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1 |  INTRODUCTION

Overall mortality trends may be partially explained by cause- specific data. A recent example is 
provided by Woolf and Schoomaker (2019) who try to shed light on the decreasing trend of US life 
expectancy inspecting mortality by cause, finding that midlife mortality caused by drug overdoses, 
alcohol abuse, suicides and a diverse list of organ system diseases have particularly increased in the 
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Abstract
We study the dynamics of cause- specific mortality rates 
among countries by considering them as compositions of 
functions. We develop a novel framework for such data 
structure, with particular attention to functional PCA. The 
application of this method to a subset of the WHO mortal-
ity database reveals the main modes of variation of cause- 
specific rates over years for men and women and enables 
us to perform clustering in the projected subspace. The 
results give many insights of the ongoing trends, only par-
tially explained by past literature, that the considered coun-
tries are undergoing. We are also able to show the different 
evolution of cause of death undergone by men and women: 
for example, we can see that while lung cancer incidence is 
stabilizing for men, it is still increasing for women.
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latest years. However, analysing trends of cause- specific mortality rates (CSMRs) is not straightfor-
ward, as dimensionality of data (rates by cause, year and country) might easily reach a size difficult 
to manage. One common solution is reducing dimensionality by collapsing one or more compo-
nents: for instance, Canudas- Romo et al. (2020) use TCAL indicator to summarize evolution over 
time of cause- specific mortality. Truncated Cross- sectional Average Length of life (TCAL) is an in-
dicator summarizing cohort- specific and period- specific information but in this way it is no longer 
possible to explain the time trends. An additional issue when dealing with cause- specific mortality 
is the competing risk setting: a CSMR can decline because there has been a significant improvement 
in treatment and/or prevention of that disease or just because other causes have risen meanwhile. 
Therefore, if we want to analyse the time trend of CSMRs we need to take into account this feature. 
One way to do this is by means of compositional data analysis (CDA) (Aitchinson, 1986; Egozcue 
& Pawlowsky- Glahn, 2011), which is the study of compositions, that is data where quantities are 
part of a whole, by their representation as points on a D- dimensional simplex. CSMRs can be seen 
as compositional data, in the sense that their sum is the overall mortality rate but, if we consider 
their time trend, we have not only points in a simplicial space, but curves. Therefore we suggest that 
CDA might be combined with elements of functional data analysis (FDA) (Ramsay & Silverman, 
2005). For example, functional PCA can be applied to reveal what are the main components driving 
the latest trends of CSMRs in a selected group of countries. Moreover, countries could be grouped 
with respect to the evolution of their CSMRs. Therefore, by combining CDA and FDA we analyse 
trends of causes of death in 22 countries, which are eventually clustered according to their CSMRs’ 
evolution. The analysis proposed here is essentially descriptive; however, it has the advantage of 
encompassing all causes of death and, at the same time, allowing to focus on specific causes.

The paper is organized as follows: in the next section, we motivate our analysis and describe the 
data we used; Section 3 describes the way in which FDA and CDA are combined together, Section 4 
shows the results and Section 5 illustrates the conclusions.

2 |  MOTIVATIONS AND DATA

CSMRs on calendar year t are derived from all- causes rates mt
x
 and deaths for each cause i, age x and 

time t, iDt
x
. Following Preston et al. (2001), the CSMRs are defined as 

where Dt
x
 is the number of deaths for all causes occurred at time t and age x, mt

x
 is the mortality rate at age 

x in period t and imt
x
 is the CSMR at age x in period t, for cause i. Therefore, considering that 

∑
i
i
Dt

x
= Dt

x
,   

we have that 

 Equation (2) shows that CSMRs are compositional data, conditional to age. Interestingly, Oeppen (2008) 
and Kjærgaard et al. (2019) also use compositional analysis applied to cause- specific mortality, but with 
forecasting purposes, which lead them to consider multiple- decrement life tables deaths idt

x
 rather than 

rates, as the sum of them over i and x is one (the radix of life table). So they consider idt
x
 as a composition 

over causes i and over ages x, and in this way, they only have to make one forecasting step. However, in 

(1)imt
x
= mt

x
⋅

iDt
x

Dt
x

,

(2)
imt

x

mt
x

=

iDt
x

Dt
x

and
∑

i

imt
x

mt
x

= 1.
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a descriptive perspective— which is the one we are taking— mixing cause pattern and age pattern, which 
are varying across time, countries and causes, would make interpretation more difficult, so we condition 
to a specific age group (40– 64) that we consider more important: we excluded younger ages, as the causes 
involved in mortality are very limited (especially infant mortality). Ages older than 65 are also excluded, 
considering that the leading causes at old ages are fundamentally different from those in midlife, as also 
shown by Horiuchi et al. (2003). So we focus on premature mortality cause of deaths pattern and old age 
can be analysed separately. It would be possible analyse CSMRs without conditioning to a specific age 
class. Chen et al. (2017) for instance, propose to marginalize over age the considered quantities, but in this 
way we would focus on average rates and incidence of causes of death varies a lot across ages: the average 
would be the result of very different prevalence. Thus, we prefer to have a focus on a specific age in order 
to have results much easier to interpret.

From (2) it follows that analysing the ratio between cause- specific deaths (iDt
x
) and all- causes 

deaths (Dt
x
) is equivalent to analyse the ratio between cause- specific rates (imt

x
) and all- causes rate (mt

x
).   

This brings about the advantage of using a unique source of data: the World Health Organization 
(2019) mortality database, which provides data on cause and age specific deaths for all countries. 
Should we use also all- causes mortality rates, we would need to turn to an additional sourcm e (e.g. 
the Human Mortality Database), but given Equation (2), iDt

x
 and Dt

x
 is all we need.

2.1 | Data

The WHO mortality database is an archive of the causes of death information for several countries. 
The longest time series starts in 1950, however for many countries the information is available only 
since 1959. We need to consider the same time window for each country, so we focus on years 1959– 
2015, and we only consider countries for which data are available in this time frame. Moreover, we 
excluded Luxembourg for which data was too noisy, given the limited population size, so our final 
analysis restricts to countries listed in Table 1.

