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A B S T R A C T   

Graph Semi-Supervised learning is an important data analysis tool, where given a graph and a set 
of labeled nodes, the aim is to infer the labels to the remaining unlabeled nodes. In this paper, we 
start by considering an optimization-based formulation of the problem for an undirected graph, 
and then we extend this formulation to multilayer hypergraphs. We solve the problem using 
different coordinate descent approaches and compare the results with the ones obtained by the 
classic gradient descent method. Experiments on synthetic and real-world datasets show the 
potential of using coordinate descent methods with suitable selection rules.   

1. Introduction 

Consider a finite, weighted and undirected graph G = (V,E,w), with node set V, edge set E ⊆ V × V and edge-weight function w 
such that w(e) = w(uv) > 0 if e = (u, v) ∈ E and 0 otherwise. Suppose each node u ∈ V can be assigned to one of m classes, or labels, C1,
⋯,Cm. In graph-based Semi-Supervised Learning (SSL), given a graph G and an observation set of labeled nodes O⊂V whose vertices 
u ∈ O are pre-assigned to some label yu ∈ {C1,⋯,Cm}, the aim is to infer the labels of the remaining unlabeled nodes in V \ O, using the 
information encoded by the graph [11,60,61]. 

Extending labels is a-priori an ill-posed problem since there are infinitely many solutions. Therefore, a common approach is to 
proceed by making the so-called semi-supervised smoothness assumption. This assumption requires that good labeling functions zj :
V→R+ for the j-th class, whose entries zu,j quantify the likelihood that u ∈ V \ O belongs to Cj, should be smooth in densely connected 
regions of the graph. Assuming that the edges of the graph represent some form of similarity between pairs of nodes, this smoothness 
assumption corresponds to assuming that similar nodes are likely to have similar labels. 

Consider the following ℓ2-based Laplacian regularizer [79] 

r2(z) =
1

2

∑

(u,v)∈E

w(uv)(zu − zv)2 . (1)  

Minimizing r2(z) subject to either hard label constraints, zu = yu for u ∈ O, or a soft penalty constraint like the mean squared error 
∑

u(yu − zu)2, with respect to the known labels y, is a successful way to enforce smoothness with respect to the edges. In both cases, the 
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resulting objective function is strictly convex and hence the corresponding minimization problem has a unique optimal solution. 
Even if the ℓ2-based Laplacian regularizer is very popular and effective in many situations, it has been proved that it can yield 

degenerate solutions in the presence of very few input labels in O, because the learned function z becomes nearly constant on the whole 
graph, with sharp spikes near the labeled data O [22,41]. Therefore, several alternative formulations have been proposed [35,78], 
including approaches based on total variation [14,30] and the class of p-Laplacian based regularizers [22], more in general, defined as 

Fig. 1. Average values of the objective function over 5 random networks sampled from SBM for p = 2, pin = 0.2, pin
pout ∈ {2,2.5,3, 3.5} varies in the 

rows and perc ∈ [3%,6%, 9%,12%] varies in the columns. 

S. Venturini et al.                                                                                                                                                                                                      



EURO Journal on Computational Optimization 11 (2023) 100079

3

Fig. 2. Average values of the accuracy over 5 random networks sampled from SBM for p = 2, pin = 0.2, pin
pout ∈ {2,2.5,3,3.5} varies in the rows and 

perc ∈ [3%, 6%,9%, 12%] varies in the columns. 
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Fig. 3. Average values of the objective function over 5 sampling of know labels, referring to 4 multilayer real-world datasets (3sources, BBCSport, 
Wikipedia, UCI) with quadratic regularizer. perc ∈ [3%,6%, 9%,12%] (resp. perc ∈ [15%, 18%,21%, 24%] for Wikipedia) varies in the columns. 

S. Venturini et al.                                                                                                                                                                                                      



EURO Journal on Computational Optimization 11 (2023) 100079

5

rp(z) =
1

p

∑

(u,v)∈E

w(uv)|zu − zv|p . (2)  

Note that this objective function is still strictly convex. Moreover, rp discourages the solution from developing sharp spikes for p > 2,
giving a heavier penalty on large gradients |zu − zv|. Choosing instead 1 ≤ p < 2 encourages the gradient to be sparse. Furthermore, 
when p→1, the resulting objective function is directly connected with graph cuts and modular clusters [8,66,68]. Many works studied 
the behaviour of rp as p varies, mainly for graphs generated by the geometric random graph model [9,22,24,59,65]. 

In this paper, we want to investigate the effectiveness of these types of Laplacian regularizers for the task of graph semi-supervised 
learning, but taking into consideration also higher-order interactions. A variety of complex systems has been successfully described as 
networks whose interacting pairs of nodes are connected by links. However, in real-world applications, we need to describe in-
teractions in more detailed and varied ways [2,7]. On the one hand, we have simplicial complexes or hypergraphs, which are the 
natural candidates to describe collective actions of groups of nodes [12,32,69,74,75]. On the other hand, we have multilayer networks, 
i.e., networks that are coupled to each other through different layers, all of them representing different type of relationships between 
the nodes [1,23,28,33,40,45,64,77]. Evidence shows that each of those tools can improve modeling capacities with respect to standard 
graphs. Multilayer hypergraphs arise naturally in diverse applications such as science of science (e.g., nodes represent authors and in 
one layer a group of authors is an hyperedge if they wrote a paper together, while, in another layer, pairs of nodes are connected if they 
cite each other), protein networks (e.g., nodes are proteins and they can be connected in pairs or in groups using multiple comple-
mentary genomic data which are the different layers), social networks (e.g., nodes are users and they can interact in groups using 

