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A B S T R A C T

The Fokker Planck (FP) equation for the probability density function (PDF) of crystal size in phase trans-
formations ruled by progressive nucleation and growth, has been derived. Crystals are grouped in sub-sets, we
refer to as τ-crystals, where τ is the birth time of the set. It is shown that the size PDF is the superposition of the
PDF of the crystal sub-sets (τ-PDFs), with weight given by the nucleation rate. The growth and diffusion co-
efficients entering the FP equations are estimated as a function of both τ-PDFs and nucleation rate. The functional
form of these coefficients is studied for solutions of the FP equation for τ-crystals given by the lognormal,
Gaussian and gamma distributions. For the first two distributions, the effect of fluctuations, nucleation rate and
growth rate, on the shape of the distribution has been investigated. It is shown that for an exponential decay of
the fluctuation term, the shape of the PDF is mainly governed by both the time constant for nucleation and the
strength of the fluctuation. It is found that τ-PDFs given by the one-parameter gamma distributions are suitable to
deal with KJMA (Kolmogorov Johnson Mehl Avrami) compliant phase transformations, where the fluctuation
term is proportional to crystal size. The connection between the FP equation for the size PDF and the evolution
equation for the density of crystal populations is also discussed.

1. Introduction

Crystal-size distribution function is an important quantity in the
topic of crystal growth which is usually employed to characterize the
morphology of the material to grow solid structures with controlled
microstructures and, eventually, mechanical properties [1–3]. Modeling
of this function is also significant to gain insight, through analysis of
experimental data, on the underlying processes of crystal nucleation and
growth [4–9]. In this ambit, among several approaches for modeling the
size distribution functions, two methods are widely employed that are
based on either the Fokker Planck equation (FP) (also called Kolmo-
gorov’s second equation) for the probability density function (PDF) f , or
the continuity equation for the density function of crystals, N [10–14].
Specifically, by denoting with v the volume (size) of the crystal, f(v, t)dv
is the probability that the crystal volume is within v, v + dv, at time t,
while N(v, t)dv is the number density of crystals with volume between v
and v + dv, at time t. The advantage of the latter method relays on the
possibility to deal with the nucleation process, that is usually

progressive in time, in the evolution equation for N(v, t). On the other
side, the FP equation allows one to study the effect of crystal-size fluc-
tuations on the PDF [11]. The importance of fluctuations in phase
transformations is evident, for example, in the case of simultaneous
nucleation and growth ruled by impingement mechanism, where the
final crystal-size distribution is the gamma distribution function. In the
absence of fluctuations, the size distribution resembles a Dirac delta.

In ref. [12] the time evolution of the crystal-size distribution has
been derived from the continuity equation with the inclusion of a source
contribution to account for the nucleation process. By considering the
volume of the crystal, v, and the time, t, as independent variables in the
distribution function, N(v, t), the equation reads:

∂N(v, t)
∂t

= − a(t)
∂N(v, t)

∂v
+ I(t)δ(v − v0). (1)

In Eq. (1), I(t) is the nucleation rate, a(t) is a function of time, v0 the size
of the smallest stable nucleus and δ(•) Dirac’s delta. In ref. [12] it was
shown that for a(t)∝e− αt and I(t)∝e− βt2 the solution of Eq. (1) is close to a
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lognormal distribution. Integration of Eq. (1) is reported in the Supple-
mentary material S1 by means of the Laplace transform method and a
judicious application of the shift theorem.

On one hand, in this form Eq. (1) is particularly useful since it con-
tains explicit information on the nucleation process through the I(t)
function. On the other hand, it could be enlightening to get an insight
into the connection between Eq. (1) and equation describing stochastic
processes such as Kolmogorov’s second equation usually employed for
modeling the size distribution function of crystals [15–18]. Such a study
is significant to establish the role of fluctuations in determining the size
distribution function.

