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Abstract
In recent years, a huge amount of data on ncRNA interactions has been described in scientific papers and databases. Although con-
siderable effort has been made to annotate the available knowledge in public repositories, there are still significant discrepancies in 
how different resources capture and interpret data on ncRNA functional and physical associations. In the present paper, we present a 
collection of microRNA–mRNA interactions annotated from the scientific literature following recognized standard criteria and focused 
on microRNAs, which regulate genes associated with rare diseases as a case study. The list of protein-coding genes with a known 
role in specific rare diseases was retrieved from the Genome England PanelApp, and associated microRNA–mRNA interactions were 
annotated in the IntAct database and compared with other datasets. RNAcentral identifiers were used for unambiguous, stable iden-
tification of ncRNAs. The information about the interaction was enhanced by a detailed description of the cell types and experimental 
conditions, providing a computer-interpretable summary of the published data, integrated with the huge amount of protein interac-
tions already gathered in the database. Furthermore, for each interaction, the binding sites of the microRNA are precisely mapped on 
a well-defined mRNA transcript of the target gene. This information is crucial to conceive and design optimal microRNA mimics or 
inhibitors to interfere in vivo with a deregulated process. As these approaches become more feasible, high-quality, reliable networks 
of microRNA interactions are needed to help, for instance, in the selection of the best target to be inhibited and to predict potential 
secondary off-target effects.

Database URL: https://www.ebi.ac.uk/intact
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Key points 

• Rare diseases are considered one of the main public health 
problems.

• Little is known about the involvement of microRNAs in rare 
diseases.

• MicroRNAs exert their function by regulating target genes.
• We propose a method to identify microRNAs potentially 

involved in rare diseases.
• We have collected the interactions in the IntAct database 

and compared them with other collections.

Introduction
In recent years, it has become increasingly clear that com-
plex and dynamic interactions between ncRNA molecules or 

ncRNAs and proteins contribute to virtually any biological 
process. MicroRNAs are probably the best characterized 
ncRNAs, as they can be identified using bioinformatics 
approaches, thanks to the conserved hairpin shape of pre-
cursor transcripts, and their possible targets can be predicted 
(1). MicroRNAs regulate gene expression by guiding the 
RNA-induced silencing complex (RISC) to those mRNAs, 
which display sequences complementary to the microRNA 
‘seed’, i.e. nucleotides 2–7 from the 5′ end (2, 3). Predicted 
and verified microRNAs from more than 270 species are 
annotated in miRbase (4), with their precursor and mature 
sequences and other useful information. The latest release 
contains 1917 human hairpin precursors and 2654 human 
mature sequences, of which 26% are high-confidence microR-
NAs (4). Several microRNA precursors encode two active 
microRNAs, named 3p and 5p, respectively, which recog-
nize different targets. Identifying the exact function for each 
miRNA is challenging and time-consuming, and only a subset 
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of them have been characterized. As mentioned earlier, it is 
possible to predict all possible targets for any microRNA, 
based on the sequence complementarity, site conservation 
and other features (1, 5). However, these methods provide a 
list of hundreds of targets for each miRNA, many of which 
are not bona fide interactors and need to be experimentally 
verified (6, 7). To this aim, several techniques have been 
developed, for low- and high-throughput interaction detec-
tion, which we briefly summarize here. One of the most 
frequently used assays is the luciferase reporter assay, which 
is an adaptation of the homonymous test used to identify the 
regulatory regions on DNA promoters (Figure 1). The method 
permits not only verification of the interaction but also the 
mapping of the precise binding site on the mRNA, through 
mutagenesis of the predicted sequence (8). QRT-PCR and 
western blot allow the quantification of the mRNA and pro-
tein levels, respectively, following microRNA over-expression, 
and can be used to discriminate between mRNA degrada-
tion and translation inhibition, which are the two possible 
results of microRNA interaction (Figure 1). Pull-down and 
immunoprecipitation approaches, commonly used to demon-
strate protein binding, have been adapted to demonstrate 
microRNA interactions. Cross-linking ligation and sequenc-
ing of hybrids (CLASH) allows high-throughput identification 
of RNA–RNA interactions. In this approach, the RNA is 
cross-linked to the bait protein, and, after immunoprecipita-
tion, the ends of co-precipitated, interacting RNAs are ligated 
together and sequenced to identify the couples (9). Other high-
throughput sequencing approaches of immunoprecipitated 
RNAs, after cross-linking to proteins of the RISC complex 
(crosslinking immunoprecipitation (CLIP)-seq, photoactivat-
able ribonucleoside-enhanced crosslinking and immunopre-
cipitation (PAR-CLIP), etc.), provide datasets of potential 
RNA–RNA interactions (10), largely improving the perfor-
mance of the binding predictors, although specific couples 
of miRNA–mRNA should be further verified (11). While the 
number of publications describing microRNA interactions is 
constantly increasing, several databases have begun to collect 
them, often including high-throughput indirect or weak evi-
dence. It is worth noting that miRTarBase (12) and RAID 
(13, 14) allow filtering of collected ncRNA associations, to 
reduce false-positive rates when selecting ‘strong evidence’ 
interactions. The inclusion of potentially erroneous targets in 
network analysis may result in misleading data interpretation, 
as extensively discussed in (15). The UCL Functional Gene 
Annotation group has focused on the gene ontology annota-
tion of human microRNAs collecting a set of highly reliable 
microRNA–mRNA pairs (15, 16).