Fig. 4. Average values of the objective function over 5 sampling of know labels, referring to 1 multilayer real-world dataset (cora) and 2 real-world 
hypergraphs (primary school and high school) with quadratic regularizer. perc ∈ [3%, 6%,9%, 12%] varies in the columns. 
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different platforms). Here, we focus on multiplex hypergraphs, modeled by a sequence of hypergraphs (the layers) with a common set 
of nodes and no hyperedges between nodes of different layers. Moreover, with the terminology introduced in [39] in the context of 
multilayer networks, our aim is to find a set of communities that is total (i.e., every node belongs to at least one community), 
node-disjoint (i.e., no node belongs to more than one cluster on a single layer), and pillar (i.e., each node belongs to the same community 
across the layers). 

However, relatively few studies have considered both multilayer and higher-order structures in complex networks so far [72]. This 

Fig. 5. Average values of the accuracy over 5 sampling of know labels, referring to 4 multilayer real-world datasets (3sources, BBCSport, Wikipedia, 
UCI) with quadratic regularizer. perc ∈ [3%, 6%,9%,12%] (resp. perc ∈ [15%, 18%, 21%,24%] for Wikipedia) varies in the columns. 
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is mainly due to the fact that getting a good solution for models with such a complex structure comes at a much higher computational 
cost. In this work, we hence take a first step in the study of semi-supervised learning over multilayer hypergraphs, trying to deal with 
this additional complexity. 

We solve the problem using different coordinate descent approaches and compare the results with the ones obtained by classic first- 
order approaches, like, e.g., gradient descent/label spreading. Even though coordinate descent approaches were used in the literature 
to deal with other semi-supervised learning problems [19,21], the analysis reported in this paper represents, to the best of our 
knowledge, the first attempt to give a thorough analysis of those methods for semi-supervised learning in multilayer hypergraphs. 

The rest of the paper is organized as follows. In Section 2, we introduce the graph semi-supervised problem and the formulation for 
multilayer hypergraphs. In Section 3, we briefly review the block coordinate descent approaches. In Section 4, we report the results of 
experiments on synthetic and real-world datasets. In Section 5, we draw some conclusions. Finally, in Appendix A, we report some 
computations needed to apply the methods to our specific problem, pointing out the differences in the special case p = 2. 

2. Problem statement 

In this section, we formalize the notation and formulate the problem under analysis. Consider first an undirected and weighted 
graph G = (V, E,w) with node set V and edge set E. Let A = (Auv)u,v∈V be the adjacency matrix of G, with weights Auv = w(e) > 0 for e 
= (u, v) ∈ E, measuring the strength of the tie between nodes u and v, and Auv = 0 if (u,v) ∕∈ E. We assume that V can be partitioned into 
m classes C1,…,Cm and that, only for a few nodes in O⊂V, it is known the class Cj to which they belong. The problem consists in 

Fig. 6. Average values of the accuracy over 5 sampling of know labels, referring to 1 multilayer real-world dataset (cora) and 2 real-world 
hypergraphs (primary school and high school) with quadratic regularizer. perc ∈ [3%, 6%,9%, 12%] varies in the columns. 
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Fig. 7. Average values of the objective function over 5 sampling of know labels, referring to 4 multilayer real-world datasets (3sources, BBCSport, 
Wikipedia, UCI) with perc = 6% (resp. perc = 18% for Wikipedia). p ∈ [1.8, 1.9,2.25,2.5] in the regularization term varies in the columns. 
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assigning the remaining nodes to a class. 
Here, we review the approach based on the p-Laplacian regularization and the corresponding optimization problem. Define the 

(|V| × m)-dimensional matrix of the input labels Y, such that 

Yu,j =

⎧

⎪

⎨

⎪

⎩

1

|Cj∩O| if node u ∈ O belongs to the class Cj,

0 otherwise,

where |Cj∩O| is the cardinality of the known class Cj, i.e., the number of nodes that are initially known to belong to Cj. Now, let yj be the 
jth column of Y and, for all u ∈ V, let δu be the weighted degree of u, that is, δu =∑

v∈VAuv. The Laplacian regularized SSL problem boils 
down to the following minimization problem for all classes j ∈ {1,…,m}: 

min
z∈R|V|

‖ z − yj ‖2 + λ
∑

u,v∈V

Auv

⃒

⃒

⃒

⃒

⃒

zu
̅̅̅̅̅

δu

√ − zv
̅̅̅̅

δv

√
⃒

⃒

⃒

⃒

⃒

p

, (3)  

with given p ≥ 1 and regularization parameter λ ≥ 0. Equivalently, as the minimization problems above are independent for j ∈ {1,… 

,m}, we can simultaneously optimize their sum, which can be written in compact matrix notation as 

Fig. 8. Average values of the objective function over 5 sampling of know labels, referring to 1 multilayer real-world dataset (cora) and 2 real-world 
hypergraphs (primary school and high school) with perc = 6%. p ∈ [1.8, 1.9,2.25,2.5] in the regularization term varies in the columns. 
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min
Z∈R|V|×m