The purpose of this work is to derive a FP-like equation that allows
describing the nucleation process through the explicit inclusion of the
nucleation rate. Also, the approach presented here makes it possible to
determine the FP equation that is consistent with Eq. (1). The method is
applied to discuss the effect of fluctuations on the PDF in progressive
nucleation, and examples are offered for the lognormal, Gaussian and
gamma distributions

2. Results and discussion

2.1. Remarks on FP equation

We recall, in brief, that Kolmogorov’s second equation gives the time
evolution of the probability density function (PDF) of the stochastic
variable for given value of the stochastic variable at previous time. The
probability density entering Kolmogorov equation is f(τ, x|t, y ), where
fdy is the probability the value of the stochastic variable is between y,y +

dy, at time t, given that its value is x at τ < t. Kolmogorov’s second
equation reads:

∂f(τ, x|t, y )
∂t

= −
∂[A(y, t)f(τ, x|t, y ) ]

∂y
+
1
2

∂2[B(y, t)f(τ, x|t, y ) ]
∂y2

, (2)

where f(τ, x|t, y ) ≥ 0,
∫

f(τ, x|t, y )dy = 1 and lim
Δt→0

∫

|y− x|≥δf(t − Δt, x|t,

y )dy = 0 for any
δ > 0. The functions A(x, t) and B(x, t) are linked to the first and

second moments of the PDF according to:

A(x, t) = lim
Δt→0

1
Δt

∫

(y − x)f(t − Δt, x|t, y )dy (3a)

B(x, t) = lim
Δt→0

1
Δt

∫

(y − x)2f(t − Δt, x|t, y )dy (3b)

It follows that A(x, t) is the mean value of the variation of the stochastic
variable in time interval Δt, and B(x, t) the mean value of the square of
the variation of the stochastic variable. By considering in Eq. (2) (x = 0,
τ = 0) at the beginning of the process, an integration by parts of Eq. (2)
provides the rate equation for the mean value,

d〈y〉
dt

= 〈A(y, t)〉, (4)

where 〈y〉 =
∫

f̃(y, t)ydy, 〈A(y, t)〉 =
∫

f̃(y, t)A(y, t)dy and f̃(y, t) =

f(0,0|t, y ). Therefore, the A(y, t) function dictates the time dependence
of the mean size. On the same token, for the mean square displacement
Eq. (2) gives,

d〈y2〉
dt

= 2〈yA(y, t)〉+ 〈B(y, t)〉, (5a)

that is, using Eq. (4),

d〈(y − 〈y〉)2〉
dt

= 2〈(y − 〈y〉)A(y, t)〉+ 〈B(y, t)〉. (5b)

In Eqs. (4) and (5) averages are taken on the f-PDF.

2.2. FP equation for progressive nucleation

For the present analysis, in Eqs. (2)-(5) it is reasonable to choose, as
stochastic variable, the crystal volume and for τ the birth time of the
crystal whose initial volume is v0. Eq. (2) is therefore suitable for
describing the evolution of the PDF of the set of nuclei born within time
τ, τ+dτ whose infinitesimal number equals I(τ)dτ. To make the notation
easier, we denote this conditional PDF as fτ(v, t) ≡ f(τ, v0|t, v ) which is
normalized according to

∫
fτ(v, t)dv = 1 at any τ. However, because of

the nucleation process, nuclei are formed continuously and the PDF of
the whole population of crystals, i.e. for the entire nucleation period, is
given averaging fτ over τ [8,15,19]:

f(v, t) =
1

n(t)

∫ t

0
I(τ)fτ(v, t)dτ, (6)

where n(t) =
∫ t
0 I(τ)dτ, total number of nuclei formed up to time t, en-

sures normalization of the f(v, t)-PDF. Moreover, from Eq. (6) one re-
ceives,

n(t)
∂f(v, t)

∂t
= I(t)ft(v, t)+

∫ t

0
I(τ) ∂fτ

∂t
dτ − I(t)f(v, t). (7)

By noting that ft(v, t) = δ(v − v0), and that ∂fτ
∂t satisfies Kolmogorov’s

second equation (Eq. (2))1 we eventually get,

To make Eq. (8) comparable to Eq. (2), we define A(v, t)f(v, t) =
∫ t

0
I(τ)[Aτ(v,t)fτ(v,t) ]dτ

n(t) , that is the average value of Aτ over the distribution
I(τ)fτ(v, t):

A(v, t) =
∫ t
0 Aτ(v, t)[I(τ)fτ(v, t) ]dτ

∫ t
0 I(τ)fτ(v, t)dτ

, (9)

where similar definition holds for B(v, t). The fraction I(τ)fτ(v,t)dτ∫
I(τ)fτ(v,t)dτ

is the

probability that a nucleation event, between τ,τ + dτ, produces a crystal
with volume in the range v, v+dv at time t>τ (see also the Appendix A).
Use of the A(v, t) and B(v, t) definitions in Eq. (8) leads to

∂f(v, t)
∂t

= −
∂[A(v, t)f(v, t) ]

