we discuss some examples for which our results apply; namely,
we exhibit maps admitting a proper discontinuity for which Theorem 1 holds.
In the first example, concerning two-dimensional piecewise affine expanding
maps, we can say more: our lower bound for the essential spectral radius
coincides with the upper bound known in the literature.

6.1. Piecewise Affine Expanding Maps

Let β ∈ (1,∞) be non-algebraic and M = T
2. Let FA : M → M be defined

through its action on the fundamental domain [0, 1)2,

FA (x, y) = ([βx + y], [2y]) , (6.1)

where we write [x] = x − �x� for the fractional part of any real number x.
Let Γ = {0} × T

1. Let ϕ : M → C be as per Theorem 1, i.e. C1 on M\Γ,
uniformly bounded and uniformly bounded away from zero. Note that FA is
C∞ on M\Γ, but for any y ∈ T

1,

lim
x→1−

FA(x, y) 
= lim
x→0+

FA(x, y). (6.2)

According to Sect. 2, we consider the extension of FA, denoted FA : M → M,
where M = [0, 1]×T

1. Furthermore, M is a smooth manifold whose boundary
is ∂M = γ′ ∪ γ, where

γ′ = {0} × T
1, γ = {1} × T

1.

Note that, doing so, we have “doubled” the discontinuity set such that the
extension is well defined. For all k ≥ 1, we set β̃k = 1

2

∑k−1
�=0

(
β
2

)� and β̃0 = 0.
Observe that {β̃k}k is a strictly increasing sequence and, in particular, that
β̃k 
= β̃k′ whenever k 
= k′. Next, let v = ( 0

1 ) be the unit tangent vector to the
curve γ (or γ′). One has that17

wk = DFk
Av =

(
βk 2kβ̃k

0 2k

)(
0
1

)
=
(

2kβ̃k

2k

)
,

is tangent to Fk
Aγ (or Fk

Aγ′). This shows that both Fk
Aγ and Fk

Aγ′ are unions
of straight lines with slopes β̃−1

k . Note also that, for all x ∈ Fk
Aγ,

Jac(F|Fk
Aγ)(x) =

‖DFAwk‖
‖wk‖ . (6.3)

17Here, we systematically write DFk
Av to mean DFk−1

A DFAv, Fk
Aγ to mean Fk−1

A FAγ and

similar for γ′.
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Lemma 6.1. (i) For each k ∈ N and a ∈ Fk
Aγ, there exist t ∈ [0, 1], {nj}k−1

j=0 ,m ∈
Z such that

a =

⎛

⎝βk +
k−1∑

j=0

βj2k−1−jt +
k−1∑

j=0

βjnj , 2kt + m

⎞

⎠ .

(ii) For each k ∈ N and b ∈ Fk
Aγ′, there exist t̄ ∈ [0, 1], {n̄j}k−1

j=0 , m̄ ∈ Z such
that

b =

⎛

⎝
k−1∑

j=0

βj2k−1−j t̄ +
k−1∑

j=0

βj n̄j , 2k t̄ + m̄

⎞

⎠ .

Proof. (i) If k = 1, a direct computation yields

FAγ =
{
([β + t], [2t])

}
t∈[0,1]

,

which is in agreement with the statement choosing n0 ∈ Z, m ∈ {−1, 0, 1}
depending on t. Let us assume that it is true for k ≥ 2. Then, any a ∈ Fk+1

A γ
is of the form

[(
β 1
0 2

)⎛

⎝βk +
k−1∑
j=0

βj2k−1−jt +
k−1∑
j=0

βjnj

2kt + m

⎞

⎠
]

=

⎛

⎜⎝

[
βk+1 +

k−1∑
j=0

βj+12k−1−jt +
k−1∑
j=0

βj+1nj + 2kt + m

]

[
2k+1t + 2m

]

⎞

⎟⎠ ,

for some t ∈ [0, 1]. Therefore, there exist t ∈ [0, 1], ñ, m̃ ∈ Z such that the
coordinates of a are

⎛

⎝βk+1 +
k∑

j=0

βj2k−jt +
k∑

j=1

βjnj−1 + ñ

2k+1t + m̃

⎞

⎠ .