‖ Z − Y ‖2

(2) + λ‖ W1/pBD−1/2Z ‖p

(p), (4)  

where ‖ M ‖(p) denotes the entry-wise ℓp norm of the matrix M, D is the |V| × |V| diagonal matrix of the graph degrees 

Fig. 9. Average values of the accuracy over 5 sampling of know labels, referring to 4 multilayer real-world datasets (3sources, BBCSport, Wikipedia, 
UCI) with perc = 6% (resp. perc = 18% for Wikipedia). p ∈ [1.8,1.9,2.25,2.5] in the regularization term varies in the columns. 
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D =

⎡

⎢

⎢

⎣

δ1 0 ⋯ 0

0 δ2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ δ|V|

⎤

⎥

⎥

⎦

B is the |E| × |V| (signed) incidence matrix of the graph, which for any chosen orientation of the edges is entrywise defined as 

Be,u =

⎧

⎨

⎩

1 if node u is the source of edge e,
−1 if node u is the tip of edge e,
0 otherwise,

and W is the diagonal |E| × |E| matrix of the edge weights We,e = w(e). Note that, even though we are dealing with undirected graphs, B 
requires fixing an orientation for the edges of G. However, all the arguments presented here are independent of the chosen orientation. 
For p = 2, a direct computation shows that the optimal solution Z∗ of the above problem is entrywise nonnegative. The same property 
carries over to any p ≥ 1, as one can interpret the minimizer of (4) as the smallest solution of a p-Laplacian eigenvalue equation on G 
with boundary conditions, see e.g. [18]. Thus, we can interpret the entry Z∗

u,j ≥ 0 as a score that quantifies how likely it is for the node 
u ∈ V to belong to the class Cj and we then assign each node u ∈ V to the class j ∈ Argmaxr=1,…,mZ∗u,r. 

Now, we want to extend the formulation (4) to the case where rather than a graph G, we have a multilayer hypergraph H. Spe-
cifically, assume that we have L layers H1,…,HL, where Hℓ(V, Eℓ) is the hypergraph forming the ℓth layer and Eℓ is a hyperedge set, 

Fig. 10. Average values of the accuracy over 5 sampling of know labels, referring to 1 multilayer real-world dataset (cora) and 2 real-world 
hypergraphs (primary school and high school) with perc = 6%. p ∈ [1.8, 1.9,2.25,2.5] in the regularization term varies in the columns. 
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that is, Eℓ contains interactions of order greater than 2. In other words, each e ∈ Eℓ is a set of arbitrary many nodes, weighted by wℓ(e)
> 0. The topological information of a hypergraph Hℓ can be all included in the (signless) incidence matrix Kℓ ∈ R|Eℓ |×|V|, defined as 
(Kℓ)e,u = 1 if u ∈ e, and (Kℓ)e,u = 0 if u ∕∈ e, for all u ∈ V and e ∈ Eℓ, see e.g. [2,50,76]. Using Kℓ, we can represent each Hℓ(V,Eℓ) via a 
clique-expanded graph G(Hℓ), which corresponds to the adjacency matrix 

Aℓ = KT
ℓ WℓKℓ − Dℓ,

with Wℓ being the |Eℓ| × |Eℓ| diagonal matrix of the relative hyperedge weights, defined as 

(Wℓ)e,e =
wℓ(e)
|e| > 0,

and Dℓ being the diagonal matrix of the node degrees of the hypergraph Hℓ, defined as 
(Dℓ)u,u = (δℓ)u =

∑

e∈E

wℓ(e)|e|−1(Kℓ)e,u =
(

KT
ℓ WℓKℓ

)

u,u
.

Note that the edge (u, v) is in the resulting clique-expanded graph G(Hℓ) if and only if u ∕= v and there exists at least one hyperedge in Eℓ 

such that both u ∈ Eℓ and v ∈ Eℓ. In that case, the weight of the edge (u, v) in G(Hℓ) is 

(Aℓ)u,v =
∑

e:u,v∈e

wℓ(e)
|e|

and we have (δℓ)u = ∑

v∈V(Aℓ)u,v. Therefore, proceeding as before, we can define Bℓ as the signed incidence matrix of G(Hℓ) and we 
can sum the corresponding regularization terms across all the layers, obtaining the following formulation: 

min
Z∈R|V|×m

ϑ(Z) := f (Z) + rp(Z)

where f (Z) = ‖ Z − Y ‖2

(2), rp(Z) =
∑

L

ℓ=1

λℓ‖ W
1/2

ℓ BℓD
−1/2

ℓ Z ‖p

(p),
(5)  

where λ1,…, λL ≥ 0 are regularization parameters. Note that, if H is a standard graph, i.e., if |e| = 2 for all edges and L = 1, then (5) 
boils down to (4), up to the constant term 1/|e| = 1/2. Note moreover that, as in the graph case, we can equivalently write the objective 
function ϑ(Z) as ∑jϑj(zj), where zj is the j-th column of Z, and 

ϑj(z) = ‖ z − yj ‖2

2 +
∑

L

ℓ=1

λℓ

∑

e∈Eℓ

wℓ(e)
|e|

∑

u,v∈e

⃒

⃒

⃒

⃒

⃒

zu
̅̅̅̅̅̅̅̅̅̅

(δℓ)u

√ − zv
̅̅̅̅̅̅̅̅̅̅

(δℓ)v

√

⃒

⃒

⃒

⃒

⃒

p

.