An important issue is that classification of causes of death has greatly changed since 1959, passing 
from ICD 7th to ICD 10th revision. Following Canudas- Romo et al. (2020), we therefore use broad 
classes of causes that are little affected by changes between different revisions, see Table 2. Deaths 
due to other causes (classified as ‘Symptoms, signs and abnormal clinical and laboratory findings, 
not elsewhere classified’ ICD– 10 codes R00– R99) and infant mortality- related causes (ICD– 10 codes 
P00– Q99) have been removed. These two sets of causes had a very limited prevalence in our data, 
also considering the specific age group we focused on, and not a specific pattern, so including them 
would only have increased the statistical noise. Note that some adjustments have been made: for ex-
ample, HIV has been classified among endocrine diseases in ICD 9th revision and moved to Infectious 
diseases class in 10th revision, thus we moved it in this class also for 9th revision. In addition, we 

T A B L E  1  Countries considered

Area Countries

North EU Denmark, Finland, Norway, Sweden, Iceland

West EU Austria, Belgium, Switzerland, France, Ireland, Netherlands, United Kingdom

South EU Italy, Spain, Greece

Central EU Hungary, Poland

Extra- EU Australia, Canada, Japan, New Zealand, United States
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found that in Austria diabetes mellitus with circulatory complications is classified among endocrine 
diseases, and we moved it to class CIRC (circulatory diseases) to make the classification consistent 
with what have been done for other countries. Then, we obtained regular curves from noisy data by 
spline smoothing. This has be done in a transformed space, similarly to the methodology proposed in 
Section 3. A common tuning parameter across countries— with the exception of Iceland— was chosen 
to balance the bias– variance trade- off. Iceland, due to limited population, exhibits a stronger mea-
surement error and we opted for a country- specific tuning parameter. Finally, since in some years data 
are missing for few countries (namely 2005 for Australia, 1997– 1998 for Poland, 2000 for the United 
Kingdom and 2015 for New Zealand), we applied the approach suggested by Kraus (2015) to impute 
missing parts of the curves.

3 |  METHODOLOGY

As pointed out in the previous sections, CSMRs data can be thought as realizations of random func-
tions taking values in the D- dimensional simplex. Petersen and Müller (2016) and Hron et al. (2016) 
consider the similar problem of analysing samples of densities, that is functional data with the addi-
tional constraints f(x) ≥ 0 and ∫f(x)dx = 1 that can be though as continuous compositions: the density 
at a specific point x is an infinitesimal part of the density function and the total contribution of the 
parts is fixed to 1. The main difference with the present work is that in our case we consider compo-
sitional functional data: discrete compositions where each part is a function fd(t) and the constraint ∑

dfd(t) = 1 holds for every t on a given interval. As an alternative to the methodology we describe 
in the next sections, the approach of Dai and Müller (2018) using a different transformation can be 
considered. As suggested in Scealy et al. (2015), in the applications, one should always check which 
transformation is the most appropriate.

T A B L E  2  Causes of death considered with related International Classification of Diseases (ICD) codes for each 
revision

Cause group ICD– 7 ICD– 8 ICD– 9 ICD– 10

Certain infectious and 
parasitic diseases 
(INF)

A001– A043, A104, 
A132, B001– B017, 
B043

A001– A044 B01– B007 A00- B99

Endocrine, nutritional 
and metabolic 
diseases (END)

A061– A064, B020 A062– A066 B18– B19 E00- E88

Circulatory system 
diseases (CIRC)

A070, A079– A086, 
B022, B024–  
 B029

A080– A088 B25– B30 I00– I99

Neoplasms (NEOP) A044– A060, 
B018– B019

A045– A050, 
A052– A061

B08– B09, B100, 
B109, B11– B17

C00– C32, C34–   
D48

Lung cancer (LUNG) A050 A051 B101 C33- C34

Respiratory diseases 
(RESP)

A087– A097, 
B030– B032

A089– A096 B31– B32 J00- J98

Digestive system 
diseases (DIG)

A098– A107, 
B033– B037

A097– A104 B33– B34 K00– K93

External causes of death 
(EXT)

A138– A150, 
B047– B050

A138– A150 B47– B56 V00– Y89
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This section aims to furnish the main tools to analyse compositional functional data and, to do that, 
we extend the theory in Aitchinson (1986) about standard compositions to deal with our complex data 
structure. In particular, computation of the mean function, covariance operator and principal compo-
nent analysis is presented in Sections 3.1– 3.2 while Section 3.3 discusses details about a clustering 
procedure we applied to data.

3.1 | The functional simplex

A functional composition can be defined as a random function f :  ⊂ ℝ→ D from a subset of the real 
line to the D- dimensional simplex. With different terms, a functional composition is a multivariate ran-
dom function, f (t) = [f1(t), …, fD(t)] where each fd:  ⊂ ℝ→ ℝ, d = 1, …, D is a function from a 
subset of the real line to ℝ with the additional constraint that fd(t) ≥ 0 ∀ d, ∀ t ∈  and ∑

D
d=1

fd(t) = 1 ∀ t ∈ . We refer to realizations of functional compositions as compositional functional 
data. These data enjoy most of the properties of multivariate functional data but the constraint imposes 
some important modifications. Aitchinson (1986) shows that compositional data lie on the simplex 
which has a different geometry with respect to ℝD. Similarly, compositional functional data lie in a func-
tion space that we call functional simplex for which usual operations in 2 cannot be applied. We define 
the functional simplex D

f
() as the collection of all D- variate functions f : I ⊂ ℝ→ D that satisfy 

where f̃ (t) = [
∏

D
d=1

fd(t)]1∕D is the geometric mean of the components of f. The functional simplex is 
a separable Hilbert space equipped with vector operations as summation and multiplication to a scalar. 
Specifically, the sum of two elements in this space takes the form of a perturbation 

and multiplication to a scalar becomes powering 

where C denotes the closure operator, i.e. x = [
x1∑

xi

, …,
xD∑

xi

]. These operations are the natural exten-
sions of perturbation and powering on the simplex, and their existence is necessary for the computation of 
quantities relevant from a statistical point of view. In addition, the geometry of the space can be defined 
by its inner product that, for any two functional compositions f and g, is 