∂v
+
1
2

∂2[B(v, t)f(v, t) ]
∂v2

−
dlnn
dt

[f(v, t) − δ(v

− v0) ], (10)

that is the FP equations for the f -PDF in the case of progressive nucle-
ation. From Eq. (10) we obtain the rate equation for the average size

∂f(v, t)
∂t

= −
1

n(t)

∫ t

0
I(τ)

[
∂[Aτ(v, t)fτ(v, t) ]

∂v
−
1
2

∂2[Bτ(v, t)fτ(v, t) ]
∂v2

]

dτ − I(t)
n(t)

[f(v, t) − δ(v − v0) ]. (8)

1 ∂fτ
∂t = −

∂Aτ fτ
∂v + 1

2
∂2Bτ fτ

∂v2 .
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over the f -PDF:

d〈v〉
dt

= 〈A(v, t)〉 −
dlnn
dt

(〈v〉 − v0), (11)

with 〈A(v, t)〉 =
∫

f(v, t)A(v, t)dv =

∫
dv
∫ t

0
I(τ)[Aτ(v,t)fτ(v,t) ]dτ

n(t) =

1
n(t)

∫ t
0 I(τ) dv(t,τ)

dt dτ, where dv(t,τ)
dt = 〈Aτ(v, t)〉 and the average is taken over

the fτ-PDF. In like manner, we get for the variance Ψ = 〈(v − 〈v〉)2〉,

dΨ
dt

= 2〈(v − 〈v〉)A(v, t)〉+ 〈B(v, t)〉 −
dlnn
dt

[
Ψ − (〈v〉 − v0)2

]
. (12)

In the case of both A(t) and B(t) independent of volume, integration
of Eqs. (11) and (12) gives

〈v〉 = v0 +w(t) (13)

and

Ψ =
1

n(t)

[ ∫ t

0
B(tʹ)n(tʹ)dtʹ+

∫ t

0
I(tʹ)w(tʹ)2dt́

]

, (14a)

where w(t) = 1
n(t)

∫ t
0 A(t́ )n(t́ )dtʹ. Furthermore, Eq. (14a) can be refor-

mulated in terms of A(t́ ) and B(t́ ) by means of the expression of w(t).
Recalling that I(t) = dn

dt , an integration by parts and a lengthy algebra
provides, eventually,2

Ψ =
1

n(t)

[ ∫ t

0
B(tʹ)n(tʹ)dtʹ+

2
n(t)

∫ t

0
A(tʹ)n(tʹ)dt́

∫ t

tʹ
A(tʹ́ )(n(t) − n(tʹ́ ) )dt́ʹ

]

.

(14b)

In the present form, the expression clearly shows how the variance of
the distribution depends on both nucleation rate and fluctuation in
crystal growth, B(tʹ). In fact, the spread of the distribution is linked to the
nucleation and growth process even in the absence of fluctuations dur-
ing the growth (B = 0). On the other side, in the model case of site-
saturated nucleation (i.e. when all nuclei start growing at the same
time) the contribution related to nucleation rate vanishes; in this case dn

dt
is proportional to a Dirac delta and the last term in Eq. (14b) is zero for
any t ∕= 0 (i.e. n(t) = N0H(t), with H(•) the Heaviside step function). As
discussed below, the spread of the distribution given by Eq. (1) is not
related to fluctuations but to the nucleation and growth processes.

At this point a comment is in order: with the aim of employing the FP
equation to the kinetics of phase transformations by nucleation and
growth, or even recrystallization [20–22], the Aτ(v, t) function has to
satisfy the condition lim

t→∞
Aτ(v, t) = 0. In fact, when the transformation

reaches completion the mean value of the growth rate of the crystal is
zero. The same behavior is expected to be shared by the τ-averaged
functions, A(v, t) and B(v, t). Such a property of the A and B coefficients
ensure the asymptotic limit, in time, of the PDF. The a(t) function used in
Eq. (1) [12] fulfills this property. Besides, when Aτ(v, t) and Bτ(v, t) are
independent of τ, then A ≡ A(v, t) and B ≡ B(v, t).

