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Abstract: The polyphenols Curcumin (CUR) and Resveratrol (RES) are widely described for their
antitumoral effects. However, their low bioavailability is a drawback for their use in therapy. The
aim of this study was to explore whether CUR and RES, used at a bioavailable concentration, could
modulate immune responses while retaining antitumor activity and to determine whether CUR and
RES effects on the immune responses of peripheral blood mononuclear cells (PBMCs) and tumor
growth inhibition could be improved by their combination. We demonstrate that the low-dose
combination of CUR and RES reduced the survival of cancer cell lines but had no effect on the
viability of PBMCs. Although following CUR + RES treatment T lymphocytes showed an enhanced
activated state, RES counteracted the increased IFN-γ expression induced by CUR in T cells and the
polyphenol combination increased IL-10 production by T regulatory cells. On the other hand, the
combined treatment enhanced NK cell activity through the up- and downregulation of activating and
inhibitory receptors and increased CD68 expression levels on monocytes/macrophages. Overall, our
results indicate that the combination of CUR and RES at low doses differentially shapes immune cells
while retaining antitumor activity, support the use of this polyphenol combinations in anticancer
therapy and suggest its possible application as adjuvant for NK cell-based immunotherapies.

Keywords: polyphenols; Curcumin; Resveratrol; PBMCs; immune response; T cells; NK cells

1. Introduction

Polyphenols are a considerable group of natural compounds found in foods and
beverages of vegetal origin. Numerous studies have shown that polyphenols have po-
tent antioxidant, anti-inflammatory, antimicrobial and anticancer properties [1], so their
consumption is considered beneficial for the human body [2].

Curcumin (CUR) (l,7-bis-(4-hydroxy-3-methoxyphenyl)-l,6-heptadiene-3,5-dione) is
a yellow polyphenol found in turmeric, a spice purified from the rhizome of the plant
Curcuma longa of the Zingiberaceae family. CUR is a pleiotropic molecule, able to target
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several signaling pathways involved in carcinogenesis [3–6]. Indeed, CUR is able to
suppress proliferation, to induce apoptosis, to inhibit epithelial mesenchymal transition
(EMT), neoangiogenesis, invasion and metastasis in different types of cancer [7–12]. The
stilbene Resveratrol (RES) (3,5,4′-trihydroxy-trans-stilbene) is found in grapes, berries,
peanuts, plums and pine nuts, as cis, trans isomers or conjugated derivatives [3,5]. Like
CUR, RES has valuable biological properties, being able to counteract cancer development
and progression by affecting several signaling pathways [3,6,13].

However, the beneficial effects of polyphenols are limited by their poor bioavailabil-
ity. Indeed, polyphenols have a poor biodistribution and absorption, as well as a quick
metabolism and elimination in the human body. The mechanisms that limit the bioavailabil-
ity of oral administered polyphenols encompass their metabolism in the gastrointestinal
tract and liver, their binding to blood cell surfaces, the action of the microbial flora in the
mouth and gut, and additional regulatory factors that reduce the toxicity of high doses of
compounds on mitochondria or other organelles [14]. Further, in addition to endogenous
factors, dietary variables, such as food matrix and food preparation methods, might also
alter the bioavailability of polyphenols [4,14]. Thus, after dietary intake, only nano- or
micromolar quantities of polyphenols and their metabolites are detected in plasma [15].
In this regard, as reported by several reviews, the results of the investigations in humans
differ significantly, with a Cmax in plasma ranging from 1.17 µM to 5.6 µM (oral intake of
2–5 g) for RES [16] and from 2.7 nM to 8.7 µM (oral intake of 2–10 g) for CUR [17]. Although
these discrepancies could be attributable to different quantification approaches, their actual
causes are not known [16,17].

Since the low bioavailability of polyphenols negatively impacts on the effective dose
delivered to cancer cells and it is regarded as one of the main factors able to limit their effec-
tiveness in cancer patients [4], several attempts have been made to develop formulations,
derivatives and analogues with enhanced bioavailability, solubility and stability [3,5,18–20].
Another strategy for enhancing polyphenols effects on cancer cells is their use in combina-
tion, since different polyphenols combined together at low doses might have a synergic or
additive effect [21–24]. In fact, several studies demonstrated that treatment with polyphenol
combinations is more effective in suppressing cancer growth than treatment with a single
polyphenol compound [3,25,26]. For instance, the combination of CUR and RES had more
potent cytotoxic effects than either compound alone on hepatocellular carcinoma [21] and
colorectal cancer cells [22] and was reported to be able to synergistically restrain cervical
cancer cells proliferation and migration [23,24]. CUR plus RES treatment was also demon-
strated more effective than the single drugs in reducing the proliferation of colon cancer
cells in vitro and in vivo [22]. Combination treatments also suppressed chemoresistance to
cisplatin of ovarian cancer cells [27]. In this context, our group previously demonstrated
that the combination of diallyl disulfide (DADS) plus RES, DADS plus CUR, and RES plus
CUR displayed stronger in vitro anticancer activity on malignant rhabdoid or osteosarcoma
cell lines than the single polyphenols and that RES and DADS increased the apoptotic
effects of CUR [28]. We also reported that RES enhanced CUR anticancer activities on
head and neck cancer in vitro and in vivo. Moreover, RES plus CUR therapy inhibited
the development of transplanted salivary gland cancer cells in mice more effectively than
either CUR or RES alone [29]. Furthermore, we showed that CUR with RES affected the
PI3K/AKT/mTOR pathway, autophagy, intracellular reactive oxygen species (ROS) and
ER stress/UPR both in breast and salivary gland tumor cell lines derived from Her-2/neu
transgenic mice and that RES increased CUR cytotoxic effect by suppressing CUR-induced
pro-survival autophagy [30]. Still, it should be emphasized that in most of the in vitro
studies aimed at evaluating the anticancer effects of these compounds, the polyphenols are
used at concentrations higher than those attainable in vivo [6].