The centred log ratio (clr) transform (Aitchinson, 1986; Egozcue & Pawlowsky- Glahn, 2011) for compo-
sitional data is a map between the D- dimensional simplex and ℝD−1. This transformation is particularly 
important since not only establishes an isomorphism between the two spaces, but it allows to compute 
quantities on the simplex through operations outside of it. Similar transformations can be considered as, for 
example the additive log ratio (alr) and the isometric log ratio (ilr). The methodology described here can be 

(3)
D∑

d=1
�[log

{
fd(t)

f̃ (t)

}
]2dt <∞

(4)f ⊕ g = [f1(t) ⋅ g1(t), …, fD(t) ⋅ gD(t)],

(5)𝛼 ⊙ f = [f 𝛼
1

(t), …, f 𝛼
D

(t)],

(6)⟨f , g⟩D
f
=

D�

d=1
� log

�
fd(t)

f̃ (t)

�
log

�
gd(t)

g̃(t)

�
dt.
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applied for these choices as well. However, we chose the clr transform for its wider use in the applications 
and a simpler structure for the presentation. Scealy et al. (2015) and Dai and Müller (2018) highlight that 
log- ratio transformation might be inappropriate when compositions are equal or very close to zero. This 
issue does not apply to data considered here, since marginal causes such as ill- identified ones and infant 
mortality- related ones, have been excluded. Hence, clr is an appropriate transformation, while when dealing 
with compositions with several values close to 0, the transformations suggested by Dai and Müller (2018) 
should be considered.

Here we define the clr transform for functional compositions. This extension can be though as the 
application of the standard clr transform to the composition evaluated at a specific point t, for every t ∈ .   
Let   be the subset of the Cartesian product of D copies of 2 defined as  = {u(t) ∈ D

2
� ∑ D

d=1
ud(t) = 0},   

then   is isomorphic to D−1
2

. The centred log ratio transform for functional compositions is a function 
���: D

f
→ ⊂ D

2
 from the functional simplex to   defined by 

where f̃ (t) is the geometric mean of the components of f. This function maps elements of the functional 
simplex into elements of a subspace of D

2
, allowing us to work outside the functional simplex. To go 

back to the original space, we use the inverse transform ���−1: ⊂ D
2
→ D

f
 defined by 

As an immediate consequence of these definitions we have that the functional simplex is isomorphic to 
D−1

2
 and the inner product defined in Equation (6) is the same as the usual D

2
 inner product between the 

two clr transformed functions, that is ⟨f , g⟩D
f
= ⟨f ∗, g∗⟩D

2. The clr transform has the important property that, 
for any two real constants α and β and any two functional compositions f and g, 

This property is central in the computation of the mean and principal components of compositional 
functional data, since perturbations and powerings on the functional simplex can be performed by other 
operations in D

2
.

3.2 | Mean, covariance operator and principal component analysis

We define the expectation of a functional composition as �f = �f = ���
−1{����{f}}. Suppose to 

have a sample of compositional functional data {f 1(t), …, f n(t)} on a given time interval  as, for 
example trends of CSMRs. The mean function �f  on the functional simplex representing the average 
trend can be estimated by 

Equation (10) consists in perturbations and powerings and, thanks to property (9) we can compute these 
quantities only through operations outside the functional simplex: 

(7)f ∗ = ���{f } = log

[
f1(t)

f̃ (t)
…
fD(t)

f̃ (t)

]
,

(8)
f = ���

−1{f ∗ } = {exp[f ∗
1

(t)…f ∗
D

(t)]}.

(9)���{(𝛼 ⊙ f ) ⊕ (𝛽 ⊙ g)} = 𝛼 ⋅ ���{f} + 𝛽 ⋅ ���{g}.

(10)��f (t) =

n⨁

i= 1

[
1

n
⊙ f i(t)

]
.
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Equation (10) extends the classical definition of an average of a composition to the case of functional 
compositions. As shown in Aitchinson (1986), the mean in simplicial terms can be obtained by back 
transforming the arithmetic mean of transformed quantities. This is justified by the isomorphism between 
the two spaces we consider. In the next section, we will apply estimator (11) to the sample of countries 
introduced in Section 2.1 in order to depict the average trend of CSMRs.

Next we have to define a valid covariance operator for functional compositions. The definition of 
covariance is not straightforward for compositional data: Aitchinson (1986) proposed three different 
specifications based on transformations of data. One of them relies on the clr transform and we follow 
this specification in our work. Basically, for a composition x each entry of the covariance matrix R, rjl, 
is equal to the covariance between the jth and lth transformed part of x, i.e. rij = cov(���{xj}, ���{xl}).   
Thus, the covariance operator of a functional composition can be defined as the integral operator 
f ∗ = � r(s, t)f ∗ (t)dt where r(s, t) is a D × D block kernel such that for block {j, l} 

where for simplicity we assume �f ∗ = 0. Similarly to the scalar case, the covariance kernel r(s,  t) is 
singular in the sense that satisfies the conditions ∑ J

j=1
rjl(s, t) =

∑
L
l=1

rjl(s, t) = 0. However, it is still positive 
semi- definite and admits the decomposition 

where {�1, �2, …} ∈ ℝ are the eigenvalues and {�∗
1

, �∗
2

, …} ∈  are the eigenfunctions of the cova-
riance operator R. Since the eigenfunctions of the covariance operator R constitute an orthonormal basis 
for  , their compositional counterparts {�1,�2, …} obtained through the function ���−1 are an ortho-
normal basis in the functional simplex. Finally, as a consequence of the Karhunen– Loève theorem, we can 
represent every functional composition as 

where {�1,�2,…} ∈ D
f
 are transformed eigenfunctions, that is �k = ���

−1{�∗
k
} ∀k and {�1, �2,…} ∈ ℝ are 

computed as �k = ⟨f ,�k⟩D
f

. We will call {�1,�2,…} principal components. Again, for (9) 
we have that 

To summarize, in order to extract principal components we considered the covariance kernel of trans-
formed functions rather than original functions, and then we back transformed the eigenfunctions of 
the kernel. Other approaches using a different transformation, like in Dai and Müller (2018), or the 

(11)
�̂f (t) = ���

−1

{
1

n

n∑

i= 1

���{f i(t)}

}
.