Since 2002, the Human Proteome Organization - Pro-
teomic Standard Iniziative has provided a standardized anno-
tation system for molecular interactions and has defined the 
minimal information requirements and the syntax of terms 
used to describe an interaction experiment Minimum Infor-
mation for Molecular Interaction (17), approved by members 
of the International Molecular Exchange (IMEx) Consortium 
(18, 19). Common guidelines help to elude false positives 
and increase the level of details and contextual information 
captured when describing molecules, such as protein binding 
(20). The IntAct database, which is a member of the Consor-
tium, has expanded its activities into the annotation of ncRNA 
interactions, initially focusing on Saccharomyces cerevisiae
ncRNAs (21) and subsequently on mammalian ncRNAs. In 
this paper, we present the collection of microRNA–mRNA 

interactions annotated in IntAct and we integrate and com-
pare it with other resources. In particular, we have focused on 
the microRNAs that regulate genes associated with rare dis-
eases, in order to provide information potentially useful for 
the development of new drugs. A rare disease is a health con-
dition that affects a minority of people compared with other 
diseases that are prevalent in the population (22). Despite the 
increased focus on these diseases in the last few years, very lit-
tle is known about microRNAs involved in rare diseases and 
their collection may help to gain insights into pathological 
mechanisms. The interactions can be downloaded from the 
IntAct database (https://www.ebi.ac.uk/intact/) and also from 
the RNA central website (https://rnacentral.org/).

Materials and methods
Data collection and deposition
MicroRNA–mRNA interactions were manually annotated in 
the IntAct database, according to the curation standards 
established by the IMEx Consortium. We retrieved relevant 
papers by searching the literature with text-mining seeking 
for the term ‘microRNA’ (or synonymous) AND a specific 
gene name in the abstract and luciferase assay or RNA-
Immunoprecipitation or CLASH in the methods. The col-
lected papers were manually filtered to identify those rele-
vant for the curation process. More than 260 papers were 
selected, and the interactions were annotated according to 
approved hierarchical terms [Controlled Vocabulary terms, 
originally created to annotate protein–protein interactions 
(23), then expanded to other molecular interactions ((21), 
present work)]. When more evidence supports an edge, a score 
of reliability is generated, which helps the user to interpret the 
network (24).