The above expression shows that the regularizers ϑj enforce a form of higher-order smoothness assumption in the solution across all the 
nodes of each layer’s hyperedge by imposing the minimizer Z∗ to have similar values on pairs of nodes in the same hyperedge. This 
immediately justifies the choice of the objective function (5) for SSL on multilayer hypergraphs. Also note that, as in the graph setting, 
the optimal solution Z∗ to (5) has to be entrywise nonnegative and thus, once Z∗ is computed, we can assign each node u ∈ V to the class 
j ∈ Argmaxr=1,…,mZ∗u,r. 

3. Block coordinate descent approaches 

When dealing with large-scale optimization problems, such as those arising in semi-supervised learning problems on real-world 
multilayer hypergraphs, traditional methods may be impractical and block coordinate descent methods represent a valid tool to 
achieve high efficiency. At every iteration of a block coordinate descent method, a working set of a few variables is suitably selected 
and properly updated, while keeping the remaining variables fixed. The general scheme for a block coordinate descent method to 
minimize an objective function f(z) is reported in Algorithm 1. 

In the literature, many block coordinate descent methods were proposed for both unconstrained and constrained problems, 
differing from each other in the computation of Wk and sk (see, e.g., [73] and the references therein). As for the computation of the 
working set Wk, a possible choice is to use a cyclic rule, also known as Gauss-Seidel rule [4]. It consists in partitioning the variables into a 
number of blocks and selecting each of them in a cyclic fashion. This approach can be generalized to the essentially cyclic rule or almost 
cyclic rule [38], requiring that each block of variables must be selected at least once within a prefixed number of iterations. In un-
constrained optimization, blocks can even be made of just one variable and every update (i.e., the computation of sk) can be carried out 
by an exact or an inexact minimization [4,5,26,38,58]. These methods have been also extended to constrained settings, possibly 
requiring blocks being made of more than one variable when the constraints are not separable [4,6,10,15,27,37,52]. A remarkable 
feature of cyclic based rules is that, at each iteration, only a few components of ∇f must be calculated. This can lead to high efficiency 
when computing one component of ∇f is much cheaper than computing the whole gradient vector. 

A second possibility to choose the working set is to use a random rule, that is, Wk can be computed randomly from a given 
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probability distribution. These algorithms, usually known as random coordinate descent methods, show nice convergence properties in 
expectation for both unconstrained [44,56] and constrained problems [25,42,43,49,53]. Note that random rules, as well as cyclic 
rules, do not use first-order information to compute the working set, thus still leading to high efficiency when the computation of one 
component of ∇f is much cheaper than the computation of the whole gradient vector. 

Another way to choose the working set Wk is to use a greedy rule, also known as Gauss-Southwell rule. It consists in selecting, at each 
iteration, a block containing the variable(s) that most violate a given optimality condition. In the unconstrained case we can choose as 
working set, for instance, the block corresponding to the largest component of the gradient in absolute value. Also for this rule, exact or 
inexact minimizations can be carried out to update the variables [16,17,26,38] and extensions to constrained settings were considered 
in the literature [3,36,48,62,63]. Generally speaking, a greedy rule might make more progress in the objective function, since it uses 
first (or higher) order information to choose the working set, but might be, in principle, more expensive than cyclic or random se-
lection. However, several recent works show that certain problem structures allow for efficient calculation of this class of rules in 
practice (see, e.g., [48] and references therein for further details). 

In this work, we adapt block coordinate descent methods to solve problem (5), leading to the method reported in Algorithm 2. In 
particular, we start with a matrix Z0 ∈ Rn×m and, at each iteration k, we choose a working set Wk

j for each class j ∈ {1,…,m}. We 
highlight that problem (5) solves the same problem for the different classes Cj with j = 1,…,m in a matrix form, but each of them is 
independent and can eventually be solved in parallel. 

3.1. Coordinate descent approaches 

In this paper, we focus on block coordinate descent approaches that use blocks Wk
j of dimension 1, i.e., Wk

j = {ikj }, with ikj being a 
variable index for class j at iteration k. Then, Zk+1 is obtained by moving the variables Zk

ikj j along −∇ikj jϑ(Zk) with a proper stepsize αk
j . 

Namely, for any class j ∈ {1,…,m},

Zk+1
hj =

⎧

⎨

⎩

Zk
hj − αk

j ∇hjϑ
(

Zk
)

if h = ik
j ,

Zk
hj otherwise.

(6) 

Taking into account the possible choices described in Section 3, we consider the following algorithms:  

• Cyclic Coordinate Descent (CCD). At every iteration k, a variable index ik ∈ {1,…, n} is chosen in a cyclic fashion (i.e., by a Gauss- 
Seidel rule), and then Zk+1 is obtained as in (6) by setting ikj = ik for all j ∈ {1,…,m}. A random permutation of the variables every n 
iterations is also used, since it is known that this might lead to better practical performances in several cases (see, e.g., [29,73]).  

• Random Coordinate Descent (RCD). At every iteration k, a variable index ik ∈ {1,…, n} is randomly chosen from a uniform 
distribution, and then Zk+1 is obtained as in (6) by setting ikj = ik for all j ∈ {1,…,m}.  