Recently, several studies have shown that polyphenols, including CUR and RES, also
have the ability to modulate immune responses and may enhance antitumor immunity
while preventing or delaying the development of tumor-supporting leukocytes by influenc-
ing the activity of immune cells, the production of cytokines, and the regulation of other
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elements of the immunological defense system [8,10,31–71]. Indeed, the tumor immune
microenvironment is composed of different immune cells, which can play a dual role in the
development of cancer. Anticancer cells, such as Natural Killer (NK) cells and CD8+ T lym-
phocytes, can recognize and eliminate tumor cells; on the other side, immunosuppressive
cells, such as regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs) and
tumor-associated macrophages (TAMs), can support the evasion of immune surveillance
by neoplastic cells and promote tumor growth [2].

Given these evidences, the aim of our study was (a) to explore whether CUR and RES,
used at their bioavailable concentration (5 µM) [16,17] could modulate immune responses
while retaining antitumor activity and (b) to determine whether CUR and RES effects on
the immune responses of peripheral blood mononuclear cells (PBMCs) and tumor growth
inhibition could be improved by their low-dose combination.

2. Results
2.1. Effect of Low-Dose CUR and RES on Tumor Cell Survival

The effects of CUR and RES on tumor cell growth were evaluated at the 5 µM bioavail-
able concentration and, for comparison, at a 5-fold higher concentration using a panel of
ten human cell lines including head and neck carcinoma (SCC-15, A253), breast cancer
(MCF-7, MDA-MB-468), malignant mesothelioma (MM-B1, MM-F1, H-Meso-1), prostate
cancer (PC-3, DU 145) and colon cancer (HCT 116) cell lines. Cell survival was assessed by
the SRB assay after 96 h of treatment with the polyphenols, alone or combined in equimolar
concentrations, or with DMSO used as solvent of the compounds. In all tumor cell lines
both compounds, either alone or in combination, were able to significantly reduce cell
survival when used at the high dose (25 µM) (Figure 1). At 25 µM, CUR was more effective
than RES on cell survival inhibition. The effect obtained with 25 µM CUR + RES was
significantly higher than the effect of CUR in SCC-15, MCF-7, M-Meso-1 and MM-B1cells.

As for the effects of the low dose of CUR and RES (Figure 1), when the two compounds
were used alone at 5 µM, a modest but significant cell survival inhibition was observed in
only 3 out of the 10 cell lines tested, i.e., the head and neck carcinoma cell lines A253 and
SCC15 and the mesothelioma cell line MM-B1. Still, when CUR and RES were combined
at the 5 µM bioavailable concentration, their inhibitory effect was significant on all cell
lines. Furthermore, on seven cell lines (A253, SCC15, MCF-7, H-Meso-1, DU 145, PC-3,
and HCT 116) the low-dose combination of CUR and RES was more potent than either
compound used alone. Even though, on the whole, the percentage reduction in tumor
cell survival obtained with CUR + RES at the low dose was modest, the reported findings
suggest that long-term supplementation with this combination of polyphenols may have a
clinical impact in cancer patients.

