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A B S T R A C T

This paper proposes a new method for computing the undrained lateral capacity of Reinforced Concrete (RC)
piles in cohesive soils, overcoming inherent conservativeness of classical Broms’ theory. The proposed method
relies on a new theoretical distribution for the limiting soil resistance, simple enough to derive closed-form
solutions of the undrained lateral capacity, for different restraints at the pile head and for all possible failure
mechanisms. After validation against numerical results and experimental data, the model is used to compute the
failure envelope of RC piles under generalised loading.
3D FE analyses are used as benchmark to identify the main factors governing the ultimate response of RC piles.

To this purpose, the Concrete Damaged Plasticity model is adopted to reproduce nonlinear concrete behaviour,
which is an essential ingredient when modelling pile behaviour under horizontal loading. FE analyses show that,
contrary to what observed for rigid and elastic piles, the ultimate response of RC piles relies on the soil strength
mobilised at shallow depths, where the normalised lateral soil resistance basically depends on the sole adhesion
factor.
The proposed solutions are readily applicable to the design of single piles, as well as to the computation of

three-dimensional interaction domains of pile groups.

1. Introduction

The horizontal bearing capacity of Reinforced Concrete (RC) piles is
typically computed by means of limit equilibrium approaches, ac-
counting for both the possible formation of plastic hinges within the pile
(structural failure) and the activation of limit conditions in the sur-
rounding soil (geotechnical failure). Among these, Broms’ method
(1964a,b) is still the most widespread in design practice, as it provides
closed-form dimensionless solutions for the horizontal capacity of single
piles embedded in granular and cohesive soils, based on simple as-
sumptions on pile and soil behaviour. Recent studies have extended this
method to the analysis of piles embedded in cohesive-frictional soils
(Cecconi et al., 2019), also taking into account the possible increase of
soil strength due to suction (Lalicata el al., 2023). In the case of purely
cohesive soils, instead, the assessment of the undrained lateral capacity
of piles still relies on the original Broms’ solution, which considers a
very simplified approximation of the limiting soil resistance and neglects
any beneficial contribution provided by the adhesion at the soil-pile
contact (Randolph and Houlsby, 1984; Murff and Hamilton, 1993;

Georgiadis and Georgiadis, 2010).
Numerical Finite Element (FE) analyses, carried out applying a uni-

form horizontal displacement to a rigid vertical pile, have shown that
the actual distribution of the undrained limiting soil resistance is a result
of the interaction between two concurrent plastic mechanisms, i.e.: a
two-dimensional (2D) plastic flow at large depth and a three-
dimensional (3D) wedge failure close to the soil surface. In the former
case, a very close approximation of the ultimate soil resistance was
achieved combining 2D theoretical Upper-Bound (UB) and Lower-
Bound (LB) solutions (Randolph and Houlsby, 1984; Martin and Ran-
dolph, 2006), while UB solutions were obtained in the latter case by
considering more complex 3D plastic mechanisms (Murff and Hamilton,
1993; Yu et al., 2015). Based on theoretical and numerical outcomes,
different expressions were proposed for the distribution of the undrained
lateral soil resistance (Murff and Hamilton, 1993; Georgiadis and
Georgiadis, 2010; Yu et al., 2015; Luo et al., 2021), usually adopted in
standard p-y methods to compute the resistance of nonlinear springs
distributed along the pile. Such distributions, however, are rarely used
in design practice, as they require numerical integration procedures for
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computing the lateral capacity of the pile with limit equilibrium
methods.

Numerical 3D analyses were also carried out on horizontally loaded
pile groups, always assuming a linear elastic behaviour for the piles
(Comodromos and Pitilakis, 2005; Papadopoulou and Comodromos,
2010; Comodromos and Papadopoulou, 2012). While shedding light on
the interaction mechanisms occurring within the group under working
conditions, these studies cannot provide any valuable information on
the ultimate pile response, corresponding to which structural failure
always plays a major role. As a matter of fact, the need for a proper
representation of the elastoplastic response of RC piles when investi-
gating the pile-soil interaction up to failure was recently recognised by
several studies, where the highly nonlinear behaviour of concrete under
monotonic and cyclic loading was reproduced through advanced
constitutive models developed within the realm of damage elasticity and
hardening plasticity. Among these, Conte et al. (2013, 2015) tackled the
problem of modelling the response of single RC piles in sandy soils under
horizontal and inclined loads; Sakellariadis and Anastasopoulos (2022)
and Psychari and Anastasopoulos (2022) analysed the ultimate response
of pile groups under generalised loading; while Sakellariadis et al.
(2020) dealt with the seismic response of piled foundations.

This work aims at providing a new approach for computing the un-
drained lateral capacity of piles in cohesive soils, overcoming inherent
limitations of Broms’ method. Based on a new simplified expression for
the distribution of the limiting soil resistance, dimensionless closed-form
solutions for the lateral bearing capacity are derived under different
restraint conditions at the pile head. To this end, the results of advanced
3D FE analyses are used as benchmark to highlight the most relevant
aspects concerning the ultimate response of RC piles under lateral
loading, as well as to identify the main dimensionless factors governing
such response. The proposed theoretical model is further validated
against field and laboratory load test data available in the literature
(Chen and Kulhawy, 1994) and its application for computing the
analytical failure envelopes of single RC piles under generalised loading
is thoroughly presented.

2. Problem definition and dimensional analysis

The case of a single RC pile with circular cross section (length, L;
diameter, d; yielding moment, Myb) embedded in a homogeneous
overconsolidated clay layer (unit weight, γ; undrained shear strength, su;
Young modulus in undrained conditions, Eu) is analysed (Fig. 1). In
undrained conditions, the maximum horizontal load that can be applied
at the pile head, Hu, is a function of (Broms, 1964a; Tzivakos and

Kavvadas, 2014; Yu et al., 2015):

Hu = f
(

e, L, d,Myb, γ, su, Eu,α,
σh0

σv0

)

(1)

where e is the eccentricity of the horizontal load; σh0/σv0 is the ratio
between the horizontal and vertical geostatic total stress; and 0 ≤ α ≤ 1
is the adhesion factor, defined as the ratio between the adhesion at the
pile-soil interface, a, and su (a = α⋅su).

Applying Buckingham’s theorem, it is possible to rescale Eq. (1) in
dimensionless form using d and su as dimensionally independent
variables:

Hu

sud2
= F

(
e
d
,
L
d
,
Myb

sud3
,
Eu

su
,
γd
su
, α, σh0

σv0

)

(2)

The dimensionless ratios in Eq. (2) account for the mechanical,
geometrical and physical factors affecting the lateral capacity of the pile,
which in turn is governed by the mutual interaction between two
possible failure mechanisms: (1) the formation of one or two plastic
hinges along the pile (structural failure); and (2) the full attainment of
the available soil shear strength (geotechnical failure), resulting in a
three-dimensional wedge failure close to the soil surface, and a two-
dimensional plastic flow at larger depth. Among these parameters: e/
d takes into account possible moment loading applied to the pile head;
L/d and Myb/sud3 primarily determine the actual number of plastic
hinges occurring at failure (Broms, 1964b); Eu/su, γd/su and σh0/σv0 in-
fluence the transition between the wedge and the flow-around plastic
mechanisms (Tzivakos and Kavvadas, 2014; Yu et al., 2015; Luo et al.,
2021); α affects the lateral limiting soil resistance (Randolph and
Houlsby, 1984).

The numerical study presented in the following (Sections 3 and 4)
will shed light on the actual relevance of the dimensionless ratios in Eq.
(2), allowing to define a simple, yet accurate, theoretical model for the
computation of both the ultimate soil resistance and the horizontal pile
capacity (Section 5). To this end, different loading conditions and as-
sumptions on pile behaviour will be considered, that is (Fig. 2): rigid pile
subjected to a uniform horizontal displacement (R-U); elastic pile with a
horizontal displacement applied at the top, which is free to rotate (EL-
H); elastoplastic pile with a horizontal displacement applied at the top,
where the rotation can be either free (EP-H) or restrained (EP-H-fix).

According to standard terminology, the pile will be referred to as
‘free-head’ and ‘fixed-head’, respectively, depending on the two re-
straint conditions applied at the head. In addition to this, depending on
the structural failure mechanism, the pile will be referred to as: ‘short’
(zero plastic hinges); ‘intermediate’ (one plastic hinge, in the case of
fixed-head pile); and ‘long’ (one (free-head) or two (fixed-head) plastic
hinges).