• Greedy Coordinate Descent (GCD). At every iteration k, a variable index ikj ∈ {1,…, n} is chosen for every class j ∈ {1,…,m} as 
ik
j ∈ Argmaxi=1,…,n

⃒

⃒∇ijϑ
(

Zk
)⃒

⃒

(i.e., by a Gauss-Southwell rule), and then Zk+1 is obtained as in (6). 

0: Given z0 ∈ Rn

1: For k = 0, 1, . . .

2: Choose a working set Wk ⊆ {1, . . . , n}

3: Compute sk ∈ Rn such that sk

i
= 0 for all i < Wk

4: Set zk+1
= zk
+ sk

5: End for

Algorithm 1. Generic block coordinate descent method.  

0: Given Z0 ∈ Rn×m

1: For k = 0, 1, . . .

2: Choose a working set Wk
= Wk

1
× . . . ×Wk

m ⊆ {1, . . . , n}
m

3: Compute S k ∈ Rn×m such that S k
i j
= 0 for all i < Wk

j

4: Set Zk+1
= Zk

+ S k

5: End for

Algorithm 2. Block coordinate descent method for problem (5) - matrix form.  
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The GCD method guarantees good rates when proper conditions are met [48]. Anyway, since at each iteration we need to evaluate 
the whole gradient and search for the best index in order to choose the block to be used in the update, it might become very expensive 
when we tackle large-scale semi-supervised learning problems. To practically implement those methods, specific strategies hence need 
to be implemented. It is important to highlight that, due to the sparsity present in the semi-supervised learning problems we consider, it 
is possible to implement the basic GCD rule in an efficient way (by, e.g., tracking the gradient element in a max-heap structure, using 
caching strategies), see, e.g., [48]. 

Since the practical efficiency of coordinate methods strongly depends on how the algorithm is implemented, we report, in 
Appendix A, details on the calculations needed to update the gradient of the objective functions at a given iteration. 

4. Numerical experiments 

First-order methods like, e.g., gradient descent/label spreading are widely used in the context of semi-supervised learning [46,61, 
67]. This is the reason why we compare the coordinate approaches described in Subsection 3.1, i.e., the Cyclic Coordinate Descent 
method (CCD), Random Coordinate Descent method (RCD) and Greedy Coordinate Descent method (GCD), with the Gradient Descent 
(GD) in our experiments. In the first setting, when p = 2, the objective function is quadratic and we used a stepsize depending on the 
coordinatewise Lipschitz constants (see, e.g., [44]). We highlight that while calculating the coordinatewise Lipschitz constants or a 
good upper bound is pretty straightforward in the considered case for coordinate approaches, the calculation of the global Lipschitz 
constant might get expensive for GD (especially when dealing with large-scale instances). For the p ∕= 2 setting, for simplicity we used a 
stepsize depending on an upper bound of the Lipschitz constants for all the methods (see, e.g., [34,47,48]). The performance of the 
coordinate descent algorithms might of course be further improved by choosing a more sophisticated coordinate dependent stepsize 
strategy [51,54,55,57]. In order to show the advantages of using coordinate methods with respect to gradient descent-like approaches, 
and how efficient those methods are in practice, we performed extensive experiments both on synthetic and real-world datasets. 

We report the efficiency plots of the objective function and accuracy of the final partition (evaluated on the subset of unlabeled 
nodes). In our experiments, we use the number of flops (i.e., one-dimensional moves) as our measure of performance. Therefore, for a 
graph with N nodes, the GD uses N flops at each iteration (i.e., it changes all the N components of the iterate), while the coordinate 
methods use just one flop per iteration (i.e., they change just one component at the time). As already highlighted in [48], this measure 
is far from perfect, especially when considering greedy methods, since it ignores the computational cost of each iteration. However, it 
gives an implementation- and problem-independent measure. Furthermore, in our case, it is easy to estimate the cost per iteration 
(which is small when the strategy is suitably implemented). Thus, we will see how a faster-converging method like GCD leads to a 
substantial performance gain on the considered application. 

We fixed the regularization parameters at λℓ = 1 for ℓ = 1,…, L and we initialized the methods with Z0 = 0. We implemented all 
the methods using Matlab. We emphasize that the choice of the parameters λℓ = 1 does not affect the performance analysis we carry 
out in this work and has been made to ensure a fair balance among all layers. In practice, the choice of these parameters may require a 
non-trivial parameter tuning phase which is typically either model- or data-based, see e.g. [45,64,71]. Code and data to reproduce the 
experiments are available at the repository https://github.com/saraventurini/Semi-Supervised-Learning-in-Multilayer-Hypergraphs- 
by-Coordinate-Descent. 

4.1. Synthetic datasets 

We generated synthetic datasets by means of the Stochastic Block Model (SBM) [31], a generative model for graphs with planted 
communities depending on suitably chosen parameters pin and pout . Those parameters represent the edge probabilities: given nodes u 

Table 1 
Aggregated results of the objective function (upper table) and the accuracy (lower table) across the synthetic datasets with p = 2 (see Figs. 1 and 2). 
Using a tolerance gate, for each algorithm flop indicates the normalized number of flops (mean ± standard deviation) and fail indicates the fraction of 
failures (i.e., stopping criterion not satisfied within the maximum number of iterations, set equal to 4 times the number of nodes). The averages are 
calculated without considering the failures and, in case of all failures, a hyphen is reported.   