(12)rjl(s, t) = �
{
���{fj(s)} ⋅ ���{fl(t)}

}
= �

{
log

(
fj(s)

f̃ (s)

)
⋅ log

(
fl(t)

f̃ (t)

)}
,

(13)r(s, t) =

∞∑

k= 1

�k�
∗
k

(s)�∗
k

(t),

(14)f ⊖ �f =

∞⨁

k= 1

[
𝜉k ⊙ �k(t)

]
,

(15)f (t) = ���
−1

{
���{�f (t)} +

∞∑

k= 1

�k���{�k(t)}

}
.
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application of PCA directly to the original data are possible but, as already pointed out, since none of the 
data in the application is zero or very close to zero, our method poses no issues. Moreover we want to 
point out that, although computations have been done through the use of the clr transform, the quantities 
of interest live in the original compositional space.

Given a finite sample of compositional functional data {f 1(t), …, f n(t)}, the estimation of each 
block of the covariance kernel can be done through 

where fij(t) and fil(t) are the jth and lth part of the ith observed function minus the sample mean. The 
eigenfunctions of the covariance operator R can be computed as the solution of the system of equations 
∫ r(s, t)f ∗ (t)dt = �f ∗ (t), as shown in Ramsay and Silverman (2005). From a practical point of view, one 
has to compute empirical eigenfunctions {�̂

∗

1
, �̂

∗

2
,…} using the covariance kernel ̂r(s, t) estimated from 

data, solving the problem 

This can be done by discretizing the integral and by using standard arguments from eigenanalysis. Then, 
transformed eigenfunctions can be obtained as �̂k = ���

−1{�̂
∗

k
}. Computation of the empirical eigen-

functions is important because the result provides information about the main modes of variation in the 
considered sample. For complex data as CSMRs over time, these functions represent a straightforward 
way to inspect the simultaneous directions of variability of all causes of death. The empirical scores 
{�̂i1, �̂i2,…} for the ith observation f i can be computed as 

Finally, by truncating the infinite series in (15) and replacing population quantities with estimates, one 
obtains the approximation 

This representation is particularly useful because it gives an approximation of a functional composition using 
few non- random functions shared among observations and few scalar random variables, thus reducing the 
problem to a finite- dimensional one. The relevance in our application is that CSMRs observations can be 
summarized by their behaviour with respect to few main modes of variation. The projections on the finite- 
dimensional space can also serve as a basis for a clustering procedure, as explained in the next subsection.

3.3 | The Clustering Step

A common practice in FDA is to reduce the dimensionality of data and use projections on a finite 
dimensional space as a starting point for other procedures, such as clustering or classification (see for 
instance Leng and Müller (2006); Sangalli et al. (2009)). In our context, the compositional functional 

(16)r̂ jl(s, t) =
1

n

n∑

i=1

{
log

(
fij(s)

f̃ i(s)

)
⋅ log

(
fil(t)

f̃ i(t)

)}
,

(17)∫ r̂(s, t)f ∗ (t)dt = �f ∗ (t).

(18)�̂ik = ⟨ f ∗
i

,�∗
k
⟩ = ∫ ���{f i}(t)�∗

k
(t)dt.

(19)f (t) ≃ ���
−1

{
���{�̂f (t)} +

K∑

k= 1

�̂k���{�̂k(t)}

}
.
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PCA allows us to drastically reduce the complexity of CSMRs over time by considering only few 
components, accounting for most of the variability in the sample. Then, in order to detect a cluster-
ing structure, one possibility is to apply a procedure for Euclidean data to the scores of our original 
compositional functional data.

Spectral clustering (see von Luxburg (2007) for an overview) is a relatively recent clustering 
method. It is based on the eigenanalysis of the Laplacian matrix constructed on the similarity graph 
of the data. Its advantage over alternative procedures is the ability to detect complex and nonlinear 
structures. The application of this method to our context needs no further adjustments with respect to 
the original formulation, but we have to choose some parameters. In particular, we set the Gaussian 
similarity kernel defined as s(�i, �j) = exp( −

‖‖‖(�i − �j
‖‖‖

2

∕(2�2)) with σ = 1 as kernel to compute the sim-
ilarity graph among scores, and k- means (Izenman, 2008) as base method. The output of the clustering 
procedure is given by a set of G centroids �1, …, �G and a vector of labels of cluster membership. 
Since the method is sensible to initialization, we run spectral clustering algorithm for B times and 
compute the majority vote as the most frequent partition of data over B repetitions. For this method, 
the decay of the spectrum of the Laplacian matrix can be informative about the number of clusters. 
However, we did not observe a clear signal when we applied the method to CSMRs data. Thus, we 
decided to use the silhouette index for determining the number of clusters, defined as the average of 
all silhouette values s(i), 

 

where �i is the vector of scores for the ith observation and |Ck | is the cardinality of the kth cluster (Izenman, 
2008). The silhouette index ranges from −1 to 1 and higher values correspond to better cluster configurations.

4 |  RESULTS

In this section, we present the results of the analysis on the WHO mortality database separately for 
men and women. We first compute the compositional functional mean as in (11), then we estimate the 
covariance kernel using (16) and compute principal components and scores with (17) and (18). Finally, 
we apply spectral clustering to the scores in order to obtain a grouping structure of the countries in the 
study. The silhouette values for each country are reported in Table 1 of the supplementary material.