Genes associated with rare diseases were prioritized for 
annotation. The list of these genes was generated accord-
ing to green panels from GenomeEngland PanelApp for 
the following diseases: aniridia, fanconi anaemia, autism, 
cakut, cerebral folate deficiency, epidermolysis bullosa, famil-
ial Hirschsprung disease, growth failure in early childhood 
(GFEC), early onset disease (EOD) and mitochondrial dis-
orders (MD). These last three presented a higher number of 
genes regulated by microRNAs and were used in the subse-
quent analysis. The microRNAs are identified with RNAcen-
tral IDs and a short label, which specify the strand of the 
mature microRNA (25).The database can be queried with 
Ensembl transcript IDs (https://www.ensembl.org/index.html) 
(26) or gene common names (then selecting mRNA) or with 
mRNA common names (mrna_name), as well as with the 
microRNA name or ID. To retrieve information on muta-
genesis analysis, in order to map the binding nucleotides, 
from the IntAct web page, click on the lens in the ‘Select’ 
column of the displayed interactions and then select ‘Fea-
tures’ in the following web page (Figure 2D and (27)). 
Data are also linked to RNA central (25) in the microRNA
entry.

Network analysis and database comparison
The molecular interaction network of microRNA–mRNA 
interactions was downloaded from IntAct using the IntAct 
app (28). To build disease-specific networks, the list of 
Ensembl transcript IDs was used. Networks were built and 
analysed using Cytoscape (29).
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Figure 1. Methods commonly used to detect microRNA–mRNA interactions. (A) Luciferase assay comprises the fusion of the luciferase gene to the 3′

UTR of the microRNA target gene and the subsequent transfection of the construct with or without the microRNA. The approach demonstrates the 
direct interaction, compared to a mutated copy of the predicted complementary region, which acts as a negative control. Quantification of the mRNA 
(qRT-PCR) or protein level (western blot) helps to distinguish between the mRNA degradation and the translation inhibition, but is not proof of an 
interaction when used in isolation. (B) CLIP and CLASH. Cross-linking and immunoprecipitation of a RNA binding protein (such as AGO2), followed by 
RNA sequencing, allows the determination of all the RNAs bound to the protein. These approaches demonstrate direct RNA–RNA binding, if the two 
interacting RNAs are ligated in a hybrid before sequencing (CLASH (9)).

For comparison with other databases, miRTarBase and 
RAID were chosen to enable the selection of strong evidences 
of direct binding, comparable to those annotated in IntAct. 
The data were downloaded, IDs were uniformed, and the 
tables were uploaded in Cytoscape to build integrated and 
intersected networks.

Functional enrichment analysis
For the ‘Biological Processes’ enrichment analysis of
microRNA targets, each transcript ID was converted to the 
common gene name. The tables were imported in Cytoscape 
to build the network, and the BINGO tool (30) was used to 

perform the enrichment with 0.003 as the significance level for 
GFEC and EOD-related genes, while 0.05 was set for mito-
chondrial disorders (MD) because there was no enrichment 
at lower values.

Statistical analysis
Correlation analysis
A table was generated containing the number of interact-
ing microRNAs for each gene in each of the three databases 
(Supplementary Table 1). Pearson’s correlation coefficient was 
calculated using the ggpairs function in the GGally R package 
(31, 32).
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Figure 2. MicroRNA binding sites on mRNA_hmga2 entry. (A) and (B) The annotation process. (A) mRNA_hmga2 entry in IntAct is annotated with the 
sequence and ID of the main transcript of the gene (identified by GIFT), together with the Ensembl gene ID and a RefSeq. (B) Mutations affecting the 
interactions are mapped on the transcript sequence. (C) Hmga2-3′UTR regions identified as necessary for the microRNA binding. (D) The interaction 
viewer in the webpage: the arrow indicates the lens to select to see the features.

Venn Diagram
Intersections among datasets were outlined by ggVennDia-
gram library (33) in R (32), and Jaccard index was calculated 
as follows: J(A,B) = A∩B

A∪B
 (34).