2.2. Effects of Low-Dose CUR and RES on Proliferation and Death of PBMCs

The effects of low-dose CUR and RES on PBMC proliferation were next evaluated.
Resting PBMCs were treated with the polyphenols at 5 µM for 96 h. Flow cytometric
measurement of CFSE dye dilution was then used to assess cell proliferation of the total
lymphocyte population as well as that of helper T lymphocytes (CD3+CD19−CD14−CD4+),
cytotoxic T lymphocytes (CD3+CD19−CD14−CD8+), B lymphocytes (CD3−CD14−CD19+)
and NK cells (CD3−CD19−CD14−CD56+) subpopulations (Supplementary Figure S1).
CUR, alone (1.2 ± 1.0%) or combined with RES (1.1 ± 0.9%) reduced the percentage of
proliferating CD4+ T cells, as compared to DMSO (3.2 ± 2.4%) and RES alone (2.7 ± 1.7%),
without significantly affecting CD8+ T, B and NK cells (Figure 2A–E).
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breast cancer (MCF-7, MDA-MB-468), malignant mesothelioma (MM-B1, MM-F1, H-Meso-1), 
prostate cancer (DU 145, PC-3) and colon cancer (HCT 116) cell lines, after 96 h of treatment with 
DMSO or CUR and/or RES at 5 and 25 µM. The percentage survival of polyphenol-treated cells was 
calculated relative to that of DMSO-treated control cells. Results are expressed as the mean ± SD of 
three independent experiments performed in triplicate. Statistical significance was calculated with 
one-way ANOVA (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001). The effect of CUR, RES, and CUR + RES 25 µM 
vs. DMSO was always significant. 
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Figure 1. Effect of low-dose CUR and RES on tumor cell survival. Cell survival was evaluated
by the SRB assay on a panel of tumor cell lines including the head and neck carcinoma (SCC-15,
A253), breast cancer (MCF-7, MDA-MB-468), malignant mesothelioma (MM-B1, MM-F1, H-Meso-1),
prostate cancer (DU 145, PC-3) and colon cancer (HCT 116) cell lines, after 96 h of treatment with
DMSO or CUR and/or RES at 5 and 25 µM. The percentage survival of polyphenol-treated cells was
calculated relative to that of DMSO-treated control cells. Results are expressed as the mean ± SD of
three independent experiments performed in triplicate. Statistical significance was calculated with
one-way ANOVA (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001). The effect of CUR, RES, and CUR + RES
25 µM vs. DMSO was always significant.

In PBMCs treated with 5 µM CUR and RES, alone or in combination, a very low
level of cell death was detected, which was not significantly different from that of the
DMSO-treated controls (Figure 2F). According to these findings, PBMCs survival is not
affected by the low, bioavailable concentrations of the two polyphenols. Interestingly, the
low-dose combination of CUR and RES was able to decrease oxidative stress in PBMCs,
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whereas the single compounds had no significant effects in this regard (Supplementary
Figure S2).
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Figure S2). 

2.3. Effects of Low-Dose CUR and RES on Activation and Functional Properties of Resting  
T Lymphocytes 

The CD25 receptor, also known as Interleukin-2 receptor (IL-2R), is not expressed by 
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Figure 2. Effect of low-dose CUR and RES on PBMC proliferation and cell death. (A–E) Cell
proliferation of resting PBMCs was assessed by flow cytometry using the dilution of CFSE dye after
96 h of treatment with DMSO, CUR and/or RES (5 µM). The results are presented as the mean ± SD
of the frequency of cells subsets in PBMCs from five or eight healthy donors. (A) Total lymphocytes
identified based on morphological characteristics on FSC/SSC; (B) CD3+CD19−CD14−CD4+ helper
T lymphocytes, (C) CD3+CD19−CD14−CD8+ cytotoxic T lymphocytes, (D) CD3−CD14−CD19+ B
cells and (E) CD3−CD19−CD14−CD56+ NK cells, identified by positive staining for the respective
markers. Statistical significance of the effects obtained with CUR and RES, alone or in combination,
was calculated with two-tailed unpaired Student’s t test (* p ≤ 0.05). (F) Percentages of viable, necrotic,
early and late apoptotic cells after 96 h of treatment with DMSO, CUR and/or RES (5 µM) as assessed
by the Annexin V/AAD assay and flow cytometry. Results are expressed as the mean ± SD of the
independent analysis of PBMCs from eight healthy donors. Statistical significance of the effects
obtained with CUR and RES, alone or in combination, was calculated with one-way ANOVA.

2.3. Effects of Low-Dose CUR and RES on Activation and Functional Properties of Resting
T Lymphocytes

The CD25 receptor, also known as Interleukin-2 receptor (IL-2R), is not expressed
by quiescent mature T lymphocytes, but its expression is rapidly induced upon cell
activation [72]. Thus, the percentage of lymphocytes expressing CD25 provides an indica-
tion of their activation status. Hence, the modulation of CD25 expression was evaluated
in resting lymphocytes from healthy donors after 96 h of treatment with 5 µM CUR and
RES, alone or in combination. CUR (4.3 ± 3.1%) and CUR + RES (3.6 ± 2.2%) significantly
increased the percentage of CD3+CD19−CD14−CD8+ T lymphocytes expressing the activa-
tion marker as compared to DMSO (1.9 ± 0.7%) (Figure 3A). Moreover, the percentage of
CD3+CD19−CD14−CD4+ T helper cells positive for CD25 was not significantly modified
by either compound used alone, while it was significantly increased after treatment with
the CUR + RES combination (9.4 ± 3.1%) as compared to DMSO (6.8 ± 1.5%) (Figure 3B).
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Figure 3. Effect of CUR and RES on CD25 activation marker expression in T lymphocytes. CD25
expression in resting (A) CD3+CD19−CD14−CD8+ and (B) CD3+CD19−CD14−CD4+ T lymphocytes
was assessed by flow cytometry after 96 h of PBMCs treatment with DMSO, CUR, and/or RES
(5 µM). The results are presented as the mean ± SD of the frequency of cells subsets in PBMCs from
eight healthy donors. Statistical significance of the effects obtained with CUR and RES, alone or in
combination, was calculated with two-tailed unpaired Student’s t test (* p ≤ 0.05).