4.1 | Men

The 22 curves of the men sample for eight causes of death we consider are given in Figure 1. We 
depict with a larger coloured line the compositional functional mean. The ranges among causes are 
different, denoting a different contribution on the total mortality rate. Highest ranges are for circula-
tory diseases (0.20– 0.50) and neoplasms (0.10– 0.40), representing the two most important causes of 
death from 1959 to 2015. However, dynamics are quite different among all causes: neoplasms and 
lung cancer in particular exhibit an increasing trend over years, while circulatory diseases constantly 
decrease their contribution.

(20)s(i) =
b(i) − a(i)

max{a(i), b(i)}
,

(21)b(i) = min
k≠ i

1

|Ck |
∑

j∈Ck

(�i − �k)2, a(i) =
1

|Ci | − 1

∑

j∈Ci,i≠ j

(�i − �j)
2,
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A slightly increasing trend can be noticed also for endocrine, metabolic and nutritional diseases 
and external causes while respiratory and digestive diseases show heterogeneous patterns: some coun-
tries have a declining trend, others an increasing one. Infectious diseases experienced a particular 
behaviour over years: they diminish their contribution at the beginning of the period, then started to 
increase and finally stabilized around a value of 0.02. These results are in line with the epidemiologi-
cal transition theory with increasing prevalence of diseases associated with aging (e.g. neoplasms) and 
of man- made diseases (lung cancer caused by smoking, metabolic and nutritional disorders, caused 
by obesity and external causes of deaths) and a decline of infectious diseases. Inspection of individual 
trajectories reveals that some countries have a peculiar pattern: Finland, for example, has the highest 
level of external causes (see Saarela & Finnas, 2008), whereas for Greece, decline of circulatory dis-
eases starts much later than the other countries.

The first compositional functional principal component for men population is depicted in Figure 2.   
This function is computed as described in Section 3.2 and represents the main mode of variation of 
the men sample. The eigenvalue associated with this eigenfunction is �1 = 17.06 and the Fraction of 
Explained Variance (FEV) is �1∕

∑
�k = 0.337, thus this component account for about one third of 

the total variability. This component is related to all causes but respiratory diseases. A variability con-
nected with the level of the cause— values always above or below the mean— is present in digestive 
diseases. For infectious and endocrine diseases, as we already noticed, the main variability is related 
only to specific years— 1959– 1985 for the former and 1985– 2015 for the latter— and we call this 
aspect local level variability. This behaviour can be partially observed for circulatory diseases and 
external causes too. Lastly, a more structured pattern can be seen for neoplasms and lung cancer: for 
these causes the first compositional functional principal component crosses the mean at some point. 
This reflects the fact that in our sample some countries had a faster increase of this causes with respect 
to the mean while others had a slower increase than the mean. Overall, a positive score on this com-
ponent would lead to a high level of circulatory diseases and endocrine diseases (only after 1985), a 
low level of digestive diseases and infectious diseases (only before 1985), a fast increase of neoplasms 

F I G U R E  1  Composition of mortality rates over years for men population. Curves for 22 countries in each panel 
are coloured in grey. Coloured curves represent the compositional functional mean [Colour figure can be viewed at 
wileyonlinelibrary.com]
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and a slow increase of lung cancer. Negative scores characterize an opposite behaviour. The scores 
obtained by each country on the first four PCs for men sample are reported in Table 3.

Figure 3 shows the second compositional functional principal component for men population. The 
eigenvalue associated with this eigenfunction is �2 = 10.92 and the FEV is 0.216. This component 
represents a level variability for neoplasms, circulatory and endocrine diseases, especially in the last 
30 years. Local variability is observed for infectious diseases— note that the time interval connected 
with this component is 1985– 2015— and for respiratory diseases, but to a lesser extent. For lung can-
cer, digestive diseases and external causes this component shows a cross- mean behaviour, reflecting 
different velocities among countries in the evolution of these contributions. Overall, a positive score 
on this component would lead to a high level of circulatory diseases, a low level of neoplasms and 
endocrine diseases, a fast decay of infectious diseases, a slow increase of lung cancer and an increase 
of digestive diseases after 2000.

The third compositional functional principal component for men population is illustrated in Figure 4. 
The eigenvalue associated with this eigenfunction is �3 = 7.27 and the FEV is 0.144. This component is 
mostly connected with four causes of death. It represents a level variability for lung cancer, respiratory 
diseases and external causes while local variability is observed for circulatory diseases, in relation to the 
period 1959– 1990. Overall, a positive score on this component would lead to a low level of lung cancer 
and respiratory diseases and to a high level of external causes and circulatory diseases— especially at the 
beginning of the considered period. Figure 5 depicts the fourth compositional functional principal com-
ponent for men population. The eigenvalue associated with this eigenfunction is �4 = 4.62 and the FEV 
is 0.091. Also this component refers to only four causes of death. It represents a level variability for neo-
plasms and a local variability for lung cancer (1959– 1995), endocrine diseases (after 2000) and digestive 
diseases (from 1970). Overall, a positive score on this component would lead to a low level of neoplasms 
and a high level of lung cancer, endocrine diseases and digestive diseases in the aforementioned periods.