Comparison between Eq. (1) and that based on the FP approach Eq.
(10), is done bymeans of the definitions of bothN(v, t) and f(v, t). In fact,
being f a PDF andN a crystal density per crystal volume, the relationship
holds,

f(v, t) =
N(v, t)
n(t)

. (15)

Eq. (15) provides ∂tN(v, t) = n(t)∂t f(v, t) + f(v, t)I(t). Use of this equa-
tion in the continuity Eq. (1), allows one to find the differential equation
for the f(v, t)-PDF:

∂f(v, t)
∂t

= −
∂[a(v, t)f(v, t) ]

∂v
−

I(t)
n(t)

[f(v, t) − δ(v − v0) ]. (16)

Comparison between Eqs. (16) and (10) does show that in Kolmogorov’s
second equation for the PDF of the set of τ-crystals, fluctuations are
absent, that is Bτ = 0. Furthermore, since a(t) = A(v, t) is independent of
v, the Aτ(v, t) is also independent of v. For Bτ = 0 and a(t) = Aτ(v, t) the
evolution equation of fτ becomes ∂t fτ(v, t) = − a(t)∂vfτ(v, t) that admits
the solution fτ(v, t) = ϕ[v − ξ(t, τ)], where ϕ[ • ] is a function of the stated
argument, ξ(t, τ) =

∫ t
τ a(t́ )dt́ + c, with c a constant, and a(t) is positive

definite. In other words, the shape of the distribution is conserved in
time. For a nucleation event between τ and τ+dτ the initial distribution
can be described by a Dirac delta, ϕ[v − ξ(τ, τ) ] = δ(v − v0) a relationship
that implies c = v0 in ξ(t, τ) and, eventually, fτ(v, t) = δ(v − ξ(t, τ)). Also,
δ(v − ξ(t, τ) ) = δ(τ− τ*(v,t))⃒

⃒
⃒
⃒

(
∂ξ(t,τ)

∂τ

)

τ*

⃒
⃒
⃒
⃒

=
δ(τ− τ*(v,t))

a(τ*) where τ*(v, t) is the root of the

equation ξ(t, τ*) = v. Therefore, the f(v, t)-PDF is obtained from Eq. (6)
according to

f(v, t) =
1

[ ∫ t
0 I(t́ )dt́

]
I[τ*(v, t)]
a[τ*(v, t)]. (17)

For a(t) = γe− αt we get τ*(v, t) = − 1
α ln

[
α
γ (v − v0)+e− αt

]

with the

constraint v < ξ(t,0) = v0 +γ
α(1 − e− αt) being τ* positive definite.3

In the following, the nucleation rate is of the functional form, I(t) =

I0e− βtn . This choice is justified by the fact that the stretched exponential
is appropriate for modeling phase transformations ruled by nucleation
and growth [12,22,23]. For a stretched exponential nucleation rate, Eq.
(17) becomes

f(v, t) =
1

n(t)
e
(− 1)n+1β

(
1
α ln

[
α
γ (v− v0)+e− αt

])n

α(v − v0) + γe− αt χ(v)v0 ,ξ(t,0), (18)

with χa,b(x) characteristic function (χa,b(x) = 1, a < x < b and χa,b(x) =
0 elsewere). For n = 2 the asymptotic behavior of Eq. (18) resembles the
lognormal distribution. Eq. (18) is consistent with theN(v, t) distribution
derived in ref. [12] (see also the Supplementary Material S1). As stressed
in ref. [12] at n = 2 the main difference of this distribution with the
lognormal is given by the argument of the exponential and by the cut-off
in the v domain due to the characteristic function.

2.3. Numerical computations

This section is devoted to an application of the results of sect.2.2 to a
variety of cases in dependence of the functional form of A and B co-
efficients. The numerical computations presented here, have been per-
formed using the Wolfram Mathematica package.

2.3.1. A and B coefficients depending only on time
The approach above discussed allows one to study the effect of

fluctuations, on the PDF, during the growth. To account for the spread of
the distribution, the higher order derivative term has to be considered,
implying Bτ(v, t) ∕= 0 in Eqs. (2), (8). Equation 10 shows that fluctuations
can be considered, in the differential equation for the N(v, t) distribution

Eq. (1), through the extra term 1
2

∂2 [B(v,t)N(v,t) ]
∂v2 . However, to find the f-PDF

it is more profitable, in this case, to solve the differential equation for fτ
and use Eq. (6). For Aτ and Bτ independent of volume the solution of
Kolmogorov’s second equation provides (see also the Appendix B)