The functional status of T lymphocytes and NK cells is also assessed in terms of
production of the anticancer cytokine IFN-γ. After 96 h of PBMCs treatment with the
compounds at 5 µM, CUR significantly increased the percentage of IFN-γ-producing
CD3+CD19−CD14−CD4+ (4.0 ± 0.9%) and CD3+CD19−CD14−CD8+ (4.6 ± 1.6%) T lym-
phocytes compared to the control (DMSO-CD4+: 2.3 ± 0.5%; DMSO-CD8+: 2.4 ± 0.4%)
(Figure 4A,B). Conversely, IFN-γ production was not modified by RES and CUR + RES
treatments in both CD4+ and CD8+ T cells (Figure 4A,B). This observation suggests a neu-
tralizing effect of RES on CUR-mediated induction of IFN-γ expression. Conversely, in NK
cells neither CUR nor CUR + RES treatments affected the production of IFN-γ, while RES
(5.4 ± 1.0%) significantly reduced the cytokine expression in comparison to both DMSO
(6.4 ± 0.7%) and CUR (7.0 ± 1.9%) (Figure 4C). This observation suggests that CUR can
counteract the RES-mediated reduction in IFN-γ expression.
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Figure 4. Effect of CUR and RES on IFN-γ expression in T lymphocytes and NK cells. IFN-γ expres-
sion was assessed by flow cytometry after 96 h of PBMCs treatment with DMSO, CUR and/or RES
(5 µM) on (A) resting CD3+CD19−CD14−CD4+ T lymphocytes, (B) resting CD3+CD19−CD14−CD8+

T lymphocytes, and (C) NK cells. The results are presented as the mean ± SD of the frequency of
IFN-γ+ cell subsets in PBMCs obtained from six to eight healthy donors. Statistical significance of
the effects obtained with CUR and RES, alone or in combination, was calculated with two-tailed
unpaired Student’s t test (* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001).
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2.4. Effect of Low-Dose CUR and RES on Frequency and Functional Properties of Regulatory
T Cells

Regulatory T cells (Tregs) have a crucial role in peripheral immune tolerance and
mediate the establishment of an immunosuppressive microenvironment that favors tumor
immune escape [73]. The treatment of PBMCs with CUR and RES, alone or in combination
at 5 µM for 96 h, did not affect the frequency of Tregs, identified by the combined expression
of the markers CD4+CD25highCD127low/neg (Figure 5A). However, both the single and
combined treatments increased the expression of the immunosuppressive cytokine IL-10 by
Tregs, the highest increase being induced by the combined treatment. In fact, the frequency
of IL-10-positive Tregs in PBMCs treated with CUR + RES was approximately 3-fold higher
than that observed in PMBCs treated with DMSO only (CUR + RES vs. DMSO: 6.9 ± 4.8%
vs. 2.4 ± 0.7%) (Figure 5B).
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Figure 5. Effect of CUR and RES on Tregs frequency and IL-10 production. PBMCs were treated
for 96 h with DMSO, CUR, and/or RES (5 µM) and analyzed by flow cytometry to assess (A) the
frequency of CD4+CD25highCD127low/neg cells; (B) the frequency of IL-10+ Tregs. The results are
presented as the mean ± SD of the frequency of cells in PBMCs from eight healthy donors. Statistical
significance of the effects obtained with CUR and RES, alone or in combination, was calculated with
two-tailed unpaired Student’s t test (* p ≤ 0.05; *** p ≤ 0.001).

2.5. Effect of Low-Dose CUR and RES on NK Cell-Mediated Recognition of Tumor Target Cells

To further assess the immunomodulatory effect of CUR and RES on NK cells, human
PBMCs treated for 48 h with 5 µM CUR and RES, alone or in combination, were used in de-
granulation assays against K562 target cells and stained to specifically assess the functional
contribution of the NK cell subset (the gating strategy is shown in Supplementary Figure S3).
As evaluated by the percentage of cells positive for the degranulation marker CD107a,
NK cells treated with the CUR + RES combination were significantly more activated than
control cells, while no significant differences were observed between DMSO-treated NK
cells and NK cells treated with either CUR or RES alone (Figure 6).