Renaming the integers ñ, m̃ and nj properly, we have proved the statement
for k + 1 and conclude by induction.

(ii) If k = 1,

FAγ′ =
{
([t̄] , [2t̄])

}
t̄∈[0,1]

,

which is in agreement with the statement choosing n̄0, m̄ ∈ {−1, 0, 1} depend-
ing on t. Assuming that is true for k ≥ 2, any b ∈ Fk+1

A γ′ is of the form
⎡

⎣
(

β 1
0 2

)⎛

⎝
k−1∑
j=0

βj2k−1−j t̄ +
k−1∑
j=0

βj n̄j

2k t̄ + m̄

⎞

⎠

⎤

⎦

=

⎛

⎜⎝

[
k−1∑
j=0

βj+12k−1−j t̄ +
k−1∑
j=0

βj+1n̄j + 2k t̄ + m̄

]

[
2k+1t̄ + 2m̄

]

⎞

⎟⎠ ,
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for some t̄ ∈ [0, 1]. Therefore, there are integers n̂, m̂ such that the coordinates
of b are

⎛

⎝
k∑

j=0

βj2k−j t̄ +
k∑

j=1

βj n̄j−1 + n̂

2k+1t̄ + m̂

⎞

⎠ ,

which implies the statement for k + 1. �

Lemma 6.2. For any k ≥ 1,

Fk
Aγ ∩ Fk

Aγ′ = ∅.

Proof. By Lemma 6.1, if a ∈ Fk
Aγ∩Fk

Aγ′ for some k, then there exist t, t̄ ∈ [0, 1],
nj , n̄j ,m, m̄ ∈ Z, such that

⎛

⎝ βk +
k−1∑
j=0

βj2k−1−jt +
k−1∑
j=0

βjnj

2kt + m

⎞

⎠ =

⎛

⎝
k−1∑
j=0

βj2k−1−j t̄ +
k−1∑
j=0

βj n̄j

2k t̄ + m̄

⎞

⎠ .

The equation for the y-coordinate implies that, for some p ∈ Z,

t̄ = t + 2−kp.

Substituting this in the first equation, we have

βk +
k−1∑

j=0

βj
(
nj − n̄j − 2−1−jp

)
= 0.

Since the function P(β) = βk +
∑k−1

j=0 βj
(
nj − n̄j − 2−1−jp

)
is a polynomial

with rational coefficients and β is non-algebraic by assumption, the above
equation is never satisfied and we conclude. �

In the next lemma, we show that γ is a proper discontinuity (Defini-
tion 2.1) of the map FA. First we construct the αk, the coefficient functions.
Let γ1 = Fγ, γk+1 = Fkγ1, k ∈ N. Let α1 : γ1 → C be defined as α1 ≡ 1. We
then define inductively, for all k ∈ N, αk : γk → C such that (A–1) holds, i.e.
for a.e. x ∈ γk,

αk+1(Fx) = αk(x)ϕ(x)−1 Jac(F|γk
)(x)−1. (6.4)

This is well defined since F : γk → γk+1 is injective, at least a.e. x ∈ γk. That
it is injective is due to the fact that γk is the union of straight lines with slope
β̃−1

k and β̃k 
= β̃k+1.

Lemma 6.3. The curve γ is a proper discontinuity.