3. Numerical FE model

A series of 3D total stress analyses of a single pile embedded in a
uniform clay layer were carried out with the Finite Element (FE) code
ABAQUS (Abaqus, 2017), assuming undrained conditions.

Fig. 3 shows the FE mesh adopted in this study, consisting of 8-nodes
linear brick elements with reduced integration. Taking advantage of the
problem symmetry, only half of the pile and soil domain were modelled.
Moreover, based on a preliminary parametric study, mesh discretization
and model dimensions were chosen in order not to affect the numerical
results. Specifically, vertical boundaries were placed at a distance of 25d
from the pile edge, while the bottom boundary is at a distance of 10d
from the pile tip. Standard constraints were applied to the model
boundaries, i.e.: normal displacements were restrained along the vertical
boundaries, while all displacements were fixed at the base.

An initial geostatic stress state was applied within the soil domain by
imposing a given ratio between horizontal and vertical total stresses,
σh0/σv0. After this stage, a horizontal displacement was applied to the

Fig. 1. Problem layout.
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pile along the y-direction: a uniform displacement u/d = 100 % was
prescribed for the rigid pile (R-U) in order to fully mobilise the soil
resistance along the whole pile length (Yu et al., 2015), while a
maximum displacement u/d = 50 % was applied at the head of the
elastic (EL-H) and elastoplastic (EP-H) pile, enough to reach its lateral
capacity in the latter case. Moreover, an additional constraint was
applied to the top nodes of the fixed-head elastoplastic pile (EP-H-fix) to
restrain the cross-section rotation.

Constitutive models for materials and soil-pile interface, as well as
the modelling strategy for the elastoplastic pile, were chosen to provide
a proper representation of all key features affecting the horizontal
behaviour of RC piles at failure. Specifically, reinforcement bars were
modelled as an equivalent steel pipe embedded in (and perfectly bonded
to) the concrete continuum elements, using 4-nodes linear shell ele-
ments with reduced integration. Thickness (ts) and diameter (ds) of the
circular steel pipe were chosen to have the same cross-sectional area (As)
and moment of inertia (Is) of the longitudinal discrete rebars, according
to:

⎧
⎨

⎩

As = π
(
R2
e − R2

i
)

Is =
π
4
(
R4
e − R4

i
) (3)

where Ri = (ds-ts)/2 and Re = (ds + ts)/2 are the internal and external
radii of the equivalent tube, respectively. This choice allowed repro-
ducing simply the overall confinement effect induced by transverse and
longitudinal steel rebars in a real prototype RC pile, characterised by
relatively high reinforcement ratios, ρ = As/Ac, where Ac = πd2/4 is the
area of the pile cross section.

3.1. Constitutive models

As standard in a total stress analysis, the undrained clay behaviour
was modelled using a linear elastic-perfectly plastic model with a Tresca
failure criterion and an associated flow rule (Comodromos and Papa-
dopoulou, 2012; Georgiadis, 2014; Yu et al., 2015). The physical and
constitutive parameters adopted for the soil are: the unit weight, γ (=20
kN/m3); the Young modulus, E=Eu; the Poisson’s ratio, ν = νu (=0.495);
the cohesion, c = su; the friction angle, ϕ = ϕu (=0◦); and the dilatancy

Fig. 2. Schematic representation of different pile loading and behaviour: (a) rigid pile under uniform horizontal displacement (R-U); (b) free-head elastic pile (EL-H);
(c) free-head elastoplastic pile (EP-H); (d) fixed-head elastoplastic pile (EP-H-fix).

Fig. 3. FE model: 3D mesh and detail of the RC pile.
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angle, ψ (=0◦).
An isotropic elastic-perfectly plastic constitutive model was used for

the reinforcement steel pipe, with a von Mises failure criterion and an
associated flow rule. The physical and mechanical parameters were
chosen to be representative of a B450C steel class, that is: unit weight, γs
= 78 kN/m3; Young modulus, Es = 200 GPa; Poisson’s ratio, νs = 0.3;
and uniaxial yield strength, fy = 450 MPa (Fig. 4a).

The mechanical behaviour of concrete was modelled through the
Concrete Damaged Plasticity (CDP)model (Lubliner et al., 1989; Lee and
Fenves, 1998), which combines key features of isotropic damage elas-
ticity and hardening plasticity to reproduce the inelastic behaviour of
quasi-brittle materials under monotonic and cyclic loading. The model
equations in the plastic regime are firstly formulated under uniaxial
loading and then extended to multiaxial conditions. As an example,
Fig. 4b shows the stress–strain response assumed in this work under
uniaxial tension and compression, representative of a C25/30 concrete
class. In tension, the material behaviour is linear elastic until the uni-
axial tensile yield stress (ft0) is reached, beyond which softening occurs.
The stress–strain response in compression, instead, is linear elastic until
the compressive yield stress, fc0, beyond which a hardening behaviour is
assumed until the ultimate stress, fcu; beyond fcu, the material response
follows a softening branch until complete failure due to crushing. The
complete set of evolution equations are briefly recalled in Appendix A,
while Table 1 summarises the physical and constitutive parameters
adopted in this study for the concrete: the dilatancy angle, ψ , and the
eccentricity parameter, ε, define the flow rule; fc0 and fb0 are the initial
yield stresses under uniaxial and biaxial compression, respectively; Kc
controls the shape of the yield surface in triaxial compression; μvisc is a
viscosity parameter, which allows regularizing the evolution laws in the
highly-nonlinear regime, following the viscoplastic formulation of
Duvaut-Lions type (Duvaut and Lions, 1972).

The pile-soil interface was modelled with tensionless contact ele-
ments, which allow both sliding and separation. An elastoplastic fric-
tional behaviour was assumed for the interface, with the shear strength
defined as:

τlim = μ • σn( ≤ τmax) (4)

where σn is the normal stress acting on the interface, μ is the friction
coefficient and τmax is a threshold value for the maximum allowable
shear strength. Similar to what implemented by Psychari and Anasta-
sopoulos (2022), in order to achieve a virtual cohesive behaviour of the
interface along the whole pile length, a relatively high value of the
friction coefficient was adopted (μ = 2), together with τmax = αsu. where
α is the interface adhesion factor.

3.2. Parametric study

The numerical parametric study comprised a total of 56 3D FE an-
alyses, as summarised in Table 2. A first set of analyses (# 1–41) was
carried out to investigate the dependence of the limiting soil resistance
and of the horizontal pile capacity on the dimensionless factors γd/su
(=0.1 ÷ 0.8), Eu/su (=100 ÷ 500), σh0/σv0 (=0.5 ÷ 1.5) and α (=0 ÷ 1),
whose values were chosen to be representative of bored RC piles in
overconsolidated clayey soil deposits. At this stage, different loading
conditions (uniform displacement, free-head and fixed-head pile) and
pile behaviour (rigid, elastic, elastoplastic) were assumed, while always
referring to a relatively long pile (L=40 m), to allow for a clear identi-
fication of the soil resistance profile down to a sufficient depth. A second
set of analyses (# 42–56) was then carried out to validate the proposed
theoretical model for the computation of the horizontal pile capacity
against 3D FE models representative of free-head and fixed-head RC
piles. For all EP-H and EP-H-fix models, the equivalent steel pipe was
characterised by a reinforcement ratio ρ = 1.8 % and a diameter ds =
0.9⋅d.

3.3. Model validation

The structural model of RC piles, as well as the constitutive
assumption adopted for the pile-soil interface, were validated against
two reference model tests, corresponding to which theoretical solutions
are available. Specifically, the simple case of a cantilever beam loaded
by a concentrated load at the free edge was used to validate the struc-
tural model, while plane-strain 2D analyses were implemented to assess
the capability of the adopted interfaces to reproduce pile-soil interaction
at failure.

3.3.1. Structural behaviour of RC piles
As shown in Fig. 5, a circular RC cantilever beam with the left-hand

fixed was analysed (L=10 m, d = 1.0 m, ds/d = 0.9, ρ = 1.8 %). An axial
load, N, was applied at the right-hand edge, followed by a transversal
displacement, v, up to the attainment of the ultimate bending condition.

FE results were validated against the theoretical outcomes provided
by the fiber element method (Ceresa et al., 2007). The latter is based on
the discretization of the beam cross-section in a series of fibers, under
two fundamental assumptions: (i) cross-sections remain plane and
normal to the deformed longitudinal axis (Euler-Bernulli approach), and
(ii) perfect grip between longitudinal rebars and concrete. Using the
uniaxial constitutive relationships displayed in Fig. 4a,b for steel and
concrete, respectively, the behaviour of the circular beam under axial
force and uniaxial moment was computed by integrating the fiber
stresses over the cross-section.