A clustering procedure has been applied to the men sample as described in Section 3.3. We 
considered the first 4 PCs, accounting for 78.7% of the total variability. For different values of G, 

F I G U R E  2  First compositional functional principal component for men population. The continuous line represents 
the mean function while outer lines represent the mean function +/− the component [Colour figure can be viewed at 
wileyonlinelibrary.com]
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T A B L E  3  Scores of the 22 countries in the study. Men sample is reported on the left and women sample on the 
right

Countries PC1 PC2 PC3 PC4

AUS 4.38 −2.08 0.32 0.28

AUT −3.83 −1.03 0.95 3.90

BEL 0.44 1.43 −3.02 −0.21

CAN 3.26 −3.80 0.80 0.75

DNK 3.41 −1.51 0.23 3.42

FIN −0.63 6.34 3.59 3.36

FRA −5.20 −3.66 −0.10 0.18

GRE −2.90 1.77 −2.14 −2.28

HUN −5.80 4.11 0.09 3.32

ICE 3.01 3.13 4.77 −3.32

IRL 2.15 4.72 −2.67 −2.63

ITA −2.49 −3.81 −2.90 0.64

JPN −6.76 −2.10 2.89 −2.98

NL 5.55 −1.00 −2.77 0.72

NZL 6.49 −0.69 0.82 −2.21

NOR 2.47 0.72 2.93 −1.17

POL −5.27 3.93 0.19 −1.58

SPA −5.76 −2.51 −3.61 −2.02

SWE 1.37 −1.45 4.52 0.43

SWI −0.65 −2.19 0.55 0.06

UK 4.28 4.84 −5.20 1.05

USA 2.50 −5.16 −0.24 0.27

AUS 3.08 1.87 0.86 −0.42

AUT −2.76 1.02 −1.31 −3.53

BEL −1.67 2.06 −0.51 −0.01

CAN 2.74 3.76 0.17 −0.37

DNK 4.12 1.92 −2.26 −3.47

FIN −3.01 −2.79 −3.92 0.06

FRA −6.77 2.70 −2.35 0.90

GRE −0.52 −2.37 2.50 0.72

HUN −2.96 −3.25 −1.79 −5.40

ICE 5.40 0.21 −4.05 4.43

IRL 4.00 −5.82 1.25 1.01

ITA −3.72 1.75 4.19 −1.47

JPN −4.21 −1.69 −0.99 4.99

NL 1.98 2.59 0.75 −1.22

NZL 5.10 −0.62 3.00 0.59

NOR 2.37 −0.71 −1.49 1.85
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we ran the spectral clustering algorithm for B=1000 times and save the result of the majority 
vote. The spectrum of the Laplacian matrix shows no evidence for a particular number of clus-
ters, while the silhouette index is maximized for G = 5 clusters, which are reported in Table 4. 
A visual representation of the scores of the first two PCs along with the clustering structure can 
be found in Figure 6. Using (19) with K=4 and �1g, �2g, �3g, �4g as the centroids of the spectral 
clustering output, we reconstructed the compositional functional centroids f g, g = 1, …, G, de-
picted in Figure 7. These trajectories summarize the behaviour of each cluster with respect to the 
eight causes of death.

We can draw some comments. The first group (including the United States, Canada, Australia, 
New Zealand, the Netherlands and Denmark) is characterized by relatively low circulatory re-
lated deaths (but at the beginning of the observation period it was high) a decreasing trend of 
lung cancer and an almost plateauing trend of neoplasms. Notably the level of endocrine and met-
abolic related deaths is much higher than other clusters, with a particularly high slope between 
1980 and 2000. This trend is close to that of obesity prevalence in the United States, as shown, for 
example by Fryar et al. (2014), and New Zealand and Australia show similar figures, so it is likely 

Countries PC1 PC2 PC3 PC4

POL −3.63 −4.13 1.14 −0.74

SPA −5.71 −0.81 4.00 1.87

SWE 1.02 1.40 −2.02 0.17

SWI −2.54 2.31 −1.56 0.81

UK 5.97 −3.21 0.61 −2.05

USA 1.73 3.82 3.76 1.29

T A B L E  3  (Continued)

F I G U R E  3  Second compositional functional principal component for men population. The continuous line 
represents the mean function while outer lines represent the mean function +/− the component [Colour figure can be 
viewed at wileyonlinelibrary.com]
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that this is the leading cause. It should also be noted that external causes of death are rapidly in-
creasing in the last years, in line with what is shown by Woolf and Schoomaker (2019). The sec-
ond group consists of Italy, Spain, France, Japan, Austria and Switzerland, and is characterized 
by high lung cancer mortality— in all countries smoking prevalence is high among men, see for 

F I G U R E  4  Third compositional functional principal component for men population. The continuous line 
represents the mean function while outer lines represent the mean function +/− the component [Colour figure can be 
viewed at wileyonlinelibrary.com]
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F I G U R E  5  Fourth compositional functional principal component for men population. The continuous line 
represents the mean function while outer lines represent the mean function +/− the component [Colour figure can be 
viewed at wileyonlinelibrary.com]
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instance, Brennan and Bray (2002)— and low circulatory- related deaths. At the beginning of the 
observation period up to 1980, this group had particularly high level of digestive system diseases 
and infectious related deaths, as for most of them the epidemiological transition started later than 
in other countries. Third group is made up of Hungary, Poland, Finland and Greece. The main 
feature of this group is the increasing relevance of digestive system diseases related deaths. This 
might be driven by rising alcohol- attributable diseases, considering that such health problems are 
a growing concern in these countries. It must be noted that this is the least homogeneous group, 
as can be seen from Table 1 of the supplementary material. Finland, for example, has a peculiar 
pattern with an extremely high incidence of external causes of deaths that is more consistent 
with the group including Sweden, Norway and Iceland but, at the same time, a rapidly increasing 
prevalence of digestive diseases that matches more with Eastern Europe group. Greece, instead is 
in between cluster 3 and 2 having a particularly high incidence of lung cancer (as in cluster 2) but 
also a high level— and very slowly declining— of circulatory diseases related deaths, as in cluster 
3. The fourth group is made up of the United Kingdom, Ireland and Belgium, characterized by 
high— albeit descending— levels of lung cancer, respiratory diseases and circulatory diseases and 
increasing relevance of digestive system diseases. This might be brought about by risk factors 
like smoking, alcohol consumption and poor diet. The last cluster includes Sweden, Norway and 
Iceland, characterized by the lowest level of lung cancer and respiratory diseases and the highest 
level of external causes.