CCD RCD GCD GD 
gate flop fail flop fail flop fail flop fail 
0.75 0.65±0.07 0.00 0.80±0.06 0.00 0.15±0.04 0.00 2.00±0.00 0.00 
0.5 0.66±0.04 0.00 0.88±0.06 0.00 0.02±0.01 0.00 1.00±0.00 0.00 
0.25 1.05±0.04 0.00 1.83±0.06 0.25 0.02±0.01 0.00 1.00±0.00 0.00 
0.1 1.82±0.05 0.00 3.08±0.16 0.00 0.04±0.02 0.00 1.00±0.00 0.00 
0.05 2.44±0.08 0.00 3.81±0.06 0.50 0.05±0.03 0.00 1.00±0.00 0.00  

CCD RCD GCD GD 
gate flop fail flop fail flop fail flop fail 
0.75 0.65±0.07 0.00 0.80±0.06 0.00 0.15±0.04 0.00 2.00±0.00 0.00 
0.5 1.06±0.15 0.00 1.71±0.28 0.00 0.24±0.03 0.00 2.00±0.00 0.00 
0.25 1.75±0.13 0.00 3.28±0.29 0.25 0.54±0.27 0.00 2.44±0.51 0.00 
0.1 3.07±0.53 0.00 - 1.00 0.82±0.28 0.00 3.00±0.00 0.00 
0.05 3.62±0.32 1.38 - 1.00 1.02±0.32 0.00 3.50±0.52 0.00  
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and v, the probability of observing an edge between them is pin (resp. pout) if u and v belong to the same (resp. different) cluster. 
Notice that solving problem (5) on a multilayer hypergraph is equivalent to solving the same problem over a simple graph with an 

adjacency matrix made by the weighted sum of the adjacency matrices of the clique-expanded graphs of each layer. Therefore, we 
generated single layer datasets by fixing pin = 0.2 and varying the ratio pin/pout ∈ {3.5,3,2.5,2}. More precisely, we created networks 
with 4 communities of 125 nodes each. We tested the methods also considering different percentages perc of known labels per 
community. In particular, we consider perc ∈ {3%,6%,9%,12%}, i.e., respectively 3,7, 11,15 known nodes per community. 

We studied the optimization problem (5) fixing p = 2. For each value of (pout , perc) we sampled 5 random instances and considered 
average scores. Results reported in Figs. 1 and 2 respectively show the value of the objective function and the accuracy, in terms of 
number of flops. In each row, we report the results related to a fixed value of the ratio pin/pout ∈ {2,2.5, 3, 3.5} (ratio increasing top to 
bottom), varying the percentage of known labels perc ∈ {3%,6%, 9%,12%} (percentage increasing left to right). In Table 1, we present 
aggregated results of the objective function and the accuracy across the synthetic datasets (see Figs. 1 and 2). For each method, it is 
shown average and standard deviation of the number of flops, normalized by the total number of nodes in the network, required to 
reach a certain level of objective/accuracy. This depends by a gate, that is, a convergence tolerance, as in [20]. It is also shown the 
fraction of failures, i.e., the fraction of problems where a method does not convergence within a number of iterations equal to 4 times 
the number of nodes. The averages are calculated without considering the failures and, in case of all failures, a hyphen is reported. As 
we can easily see by taking a look at the plots and the tables, GCD always reaches a good solution in terms of both objective function 
value and accuracy, with a much lower number of flops than the other methods under consideration. Concerning the other coordinate 
methods under analysis, they seem to be slower than GD in getting a good objective function, but faster in terms of accuracy. Therefore, 
if the coordinate selection is properly carried out, a coordinate method might outperform GD in practice. 

4.2. Real datasets 

We further consider seven real-world datasets frequently used for assessing algorithm performance in graph clustering (information 
can be found in the GitHub repository) [13,40,70]:  

• 3sources: 169 nodes, 6 communities, 3 layers;  
• BBCSport: 544 nodes, 5 communities, 2 layers;  
• Wikipedia: 693 nodes, 10 communities, 2 layers;  
• UCI: 2000 nodes, 10 communities, 6 layers;  
• cora: 2708 nodes, 7 communities, 2 layers;  
• primary-school: 242 nodes, 11 communities, 2.4 mean hyperedge size;  
• high-school: 327 nodes, 9 communities, 2.3 mean hyperedge size. 

The first five datasets in the list are related to multilayer graphs, while the last two are related to single layer hypergraphs. 
We tested the methods considering different percentages of known labels per community, sampling them randomly 5 times and 

showing the average scores. In particular, we suppose to know perc ∈ [3%, 6%,9%, 12%] percentage of nodes per community in all the 
datasets except for Wikipedia, where we considered to know a higher percentage of nodes, perc ∈ [15%,18%, 21%, 24%], to have 
significant results. 

Firstly, we analyze the results corresponding to a quadratic regularization in (5) (fixing p = 2). In Figs. 3 and 4, we report the 
average values of the objective function, and in Figs. 5 and 6, the related accuracy values. In Table 2, we present aggregated results of 
the objective function and the accuracy, as explain in Section 4.1. We can see that the results match the ones obtained for the synthetic 
datasets. The Greedy Coordinate Descent method (GCD) indeed reaches a good solution in terms of both objective function and ac-
curacy, with a much lower number of flops than the other methods. 