The overall structural behaviour is illustrated in Fig. 6, showing: (a)
the longitudinal strain contours (εz, positive in tension, negative in
compression) computed within the concrete elements at different values
of v (N=5 MN); (b) the numerical and theoretical moment-displacement
curves, at different values of N; (c) the N-M interaction diagram at

Fig. 4. Uniaxial stress–strain response adopted for (a) steel and (b) concrete.

Table 1
Physical and constitutive parameters adopted for the CDP model.

γc [kN/m3] Ec [GPa] νc ψ [◦] ε fb0/fc0 Kc μvisc

25 21.5 0.15 30 0.1 1.16 0.667 10-4

F. Potini and R. Conti
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failure. As expected, as v increases, the concrete under tension cracks,
until structural failure occurs and a plastic hinge forms close to the fixed
edge of the beam (Fig. 6a). The comparison between numerical and
theoreticalM− v curves is quite satisfactory, confirming the capability of
the CDP model to well reproduce the dependency of the moment ca-
pacity of the RC section on the applied axial load (Fig. 6b). A slight
difference between the two models is observed at failure, where, due to
the confinement effect induced by the steel pipe and the plane-stress
formulation of the shell elements, the FE model exhibits higher
ductility and moment capacity compared with the theoretical one,

which is formulated under pure uniaxial conditions. As a result, the
numerical N-M interaction diagram is slightly larger than the theoretical
one, as shown in Fig. 6c.

3.3.2. 2D limiting soil pressure on a circular pile
Plane-strain 2D analyses were carried out on a single pile (d= 1m) in

a cohesive soil (su = 100 kPa; Eu/su = 200; σv0 = 500 kPa; σh0/σv0 = 1),
subjected to a pure horizontal displacement in undrained conditions,
considering different values of the interface adhesion factor (α = 0, 0.25,
0.5, 0.75, 1). FE results were interpreted in terms of the dimensionless
contact pressure pu,2D = pu,2D/sud, where pu,2D is the limiting soil resis-
tance (per unit length), including the contribution of both normal and
shear stresses at the pile-soil interface.

Fig. 7a shows a comparison between the numerical values of pu,2D
and the UB and LB solutions provided by Martin and Randolph (2006)
and Randolph and Houlsby (1984), respectively, the latter given by the
expression:

pu,2D = π +2Δ+2cosΔ+4
[
cos
(Δ
2

)
+ sin

(Δ
2

) ]
(5)

where Δ = sin-1α. For α = 0 (smooth contact) the results are virtually the
same, while a small difference appears with increasing the adhesion
factor, reaching a maximum value of 2.5 % for the case α = 1 (rough
contact). This result is due to a gap formation at the pile-soil contact in
the FE model (behind the pile with respect to the applied displacement),
where contact stresses are null, not taken into account in the theoretical
solutions.

Table 2
3D FE analyses carried out in the parametric study.

Analysis L d su L/d e/d γd/su Eu/su My/sud3 σh0/σv0 α type of loading / pile
# m m kPa − − − − − − −

1–3 40 1.0 100 40 − 0.2 100, 200, 500 − 1 0.5 uniform / rigid (R-U)
4–5 40 1.0 100 40 − 0.2 200 − 0.5, 1.5 0.5
6 40 1.0 75 40 − 0.27 200 − 1 0.5
7–9 40 1.0 50 40 − 0.4 100, 200, 500 − 1 0.5
10–11 40 1.0 50 40 − 0.4 200 − 0.5, 1.5 0.5
12–13 40 1.0 50 40 − 0.4 200 − 1 0, 1
14 40 1.0 50 40 0 0.4 200 − 1 0.5 free-head / elastic (EL-H)
15 40 1.0 75 40 0 0.27 200 − 1 0.5
16–18 40 1.0 100 40 0 0.2 100, 200, 500 − 1 0.5
19–20 40 1.0 100 40 0 0.2 200 − 0.5, 1.5 0.5
21 40 0.5 50 80 0 0.2 200 − 1 0.5
22 40 0.8 50 50 0 0.32 200 − 1 0.5
23 40 1.5 50 27 0 0.6 200 − 1 0.5
24 40 2.0 50 20 0 0.8 200 − 1 0.5
25–27 40 1.0 50 40 0 0.4 200 56.5 1 0, 0.5, 1 free-head / elastoplastic (EP-H)
28 40 1.0 75 40 0 0.27 200 37.7 1 0.5
29–31 40 1.0 100 40 0 0.2 100, 200, 500 28.2 1 0.5
32–33 40 1.0 100 40 0 0.2 200 28.2 0.5, 1.5 0.5
34 40 1.0 150 40 0 0.13 200 18.8 1 0.5
35 40 0.5 50 40 0 0.2 200 56.5 1 0.5
36 40 0.8 50 40 0 0.32 200 56.5 1 0.5
37 40 1.5 50 40 0 0.6 200 56.5 1 0.5
38 40 2.0 50 40 0 0.8 200 56.5 1 0.5
39–41 40 1.0 100 40 0 0.2 100, 200, 500 28.2 1 0.5 fixed-head / elastoplastic (EP-H-fix)
42 20 1.0 141 20 0 0.14 200 20.0 1 0.5 free-head / elastoplastic (EP-H)
43 20 1.0 56 20 0 0.35 200 50.0 1 0.5
44 20 1.0 28 20 0 0.71 200 100.0 1 0.5
45 20 1.0 141 20 5 0.14 200 20.0 1 0.5
46 20 1.0 56 20 5 0.35 200 50.0 1 0.5
47 20 1.0 28 20 5 0.71 200 100.0 1 0.5
48 20 1.0 141 20 15 0.14 200 20.0 1 0.5
49 20 1.0 56 20 15 0.35 200 50.0 1 0.5
50 20 1.0 28 20 15 0.71 200 100.0 1 0.5
51 5 1.0 141 5 0 0.14 200 20.0 1 0.5 fixed-head / elastoplastic (EP-H-fix)
52 7 1.0 56 7 0 0.35 200 50.0 1 0.5
53 10 1.0 28 10 0 0.71 200 100.0 1 0.5
54 20 1.0 141 20 0 0.14 200 20.0 1 0.5
55 20 1.0 56 20 0 0.35 200 50.0 1 0.5
56 20 1.0 28 20 0 0.71 200 100.0 1 0.5

Fig. 5. RC cantilever beam: FE mesh and boundary conditions.
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Fig. 7b shows the contours and vectors of soil displacements
computed for α = 0, 0.5 and 1. In perfect agreement with the UB solution
proposed by Martin and Randolph (2006), a “flow-around” plastic
mechanism developed within the soil, characterised by the formation of
a fan shear zone all around the pile. Consistently with the theoretical
model, the mobilization of shear stresses at the pile-soil interface (α ∕= 0)
induces the formation of a rigid zone in front of the pile; also, the soil
volume involved in the plastic mechanism increases with increasing α.

4. Numerical FE results

4.1. Limiting soil resistance

Fig. 8 shows the profiles of dimensionless contact pressures, pu =

pu/sud, computed for the case of uniformly loaded rigid pile (R-U), by
varying the dimensionless ratios: (a) γd/su (Eu/su = 200, σh0/σv0 = 1, α =

0.5); (b) Eu/su (γd/su = 0.20–0.40; σh0/σv0 = 1, α = 0.5); and (c) σh0/σv0
(γd/su = 0.20–0.40; Eu/su = 200, α = 0.5). For the sake of comparison,
Fig. 8 also displays three literature solutions derived from the best fit of
3D FE analyses (Georgiadis and Georgiadis, 2010), FE Limit Analysis
(Luo et al., 2021), and 3D UB solutions (Yu et al., 2015), respectively. As
shown by several authors (Murff and Hamilton, 1993; Georgiadis and
Georgiadis, 2010; Yu et al., 2015), the applied uniform displacement

allows for a full attainment of the soil resistance along the entire pile
shaft, comprising the wedge failure mechanism in the near surface and
the mobilization of the flow-around limiting resistance at larger depth,
where numerical FE results match the theoretical LB solution derived by
Randolph and Houlsby (1984). As apparent from the figure, the γd/su,
Eu/su and σh0/σv0 ratios have similar effects, inducing slight variations of
both the ultimate soil resistance in the wedge failure zone and the
transition depth at which the flow-around mechanism is activated.
These ratios, however, do not affect the distribution of the limiting soil
pressure at shallow depth (z/d≤ 2÷ 3). Numerical FE results are in very
good agreement with the theoretical distributions of pu, with minor
differences due to the fact that simplified literature solutions do not
depend on the ratios Eu/su and σh0/σv0.