Then, we evaluated whether the treatment with CUR and RES could affect the expres-
sion of molecules involved in the recognition of tumor target cells by NK cells, including
activating receptors (NKG2D, DNAM-1, NKp30 and NKp46), inhibitory receptors (NKG2A,
KIRs) and exhaustion receptors (PD-1 and TIGIT) [74]. The combined CUR + RES treat-
ment significantly increased the expression of activating receptors such as NKG2D and
NKp30 (Figure 7A). Conversely, the expression of inhibitory receptors such as NKG2A,
KIR2DL2/L3/S2 and KIR3DL1 as well as the expression of exhaustion receptors such as
TIGIT were significantly reduced (Figure 7B,C). Of note, CUR treatment alone induced a
significant reduction in NKG2A expression, consistent with previously reported results [31].
These findings indicate that the combined low-dose CUR + RES treatment significantly
enhanced NK cell activation through the upmodulation of activating receptors and con-
comitant reduction of inhibitory and exhaustion receptors.
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Figure 6. Enhanced degranulation of NK cells upon CUR and RES treatment. (A) PBMCs, pre-treated
with 5 µM CUR and/or RES for 48 h, were evaluated for NK cell-mediated degranulation assay
against K562 cells or medium alone as control. The percentage of CD107a in the NK cell subset is
indicated in each plot. A representative experiment out of six performed with PBMCs isolated from
six healthy donors is shown. (B) Summary of degranulation studies of NK cells from PBMCs isolated
from six healthy donors. Dots correspond to the percentage of CD107a+ NK cells in PBMCs from
each donor, and the mean ± SD are also reported. Statistical significance of the effects obtained with
CUR and RES, alone or in combination, was calculated vs. those obtained with DMSO-treated cells
by two-tailed unpaired Student’s t test (** p < 0.01).

2.6. Effect of Low-Dose CUR and RES on Monocytes/Macrophages

To further explore the effect of the polyphenols at low doses on innate immune cells,
human PBMCs were treated for 48 h with 5 µM CUR and RES, alone or in combination,
and then stained to evaluate the expression of CD68, a glycosylated type I transmen-
brane glycoprotein associated with the endosomal/lysosomal compartment in the mono-
cyte/macrophage subset [75]. Both RES and CUR + RES induced a significant increase of
CD68 expression levels in CD3-CD56-CD19-CD14+ monocytes/macrophages (Figure 8).
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Figure 7. Surface expression of NK cell receptors upon CUR and RES treatment. PBMCs, pre-
treated with CUR and/or RES at 5 µM for 48 h, were stained for NK cell activating receptors such
as (A) NKG2D, DNAM-1, NKp46 and NKp30, (B) NK cell inhibitory receptors such as NKG2A
and KIRs, and (C) NK cell exhaustion receptors such as PD-1 and TIGIT. Dots correspond to the
mean of fluorescence (MFI) of the indicated receptors expressed on NK cells in PBMCs isolated
from six healthy donors. Data are expressed as the mean ± SD bars. Statistical significance of the
effects obtained with CUR and RES, alone or in combination, was calculated vs. those obtained in
DMSO-treated cells with two-tailed unpaired Student’s t test (* p < 0.05, ** p < 0.01).
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Figure 8. Effect of CUR and RES on expression of CD68 in monocyte/macrophage cells. PBMCs,
pre-treated for 48 h with DMSO, CUR, and/or RES (5 µM), were analyzed by flow cytometry to assess
the expression of CD68 on monocytes/macrophages (CD3−CD19−CD56−CD14+). Dots correspond
to the MFI of CD68 expressed on the monocyte/macrophage subset in PBMCs isolated from seven
healthy donors. Data are presented as the mean ± SD bars. Statistical significance of the effects
obtained with CUR and RES, alone or in combination, was calculated vs. those obtained in DMSO-
treated cells with two-tailed unpaired Student’s t test (* p < 0.05).

3. Discussion

Polyphenols are a large group of compounds and secondary plant metabolites respon-
sible for the color and flavor of fruits, flowers, and vegetables [1,2]. They also play roles in
plant defense against pathogens, possess antioxidant properties and modulate multiple
signaling processes. Among these molecules are stilbenes, like RES, and curcuminoids, like
CUR. Herein, we explored the antitumor efficacy of a combined, bioavailable low-dose
treatment with CUR and RES, evaluating their in vitro effects on tumor cell survival as well
as on growth, death, and functional properties of lymphocytes from healthy donors’ PBMCs.
As compared to the strong reduction in tumor cell survival obtained with high-dose (25 µM)
CUR and RES, the two compounds used at a low dose (5 µM) retained a modest efficacy
on selected cell lines when used individually but had significantly more consistent effects
when used in combination. Remarkably, when the same low-dose treatment conditions
were used on PBMCs from healthy donors, CUR, either alone or in combination with RES,
reduced the proliferation of CD4+ T lymphocytes, but had no significant effects on CD8+ T
lymphocyte, B lymphocyte and NK cell proliferation. Moreover, the percentage of viable vs.
necrotic/apoptotic PBMCs was not affected by the single or combined treatment with the
compounds at low doses. While it has been previously reported that CUR and RES do not
affect the viability of PBMCs when used individually at concentrations up to approximately
20–25 µM [76–78], to our knowledge, this is the first study demonstrating the absence of
toxic effects on human PBMCs treated with the two compounds combined at a bioavailable
dose. Additionally, the antioxidant properties of RES appeared to be potentiated by its
combination with CUR.