Table 2 
Aggregated results of the objective function (upper table) and the accuracy (lower table) across the real datasets with p = 2 (see Figs. 3–4 and 
Figs. 5–6). The table indices are the same as in Table 1.   

CCD RCD GCD GD 
gate flop fail flop fail flop fail flop fail 
0.75 0.39± 0.06 0.00 0.40±0.02 0.00 0.01±0.00 0.00 1.00±0.00 0.00 
0.5 0.74±0.08 0.00 1.06±0.09 0.00 0.01±0.00 0.00 1.00±0.00 0.00 
0.25 1.30±0.24 0.00 2.06±0.16 0.00 0.02±0.01 0.00 1.00±0.00 0.00 
0.1 2.16±0.40 0.00 3.37±0.36 0.07 0.03±0.01 0.00 1.32±0.48 0.00 
0.05 2.90±0.49 0.00 3.49±0.00 0.96 0.04±0.02 0.00 1.61±0.50 0.00  

CCD RCD GCD GD 
gate flop fail flop fail flop fail flop fail 
0.75 0.69±0.17 0.00 0.97±0.28 0.00 0.13±0.08 0.00 2.11±0.31 0.00 
0.5 0.99±0.20 0.00 1.61±0.31 0.00 0.25±0.16 0.00 2.15±0.36 0.00 
0.25 1.51±0.26 0.00 2.78±0.49 0.00 0.41±0.24 0.00 2.32±0.48 0.00 
0.1 2.15±0.52 0.00 3.21±0.23 0.82 0.67±0.39 0.00 2.71±0.54 0.04 
0.05 2.70±0.56 0.29 3.86±0.00 0.96 0.91±0.52 0.00 3.10±0.44 0.25  
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In order to investigate how the regularization parameter p influences the behavior of the methods and the accuracy of the results, 
we further carried out experiments with p ∕= 2. In particular, we took into consideration both values larger and smaller than 2. We show 
the results for p ∈ {1.8,1.9,2.25,2.5}, with fixed perc = 6% (resp. Wikipedia perc = 18%). In Figs. 7 and 8, we report the average 
values of the objective function, and in Figs. 9 and 10, the related accuracy values. In Table 3, we present aggregated results of the 
objective function and the accuracy, as explain in Section 4.1. We can notice that the behavior of the methods does not change much by 
varying p. The GCD method performs better than the others in terms of number of flops. Looking at the values of the objective function, 
the CCD method seems to have a behavior very similar to the ones of the GD. Meanwhile, the RCD method performs poorly both in 
terms of objective function and accuracy. It is important to observe that p ∕= 2 can lead to an improvement of the final accuracy. In 
Table 4, we report the maximum value of accuracy achieved in the real datasets with fixed perc = 6% (resp. perc = 18% for Wikipedia) 
and varing p ∈ {1.8,1.9,2,2.25,2.5}. 

5. Conclusions 

In this paper, we compared different coordinate descent methods with the standard Gradient Descent approach for the resolution of 
an optimization-based formulation of the Graph Semi-Supervised learning problem on multilayer hypergraphs. We performed 
extensive experiments on both synthetic and real world datasets, which show the faster convergence speed of suitably chosen coor-
dinate methods with respect to the Gradient Descent approach. This fact clearly indicates that the design of tailored coordinate 
methods for the resolution of the considered semi-supervised learning problems represents a fruitful path to follow. In addition, we 
carried out an analysis replacing the standard quadratic regularization term in the objective function with a more general p −
regularizer. The reported results clearly show that this modification can lead to better performances. 
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Table 3 
Aggregated results of the objective function (upper table) and the accuracy (lower table) across the real datasets with p ∕= 2 (see Figs. 7–8 and 
Figs. 9–10). The table indices are the same as in Table 1.   

CCD RCD GCD GD 
gate flop fail flop fail flop fail flop fail 
0.75 0.35±0.06 0.00 0.35±0.05 0.00 0.01±0.00 0.00 1.00±0.00 0.00 
0.5 0.66±0.09 0.00 0.93±0.14 0.00 0.01±0.00 0.00 1.00±0.00 0.00 
0.25 1.06±0.26 0.00 1.83±0.21 0.00 0.01±0.01 0.00 1.43±0.50 0.00 
0.1 1.68±0.49 0.00 2.99±0.43 0.00 0.02±0.01 0.00 1.93±0.60 0.00 
0.05 2.13±0.72 0.00 3.40±0.39 0.50 0.03±0.01 0.00 2.50±0.29 0.00  

CCD RCD GCD GD 
gate flop fail flop fail flop fail flop fail 
0.75 0.70±0.16 0.00 0.97±0.28 0.00 0.09±0.03 0.00 2.15±0.36 0.00 
0.5 1.01±0.19 0.00 1.64±0.29 0.00 0.23±0.24 0.00 2.15±0.36 0.00 
0.25 1.51±0.26 0.00 2.72±0.45 0.00 0.41±0.45 0.00 2.36±0.49 0.00 
0.1 1.93±0.26 0.00 3.46±0.46 0.68 0.72±0.76 0.00 2.90±0.57 0.00 
0.05 2.39±0.54 0.04 3.90±0.11 0.89 0.94±0.90 0.00 3.05±0.56 0.18  