When moving to the case of free-head elastic (EL-H) and elastoplastic
(EP-H) piles, the resulting displacements are not sufficient neither for
activating the plastic flow at depth nor for fully mobilising the soil
resistance in the wedge failure mechanism (Fig. 9). Moreover, the pile
deflection induces an inversion in the soil contact pressures, which oc-
curs approximately at z/d ≈ 11 ÷ 12 and z/d ≈ 5 ÷ 6 for the EL-H and
EP-H pile, respectively. In the latter case, the soil volume involved in the
plastic mechanism is significantly reduced due to the formation of a
plastic hinge within the structural element, below which the pile does
not exhibit significant displacements. Likewise to what observed under a

Fig. 6. RC cantilever beam: (a) longitudinal strain contours at different transversal displacements (N=5 MN); (b) numerical and theoretical M− v curves and (c) N-M
interaction diagram at z = 0 m.
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Fig. 7. Plane-strain 2D analyses: (a) normalised limiting soil resistance pu,2D; (b) contours and vectors of soil displacements computed for α = 0, 0.5 and 1.

Fig. 8. R-U piles: normalised lateral soil resistance computed for different values of: (a) γd/su; (b) Eu/su; and (c) σh0/σv0.

F. Potini and R. Conti



Computers and Geotechnics 175 (2024) 106638

8

uniform horizontal displacement (R-U), an increase in the dimensionless
ratios γd/su, Eu/su and σh0/σv0 produces slightly higher contact pressures
in the case of the EL-H pile. This effect is quite marginal for the EP-H
pile.

4.2. Pile bearing capacity under horizontal loading

A further insight into the behaviour of free-head EL-H and EP-H piles
is given in Fig. 10, showing (a) the limiting soil pressure distributions
and (b) the normalised horizontal load–displacement curves computed
for different γd/su values (Eu/su = 200, σh0/σv0 = 1, α = 0.5). This time,
in order to highlight the role of pile diameter on the ultimate response of
EP-H piles, variation in the γd/su ratio is obtained by changing the pile
diameter between 0.5 m and 2.0 m. In the case of elastic EL-H piles,
variation of γd/su in the range 0.2 ÷ 0.8 leads to a significant increase in

the maximum normalised contact pressures (+40%) and horizontal load
at the pile head (+20 %). Worth noting here is that an asymptotic
behaviour cannot be detected for EL-H piles, at least for an applied
horizontal displacement of u/d = 0.5, because structural failure cannot
occur in this case. As expected, EP-H piles exhibit a completely different
response, characterised by the attainment of the lateral capacity for
displacements u/d ≈ 0.2, due to the formation of a plastic hinge within
the pile. In this case, the ratio γd/su has negligible effects on the contact
pressure distribution and, hence, on the pile bearing capacity.

The response of elastoplastic RC piles under free-head (EP-H) and
fixed-head (EP-H-fix) conditions is compared in Fig. 11 for three values
of Eu/su (γd/su = 0.20; σh0/σv0 = 1, α = 0.5). Specifically, the figure
shows: (a) the normalised limit soil resistance distribution; the (b) shear
and (c) bending moment distributions along the pile; (d) the normalised
horizontal load–displacement curves; and (e) the normalised N-M

Fig. 9. R-U, free-head EL-H and EP-H piles: normalised lateral soil resistance computed for different values of: (a) γd/su; (b) Eu/su; and (c) σh0/σv0.

Fig. 10. Free-head EL-H and EP-H piles: (a) soil pressure distributions at failure and (b) normalised load–displacement curves.
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interaction diagrams of the pile cross-section, together with the N-M
load paths computed at the pile cross sections where plastic hinges
occurred during the analyses.

Because of the rotational constraint, EP-H-fix piles mobilise higher
values of contact pressures with respect to EP-H piles, together with the
activation of a deeper failure mechanism (Fig. 11a), leading to an
increased lateral capacity (Fig. 11b,d). The typical response of long
fixed-head and free-head RC piles is also evident in Fig. 11c, where the
bending moment distributions are characterised by two plastic hinges in
the first case, one at the head and the other deeper along the shaft,
approximately 1 ÷ 2 d below the plastic hinge developing in the free-
head piles. As shown in Fig. 11d,e, the first plastic hinge within the
fixed-head piles forms under an applied displacement u/d ≈ 0.05, while
a larger displacement (u/d ≈ 0.25 ÷ 0.30) is required to develop the
second plastic hinge and to reach the horizontal bearing capacity.
Similarly, in free-head piles, the plastic hinge forms at u/d ≈ 0.20,
corresponding to which the pile lateral capacity is attained. As antici-
pated, the ratio Eu/su affects the pile-soil interaction prior to failure,
while having negligible influence on the limiting condition of elasto-
plastic piles.

Numerical results discussed herein indicate that the horizontal

bearing capacity of RC piles is not actually affected by the ratios γd/su,
Eu/su and σh0/σv0. This result essentially stems from the fact that, due to
the formation of plastic hinges along the shaft, the pile response relies on
the soil strengthmobilised at relatively shallow depths, where the lateral
soil resistance basically depends on the adhesion factor, α. Although the
sole case of long RC pile was shown, which represent by far the most
relevant condition in the design practice, the same conclusions hold for
the cases of intermediate and short piles.

5. Simplified theoretical model

Broms’ method provides a closed form solution for the undrained
horizontal capacity of a single pile in cohesive soils, based on the hy-
pothesis of rigid-plastic behaviour for both the pile and the soil. The
assumed limiting soil pressure distribution neglects the contribution
given by the soil close to surface (z < 1.5 d), and is characterised by a
constant value of 9sud, regardless of the adhesion factor at the pile-soil
interface, thus typically resulting in a conservative estimate of Hu. To
overcome such limitation, a more refined limiting distribution is
required, but still simple enough to obtain a closed-form expression for
Hu.

Fig. 11. EP-H and EP-H-fix piles: (a) normalised soil pressure distribution, (b) shear force and (c) bending moment at failure; (d) normalised load–displacement
curves; (e) N-M interaction diagram and load paths.
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5.1. Theoretical distribution of limiting soil pressures

Based on FE results discussed in the previous sections, a simple linear
distribution was assumed for the limiting contact pressures, taken as a
function of the sole adhesion factor, given by:

pu(z) =
{
pu0 +mz z < zlim
pu,2D z ≥ zlim

(6)

where pu0 is the contact pressure at the ground surface and pu,2D is the LB
solution by Randolph and Houlsby (1984). Eq. (6) can be written in
dimensionless form as:

pu(z) =
{
pu0 +mz z < zlim
pu,2D z ≥ zlim

(7)

where pu0 = pu0/sud, m = m/su and z = z/d. Following Georgiadis and
Georgiadis (2010) and Luo et al. (2021), a linear relationship was
considered between pu0 and α:

pu0 = 2.35+1.25α (8)

Eq. (8) is plotted in Fig. 12 together with other numerical and
theoretical solutions, indicating a good agreement between the pro-
posed expression and both FE results from this study and the UB solution
by Yu et al. (2015). A constant value m = 1.6, instead, was proven to
provide a good match with FE results (see e.g. Fig. 13).

According to Eq. (7), the transition between the wedge and the flow-
around mechanism occurs at the limiting normalised depth:

zlim =
pu,2D − pu0

m
(9)

which varies between 4.2 and 5.2, depending on the adhesion factor.
Fig. 13 shows a comparison between the proposed theoretical distribu-
tion, FE results and other expressions proposed in the literature, for
three values of α (=0, 0.5, 1). Despite its simplicity, Eq. (7) provides a
satisfactory representation of the actual limiting soil pressures, both in
magnitude and trend.

5.2. Horizontal bearing capacity of free-head and fixed-head piles

Based on the proposed soil resistance distribution, the horizontal pile
capacity is reduced to:

Hu

sud2
= F

(
e
d
,
L
d
,
Myb

sud3
,
pu(z)
sud

)

(10)

or, equivalently, using Eq. (7):

Hu = F
(
e, L,Myb, pu0, pu,2D,m

)
(11)

where Hu = Hu/sud2, e = e/d, L = L/d, andMyb =Myb/sud3. The actual
dependence ofHu on the dimensionless groups in Eq. (11) stems from the
restraint at the pile head and the type of structural failure. The following
sections provide the closed-form solutions for the free-head and fixed-
head pile conditions, all derived under the assumption L ≥ zlim, which
encompasses all relevant cases in design practice. The corresponding
equilibrium equations are detailed in Appendix B.