Proof. Assumption (A–0) is immediate as observed above (6.2).
(A–1): The required property (2.2) holds by construction.
(A–2): Suppose that for some k ≥ 2, γk ∩ (Fγ ∪Fγ′) contains some curve

γ̃. This would imply that γ̃ is a line of slope β̃−1
k since γk is the union of lines

of slope β̃−1
k . On the other hand, it also implies that γ̃ is a line of slope β̃−1

1

since γ̃ ⊂ (Fγ ∪ Fγ′). This is a contradiction since β̃k 
= β̃1.
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(A–3): Let γ̃ ⊆ Γ̂ be defined as

γ̃ =
(
F−1

A γk+1 ∩ Γ̂
)

\ Fk
Aγ,

and assume, for sake of contradiction, that γ̃ has positive 1-dimensional Haus-
dorff measure. Then, for some n ∈ N, the set γ̃n = γ̃ ∩ Fn

A(γ′ ∪ γ) has positive
1-dimensional Hausdorff measure (Γ̂ is the countable union of the Fn

A(γ ∪ γ′),
n ∈ N0) and it is such that FAγ̃n ⊆ Fk+1

A γ. Let us consider two separate cases.
First, suppose that n 
= k. Note that FAγ̃n ⊆ Fn+1

A (γ ∪ γ′) is a union of lines
with slope β̃−1

n+1, whilst Fk+1
A γ is a union of lines with slope β̃−1

k+1. Since k 
= n,
we have a contradiction, because the intersection of two lines with different
slopes on the torus cannot have positive 1-dimensional Hausdorff measure. Let
us suppose that n = k. In this case,

γ̃k = γ̃ ∩ Fn
A(γ′ ∪ γ) ⊆ Fk

Aγ′ and FAγ̃k ⊆ Fk+1
A γ,

which is not possible because of Lemma 6.2, concluding the proof. �

Comparison with Upper Bounds on the Essential Spectrum. Consider the
transfer operator associated with a piecewise smooth expanding map F with
piecewise Hölder weight ϕ. It is known [4,22] that the essential spectral radius
of this operator acting on BV is bounded above by

Λ(F , ϕ) = ehm(F) lim
n→∞

∥∥ϕn det DFn · λ−1
n

∥∥ 1
n

L∞ , (6.5)

where λn(x) = infω∈Ωn infv∈TxM:‖v‖=1 ‖DxFn
ω‖ and18

hm(F) = lim
n→∞

1
n

log max
x∈M

# {ωn ∈ Ωn | ωn � x} , (6.6)

Ωn being the partition associated with Fn made of cylinder sets. The quantity
hm(F) provides a measure of the growth of the intersection multiplicities of
a discontinuity in a single point. Notice that ΛBV (F , ϕ, γ) ≤ Λ(F , ϕ), as it
should be. In the affine case, such as FA, equality holds, as shown in the
following.

Lemma 6.4. Let FA, β and γ be as above. Then,

Λ(FA, 1) = ΛBV (FA, 1, γ) = max{2, β},

Λ(FA, |det DFA|−1) = ΛBV (FA, |det DFA|−1
, γ) = min{2, β}−1.

Proof. Following the definition (2.3), to determine ΛBV (F , 1, γ) we calculate
| Jac(Fk

A|γ)|1/k. For all β ∈ (1,∞), the curve γ is not aligned to the direc-
tion of minimal expansion. Therefore, its slope approaches the direction of the
eigenvector corresponding to the maximal eigenvalue, i.e. max{2, β}. In this
way, one gets that Jac(F|γk

) tends to max{2, β} as k → ∞ and we can con-
clude. Similarly, in order to determine ΛBV (F , |det DFA|−1

, γ) we calculate
(|det DFA|−1 Jac(Fk

A|γ))
1
k . Since |det DFA| = 2β, ΛBV (F , |det DFA|−1

, γ) =
2−1β−1 max{2, β} = min{2, β}−1.

18Note that hm depends also on the partition Ω.
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Let us then compute the upper bounds. By [10, Lemma 1], we have
hm(FA) = 0. Moreover,

det DFn
A = (2β)n, λn = min{2, β}n.