F I G U R E  6  Empirical scores {�̂
i1, �̂

i2}
n

i= 1
 related to the first two principal components computed for all countries 

in the sample for men and women. Different colours represent different clusters [Colour figure can be viewed at 
wileyonlinelibrary.com]
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T A B L E  4  Clustering output for men sample

Clusters Countries

Cluster 1 United States, Canada, Australia, New Zealand, Denmark, Netherlands

Cluster 2 Italy, France, Spain, Austria, Switzerland, Japan

Cluster 3 Hungary, Poland, Finland, Greece

Cluster 4 United Kingdom, Ireland, Belgium

Cluster 5 Norway, Sweden, Iceland
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4.2 | Women

The 22 curves of the women sample for eight causes of death we consider are represented in Figure 8.   
Similarly to men population, the ranges among causes are different. Highest ranges are observed for 
circulatory diseases (0.1– 0.4), neoplasms (0.3– 0.6) and lung cancer (0.02– 0.2). With respect to men, 
women have a higher contribution of neoplasms and a lower contribution of circulatory diseases, 
though trends over years are similar: the former moved from 0.38 to 0.48 and the latter reduced from 
0.4 to below 0.2. Lung cancer had almost negligible contribution at the beginning of the considered 
period but, thanks to a strong and constant increase, it is nowadays as important as in men (slight 
above 0.1). On the other side, the positive trend for other neoplasms seems to have reached a plateau 
since the last decade of the twentieth century. An opposite behaviour can be found in men, where lung 
cancer had a stable contribution since 1985 while other neoplasms are still increasing. Another dif-
ference can be found for endocrine diseases, where women do not show an increasing trend. Lastly, 
infectious diseases experienced a similar evolution for both men and women. Inspection of individual 
trajectories reveals that Austria has a peculiar pattern characterized by a strong raise of endocrine 
diseases around year 2000. The first compositional functional principal component for women popu-
lation is shown in Figure 9. It represents the main mode of variation of the women sample. The ei-
genvalue associated with this eigenfunction is �1 = 14.87 and the Fraction of Explained Variance 
(FEV) is �1∕

∑
�k = 0.326, thus, similarly to men, this component accounts for about one third of 

total variability. Surprisingly, this component is related to all causes but circulatory diseases, one of 
the main causes of death. A level variability can be found for lung cancer, respiratory and digestive 
diseases. Similarly, for men, local variability is present in infectious and endocrine diseases, linked 
to time periods 1959– 1985 for the former and 1959– 1990 for the latter, but for the women sample we 
observe local variability also for external causes, in the interval 1980– 2005. Lastly, neoplasms exhibit 
a variability pattern related to the velocity of the evolution of this cause. Overall, a positive score on 

F I G U R E  7  Functional centroids of the spectral clustering for men sample. Legend:  Cluster 1,  
Cluster 2,  Cluster 3,  Cluster 4,  Cluster 5 [Colour figure can be viewed at wileyonlinelibrary.
com]
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this component would lead to a high level of lung cancer and respiratory diseases, a low level of di-
gestive diseases, infectious diseases (especially before 1985), endocrine diseases (only before 1990) 
and external causes (between 1980 and 2005) and slow increase of neoplasms. Negative scores char-
acterize an opposite behaviour. The scores obtained by each country on each component for women 

F I G U R E  8  Composition of mortality rates over years for women population. Curves for 22 countries in each 
panel are coloured in grey. Coloured curves represent the compositional functional mean [Colour figure can be viewed 
at wileyonlinelibrary.com]
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F I G U R E  9  First compositional functional principal component for women population. The continuous line 
represents the mean function while outer lines represent the mean function +/− the component [Colour figure can be 
viewed at wileyonlinelibrary.com]
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sample are reported in Table 3. The second compositional functional principal component for women 
population is depicted in Figure 10. The eigenvalue associated with this eigenfunction is �2 = 7.38 
and the FEV is 0.162. This second component is related to all causes of death. Circulatory and en-
docrine diseases and external causes show a level variability. A local variability can be observed for 
neoplasms (1959– 2000), lung cancer (1980– 2015) and respiratory diseases (1959– 1995). Lastly, a 

F I G U R E  1 0  Second compositional functional principal component for women population. The continuous line 
represents the mean function while outer lines represent the mean function +/− the component [Colour figure can be 
viewed at wileyonlinelibrary.com]
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F I G U R E  1 1  Third compositional functional principal component for women population. The continuous line 
represents the mean function while outer lines represent the mean function +/− the component [Colour figure can be 
viewed at wileyonlinelibrary.com]
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crossing- mean pattern can be found in infectious and digestive diseases. Overall, a positive score 
on this component would lead to a low level of circulatory diseases and respiratory diseases (before 
1995), a high level of endocrine diseases, external causes, lung cancer (since 1980) and neoplasms 
(until 2000), and an increase of infectious diseases after 1985.

F I G U R E  1 2  Fourth compositional functional principal component for women population. The continuous line 
represents the mean function while outer lines represent the mean function +/− the component [Colour figure can be 
viewed at wileyonlinelibrary.com]
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F I G U R E  1 3  Functional centroids of the spectral clustering for women sample. Legend:  Cluster 1,  
Cluster 2,  Cluster 3  Cluster 4,  Cluster 5,  Cluster 6 [Colour figure can be viewed at 
wileyonlinelibrary.com]
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Figure 11 shows the third compositional functional principal component for women population. The 
eigenvalue associated with this eigenfunction is �3 = 5.94 and the FEV is 0.13. This component rep-
resents a level variability for endocrine, circulatory and respiratory diseases and for external causes and 
a local variability for neoplasms (before 1990) and lung cancer (after 1990). Overall, a positive score 
on this component would lead to a high level of endocrine, circulatory and respiratory diseases, a low 
level of external causes, a low level of neoplasms before 1990 and a low level of lung cancer after 1990.