5.2.1. Free-head pile
As shown in Fig. 14, free-head piles can reach failure following two

possible mechanisms: in the first case (short pile), structural yielding
does not occur (Mmax < Myb) and the plastic mechanism involves the
entire pile length; in the second case (long pile), a plastic hinge develops
within the pile, at depth f = f/d.

Eqs. (12) provide the dimensionless closed-form solutions for the pile
lateral capacity and the maximum bending moment,Mmax =Mmax/sud3,
for the short pile condition. They exactly define the condition f > zlim
(Fig. 14a), but provide a good approximation also for the case f ≤ zlim:

Hu = pu,2D

⎡

⎣2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
L2

2
+ e2 + Le+

z2limm
6pu,2D

(zlim + 3e)

)√
√
√
√ − L − 2e

⎤

⎦ −
z2limm
2

(12a)

Mmax =
pu,2D
4

[

L −
Hu

pu,2D
+
p2u,2D − p2u0
2mpu,2D

−
pu,2D − pu0

m

]2

(12b)

The solution for the long pile condition depends on the position of
the plastic hinge. If f ≤ zlim (Fig. 14b), the flow-around mechanism is not
mobilised and Eqs. (13) hold:

Hu =
p2u0
2m

[(

C1 + C3

(

1+
C3

C1

))2

− 1

]

(13a)

where

C1 =

[

C2 + C3
3 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

C2
2 + 2C2C3

3

√ ]1
3

C2 =
3
2

[
Mybm2

p3u0
− C3 +

1
3

]

C3 =
1
2

[

1 −
em
pu0

]

(13b)

and:

f =
pu0
m

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+
2mHu

p2u0

√

− 1

)

(13c)

If f > zlim (Fig. 14c), the pile horizontal capacity results from the
activation of both the wedge and the plastic flow mechanism. In this
case, Eqs. (14) hold:

Hu = C1 − pu,2De+ pu,2Dzlim

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
e
zlim

+ 1
)2

− 2
(
C1e+ C2 − Myb

)

pu,2Dz2lim

√

− 1

)

(14a)

where
Fig. 12. Variation of the normalised limiting soil resistance at surface, pu0, with
the adhesion factor, α: comparison between FE results and theoretical models.
(See above-mentioned reference for further information.)
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C1 =

(
pu0 + pu,2D

)
zlim

2

C2 =

(
pu0 + 2pu,2D

)
z2lim

6

(14b)

and

f =
Hu

pu,2D
+ zlim

(

1 −
pu0 + pu,2D
2pu,2D

)

(14c)

From a practical standpoint, the procedure for calculating Hu in the
long pile condition can be summarised as follows: (i) compute Hu using
Eq. (13a); (ii) verify that f ≤ zlim; (iii) if f > zlim, recalculate Hu using Eq.
(14a).

5.2.2. Fixed-head pile
As shown in Fig. 15, the lateral capacity of fixed-head piles can be

achieved either by short, intermediate or long pile failure mechanism.
Eqs. (15) provide the lateral bearing capacity and the maximum

bending moment for the short pile condition (Fig. 15a):

Hu =

(
pu0 + pu,2D

)

2
zlim + pu,2D(L − zlim) (15a)

Mmax =

(
pu0 + 2pu,2D

)

6
z2lim + pu,2D

(
L2 − z2lim

)

2
(15b)

The intermediate pile condition is characterised by the formation of
one plastic hinge at the pile head (Fig. 15b). In this case, the plastic
mechanism involves the entire pile length and Eq. (16) is the closed-
form solution for the problem, while the maximum bending moment
along the pile shaft can be computed using Eq. (12b), as the limiting soil
pressure distribution coincides with the one mobilised by the free-head
short pile (see e.g. Fig. 14a):

Hu = pu,2D

⎡

⎣2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Myb

pu,2D
+
L2

2
+

z3limm
6pu,2D

)√
√
√
√ − L

⎤

⎦ −
z2limm
2

(16)

The long pile failure mechanism occurs when a second plastic hinge
develops at depth f along the shaft. If f ≤ zlim (Fig. 15c), the pile lateral

capacity is given by Eqs. (17), while Eq. (13c) can be used to compute f ,
as, once again, the limiting soil pressure distribution coincides with the
one mobilised by the corresponding free-head long pile condition (see e.
g. Fig. 14b):

Hu =
p2u0
2m

[(

C1 +
1
2
+

1
4C1

)2

− 1

]

(17a)

where:

C1 =

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

C2
2 −

1
64

√

+ C2

]1
3

C2 =
3Mybm2

p3u0
−
1
8

(17b)

If f > zlim (Fig. 15d), Eq. (18) provides the closed-form solution for
Hu, while f can be computed using Eq. (14c), derived for the corre-
sponding free-head long pile condition (see e.g. Fig. 14c):

Hu = C1 + pu,2Dzlim

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − 2
(
C2 − 2Myb

)

pu,2Dz2lim

√

− 1

)

(18)

where coefficients C1 and C2 are defined by Eq. (14b).

5.3. Comparison between theoretical solutions and numerical results

The proposed model was validated against FE analyses of free-head
and fixed-head RC piles (d = 1.0 m, ds/d = 0.9, ρ = 1.8 %), corre-
sponding to which the failure moment of the cross-section isMyb = 2825
kNm for N=0 kN, as indicated by the N-M interaction diagram in Fig. 6c.

In Fig. 16 theoretical predictions are compared with the numerical
results of a free-head long pile, computed by varying the soil undrained
shear strength within the range 50 ÷ 150 kPa (α = 0.5), in terms of
normalised: (a) limiting soil pressure distribution; (b) shear force and (c)
bending moment. As expected, an increase in su (at constant Myb) leads
to a significant reduction of both Hu and f , which is well reproduced by
the theoretical model, both in magnitude and trend.

Fig. 17 shows a further comparison between the proposed method

Fig. 13. Theoretical and FE distributions of normalised soil resistance: (a) α = 0; (b) α = 0.5; (c) α = 1 (Analyses # 12, 8, 13 in Tab. 2). (See above-mentioned
reference for further information.)
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and FE results of (a) free-head long piles and (b) fixed-head piles,
respectively (α = 0.5). This time, FE analyses (#42–56 in Tab. 2) serve as
benchmark for validating the theoretical model for different Myb/sud3

and e/d (free-head) and Myb/sud3 and L/d (fixed-head) ratios. For the
sake of completeness, Fig. 17 also displays the Hu values provided by
classical Broms’ solution and those computed by integrating numeri-
cally other limiting contact pressure distributions published in the

Fig. 14. Free-head pile. Failure mechanism and soil resistance for: (a) short
pile; (b) long pile (f ≤ zlim); (c) long pile (f > zlim).

Fig. 15. Fixed-head pile. Failure mechanism and soil resistance for: (a) short
pile, (b) intermediate pile; (c) long pile (f ≤ zlim); (d) long pile (f > zlim).
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literature (Reese et al., 1975; Georgiadis and Georgiadis, 2010; Yu et al.,
2015). The proposed closed-form solution is in good agreement with
both FE results and more refined theoretical solutions, providing only
slightly conservative results for Myb/sud3 ≥ 100, in the order of 5 %. As
anticipated, instead, Broms’ method always predicts smaller values of
the horizontal capacity, with maximum differences of about 20 % for
both free-head (Myb/sud3 = 40) and fixed-head (L/d = 20) piles, with
respect to the proposed model.

The overall effect of the adhesion factor on the computedHu values is
depicted in Fig. 18, showing the theoretical dimensionless charts for:
free-head short (a) and long (b) piles (e/d = 0, 5, 15); and (c) fixed-head
piles (Myb/sud3 = 10, 20, 50, 100, 200), the latter exhibiting the typical
transition between short, intermediate and long pile failure mechanism.
Shaded areas indicate the range of theoretical solutions obtained by
varying α between 0 and 1. For the sake of completeness, the theoretical
solutions for the cases of short and intermediate piles with L < zlim are

also reported in the figure (dotted curves), obtained by solving itera-
tively the corresponding equilibrium equations. In the case of free-head
piles (Fig. 18a,b), the effect of α on the horizontal pile capacity reduces
with increasing the load eccentricity, particularly when a long-pile
failure mechanism is activated. For the case of fixed-head piles
(Fig. 18c), the effect of α on the computed Hu values is marginally
dependent on the ratio Myb/sud3, with a maximum difference of about
14 % between rough and smooth contact assumption (long pile
mechanism).