Therefore, by (6.5), Λ(FA, 1) = max{2, β}, whereas Λ(FA, |det DFA|−1) =
min{2, β}−1. �

Remark 6.5. All indications suggest that a similar argument would imply the
equality of upper and lower bounds for a larger class of piecewise affine expand-
ing maps, whenever the discontinuity set is nowhere aligned to the direction
of minimal expansion, as the ones introduced in [10]. It remains to understand
any possible relations between ΛBV and the Lyapunov exponents for general
two-dimensional maps with discontinuities.

6.2. Cocycles with Base which Fails to be Markov

Let M = T
2 and let FB : M → M be defined as

FB(x, y) = (T (x), S(x, y)) ,

where T : T
1 → T

1 is piecewise C2 without critical points and S is C2(T2, T1)
without critical points such that S(x, ·) : T

1 → T
1 is surjective for all x. We

assume that T is C1 on T
1\{a} for some a ∈ T

1. Let ϕ = |det DFB |−1, i.e. in
this example we specialize to the case where the transfer operator is the one
corresponding to the SRB measure. For convenience, we use the notation a+,
a− to write T ka+ = limε→0 T k(a + ε) and T ka− = limε→0 T k(a − ε). Finally,
we suppose that {T ka+}∞

k=0 is a finite set of distinct points, whilst {T ka−}∞
k=0

is an infinite set of distinct points.
The assumptions allow us to choose T to be a β-map where β is chosen

such that the map is non-Markov. However, the class of maps we consider here
is much larger, there is no requirement for T to be affine. The assumptions
imply that T is non-Markov and

T ka+ 
= T ja−, ∀j, k ∈ N

T ka− 
= T ja−, j 
= k.
(6.7)

Let Δ =
⋃∞

j=0{T ja+, T ja−}. In the present case, we can apply the result
available for one-dimensional maps with discontinuities ( [6, Lemma 3.2] with
k0 = 1) and consequently

T−1(T k+1a−) ∩ Δ = T ka−, k ≥ 1. (6.8)

Let Γ = {a} × T
1. The assumptions on T and S imply that FB is C2 on T

2\Γ.
Following the notation of Sect. 2, we consider the smooth manifold M with
boundary ∂M = γ′ ∪ γ, where

γ = {a−} × T
1, γ′ = {a+} × T

1.

Following the notations of Definition 2.1, γ1 = {Ta−} × T
1 and, for all k ∈ N,

γk = {T ka−} × T
1 (since S(x, ·) is surjective). In this particular case, we may

choose the functions αk to be constant on γk. Let, for k ≥ 2,

αk = (T k−1)′(Ta−). (6.9)
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Note that since ϕ = |det DFB|−1, for all k ∈ N, x ∈ γk,

ϕ(x) Jac(FB |γk
)(x) = |T ′(T ka−)|−1

. (6.10)

Lemma 6.6. The curve γ is a proper discontinuity.

Proof. Assumption (A–0) is satisfied since Ta+ 
= Ta− (6.7).
(A–1): Using the above (6.10),

αk+1 = (T (k+1)−1)′(Ta−) = (T k−1)′(Ta−) · |T ′(T ka−)|
= αk · ϕ(x)−1 · Jac(FB |γk

)(x)−1,

so proving (A–1).
(A–2): Again, following the notation of Definition 2.1, Γ1 = {Ta+, Ta−}×

T
1 (using the fact that S(x, ·) is surjective). Since γk = {T ka−} × T

1, the
relations between the images of the discontinuity (6.7) imply that, for all k ≥ 2,
γk ∩ Γ1 = ∅

(A–3): Following the notation of Sect. 2, Γ̂ =
⋃

j∈N
F jΓ1 and so (again

using the fact that S(x, ·) is surjective),

Γ̂ =
(⋃

j∈N

{
T ja−

}
× T

1
)

∪
(⋃

j∈N

{
T ja+

}
× T

1
)

.