2 In this derivation use is done of the relationships:
∫ t
0 f(tʹ)dt́

∫ tʹ
0 g(tʹ́ )dt́ʹ= ∫ t

0

g(tʹ́ )dt́ʹ∫ t
tʹ́ f(tʹ)dt́ and

( ∫ t
0 f(tʹ)dt́

)2
= 2

∫ t
0 f(tʹ)dt́

∫ t
t́ f(tʹ́ )dt́ .́

3 The time τ* is solution of the equation ξ(t, τ*) = v, where ξ(t, τ) = v0 + γ
∫ t

τ
e− αxdx = v0 +

γ
α (e

− ατ − e− αt).
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fτ(v, t) = C(t, τ)e−
(v− ξ(t,τ))2

4φ2 , (19)

where ξ(t, τ)= v0 + φ1(t, τ), φ1(t, τ) =
∫ t

τ aτ(x)dx, C(t, τ) = 1̅̅̅̅̅̅̅̅
4πφ2

√ and

φ2(t, τ) =
∫ t

τ bτ(x)dx with bτ(t) = Bτ(t)/2. Since v ≥ 0, Eq. (19) is the
solution for the normalized PDF provided fτ(0, t) ≅ 0. Furthermore,
from Eq. (6) it follows that 〈v〉 = 1

n
∫ t
0 I(τ)v(t, τ)dτ and 〈v2〉 = 1

n
∫ t
0 I(τ)v2(t,

τ)dτ, that leads, after use of Eq. (19), to

〈v〉 =
1

n(t)

∫ t

0
I(τ)ξ(t, τ)dτ (20)

Ψ = 〈v2〉 − 〈v〉2

=
2

n(t)

∫ t

0
I(τ)φ2(t, τ)dτ + 1

n2(t)

[

n(t)
∫ t

0
I(τ)ξ2(t, τ)dτ

−

(∫ t

0
I(τ)ξ(t, τ)dτ

)2
]

. (21)

Inserting the ξ(t, τ) expression in Eq. (21) and the relation I(t) = dn/dt in
an integration by parts, it is possible to show that Eqs. (20) and (21)
coincide with Eqs. (14a)–(14b) derived above (see also the Supplemen-
tary Material S2).

In the case fτ(0, t) ∕= 0 (t > 0) an approximate PDF is given by Eq.

(19) with C(t, τ)= (πφ2(t, τ))
− 1/2

[

1+ erf( φ1(t,τ)
2φ2(t,τ)

1/2)

]− 1

as normalization

term. An estimate of the error due to this assumption is given by Δ =
⎛

⎜
⎜
⎜
⎝

1
2 −

1
1+erf( φ1 (t,τ)

2φ2 (t,τ)1/2
)

⎞

⎟
⎟
⎟
⎠
. Computation of this factor provides uncertainties of

a few percent, as displayed in Fig. 1 where the function is studied in
terms of reduced variables (see below).

Application of Eqs. (6),(19) allows to include fluctuation term in Eq.
(1). By considering aτ(t) = a(t) = γe− αt and bτ(t) = b(t), the PDF is
computed according to

f(v, t) =
1

n(t)

∫ t

0

I(τ)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
πφ2(t, τ)

√
[

1+ erf[ φ1(t,τ)
2φ2(t,τ)1/2

]

]e−
(ξ(t,τ)− v)2

4φ2(t,τ) dτ. (22)

For the stretched exponential, I0e− βt2 , Eq. (22) is the superposition (at
t < ∞) of lognormal-like and normal distributions. In this case N(v, t)
deviates from the lognormal distribution to an extent that depends upon
b. In fact, the Dirac delta distribution, δ(ξ − v), is obtained in the limit

φ2→0 (i.e. B→0) and Eq. (22) reduces to Eq. (18) (see also the Appendix
B). In the following, we study the behavior of the distribution for the
nucleation rate I(t) = I0e− βt2 and b(t) = b0e− t/τF , with constant b0 and τF,
that is φ2(t, τ) = b0τF

(
e− τ/τF − e− t/τF

)
. Through the relationship

τ(ξ) = − 1
α ln

[

(ξ − v0) α
γ +e− αt

]

we change, in Eq. (22), the integration

variable from τ to x = ξ/γτG and define the characteristic times τG = α− 1

and τN = β− 1/2, the reduced variables, t́ = t/τG, v́ = v/γτG and the
dimensionless quantities τŃ = τN/τG, τF́ = τF/τG and η = γτG̅̅̅̅̅̅̅

τFb0
√ . Eq. (22)

becomes, eventually

f(v́ , tʹ) =
2η

πτŃerf
(

t́
τʹN

)

∫ 1− e− t́

0

e
−

[
1

τʹN
ln(x+e− t́ )