In summary, the combination of bioavailable concentrations of CUR and RES retained
the ability to reduce cancer cell survival while it had no effects on PBMC viability and
negatively affected the proliferation of the CD4+ T lymphocyte subset only. Still, a more
complex scenario emerged with regard to the impact of the combined treatment on lympho-
cytes’ functional properties, since the effects of the low-dose combination of CUR and RES
in vitro appeared at the same time beneficial and unfavorable if translated into the context
of the antitumor immune response. As for the beneficial effects, the combined treatment
resulted in an increased frequency of CD4+ and CD8+ T cells expressing the activation
marker CD25. In particular, while the percentage of CD8+CD25+ T lymphocytes was in-
creased to a similar extent by CUR + RES and by CUR alone, the frequency of CD4+CD25+



Int. J. Mol. Sci. 2024, 25, 232 11 of 19

T cells was significantly increased only by the polyphenol combination. Worthy of note,
this increase of CD4+CD25+ T lymphocytes was not associated with an increased frequency
of CD4+CD25highCD127low/neg immunosuppressive Tregs, whose amount was not indeed
affected by the compounds, either alone or in combination. On the other hand, as com-
pared to CUR or RES administered singularly, the combined treatment resulted in a greater
increase in the fraction of Tregs expressing the immunosuppressive cytokine IL-10. More-
over, RES counteracted the increased IFN-γ expression induced by CUR in both CD4+ and
CD8+ T cells. The increase of IL-10 induced by CUR and RES in vitro could prospectively
reflect a potential effect of these polyphenols in vivo, regulating inflammatory processes
in autoimmune diseases and tumor associated-inflammation [79,80]. CUR induces IL-10
expression and production in different tissues, thereby modulating several inflammatory
pathophysiologic conditions [81,82], while RES, by inducing IL-10 production, exerts a
beneficial function on microglia cells in ischemic brain injury [83,84].

The anti-inflammatory properties of RES, in terms of pro-inflammatory cytokine
downregulation, have been previously reported. Although in different experimental
settings, our results are in agreement with what has been stated previously [49,85–87], but
to our knowledge, the data reported here represent the first report of an increased IFN-γ
production by T cells, after a low-dose CUR treatment of 96 h performed on resting PBMCs.

Interestingly, in NK cells, the combined treatment had a different outcome on IFN-γ
expression, since in this innate lymphocyte subset, CUR did not modulate IFN-γ expression
when used alone, as previously reported in NK92 human NK cells [88], but it was able to
abolish the decreased expression of the cytokine induced by RES. In fact, on the whole,
the favorable effects of the polyphenol combination were more consistently observed
in NK cells than in adaptive lymphocytes. In fact, unlike the single compounds, the
CUR + RES treatment was able to improve NK cell-mediated recognition of tumor target
cells, with a concomitant upregulation of the activating receptors NKG2D and NKp30 and
downregulation of the inhibitory and exhaustion receptors KIR2DL2/L3/S2, KIR3DL1
and TIGIT. Among the investigated receptors, only the NKG2A inhibitory receptor was
downregulated to a similar extent by CUR + RES and CUR alone. Of note, in previously
published studies, RES has been shown to exert beneficial effects on NK cells, in terms of
cytotoxic activity, modulation of activating receptors expression and cytokines’ release, even
when administered alone at low doses [40,48,52,55]. Similarly, the single treatment with
low-dose CUR was previously reported to improve NK cell cytotoxic activity [48]. While
the discrepancies between these and our findings may be ascribed to different experimental
conditions and sensitivity of the assays, our results add to those previously published,
indicating that the favorable effects of RES and CUR on NK cells may be potentiated by
their low-dose combination. Worthwhile to mention, unlike the low-dose treatments, high
concentrations of CUR or RES have been reported to inhibit NK cell functions [40,52,89],
further highlighting the importance of investigating polyphenols’ effects in vitro using
bioavailable concentrations of the compounds. NK cells are critical components of the
innate immune system with a well-established role in tumor surveillance. Indeed, these
cells have ability to eliminate tumor cells and have been shown to exert a protecting
role against the metastatic spread of cancer cells [90–92]. Accordingly, there is a growing
interest in immunotherapy strategies aimed at exploiting the anticancer potential of NK
cells [74,91,92], as well as the very promising engineered NK cells [74,93] and, based on
the results presented here, the efficacy of such approaches could be potentiated by the
combined supplementation with CUR and RES. In addition, we observed a significant
increase in CD68 expression in the monocyte/macrophages subset following RES and
CUR + RES treatments which may suggest an increased monocyte/macrophage activation
mediated by low-dose polyphenols [94].
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4. Conclusions

Overall, herein, we demonstrate that the combined use, at low doses, of CUR and
RES can simultaneously reduce tumor cell growth [95,96] and shape immune responses
(Figure 9).
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Figure 9. Proposed model illustrating the effects of CUR and RES combined treatment on tumor cells
and PBMCs. The combination of bioavailable concentrations of CUR and RES reduced cancer cell
survival without affecting PBMC viability, but instead increasing T cell activation (CD25+) and recog-
nition of tumor by NK cells through the concomitant upregulation of the activating receptors (NKG2D
and NKp30) and downregulation of the inhibitory and exhaustion receptors (KIR2DL2/L3/S2,
KIR3DL1 and TIGIT). This figure was created using BioRender.com (accessed on 11 December 2023).