For k ∈ N,

F−1
B γk+1 = F−1

B

({
T k+1a−

}
× T

1
)

=
{
T−1

(
T k+1a−

)}
× T

1.

However, using (6.8),
(
F−1

B γk+1

)
∩ Γ̂ =

⋃

j∈N

({
T−1(T k+1a−) ∩ T j({a+} ∪ {a−})

}
× T

1
)

= {T ka−} × T
1 = γk,

showing (A–3) and concluding the proof. �

Remark 6.7. Calculating the estimates (2.3), using the formula previously ob-
tained (6.10),

ΛBV (FB , |det DFB |−1
, γ) = lim inf

n→∞
|(Tn)′(a−)|−1/n

.

Since, in this present setting, |γk| is uniformly bounded, ΛL∞,2 will be equal
to ΛBV . On the other hand, ΛL∞,1 would give a worse (if there is expansion
in the second coordinate) or equal (if neutral behaviour in second coordinate)
bound. The estimates on the essential spectral radius for this class of examples
are equal to the estimates obtained [6] for the one-dimensional map T .

Remark 6.8. A broad class of interesting examples fits with the above, in par-
ticular skew products on T

2 of the form

(x, y) �→ (T (x), y + σ(x)).

If T is a piecewise smooth expanding non-Markov map satisfying the assump-
tions above with T ′ ≥ λ > 1 and σ smooth (this is a partially hyperbolic
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system with a neutral direction), we obtain, for the transfer operator with
weight as above, the estimates, ΛBV = ΛL∞ ≥ λ−1.19

6.3. Local Discontinuity

Let M = T
2. This example, denoted FC : M → M, to be defined shortly,

is a perturbation of a smooth uniformly expanding map in an arbitrary small
neighbourhood, yet has large essential spectrum. The only discontinuity will
be an ε-sized “slit” which is introduced by the perturbation.

Let f : T
1 → T

1 be the doubling map defined as f : x �→ 2x mod 1. For
notational convenience, let x0 = y0 = 1

2 . For k ∈ N let ak = fk(x0 − ε) and
choose, once and for all, ε > 0 small and such that {ak}k∈N

is an infinite set
of distinct points, disjoint from the interval [x0, x0 + ε]. Let J = [x0, x0 + ε] ×
[y0 − ε, y0 + ε] ⊂ T

2. Fix ρ ∈ C∞(R, R) such that ρ(x) = 1 when x ≤ 0, that
ρ(x) = 0 when x ≥ 1 and that, for all x ∈ R, ρ′(x) ≤ 0. Let ρε(x) = ερ(ε−1x).
Let T, S : T

2 → T
2 be defined as

T : (x, y) �→ (f(x), f(y)),

S : (x, y) �→
{

(x, y) if (x, y) ∈ T
2 \ J

(x − ρε(x − x0), y) if (x, y) ∈ J

and hence let FC : M → M be defined as

FC = T ◦ S.

Note that Γ, the set of discontinuities for FC , is composed of the vertical
line segment {(x0, y0 + t) : t ∈ [−ε, ε]} and the two horizontal line segments,
[x0, x0 + ε]×{y0 − ε} and [x0, x0 + ε]×{y0 + ε}. As per Sect. 2, we consider the
smooth manifold with boundary, which we denote M , such that FC : M → M
is C∞. We define

γ = {x+
0 } × [y0 − ε, y0 + ε], γ′ = {x−

0 } × [y0 − ε, y0 + ε],

where, as per the previous example, x+
0 and x−

0 correspond to the doubling
of points at {x0} × [y0 − ε, y0 + ε] ⊂ M. Note that γ and γ′ are the only
vertical components of ∂M . The definition of ak has the consequence that
Fk

C(x+
0 , y) = (ak, fk(y)). Let ϕ = |det DFC |−1 and consider, as specified in

Theorem 1, the associated transfer operator L. Observe that ϕ(x, y) = 1
4

whenever (x, y) ∈ T
2\J . Following the notation of Definition 2.1, γ1 = FCγ

and, γk+1 = Fk
Cγ1, k ∈ N. As such, γk ⊂ {ak} × T

1.