]2

e− η2
(x− vʹ)2
4q(x,tʹ)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
q(x, tʹ)

√
(x + e− tʹ)

[

1+ erf
(

ηx
2

̅̅̅̅̅̅̅̅̅
q(x,tʹ)

√

)] dx,

(23a)

where q(x, tʹ)= (x+ e− tʹ)
1
τʹF − e

−
tʹ
τʹF , and v0 = 0 was considered. The

asymptotic distribution is the superposition of Gaussian functions ac-
cording to

f(v́ ) =
2η
πτŃ

∫ 1

0

e
−

[
1

τʹN
ln(x)

]2

e
− η2

(x− vʹ)2

4x1/τ́F

x
1+ 1

2τʹF

⎡

⎢
⎢
⎢
⎣
1+ erf

⎛

⎜
⎜
⎜
⎝

ηx
1−

1
2τʹF
2

⎞

⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎦

dx. (23b)

Typical behavior of the asymptotic limit of Eq. (23a) is shown in
Fig. 2 for several values of the parameters. The time constant for fluc-
tuation was chosen of the order of magnitude of that for particle growth
although, as discussed below, τʹ

F does not affect the distribution signif-
icantly. It stems that the shape of the asymptotic PDF changes from a
Gaussian to a truncated lognormal distribution depending on parameter
values. The truncated lognormal function is recovered at large η and τʹ

F,
being η the more critical quantity in this context (Fig. 2a-b). In fact,
when fluctuations are absent Eq. (1) holds true and the PDF admits a cut-
off in the v domain, as also pointed out in ref. [12]. Under this
circumstance, the asymptotic solution of the FP equation is the trun-
cated lognormal, namely Eq. (18) in the limit t→∞. In fact, for b0→0 and
η≫1 Eq. (23b) reduces to the asymptotic limit of Eq. (18). Moreover, a
change in the time constant for nucleation affects the position of the
maximum of the distribution that shifts to lower v́ values with
increasing τʹ

N (Fig. 2c-e). Fig. 3 displays the asymptotic behaviors of the
PDFs which are in fair agreement with either a Gaussian or a lognormal

Fig. 1. 3D plot of the uncertainty, Δ(η, t), introduced to ensure normalization of the τ-PDF in Eq. (19). In the plot t is the reduced time, η gives a measure of the
strength of the fluctuation term and τ́F defines the time dependence of fluctuations.
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distribution. The transition to one of the two distributions is mainly
ruled by η. In the plot, the solid symbols are the PDF computed from Eq.
(23b) and dashed (solid) line the best fit to the points of lognormal
(Gaussian) distribution.

Asymptotic PDFs for a simple exponential decay of the nucleation
rate are displayed in Fig. 4, for the same A(t) and B(t) coefficients of
Fig. 2. Even in this case, the nucleation time constant τŃ strongly affects
the shape of the distribution. For τŃ < 1 the PDF becomes more sym-
metric the lower τŃ and η, to become nearly uniform as τŃ→1. On the

other hand, for τ́N > 1 the distribution is a decreasing function of v and
does not exhibit any maximum.

2.3.2. A and B coefficients depending on size and time

2.3.2.1. Lognormal fτ-PDF. The approach discussed in sect.2.3.1, based
on either the fτ-PDF or the continuity equation (Eq. (1)), does show how
the lognormal-like PDF stems from an appropriate choice of nucleation
and growth rates (a and A), in the absence of fluctuations. Specifically, I

Fig. 2. Behavior of the asymptotic PDF for progressive nucleation with A and B coefficients depending on time, only. The nucleation rate is in the form of a stretched
exponential with n = 2, as proposed in [12], to get a lognormal-like function. In all graphs, black dashed curve is the lognormal distribution. The PDFs were
computed varying η, τ́F and τ́N . In each graph, the decreasing of η is represented by the following sequence: green, red, blue and magenta. At large η, green curves, the
PDFs approach the “deterministic” solution (Eq. (18)) that is a truncated lognormal. The time constant for nucleation (τ́N) affects the shape of the distribution to a
greater extent compared to that of fluctuation (τ́F).
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and A were only functions of running time, t, according to a stretched
exponential with exponent 2 and 1, respectively. Also, in this case the
fτ-PDF was a Dirac delta. An interesting approach proposed in ref. [17]
allows one to derive the lognormal distribution, directly from the FP
equation for the fτ-PDF, by choosing Aτ(t, v) = a1(t)v and Bτ(t, v) =