For a prospective clinical use, the absence of toxicity of low-dose CUR and RES
and the ease of application based on oral administration [97] make these polyphenols
suitable tools that may be added to standard antitumor treatments including chemotherapy
and radiotherapy [98], to biological agents such as immune-checkpoint inhibitors [99]
and to adoptive immune therapies with T/CAR-T and NK/CAR-NK cells [100]. In this
context, our findings may support the use of these polyphenols in combination with NK
cell-based immunotherapies.

5. Materials and Methods
5.1. Tumor Cell Lines and PBMC

Human MM cell lines (H-Meso-1, MM-F1, MM-B1) were kindly provided by Prof.
Antonio Procopio (Università Politecnica delle Marche, Ancona, Italy) and previously
described [101,102]. Breast cancer (MCF7 and MDA-MB-468), head and neck carcinoma
(SCC-15 tongue squamous carcinoma and A253 salivary gland carcinoma), prostate cancer
(DU 145, PC-3), colon cancer (HCT 116), and erythro-leukemia (K562) cell lines were
purchased from the American Type Culture Collection (ATCC, London, UK). Cells were
cultured in DMEM high glucose medium with pyruvate (MM-F1, MM-B1, H-Meso-1,
MCF-7, MDA-MB-468, DU 145, PC-3, HCT 116) or RPMI 1640 medium (A253, SCC-15 and
K562) both supplemented with 10% FBS (Thermo Fisher Scientific, Whaltam, MA, USA),
2 mM L-glutamine, 100 I.U./mL penicillin and 50 µg/mL streptomycin (Euro Clone S.p.A.,
Milano, Italy).

Peripheral blood mononuclear cells (PBMCs) were obtained from buffy coats collected
from anonymous healthy blood bank donors, in accordance with the Institutional Review
Board of Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy. PBMCs were isolated
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through density gradient centrifugation by Ficoll-Plaque Plus (Lympholyte Cedarlane,
Burlington, NC, USA) and cryopreserved liquid nitrogen until further analysis.

5.2. Antibodies and Flow Cytometry

The following anti-human antibodies were used for flow cytometry: anti-CD3-
AlexaFluor700 (UCHT1, BD Biosciences, San Jose, CA, USA), anti-CD14-AlexaFluor700
(HCD14, Biolegend, San Diego, CA, USA), anti-CD19-AlexaFluor700 (HIB19, Biolegend),
anti-CD4-FITC (SK3, BD Biosciences), anti-CD4-PE (RPA-T4, BD Biosciences), anti-CD8-
PerCP-eFluor 710 (SK1, Invitrogen-Thermo Fisher Scientific, Waltham, CA, USA), anti-
CD25-PE (M-A251, BD Biosciences), anti-CD127-PE-Cy7 (HIL-7R-M21, BD Biosciences),
anti-CD3-FITC (HIT3a, BD Biosciences), anti-CD68-PE (Y1/82A, Biolegend), anti-IFNγ-
FITC or anti-IFNγ-APC (4S.B3, BD Biosciences), anti-IL-10-APC (JES3-9D7, Biolegend), anti-
CD19-APC (HIB-19, BD Biosciences), anti-CD56-Pe-Cy7 (B159, BD Biosciences), anti-CD16
BV510 (3G8, BD Biosciences), anti-CD107a-FITC (H4A3, BD Biosciences), anti-NKG2D-PE-
CF594 (1D11, BD Biosciences), anti-NKG2D-BV605 (1D11, BD Biosciences), anti-DNAM1-
BV650 (11A8, BD Biosciences), anti-NKp46-PE-Cy7 (9E2, BD Biosciences), anti-NKp30-PE
(Z25, BD Biosciences), anti-KIR3DL1-APC (DX9, R&D Systems, Minneapolis, MN, USA),
anti-PD-1-BV421 (MIH4, BD Biosciences), anti-KIR2DL1/S1-PE-Cy5.5 (EB6B, Beckman Coul-
ter, Brea, CA, USA), anti-NKG2A-FITC (REA110, BD Biosciences), anti-KIR2DL2/L3/S2-PE
(GL-183, Beckman Coulter), and anti-TIGIT-APC (MBSA43, Invitrogen).