5.4. Comparison between theoretical solutions and experimental data

With the aim of providing a further validation for the assumed
limiting soil pressure distribution, the proposed theoretical model was
applied to the analysis of a broad experimental database, consisting of
67 laboratory and field tests on free-head drilled shafts (2 ≤ L/d ≤ 10)

Fig. 16. Free-head long pile: comparison between theoretical and FE results for different values of su: (a) soil pressure distribution, (b) shear force and (c) bending
moment along the pile.

Fig. 17. Dimensionless undrained lateral capacity. Comparison between theoretical solutions and FE results for: (a) free-head long piles and (b) fixed-head piles.
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embedded in clayey soils (Chen and Kulhawy, 1994). Details on the
mechanical and physical characterization of soil properties, based on
laboratory tests and empirical correlations, were reported by Chen and
Kulhawy (1994). Table 3 summarises all relevant geometrical and
geotechnical parameters, including: the undrained shear strength in
triaxial extension (su,TE) and direct simple shear (su,DSS), appropriate for
computing the lateral and tip soil resistance, respectively; the adhesion
factor, α, estimated with the empirical equation by Kulhawy (1991); the
hyperbolic capacity, Hu,hyp, computed as the asymptotic limit of the
experimental load–displacement curve (Phoon and Kulhawy, 2005;
Chen et al., 2011). Following Chen and Kulhawy (1994), all tests were
analysed in undrained conditions, assuming a rigid behaviour of the
shaft and including the contribution of the tip resistance in the limit
equilibrium equations, which can be relevant for small L/d ratios.
Fig. 19 shows a comparison between the experimental hyperbolic ca-
pacities and the corresponding theoretical limit values computed
assuming five different distributions for the lateral soil resistance, while
a statistical analysis of all data is reported in Table 4. As expected, with
the only exception of Broms’ distribution, all models give comparable
results, with the mean predicted values included between 71% (Yu et al.
(2015) model) and 92 % (Georgiadis and Georgiadis (2010) model).
Once again, despite its simplicity, the proposed theoretical model is in
quite good agreement with the experimental data, providing a slightly
conservative prediction of the horizontal capacity (mean Hu/Hu,hyp = 82
%).

5.5. Theoretical failure envelope of laterally loaded piles

As recently discussed by Gerolymos et al. (2020) and Sakellariadis
and Anastasopoulos (2024), the horizontal capacity of RC piles, either
isolated or within pile groups, strongly depends on the bending moment
applied at the pile head, which governs the position of the plastic hinge
along the shaft and, hence, the failure mode of the pile. This coupling
can be conveniently described through analytical failure envelopes,
extending the reference solutions for free-head and fixed-head pile to
more general conditions. To this end, the theoretical model illustrated in
Sections 5.1 and 5.2 can be easily adapted to describe the ultimate
behaviour of a single RC pile under combined N–H-M loading.

By referring to the relevant long pile condition, and after defining the
bending moment acting at the pile head as a fraction of the available
structural capacity,M = βy⋅Myb (− 1 ≤ βy ≤ 1), a generalised closed form
solution for the normalised bearing capacity, Hu, can be derived from
the equilibrium equations of the pile. Specifically, for f ≤ zlim, Hu is
given by:

Hu =
p2u0
2m

[(

C1 +
1
2
+

1
4C1

)2

− 1

]

(19a)

C1 =

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

C2
2 −

1
64

√

+ C2

]1
3

C2 =
3
(
1 − βy

)
Mybm2

2p3u0
−
1
8

(19b)

while, for f > zlim, it is:

Hu = C1 + pu,2Dzlim

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − 2
C2 −

(
1 − βy

)
Myb

pu,2Dz2lim

√

− 1

)

(20a)

C1 =

(
pu0 + pu,2D

)
zlim

2

C2 =

(
pu0 + 2pu,2D

)
z2lim

6

(20b)

The condition βy = -1 corresponds to the classical fixed-head failure
mode. With increasing βy, the plastic hinge at depth tends to develop
closer and closer to the pile head (f→0), with a concurrent reduction of
Hu. At the limiting condition βy = 1, when M=Myb at the pile head, the
two plastic hinges collapse into one and Hu = 0.

Numerical and theoreticalH-M interaction diagrams are compared in
Fig. 20b for the case of a single pile (d = 1 m, ρ = 1.8 %, L/d = 15, α =

0.5, γd/su = 0.2, Eu/su = 200, σh0/σv0 = 1) subjected to three different
values of the axial load (N=1.58 MN, 0 MN, − 1.13 MN), comprised
between the axial bearing capacity in compression and uplift. For the
sake of completeness, Fig. 20a displays also the N-M failure domain of
the pile cross-section. Moreover, theoretical H-M domains are computed
using both the proposed model (Eqs.(19) and (20)) and the closed-form
solution provided by Gerolymos et al. (2020), which assumes a constant
distribution of the lateral soil pressures, pu0 = 10sud, up to the soil
surface. As expected, due to the N-M structural coupling, the H-M
domain expands with increasing the axial load at the pile head.
Furthermore, a positive bending moment reduces the horizontal ca-
pacity, up to the limit case whereM=Myb and Hu = 0. A beneficial effect
is induced, instead, by a negative bending moment, with the limiting
condition M=-Myb for the fixed-head pile mechanism. As apparent, the
proposed solution describes accurately the interaction between Hu and
the N-M loads applied at the pile head. Quite the opposite, the theo-
retical model proposed by Gerolymos et al. (2020) leads to

Fig. 18. Theoretical dimensionless charts for the undrained lateral capacity: (a) short and (b) long free-head piles; (c) fixed-head piles.
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Table 3
Laboratory and field tests on free-head drilled shafts in clayey soils: relevant geometrical and geotechnical parameters (modified after Chen and Kulhawy, 1994).
(*Units: [N] for laboratory tests and [kN] for field tests).