The fourth compositional functional principal component for women population is illustrated in Figure 
12. The eigenvalue associated with this eigenfunction is �4 = 5.66 and the FEV is 0.124. This component 
represents mainly local and most recent variability. In particular it is related to neoplasms after 1980, lung 
cancer and endocrine diseases after 2000, digestive diseases after 1970 and external causes after 1990. 
Overall, a positive score on this component would lead to a high level of neoplasms and external causes 
and a low level of lung cancer and digestive diseases, all in the aforementioned periods. As for men, we 
applied spectral clustering to the women curves projected on the first 4 PCs. The percentage of total 
explained variability is 74.2%. The algorithm ran B = 1000 times and we considered different values for 
G. Again, the spectrum of the Laplacian matrix does not support any specific number of clusters, while 
the silhouette index suggests a value between 6 and 8. For parsimony and interpretability reasons, we 
choose to use G = 6 clusters that we present in Table 5 (see also Figure 6). Using (19) with K = 4 and 
�1g, �2g, �3g, �4g as the centroids of the spectral clustering output, we reconstructed the compositional 
functional centroids f g, g = 1, …, G, depicted in Figure 13. The first group of countries is similar to 
that of men: it is mainly made up of extra- European countries together with Denmark and the Netherlands, 
with a rising trend of lung cancer and respiratory diseases and endocrine and metabolic diseases, related to 
increasing prevalence of smoking and obesity among women. The fact that Denmark and the Netherlands 
have been clustered in this group is not surprising, as it is well- known they have undergone a stagnation 
of life expectancy improvement, and smoking is one of the leading causes of this, as shown also by 
Lindahl- Jacobsen et al. (2016). The second group is made up by Japan, Italy and Spain, with the lowest 
level of lung cancer, in contrast to what has been seen for men in the same countries. Indeed, smoking 
prevalence of women in these countries is much lower than that of men, see Brennan and Bray (2002). 
The third group includes France, Belgium and Switzerland; the main feature of this group is the high level 
of external causes of deaths, only recently getting lower than that of Scandinavian countries. The fourth 
group (which for men includes Hungary, Poland, Greece, and Finland) now includes also Austria and, as 
for men, it is characterised by high level of digestive system diseases- related deaths. It should be noted 
that also for women this is the least homogeneous group. Austria, in particular, has a peculiar pattern 
with a recently increasing trend of endocrine and metabolic diseases and a steady level of external causes 
related deaths. The group with the United Kingdom and Ireland now includes also New Zealand, instead 
of Belgium, but the characteristics are similar to the analogous group for men: high respiratory and circu-
latory diseases and increasing digestive system diseases related deaths. Finally, the Scandinavian group: 

T A B L E  5  Clustering output for women sample

Clusters Countries

Cluster 1 United States, Canada, Australia, Denmark, Netherlands

Cluster 2 Italy, Spain, Japan

Cluster 3 France, Switzerland, Belgium

Cluster 4 Hungary, Poland, Austria, Finland, Greece

Cluster 5 United Kingdom, Ireland, New Zealand

Cluster 6 Norway, Sweden, Iceland
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as for men, the main feature is the high mortality for external causes but, in contrast with men, this group 
is also characterized by a high and increasing relevance of lung cancer related mortality.

5 |  CONCLUSIONS

We have proposed to combine CDA and FDA to describe the global trend of cause- specific mortality 
of several countries. CDA allows us to analyse CSMRs taking properly into account their competing— 
risk nature and FDA is then applied to compositional data so that their trends can be decomposed by 
means of Functional principal components analysis and countries can be clustered by means of PCs 
we have retrieved. In this way, we are able to make a descriptive but comprehensive analysis of trends 
of CSMRs. Results give us many insights of the ongoing trend that the considered populations are 
undergoing in terms of composition of causes of deaths and, while many of them come as no surprise, 
in some cases we find some evidence that has not been highlighted by past literature. We should bear 
in mind that our analysis is focused on ages 40– 64, so all considerations should be applied to mid- life 
mortality only.

The first finding is that clusters for men and women are very similar, albeit some differences can 
be found: the main one is that for women we have one cluster more, which is basically the result of 
splitting the cluster 2 into two. However, even though the clustering results are quite similar for men 
and women, we can easily notice that evolution of mortality composition is quite different: in all coun-
tries, prevalence of lung cancer among men has stopped increasing between 1990 and 2000, while 
for women it kept on rising until the very recent years, when first signs of plateauing can be seen. 
Moreover for some countries we can see a high disparity between men and women (e.g. Italy, Japan 
and Spain are in the cluster with lowest level of lung cancer for women and in that with the highest for 
men, while for cluster including Nordic countries is the other way round) while for others (e.g. East 
European countries) women catch up with men. Relevance of digestive system and metabolic, endo-
crine and nutritional diseases related deaths is increasing especially for men, suggesting that poor diet-
ing and alcohol consumption are increasingly impacting on men’s health. For women a rising concern 
is lung cancer and respiratory diseases, especially in Nordic countries. Interestingly some countries 
have a peculiar pattern that is difficult to group with others. Finland, in particular, with extremely high 
external causes and digestive system diseases related deaths, shows a composition of causes of death 
that is difficult to classify. Such peculiarity is confirmed by the relatively low life expectancy with 
respect to other Scandinavian countries.

Although FDA and CDA approaches are helpful in explaining cause- specific mortality trends in a 
comprehensive way, both of them come with a specific limitation. The limitation of FDA is that it allows 
a descriptive analysis through functional principal components and cluster analysis, but it cannot be 
used in a straightforward way to forecast the future trends. A forecast application that takes into account 
the compositional aspect but not the functional one has been implemented by Kjærgaard et al. (2019). 
The limitation of CDA is that it focuses on cause- specific rates, but the overall trend is not considered. 
However, the clusters we identified largely capture differences in overall mortality rate trends of countries.

On the other hand, such a combination of CDA and FDA can be helpful in other applications: the 
same analysis can be applied to older ages (65+), where, following Horiuchi et al. (2003), we can 
expect to find higher prevalence of infectious diseases, mental disorders and cerebrovascular diseases. 
Another possible application, remaining in the demographic field but turning to a different aspect, 
could be to describe trends of parity- specific fertility rates, which can be seen as a composition of the 
overall fertility, although it could be hard to find a sufficient number of countries with parity- specific 
fertility data for a long enough time window.
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