Results
Building microRNA networks in IntAct
The main molecular function of microRNAs is to downreg-
ulate the target gene by binding to the mRNA through few
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Figure 3. Human microRNA network in IntAct. (A) The section of the human microRNA network, showing hubs of both entry types. (B) Enlargement of 
a detail to show two nodes and their interactors. (C) PPI network for the genes targeted by hsa-mir-17-5p was downloaded and filtered to a molecular 
interaction (MI) score (24) of ⋝0.7 and merged with microRNA–mRNA interactions.

complementary nucleotides located at 5′ of the microRNA 
and commonly (although not always) at the 3′ UTR of the 
messenger RNA. As discussed in the Introduction section, sev-
eral experimental approaches have been developed to investi-
gate microRNA function, but only a subset provides clear evi-
dence of microRNA binding to mRNA, while discrimination 
between direct binding and causal interaction is crucial for the 
design of interfering drugs.

The partners of the IMEx Consortium of interaction 
databases (18, 19) have agreed to consider luciferase assay as a 
proof of RNA–RNA interaction, when validated using muta-
genesis analysis (Figure 1). Papers describing microRNA–
mRNA interactions validated using the above-mentioned 
methods were selected from the literature and annotated in the 
IntAct database. As the interaction with mRNA results in the 
downregulation of the expression, through the mRNA degra-
dation, or in the inhibition of the translation, the microRNA 
is featured as a ‘regulator’ and a causality statement was used 
to annotate its effect.

Most of the repositories which collect microRNA interac-
tions identify the targets with the gene name or ID. However, 
microRNAs bind to messenger RNAs and, in order to map 
the binding sites on the target, it is necessary to refer to a 
specific transcript. To this aim, it is worth noting that each 
gene produces several messengers by alternative splicing of the 
precursor transcript. The number of the collected transcripts 
is destined to increase as new sequences will be produced 
from different cell types and stages. To avoid ambiguities, 

Table 1. Genes associated with the rare diseases and regulated by 
microRNAs

EOD GFEC Mitochondrial disorders

APP BLM AIFM1
ATXN1 BRCA2 COX10
CSF1R CBL DMPK
DNMT1 CDKN1C DNM2
GRN FANCA ISCU
HTT FGFR3 MFN2
ITM2B HMGA2 MPC1
MAPT IGF1 NDUFA10
NOTCH3 IGF1R PDHB
PRNP IGF2 PDHX
PSEN1 KRAS SLC25A1
TARDBP MAP2K1 (MEK1) SLC25A12
TBK1 OBSL1 TAZ

PIK3R1 UQCC2
PTPN11
SOS1
UBE2T

Only interactions confirmed by mutagenesis analysis are considered.

we have therefore created one full-detailed entry for each tar-
get gene, cross-referred it with its Ensembl transcript ID (26) 
and, whenever possible, have mapped all the annotated inter-
actions on this entry. Figure 2 shows how the entries are 
created with their sequence. For human transcripts, among 
the possible transcripts listed in the Ensembl database (26), 
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Figure 4. The interaction network of the genes associated with Growth Failure in Early Childhood (GFEC). Interactions within proteins associated with 
GFEC merged into the microRNA–mRNA network. Proteins regulated by microRNAs are indicated. The thickness of the edge between proteins is 
proportional to the MI score (i.e. reliability) of the interaction (24).

we have selected the reference shown in the GIFT curation 
tool (https://www.ebi.ac.uk/gifts/). Each mutation is anno-
tated with a short label compliant with Human Genome 
Variation Society recommendations (https://varnomen.hgvs.
org/), which identifies the nucleotide position and the mutated 
residues, and the information is displayed in the IntAct web 
interface (Figure 2D).

We have mainly annotated human interactions, although 
mouse entries are also represented. Figure 3A shows a subset 
of the microRNA–mRNA human interaction network. Sim-
ilar to protein-protein interaction (PPI) networks, few nodes 
of both molecular types behave as hubs, presenting a num-
ber of interactions above average. The network detail blown 
up in Figure 3B shows two connected hubs: the microRNA 
hsa-mir-17-5p and the mRNA_cdkn1a.

The IntAct database contains thousands of human protein 
interactions, each with a reliability score, so it is possible to 
investigate the protein complexes affected by the microRNA 
regulation and the connections between the protein products 
of co-regulated genes. Figure 3C shows some high-reliable 
interactors of hsa-mir-17-5p targets that may be deregulated 
by mimics or inhibitors of the microRNA.