2b1(t)v2, where a1(t) and b1(t) are positive definite functions. The
integration of the equation, that is based on a change of variables (see
the Supplementary Material S3 for details), leads to the lognormal
distribution,

fτ(v, t) =
1

v
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4πφ(t, τ)

√ e−
ρ2

4φ(t,τ), (24)

where ρ = lnv+φ(t, τ) −
∫ t

τ a1(tʹ)dtʹ and φ(t, τ) =
∫ t

τ b1(tʹ)dtʹ. In the limit
t→τ, i.e. φ→0, Eq. (24) gives the initial Dirac delta distribution. Ac-
cording to the general meaning of a(v, t) and b(v, t) (Eqs. (4), (5a)), we
obtain d〈v〉

dt = 〈v〉a1(t) and d〈v2〉
dt = 2〈v2〉(a1(t)+b1(t)) that lead to the

following moments of the τ-PDF:

〈v〉 = e
∫ t

τ
a1(tʹ)dtʹ (25a)

〈v2〉 = e2
∫ t

τ
[a1(tʹ)+b1(tʹ) ]dtʹ

. (25b)

In the limit Bτ→0 (i.e. b1→0) Eq. (24) reduces to fτ(v, t) = v− 1δ(lnv −
lnv(t, τ)) where Eq. (25a) was used. This is the solution of FP equation
without fluctuation term (see also the Appendix C). To be suitable for
modeling phase transformations that reach completion, the convergence
of the integrals

∫∞
0 a1(tʹ)dtʹ and

∫∞
0 b1(t́ )dtʹ is required, this being a

constraint on the functional form of a1(t) and b1(t). The exponential
functions a1(t) = ωe− t/τG and b1(tʹ) = σe− t/τF , like those in the previous
section, are both physically acceptable.

Eqs. (6), (24) give the following PDF:

f(v, tʹ) =
Ḱ

ñ(tʹ)
1
v

∫ 1− e− t́

0

I[− τGln(x + e− tʹ)]
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
q(x, tʹ)

√
(x + e− tʹ)

e
−

[
1

ωτG
lnv+ωτG

η2 q(x,tʹ)− x

]2

η2/4q(x,tʹ)
dx

(26)

where x =
(
e− τ/τG − e− t/τG

)
, η = ωτG̅̅̅̅̅στF

√ and Kʹ =
η

ω
̅̅̅̅
4π

√ . For nucleation rate

given by an exponential decay, I(τ) = I0e− τ/τN = I0e
1
τʹN

ln(x+e− t́ )
, we obtain

f(v, tʹ) =
η

̅̅̅̅̅̅
4π

√
ωτGτŃ(1 − e− tʹ/τʹN )

1
v

∫ 1− e− t́

0

e
−

[
1

ωτG
lnv+ωτG

η2 q(x,tʹ)− x

]2

η2/4q(x,tʹ)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
q(x, tʹ)

√
(x+e− tʹ)

1− 1
τʹN

dx,

(27)

with asymptotic limit

f(v) =
η

̅̅̅̅̅̅
4π

√
ωτGτŃ

1
v

∫ 1

0

e
−

[
1

ωτG
lnv+

ωτG
η2 x1/τ́F − x

]2

η2/4x1/τ́F

⎛

⎜
⎝x

1+ 1
2τʹF

−
1

τʹN

⎞

⎟
⎠

dx. (28)

According to Eq. (25a), the term ωτG in Eqs.(26), (27), (28) is linked to
the asymptotic value of mean crystal size at τ = 0: v(0,∞) = eωτG . In
Fig. 5 we report computations of the f(v)-PDF by means of Eqs. (28) for
several values of the parameters, η, ωτG and reduced time constants for
nucleation and fluctuation, τF́ and τŃ. Differently to the case discussed in
the previous section, in the present one the deviation of the distribution
from lognormal is due to the nucleation process. In fact, Fig. 5a does
show that for τŃ≪1 the distribution is nearly lognormal and that τŃ is
the main parameter determining this behavior of the PDF.

The effect of τF́ is to shift the maximum of the PDF to larger values the
lower the time constant (Fig. 5b). In addition, for the considered a1
function, the higher the intensity of fluctuation, i.e. στF, the lower η,
which implies a greater variance of the distribution. This is shown in
Fig. 6, where the standard deviation, (〈v2〉 − 〈v〉2)1/2, has been plotted as

Fig. 3. Best fit of either lognormal (black dashed lines) or Gaussian (blue and red solid lines) distributions to asymptotic PDF computed through Eq. (23b) (blue and
red solid symbols). The transition to one of the two distributions is mainly ruled by η. In each graph, the decreasing value of η is represented by the following
sequence: blue and red.