type L d e su,TE su,DSS Hu,hyp γ α Hu/Hu,hyp

m m m kPa kPa (*) kN/m3 − Broms Reese et al. G&G Yu et al. Proposed

lab 0.300 0.089 0.315 3.56 5.9 113 18.0 1 0.37 0.80 0.92 0.70 0.81
lab 0.300 0.089 0.315 3.56 5.9 135 18.0 1 0.31 0.67 0.77 0.59 0.68
lab 0.300 0.089 0.02 2.07 3.4 225 17.8 1 0.23 0.52 0.61 0.47 0.53
lab 0.300 0.089 0.02 2.07 3.4 237 17.8 1 0.22 0.50 0.57 0.45 0.50
lab 0.533 0.089 0.025 2.42 4.1 454 18.1 1 0.46 0.70 0.74 0.56 0.67
lab 0.533 0.089 0.025 3.45 5.7 667 18.6 1 0.45 0.68 0.72 0.54 0.65
lab 0.533 0.089 0.025 3.45 5.7 556 18.6 1 0.54 0.81 0.86 0.65 0.78
lab 0.355 0.089 0.025 1.75 2.9 167 18.0 1 0.40 0.76 0.85 0.66 0.74
lab 0.355 0.089 0.025 1.75 2.9 155 18.0 1 0.43 0.82 0.91 0.71 0.80
lab 0.355 0.089 0.025 3.12 5.1 266 18.5 1 0.45 0.83 0.95 0.72 0.83
lab 0.355 0.089 0.025 3.12 5.1 245 18.5 1 0.48 0.90 1.03 0.78 0.90
lab 0.267 0.089 0.02 4.21 6.9 379 18.7 1 0.20 0.51 0.62 0.48 0.54
lab 0.267 0.089 0.02 4.21 6.9 335 18.7 1 0.23 0.58 0.71 0.54 0.62
lab 0.710 0.089 0.02 5.26 8.8 1101 18.8 1 0.68 0.93 0.98 0.72 0.90
lab 0.710 0.089 0.02 5.26 8.8 1357 18.8 1 0.55 0.76 0.79 0.59 0.73
lab 0.267 0.089 0.279 1.62 2.7 29 17.6 1 0.48 1.24 1.42 1.14 1.25
lab 0.267 0.089 0.279 1.62 2.7 30 17.6 1 0.47 1.20 1.37 1.10 1.21
lab 0.355 0.089 0.02 1.75 2.9 143 18.1 1 0.47 0.91 1.00 0.79 0.88
lab 0.355 0.089 0.02 1.75 2.9 177 18.1 1 0.38 0.74 0.81 0.64 0.71
lab 0.533 0.089 0.02 4.87 8.1 1120 18.6 1 0.38 0.57 0.61 0.45 0.55
lab 0.533 0.089 0.02 4.87 8.1 805 18.6 1 0.53 0.79 0.85 0.63 0.77
lab 0.355 0.089 0.035 4.47 7.3 580 18.7 1 0.28 0.53 0.60 0.45 0.53
lab 0.355 0.089 0.02 2.17 3.6 253 18.1 1 0.33 0.63 0.70 0.54 0.62
lab 0.355 0.089 0.38 2.18 3.6 113 18.1 1 0.33 0.62 0.68 0.53 0.60
lab 0.355 0.089 0.38 2.18 3.6 99 18.1 1 0.38 0.71 0.78 0.60 0.69
lab 0.533 0.089 0.025 7.06 11.8 1350 18.9 1 0.45 0.67 0.73 0.53 0.66
lab 0.533 0.089 0.025 6.44 10.8 1048 18.9 1 0.53 0.79 0.86 0.63 0.77
lab 0.267 0.089 0.025 3.5 5.7 136 18.1 1 0.46 1.17 1.41 1.08 1.23
lab 0.267 0.089 0.025 3.5 5.7 123 18.1 1 0.50 1.30 1.56 1.19 1.36
lab 0.267 0.089 0.025 2.02 3.3 135 17.8 1 0.27 0.70 0.82 0.65 0.72
lab 0.267 0.089 0.025 2.02 3.3 126 17.8 1 0.28 0.75 0.88 0.69 0.77
lab 0.533 0.089 0.03 4.1 6.8 436 18.3 1 0.81 1.21 1.29 0.96 1.17
lab 0.533 0.089 0.03 4.1 6.8 550 18.3 1 0.64 0.96 1.03 0.76 0.93
lab 0.533 0.089 0.03 2.39 4.1 331 17.9 1 0.62 0.94 1.00 0.75 0.90
lab 0.533 0.089 0.03 2.39 4.1 375 17.9 1 0.55 0.83 0.88 0.66 0.79
lab 1.050 0.175 0.05 4.9 8.3 3450 18.6 1 0.48 0.73 0.77 0.58 0.69
lab 1.050 0.175 0.05 4.9 8.3 3707 18.6 1 0.45 0.68 0.71 0.54 0.64
lab 0.305 0.051 0.025 3.63 5.9 347 18.6 1 0.28 0.42 0.46 0.33 0.41
lab 0.305 0.051 0.025 3.63 5.9 222 18.6 1 0.44 0.66 0.71 0.52 0.64
lab 0.533 0.089 2.132 2.41 4.1 70 17.9 1 0.47 0.71 0.74 0.57 0.69
lab 0.533 0.089 2.131 2.41 4.1 75 17.9 1 0.44 0.66 0.69 0.53 0.65
lab 0.533 0.089 0.533 2.42 4.1 266 18.1 1 0.35 0.53 0.56 0.42 0.52
lab 0.533 0.089 0.533 2.42 4.1 272 18.1 1 0.34 0.51 0.55 0.41 0.50
lab 0.267 0.089 1.07 2.02 3.3 12 17.7 1 0.53 1.37 1.57 1.22 1.39
lab 0.267 0.089 1.07 2.02 3.3 16 17.7 1 0.40 1.03 1.18 0.92 1.04
lab 0.267 0.089 0.267 2.02 3.3 63 17.7 1 0.28 0.73 0.84 0.66 0.74
lab 0.267 0.089 0.267 2.02 3.3 64 17.7 1 0.28 0.72 0.82 0.78 0.73
field 6.1 0.91 0.79 44 63 882 19.7 0.80 0.49 0.71 0.73 0.56 0.66
field 4.57 0.91 0.79 45 63 634 20 0.79 0.40 0.64 0.69 0.52 0.60
field 4.57 0.76 0.79 45 63 486 20 0.79 0.50 0.75 0.79 0.60 0.70
field 2.44 0.81 7.44 30 45 45 20.5 1.00 0.23 0.57 0.65 0.50 0.56
field 3.66 0.81 7.44 30 45 68 20.5 1.00 0.52 0.89 0.97 0.74 0.87
field 2.44 0.81 7.35 7 6 8.7 15.7 1.00 0.26 0.70 0.76 0.63 0.68
field 3.66 0.81 7.38 8 9 33 15.7 1.00 0.28 0.50 0.53 0.42 0.48
field 3.57 1.37 24.38 58 108 115 20.2 0.66 0.15 0.48 0.55 0.44 0.46
field 3.81 1.52 24.38 62 205 176 21 0.63 0.13 0.44 0.50 0.42 0.44
field 6.17 1.98 24.38 46 47 124 22 0.78 0.63 1.60 1.68 1.40 1.44
field 5.33 1.37 24.38 36 69 143 18.2 0.93 0.34 0.64 0.69 0.53 0.60
field 4.57 1.37 24.38 35 75 166 17.5 0.95 0.18 0.37 0.41 0.33 0.36
field 11 1.83 0.28 55 122 2390 20.4 0.68 0.86 1.32 1.33 1.06 1.17
field 1.83 0.61 3.05 30 67 17 19.8 1.00 0.57 1.35 1.59 1.23 1.40
field 1.37 0.61 3.05 30 67 13 19.8 1.00 0.22 0.96 1.21 0.95 1.07
field 6.4 0.61 0.46 55 75 883 20 0.68 0.57 0.76 0.76 0.59 0.70
field 10 1 2.25 11 16 126 15.7 1.00 1.70 2.35 2.36 1.87 2.22
field 10 1 2.25 11 16 123 15.7 1.00 1.75 2.40 2.42 1.92 2.27
field 4.4 0.95 2.2 14 20 115 15.5 1.00 0.47 0.80 0.88 0.68 0.78
field 5.2 0.67 0.67 98 257 893 21 0.48 0.74 1.02 1.00 0.79 0.90
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unconservative predictions of the ultimate domain, essentially due to
the high limiting soil pressure assumed close to the soil surface.

A further insight into the behaviour of a single pile under generalised
loads is given in Fig. 21, where FE results referring to three values of the
applied bending moment (βy = 0.9, 0, − 1 at N=0 MN) are compared
with the proposed model predictions, in terms of: (a) limiting soil
pressure distributions, (b) shear force and (c) bending moment along the
pile. Fig. 21d also displays the contours of axial deformations within the
pile, highlighting the actual failure mode corresponding to each applied
load.

Clearly, the moment applied at the pile head does not affect the
limiting soil pressure distribution (pu0 and m), which depends only on
the adhesion factor, but rather the position of the plastic hinge at depth,
which in turn affects both the pile horizontal capacity and the structural
internal forces. This behaviour is well reproduced by the proposed
theoretical model, which turns out to be in very good agreement with FE
results.

6. Conclusions

This paper presented the main results of a numerical and theoretical

study on the undrained lateral capacity of RC piles in cohesive soils. 3D
FE analyses were carried out by adopting suitable constitutive assump-
tions for both materials and interfaces. Among these, the CDPmodel was
used to reproduce the highly nonlinear behaviour of concrete in tension
and compression, which is an essential ingredient when modelling the
ultimate response of piles under lateral loading.

Numerical analyses confirmed that the horizontal bearing capacity of
piles is strongly affected by the mutual interplay between the wedge and
flow-around plastic mechanisms occurring in the adjacent soil. How-
ever, based on the results of an extensive parametric study, it was shown
that, contrary to what observed for rigid and elastic piles, dimensionless
ratios Eu/su, γd/su and σh0/σv0 have a negligible influence on the ultimate
response of RC piles, which essentially depends on the adhesion factor,
α.

Based on numerical outcomes, a new theoretical distribution was
proposed for the limiting lateral soil resistance, simple enough to derive
closed-form solutions for the undrained lateral capacity of free-head and
fixed-head piles, considering all possible failure modes.

The proposed model was validated against both numerical FE results
of RC piles and experimental data of rigid shafts embedded in cohesive
soils. It allowed overcoming inherent conservativeness of classical
Broms’s theory, providing results in very good agreement with those
obtained by integrating numerically more refined limiting soil pressure
distributions. Due to its simplicity, this model was easily adapted to
derive the theoretical failure domain of a single long pile under gener-
alisedN–H-M loading, extending the classical solutions for free-head and
fixed-head pile to more general failure conditions. The proposed solu-
tions can be readily used in the design of single piles, as well as in the
computation of three-dimensional interaction domains of pile groups
and piled-rafts.

Fig. 19. Comparison between measured and predicted lateral capacities of rigid drilled shafts in cohesive soils, using the theoretical distributions proposed by: (a)
Broms (1964a); (b) Reese et al. (1975); (c) Georgiadis and Georgiadis (2010); (d) Yu et al., (2015); (e) this work.