Lemma 6.9. The curve γ is a proper discontinuity.

Proof. We choose αk ≡ 2k−1, k ∈ N. Note that each γk is a vertical line whose
first coordinate is equal to ak. The choice of ε means that γk never intersects
J . For small k, these lines will have length 2kε, and for large k, they are equal
to {ak} × T

1. We will, in turn, check each of the required properties.

19Combining the techniques used in [13] and [7], it should be possible to obtain upper
bounds of the essential spectral radius for piecewise partially expanding maps, so that we
could compare it with the lower bound obtained in the present paper (at least for this specific
example).
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(A–0): This assumption is satisfied since FC(x+
0 , y) = (f(x0 − ε), f(y)),

whereas FC(x−
0 , y) = (f(x0), f(y)) and f(x0 − ε) 
= f(x0).

(A–1): We see that α1 ≡ 1 as required and so it remains to show that,
for all x ∈ γk, k ∈ N,

αk+1(FCx) = αk(x)ϕ(x)−1 Jac(FC |γk
)(x)−1. (6.11)

For every x ∈ γk, we know that Jac(FC |γk
)(x) = 2 and ϕ(x) = 1

4 so, conse-
quently, ϕ(x) Jac(FC |γk

) ≡ 1
2 . And so, since αk ≡ 2k−1, (A–1) is satisfied.

(A–2): We must show that γk ∩ Γ1 � ∅ for all k ≥ 2. We know that Γ1 is
made up of horizontal and vertical line segments. However, since γk consists
only of a vertical segment, we can avoid considering the horizontal segments.
The vertical segments of Γ1 are contained within {f(x0 − ε), f(x0)} × T

1 =
{a1, f(x0)}×T

1. On the other hand, γk ⊂ {ak}×T
1. Since {ak}k was assumed

to be an infinite set of points, we know that an 
= ak, if n 
= k, and ak 
=
x+

0 , x−
0 , 0, for k ∈ N. (Otherwise, ak would be pre-periodic.) Consequently, the

required conclusion holds.
(A–3): We must show that F−1

C γk+1 ∩ Γ̂ � γk for all k ∈ N. Again
we can ignore the horizontal component of the discontinuity. Observe that
Γ̂ ⊂ (∪∞

k=1{ak} ∪ {0}) × T
1. Furthermore, the ak have the property (see [6,

Lemma 3.2])

f−1(ak+1) ∩
(
∪∞

j=1{aj} ∪ {0}
)

= ak, k ≥ 1,

which readily implies (A–3). �

Lemma 6.10. ΛBV (FC , |det DFC |−1
, γ) = ΛL∞(FC , |det DFC |−1

, γ) = 1
2 .

Proof. Recall that, for x ∈ γk, ϕ(x) Jac(FC |γk
)(x) = 1

2 . Consequently, (2.3),

ΛBV = lim inf
k→∞

(
inf

x∈γk

∣∣∣ϕk(x) · Jac(Fk
C |γ)(x)

∣∣∣
)1/k

= 1
2 ,

Additionally, for all k sufficiently large, |γk| = 1 and so ΛL∞ = ΛL∞,2. �

Remark 6.11. In the first example (Sect. 6.1), αk can be defined inductively
for any weight (see the discussion of Assumption (A–1) in Sect. 3). In the
second and third example (Sect. 6.2, Sect. 6.3), we exploit the fact that ϕ(x)
Jac(FB |γk

)(x) is constant on each γk, allowing us to define αk constant (see
(6.9) and (6.11)). In the third example, any weight which was constant on
T

2\J would suffice without modifying the argument as can be seen in the
proof of Lemma 6.9.
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