MicroRNA regulation of rare disease-associated 
genes
While the amount of microRNA interaction information is 
increasing continuously, very little is known about microR-
NAs involved in rare diseases.

Until recently, there has been limited research on the molec-
ular mechanisms that underlie these pathologies, despite their 
global impact on the population and the undeniable need for 
optimized treatment.

We collected in IntAct a list of interactions between 
microRNAs and genes associated with the onset or progres-
sion of rare disorders. The list of genes was retrieved from the 
Genome England PanelApp (35). Among the genes listed for 
each disease, few of them have been reported in the literature 
to bind to microRNAs. We considered several rare diseases 
(listed in material and methods), and for the present study, we 
selected three of them, since they have a considerable num-
ber of genes regulated by microRNAs: GFEC, mitochondrial 
disorders (MD) and EOD.

Table 1 shows the list of the genes that were found to inter-
act with microRNAs and annotated in IntAct. GFEC is influ-
enced by 48 genes, 17 of which were annotated in IntAct for 
mRNA–microRNA interactions (Figure 4). Approximately 
230 genes are associated with mitochondrial disorders (plus 
a few mitochondrial tRNA genes we did not consider). We 
found microRNA interactions suitable to be annotated in 
IntAct only for 14 of these. Finally, a list of 27 genes is 
associated with EOD, 13 of which were annotated in IntAct.

We used the BINGO tool to evaluate biological processes 
statistically over-represented in the microRNA-regulated 
genes. We found an enrichment of genes involved in positive 
regulation of cellular processes and cell proliferation, as well 
as proteins involved in signalling pathways, in genes associ-
ated with GFEC and EOD, in relation to non-annotated genes 
(Supplementary Table 2).

A small number of genes associated with mitochondrial 
dysfunctions are regulated by microRNAs, and the enrich-
ment analysis did not show significant enrichment for any 
term. Interestingly, however, there is a strong enrichment 
of specific metabolic and biosynthetic processes, such as 
generation of precursor metabolites, ATP synthesis coupled 
to electron transport, oxidative phosphorylation and tRNA 
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Figure 5. Comparison of microRNA–mRNA interactions annotated in IntAct, MirTarBase and RAID. (A) Correlation analysis: the number of 
microRNA-regulating genes associated with the diseases in the three datasets was compared (see also Supplementary Table 1). (B) Venn diagram 
comparing interacting pairs of microRNA–mRNA annotated in the three datasets. The Jaccard similarity coefficient (in parentheses) is calculated as 
intersection over union and indicates that only 8% of the interactions are annotated in all the datasets and that each resource contains some exclusive 
information.
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metabolic processes, in genes associated with MD and not 
regulated by microRNAs (Supplementary Table 2).

We compared our results with two other databases: miR-
TarBase (interactions confirmed by ‘Luciferase assay’) and 
RAID (interactions confirmed by ‘strong evidence’). The low 
percentage of microRNA-regulated genes was confirmed in 
the two datasets: in Supplementary Table 1, the number of 
interacting microRNAs for each gene in the three databases is 
reported, and most of the genes appear to have no described 
interactors. Networks resulting from the integration and the 
intersection of the three dataset are shown in Supplementary 
Figure 1.

Interestingly, there is a very high correlation among the 
number of interacting microRNAs annotated in the three 
databases for each gene (Figure 5A). This suggests that, 
although the coverage of annotated microRNA interactions 
may still be low, the networks reflect what is currently known 
in the literature, with more than half genes of each list not 
affected by microRNA regulation, many involved in one or 
few interactions and a small number targeted by a huge num-
ber of microRNAs (Supplementary Figure 2, Supplementary 
Table 3). This observation does not imply that those genes are 
certainly not regulated by microRNAs, but that the present 
literature does not contain evidence of direct binding. The 
lower correlation of the IntAct database with the other two 
is explained with the consideration that we have selected 
luciferase experiments only when validated with mutagenesis.