Table 4
Undrained lateral load tests on free-head drilled shafts in clayey soils: summary
of regression analysis for different theoretical soil pressure distributions.

Hu/Hu,hyp

Broms
(1964a)

Reese
et al.
(1975)

G&G
(2010)

Yu et al.
(2015)

Proposed

# of tests 67 67 67 67 67
mean 0.46 0.84 0.92 0.71 0.82
dev. st. 0.27 0.37 0.39 0.31 0.35
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Fig. 20. Single pile subject to combined N–H-M loading: (a) N-M failure domain of the pile cross-section; (b) comparison between numerical and theoretical H-M
failure envelopes computed at three values of the applied axial load, N=1.58 MN, 0 MN, − 1.13 MN (d = 1 m, ρ = 1.8 %, L/d = 15, α = 0.5, γd/su = 0.2, Eu/su = 200,
σh0/σv0 = 1).

Fig. 21. Single pile subject to combined N–H-M loading (by = 0.9, 0, − 1; N=0 kN). Comparison between numerical and theoretical distributions of (a) limiting soil
pressures, (b) shear force and (c) bending moment along the pile; (d) contours of axial deformations within the pile (d = 1 m, ρ = 1.8 %, L/d = 15, α = 0.5, γd/su =
0.2, Eu/su = 200, σh0/σv0 = 1).
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Appendix A

In this section, the evolution equations and assumptions of the rate-independent CDP model available in ABAQUS (Abaqus, 2017) are briefly
recalled. The sign convention usually adopted in solid mechanics (tensile stresses positive) is adopted throughout; moreover, following standard
notation, bold-face letters denote vectors and second-order tensors, while blackboard-bold symbols denote fourth-order tensors.

Disregarding the elastic stiffness degradation due to damage evolution, which was not implemented in the present work, the elastoplastic evolution
problem can be summarised as follows:

(i) Strain rates are decomposed into an elastic, ε̇e, and plastic part, ε̇p, as:

ε̇ = ε̇e + ε̇p (A1)

(ii) The rate form of the constitutive equation is given by:

σ̇ = C(ε̇ − ε̇p) (A2)

where C is the fourth-order elastic stiffness tensor.
(iii) The evolution of plastic strains is defined by a non-associated flow rule:

ε̇p = λ̇
∂G(σ)

∂σ (A3)

where G(σ) is the plastic potential and λ̇ is the plastic multiplier.
(iv) damage states associated to cracking (in tension) and crushing (in compression) are described through two internal scalar variables, ε̃pt and ε̃pc ,

defined as the effective plastic strain in tension and compression, respectively. Hence, the hardening law is given by:

˙̃ε
p
= h(σ, ε̃p) ˙̂ε

p
(A4)

where h(σ, ε̃p) is a suitable hardening function; ε̃p =
[
ε̃pt , ε̃pc

]
is the vector of effective plastic strains; and ˙̂ε

p
=

[
˙̂ε
p
1,

˙̂ε
p
2,

˙̂ε
p
3

]

, where ˙̂ε
p
1 ≥ ˙̂ε

p
2 ≥ ˙̂ε

p
3 are the

eigenvalues of the plastic strain rate tensor.
(v) Admissible stress states are constrained by the following condition:

F(σ, ft , fc) ≤ 0 (A5)

where F
(
σ, ft , fc

)
is the yield function, while ft and fc are the uniaxial strength of the material in tension and compression, respectively, which evolve

with increasing the effective plastic strains.
(vi) The plastic multiplier and the yield function must obey the Kuhn-Tucker and the consistency conditions:

λ̇ ≥ 0, F ≤ 0, λ̇F = 0, λ̇Ḟ = 0 (A6)

The evolution of the yield function in the plastic regime is formulated under uniaxial loading and then extended to multiaxial conditions. In the
former case, it is assumed that ˙̃ε

p
is given by

˙̃ε
p
t = ε̇p1(uniaxial tension)
˙̃ε
p
c = − ε̇p1(uniaxial compression)

(A7)

and that the uniaxial stress–strain curves can be converted into uniaxial strength versus effective plastic strain curves (see e.g. Fig. A1), in the form:

ft = ft
(

ε̃pt
)

fc = fc
(

ε̃pc
) (A8)

Under multiaxial conditions, the hardening function is defined as:

h(σ, ε̃p) =
[
r(σ̂) 0 0
0 0 − (1 − r(σ̂) )

]

(A9)

where 0 ≤ r(σ̂) ≤ 1 is a stress weight factor:

r(σ̂) =
∑3

i=1〈σ̂ i〉
∑3

i=1|σ̂ i|
(A10)

where σ̂ i are the pricipal stresses and 〈 • 〉 are the Macauley brackets, defined by 〈x〉 = 1
2 (x+|x| ).

The yield function is defined as:

F(σ, ft , fc) =
1

1 − α [q − 3α • p+ β(ε̃p)〈σ̂max〉 − γ〈 − σ̂max〉 ] − fc
(

ε̃pc
)
≤ 0 (A11)
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where

p = −
1
3
tr(σ); q =

̅̅̅
3
2

√

‖S‖; S = σ −
1
3
tr(σ)I; σ̂max = max

i
σ̂ i

and β(ε̃p) is given by:

β(ε̃p) =
fc
(

ε̃pc
)

ft
(

ε̃pt
) (1 − α) − (1+α) (A12)

The dimensionless parameters α and γ determine the shape of the yield function in biaxial compression (σ̂max = 0) and triaxial compression
(σ̂max < 0), respectively, corresponding to which they are defined as:

α =
fb0
/
fc0 − 1

2fb0
/
fc0 − 1

(A13)

and

γ =
3(1 − Kc)

2Kc − 1
(A14)

where Kc = qTM/qCM, with qTM and qCM being the yielding deviatoric stresses along the tensile meridian (TM) and compressive meridian (CM). Typical
values for concrete are Kc = 2/3 and fb0/fc0 = 1.16 (Lubliner et al., 1989).

Finally, the plastic potential is given by the classical Drucker-Prager hyperbolic function:

G(σ) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
εft0tanψ

)2
+ q2

√

− ptanψ (A15)

where ψ is the dilatancy angle, ft0 is the uniaxial tensile yield stress and ε is the eccentricity parameter, controlling the rate at which the hyperbolic
function approaches the asymptote.

Fig. A1. Evolution of the yield function in the plastic regime under uniaxial loading: (a) stress-strain curve; (b) stress-effective plastic strain curve.

Appendix B

This section summarises the force and moment equilibrium equations governing the response at failure of free-head (Fig. 14) and fixed-head
(Fig. 15) piles.

• Free-Head short pile

Hu =
pu0 + pu,2D

2
zlim + pu,2D(f − zlim) (B1a)

− Hu(e+ f + g)+ pu,2Dg2 + pu,2Df
(
f
2
+ g
)

−
pu,2D − pu0

2
zlim
(
f + g −

zlim
3

)
= 0 (B1b)

g =
L − f
2

(B1c)

• Free-Head long pile

If f ≤ zlim:

Hu =
2pu0 +mf

2
f (B2a)
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Myb − Hu

(

e+ f
3pu0 + 2mf
6pu0 + 3mf

)

= 0 (B2b)

else, if f > zlim:

Hu =
pu0 + pu,2D

2
zlim + pu,2D(f − zlim) (B3a)

Myb − Hue −
pu0 + 2pu,2D

6
z2lim −

pu,2D
2
(
f
2
− z2lim

)
= 0 (B3b)

• Fixed-Head short pile

Hu =

(
pu0 + pu,2D

)

2
zlim + pu,2D(L − zlim) (B4)

• Fixed-Head intermediate pile

Hu =
pu0 + pu,2D

2
zlim + pu,2D(f − zlim) (B5a)

Myb − Hu(f + g)+ pu,2Dg2 + pu,2Df
(
f
2
+ g
)

−
pu,2D − pu0

2
zlim
(
f + g −

zlim
3

)
= 0 (B5b)

• Fixed-Head long pile

If f ≤ zlim:

Hu =
2pu0 +mf

2
f (B6a)

2Myb − Huf
3pu0 + 2mf
6pu0 + 3mf

= 0 (B6b)

else, if f > zlim:

Hu =
pu0 + pu,2D

2
zlim + pu,2D(f − zlim) (B7a)

2Myb −
pu0 + 2pu,2D

6
z2lim −

pu,2D
2
(
f
2
− z2lim

)
= 0 (B7b)
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