All the antibodies were used according to the manufacturers’ protocol. Prior to
surface staining, PBMC and NK cells were pre-stained with Fixable Viability Dye eFluor™
780 (Thermo Fisher Scientific). Before IFN-γ or IL-10 intracellular staining, cells were
supplemented overnight with 1 µg/mL Brefeldin A (BFA, Merck-Italy-Sigma Aldrich,
Milano, Italy) in order to enhance intracellular cytokine retention. Flow cytometry was
performed by using FACSCanto (BD Biosciences) or Cytoflex (Beckman Coulter) and
analyzed by FlowJo Software, version 10.0.8r1 (Treestar, Ashland, OR, USA), or CytExpert
version 2.5 software. Before the assays, both CUR and RES were incubated individually or
in combination with PBMCs for 96 h at 5 µM. DMSO, used as a solvent for both polyphenols,
was used as a control.

5.3. Sulforhodamine B Assay

Tumor cell survival was evaluated by the sulforhodamine B (SRB) assay, as previ-
ously described [34]. Briefly, tumor cells were plated in flat bottomed 96-well plates at
2500 cells/well in 200 µL of medium. After 24 h, cells were incubated with 5 or 25 µM
RES (cat no. R5010, purity ≥ 99%, Merck-Italy-Sigma Aldrich) and CUR (from Curcuma
longa, cat. no. C1386, purity ≥ 65%, Merck-Italy-Sigma Aldrich) for 96 h. Cells were then
fixed by adding 50 µL/well of 50% trichloroacetic acid (TCA, Merck-Italy-Sigma Aldrich)
and incubated for 1 h at 4 ◦C. After 4 washings with distilled water, cells were dried and
stained for 30 min with 100 µL of a 0.4% (w/v) SRB (Merck-Italy-Sigma Aldrich) solution in
1% acetic acid. The plate was washed 4 times with 1% acetic acid and left to dry. The dye
was finally solubilized by adding 100 µL/well of 10 mM Tris pH 10. Cell density was then
determined by spectrophotometric reading of the absorbance (O.D. values) 492 nm with a
reference filter at 620 nm. The percentage survival of the cultures treated with RES and/or
CUR was calculated by normalization of their O.D. values to those of the control cultures
treated with DMSO [34].

5.4. PBMC Proliferation and Cell Death Assays

PBMC proliferation was evaluated through flow cytometric measurement of car-
boxyfluoresceinsuccimide ester (CFSE) dye dilution. PBMCs were thawed, counted, and
stained with 0.5 µg/mL CFSE (CellTrace Cell Proliferation Kit, Invitrogen-Thermo Fisher
Scientific) for 15 min at 37 ◦C. At the end of the incubation, the cells were washed
in complete RPMI medium, plated in 96-well U-bottom plates at a concentration of
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300,000 cells/well and treated with 5 µM CUR and/or RES for 96 h. DMSO was used as
a control.

The percentage of necrosis and apoptosis of PBMCs treated with CUR and/or RES for
96 h was evaluated by using a PE-conjugated Annexin V/7AAD apoptosis detection Kit
(Biolegend) and flow cytometric analysis.

5.5. Reactive Oxygen Species Detection Assay

The production of reactive oxygen species (ROS) was evaluated in PBMCs plated in
96-well U-bottom plates at a concentration of 300,000 cells/well. Cells were pre-treated
with 5 µM CUR and/or RES, or DMSO, for 96 h and then incubated with phorbol-12-
myristate-6-acetate (PMA, 50 ng/mL, Merck-Italy-Sigma Aldrich) for 90 min. During the
last 30 min of incubation with PMA, the fluorogenic probe dichlorodihydrofluorescein
diacetate (DCFDA, 20 µM, Merck-Italy-Sigma Aldrich) was added to cultures and then
green emission was detected by flow cytometry.

5.6. NK Cell Degranulation Assay

Degranulation assay was performed by co-culturing PBMCs, untreated or pre-treated
with 5 µM CUR and/or RES for 48 h, with K652 target cells at a 1:1 ratio for 3 h in complete
medium in the presence of anti-CD107a at a 1:100 dilution. During the last 2 h of co-
culture, GolgiStop (BD Biosciences), used at a 1:500 dilution, was added. Cells were then
washed, centrifuged, and stained with anti-CD56, anti-CD16, anti-CD3, anti-CD14 and anti-
CD19 to evaluate CD107a expression in the CD56+CD16+CD3−CD14−CD19− subset by
flow cytometry.

5.7. Statistical Analysis

Data distribution of cell growth and apoptosis assays was preliminarily verified using
the Kolmogorov–Smirnov test, and the datasets were analyzed by one-way analysis of
variance (ANOVA) followed by the Newman–Keuls test. For all other data, statistical signif-
icance was evaluated with the unpaired or paired two-tailed Student’s t-test. Normalized
values were analyzed for correlation by the regression analysis using GraphPad Prism
version 5.0 software. Values with p ≤ 0.05 were considered to be statistically significant.
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