Despite the high correlation, the three datasets do not 
contain the same interactions: the Venn diagram shows that 
only 8% of them (calculated from the union of the three 
datasets) are present in all databases, while each dataset con-
tains 21%, 15% or 13% of interactions not annotated in 
the others (Figure 5B). This suggests that a combined effort 
of different resources is necessary to get the full picture and 
to help advance research in gene regulation (Supplementary
Figure 1).

Discussion
Investigations of gene-disease associations typically focus 
on protein variants; however, as the relevance of ncRNAs 
becomes more evident, their involvement in many common 
disorders is conceivable. For an accurate comprehension of 
microRNA functions, we need to assemble the entire set of 
miRNA–mRNA interactions, possibly annotated using stan-
dard procedures that are clearly explained to the user. Some 
resources collect microRNA target interactions using natural 
language processing to find co-occurrences of terms, followed 
by manual review. Despite the undeniable relevance and high 
coverage of these resources, there is no general acceptance 
of what to consider a bona fide interactor, versus an indirect 
regulator. The reliability of microRNA interaction data has 
been extensively discussed in (15, 36–38). We have filtered 
the experimental data according to high-quality standards 
to collect a set of reliable microRNA targets. The IntAct 
database contains approximately 900 interactions involving 
more than 200 microRNAs. Currently being modest cover-
age, the dataset is expected to increase, as new interactions 
are continually being added.

The target mRNAs were annotated with the Ensembl tran-
script ID (26) as the identifier. In order to expedite the integra-
tion with other data identified by gene identifiers, the entries 

are also linked to the Ensembl gene ID. Referring to a specific 
transcript sequence allows the user to unequivocally annotate 
the interacting regions, confirmed by the mutagenesis analysis.

Recent advances in RNA molecule stabilization and deliv-
ery methods have renewed interest in RNA-based therapies. 
Chemical modifications of the nucleotides increase their resis-
tance to nucleases, and encapsulation of the microRNA mim-
ics in neutral lipids allows the delivery of the molecules 
into living cells or organisms (39). In the last years, several 
microRNA-based therapeutics have been developed and some 
have entered phase II or III of clinical trials (40). The avail-
ability of exhaustive information about microRNA binding 
could accelerate the design of specific mimics or inhibitors and 
predict the effect of the perturbation on the neighbourhood 
interactors. Since RNA–RNA interactions occur through 
base pairing, the design and development of interfering 
molecules is easier than protein inhibitors, as demonstrated 
by the common use of complementary molecules in scientific
papers.

We have prioritized the annotation of microRNA-
regulating genes involved in rare diseases, hopefully contribut-
ing to filling the gap of knowledge in this field. It is worth 
mentioning that the IntAct database has already collected a 
dataset of protein–protein interactions directly involved in 
rare diseases (27). Some diseases are directly associated with 
genetic mutations or variants: the disease is a direct conse-
quence of the mutation, or, more frequently, the mutation 
increases the probability of the onset or progression. When 
the mutation directly affects a PPI interaction, the informa-
tion can be retrieved from the database (41). Very few papers 
describe the role of microRNA in rare diseases, and hopefully, 
the list of interactions that affect genes associated with the dis-
eases may help in elucidating their role. Although ‘rare’, the 
‘rare diseases’ affect more than 30 million people in Europe 
and are considered one of the major public health issues. As 
the return of investment in research on each individual disease 
may be limited, no treatment and diagnostic tests have been 
developed for many of them. The annotation of genes involved 
in rare diseases has been recognized as a crucial step to expe-
dite the diagnosis and to establish the appropriate treatment 
(34). We have expanded this knowledge by collecting existing 
data on the regulation of genes by microRNAs.

Among the analysed genes, seven involved in GFEC and 
three involved in EOD seem to be hubs in the microRNA–
mRNA network, regulated by more than 10 microRNAs 
(Supplementary Figure 2). In particular, PRNP, DNMT1 and 
APP play a role not only in the EOD but also in several other 
forms of dementia and brain diseases.