Table 4 
Maximum value of accuracy achieved in the real datasets with fixed perc = 6% (resp. perc = 18% for Wikipedia) and varing p ∈ {1.8,1.9,2,2.25,2.5}.   

p 
dataset 1.8 1.9 2 2.25 2.5 
3sources 0.84 0.82 0.79 0.76 0.74 
BBCSport 0.91 0.89 0.87 0.85 0.83 
Wikipedia 0.60 0.58 0.56 0.53 0.50 
UCI 0.94 0.93 0.91 0.88 0.86 
cora 0.71 0.69 0.66 0.62 0.60 
primary school 0.89 0.85 0.82 0.77 0.75 
high school 0.96 0.95 0.93 0.89 0.87  
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Appendix A. Calculations 

In order to compare the gradient descent method to block coordinate descent approaches, we need to calculate the gradient of the 
function ϑ(Z) that we want to minimize in (5). The gradient of ϑ(Z) can be expressed as: 

∇ϑ(Z) = 2(Z − Y) + p
∑

L

ℓ=1

λℓL
p

ℓ(Z), (A.1)  

where L p
ℓ(Z) is the normalized p− laplacian and it is applied on each column of Z in this way: 

L
p

ℓ(Z) =

⎛

⎝BℓD
−1

2

ℓ

⎞

⎠

T

ϕp

⎛

⎝BℓD
−1

2

ℓ Z

⎞

⎠,

with ϕp(y) = |y|p−1
sgn(y) component-wise. 

At the beginning, we calculate BℓD−1
2

ℓ ∀ℓ ∈ {1, .., L} layer. Then, at each iteration k, the gradient is calculated in an iterative fashion. 
Break the formula of the gradient in (A.1) into two parts: 

∇ϑ(Z) = ∇f (Z) + ∇rp(Z),

with 
∇f (Z) = 2(Z − Y),

∇rp(Z) = p
∑

L

ℓ=1

λℓ
L

p

ℓ(Z).

Then, 
∇f

(

Zk+1
)

= ∇f
(

Zk
)

+ 2
(

ZK+1

Wk − ZK
Wk

)

,

∇rp

(

Zk+1
)

= p
∑

L
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L
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ℓ

(
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)

,

where L p
ℓ(Zk+1) can be iteratively calculated using 

BℓD
−1

2

ℓ ZK+1 = BℓD
−1

2

ℓ ZK +

⎛

⎝BℓD
−1

2

ℓ

⎞
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(

ZK+1

Wk − ZK
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)

with the appropriate subscript Wk to take just the Wk
j coordinates of column j, for all j ∈ {1,…,m}. 

A1. Special case p = 2 

In this section, we discuss the special case of problem (5) with p = 2. The optimization problem (5) is equivalent to: 

min
Z∈R|V|×k

‖ Z − Y ‖2

(2) +
∑

L

ℓ=1

λℓZT LℓZ,

where Lℓ = I − Aℓ is the normalized laplacian matrix of layer ℓ = 1,…, L and Aℓ is the normalized adjacency matrix of layer ℓ = 1,… 

, L with entries 

(Aℓ)uv =
(Aℓ)uv

̅̅̅̅̅̅̅̅̅̅

(δℓ)u

√ ̅̅̅̅̅̅̅̅̅̅

(δℓ)v

√ .

In this case, the gradient of the function to minimize can be expressed as 

∇Zϑ(Z) = 2(Z − Y) +
∑

L

ℓ=1

2λℓLℓZ  

and the Hessian as 2I+∑L
ℓ=12λℓLℓ. In the experiments where p = 2, this last expression can be used in the calculation of the stepsize. 
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[51] Z. Qu, P. Richtárik, Coordinate descent with arbitrary sampling II: expected separable overapproximation, Optim. Method. Softw. 31 (5) (2016) 858–884. 
[52] M. Razaviyayn, M. Hong, Z.-Q. Luo, A unified convergence analysis of block successive minimization methods for nonsmooth optimization, SIAM J. Optim. 23 

(2) (2013) 1126–1153. 

S. Venturini et al.                                                                                                                                                                                                      

http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0001
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0002
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0002
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0003
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0003
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0004
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0005
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0006
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0007
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0007
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0008
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0008
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0009
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0010
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0010
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0011
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0012
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0012
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0013
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0014
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0014
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0015
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0016
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0017
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0018
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0019
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0019
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0020
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0021
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0022
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0022
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0023
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0023
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0024
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0025
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0025
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0026
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0027
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0028
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0028
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0029
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0029
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0030
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0031
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0032
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0033
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0034
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0034
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0035
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0036
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0037
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0038
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0039
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0040
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0041
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0041
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0042
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0042
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0043
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0043
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0044
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0045
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0045
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0046
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0046
https://proceedings.neurips.cc/paper/2003/file/87682805257e619d49b8e0dfdc14affa-Paper.pdf
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0047
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0047
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0048
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0048
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0049
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0049
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0050
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0050
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0051
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0052
http://refhub.elsevier.com/S2192-4406(23)00023-0/sbref0052


EURO Journal on Computational Optimization 11 (2023) 100079

19

[53] S. Reddi, A. Hefny, C. Downey, A. Dubey, S. Sra, Large-scale randomized-coordinate descent methods with non-separable linear constraints, Proceedings of the 
31st Conference on Uncertainty in Artificial Intelligence (UAI) (2015). 
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