To our knowledge, no other collections of binding regions 
experimentally validated with mutation analysis and mapped 
on stable entries are available for microRNA targets. Muta-
tions with no effect are also recorded, when available. This 
information can be compared with disease-related genomic 
variants to highlight relevant microRNA gene regulation 
events. The IntAct resource offers an ideal environment to 
store and re-use the information, as it will update entry 
identificatives and cross-references to keep them up-to-date 
with Uniprot and other resources. Data are available not 
only from the database web interface but also from Psic-
quic view (http://www.ebi.ac.uk/Tools/webservices/psicquic/
view/home.xhtml), IntAct App (28) and externally accessible 
API (27).
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In the field of RNA therapeutics, the accessibility to collec-
tions of ‘true’ interactors and the availability of high-reliable 
networks will simplify procedures to assess the value and 
potential unrelated effects of a therapeutic product and will 
help the design of competitors.

Supplementary material
Supplementary material is available at Database online.
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1. Riffo-Campos,Á.L., Riquelme,I. and Brebi-Mieville,P. (2016) Tools 

for sequence-based mirna target prediction: what to choose? Int. 
J. Mol. Sci., 17, 1987–2005.

2. Schirle,N.T., Sheu-Gruttadauria,J. and MacRae,I.J. (2014) Struc-
tural basis for microRNA targeting. Science, 346, 608–613.

3. Zhu,L., Jiang,H., Sheong,F.K. et al. (2017) Understanding the core 
of RNA interference: the dynamic aspects of Argonaute-mediated 
processes. Prog. Biophys. Mol. Biol., 128, 39–46.

4. Kozomara,A., Birgaoanu,M. and Griffiths-Jones,S. (2019) miR-
Base: from microRNA sequences to function. Nucleic Acids Res.,
47, D155–D162.

5. Kern,F., Backes,C., Hirsch,P. et al. (2020) What’s the target: under-
standing two decades of in silico microRNA-target prediction. 
Brief. Bioinformatics, 21, 1999–2010.

6. Witkos,T.M., Koscianska,E. and Krzyzosiak,W.J. (2011) Practi-
cal aspects of microRNA target prediction. Curr. Mol. Med., 11, 
93–109.

7. Panni,S., Lovering,R.C., Porras,P. et al. (2020) Non-coding RNA 
regulatory networks. Biochim. Biophys. Acta Gene Regul. Mech.,
1863, 194417–194428.

8. Lewis,B.P., Shih I -,H., Jones-Rhoades,M.W. et al. (2003) 
Prediction of mammalian microRNA targets. Cell, 115,
787–798.

9. Helwak,A. and Tollervey,D. (2014) Mapping the miRNA interac-
tome by cross-linking ligation and sequencing of hybrids (CLASH). 
Nat. Protoc, 9, 711–728.

10. Chi,S.W., Zang,J.B., Mele,A. et al. (2009) Argonaute HITS-
CLIP decodes microRNA-mRNA interaction maps. Nature, 460, 
479–486.

11. Thomson,D.W., Bracken,C.P. and Goodall,G.J. (2011) Experimen-
tal strategies for microRNA target identification. Nucleic Acids 
Res., 39, 6845–6853.

12. Huang,H.-Y., Lin,Y.-C.-D., Cui,S. et al. (2022) miRTarBase 
update 2022: an informative resource for experimentally val-
idated miRNA-target interactions. Nucleic Acids Res., 50,
D222–D230.

13. Lin,Y., Liu,T., Cui,T. et al. (2020) RNAInter in 2020: RNA interac-
tome repository with increased coverage and annotation. Nucleic 
Acids Res., 48, D189–D197.

14. Yi,Y., Zhao,Y., Li,C. et al. (2017) RAID v2.0: an updated resource 
of RNA-associated interactions across organisms. Nucleic Acids 
Res., 45, D115–D118.

15. Huntley,R.P., Kramarz,B., Sawford,T. et al. (2018) Expand-
ing the horizons of microRNA bioinformatics. RNA, 24,
1005–1017.

16. Saverimuttu,S.C.C., Kramarz,B., Rodríguez-López,M. et al. (2021) 
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