Fig. 4. Behavior of the asymptotic PDF for progressive nucleation with A and B
coefficients independent of crystal size. The nucleation rate is a simple expo-
nential decay with reduced time constant τ́N : I(t́ ) = I0e− tʹ/τʹN . Parameter values
are: η = 10, τ́N = 0.2 (black solid line), τ́N = 0.45 (blue solid line); η = 30,
τ́N = 0.2 (red solid line), τ́N = 0.45 (magenta solid line), τ́N = 0.8 (black
dashed line).
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a function of τF́ by varying τŃ and η. The trend of the standard deviation
with τF́ indicates that: i) the approach of the PDF to the lognormal is
mainly ruled by τŃ and ii) the standard deviation decreases with
increasing η and τŃ, and with decreasing τF́. In the figure, the red line is
the value of the standard deviation of the PDF of τ- crystals for τ = 0 (Eq.
(24)).

2.3.2.2. Gamma fτ-PDF and the classical KJMA approach. This sub-
section is devoted to the FP equation suitable for describing crystal-
size PDF in KJMA compliant transformations. In this approach, nuclei
form at random throughout the volume, their position is fixed in space.
Once formed, nuclei start growing, isotropically, and give rise to crys-
tals. The growth is ruled by impingement, namely when two growing
crystals collide, their growth stops at the common interface. The KJMA
model, based on the Poisson process in space, is solved analytically. It
allows one to compute [22,23]: i) the time evolution of the amount of
the transformed phase, ii) the kinetics of growth of the mean volume of
the crystals and iii) the time evolution of the nucleation rate of actual
nuclei, that is the stretched exponential employed in previous sections.
It is worth reminding that in KJMA model two nucleation rates are
considered, namely that of actual nuclei and that comprehensive of
phantom nuclei [15,24–26]. In the classical KJMAmodel, the former is a
stretched exponential and the latter a constant.

In the KJMA compliant growth fluctuations are present because the
spatial arrangement of nuclei is random. Since the rate of crystal growth
is constant and upon collision their growth stops at the common inter-

face, it follows that the volume of a single crystal depends on the local
arrangement of neighboring crystals, that is stochastic in nature. In fact,
the crystal-size PDF exhibits a dispersion in crystal size even for site-
saturated nucleation. Computer simulations do show that in this case
the asymptotic PDF (i.e. when transformation is completed) is the one-
parameter gamma PDF [8,9,27], that is appropriate for describing the
Poisson-Voronoi tessellation of space. Consequently, in progressive
nucleation crystals belonging to the same τ-population are different in
size, with fτ-PDF’s that deviate from Dirac delta. Therefore, a fluctuation
term must be considered in the FP equation for the fτ in KJMA growth.

In the case of KJMA transformations with progressive nucleation, the
kinetics of the mean volume of τ-crystals, v(t, τ) (see Section 2.2), gives
information on the functional form of Aτ(v, t). This issue has been
studied in ref. [15] where it has been shown that, for constant nucleation
(phantom included) and growth rates in 3D,
v(t, τ) = v(∞, τ)

[
1 − e− b(τ)(t− τ)κ ]

with κ a constant and b(τ) a slow varying
function of τ. In terms of the dynamical variable ξ = b(τ)(t − τ)κ, the A
coefficient is therefore given through Eq. (4) according to Aτ(v, ξ) =

v(∞, τ) − v. In ref. [15] it has been demonstrated, using the method
based on the orthogonal-polynomial expansion of the PDF, that the so-
lution of the FP equation of τ-crystals, for the Aτ(v, ξ) above and Bτ(v,
ξ) ≅ cv (with c nearly constant), is the one-parameter gamma
distribution:

fτ(v, t) =
ατ

ατ

Γ(ατ)

vατ − 1

v(t, τ)ατ e
− ατ

v
v(t,τ), (29a)

Fig. 5. Asymptotic PDF computed using Eq. (28) at η = 5, a = ωτG = 4. In a) the curves refer to several decreasing values of τ́N (in order: blue, magenta, gray, green
and black solid lines) and τ́F = 1, while in b) to several increasing values of τ́F (in order: blue, magenta, gray and green solid lines) and τ́N = 0.1. In both panels the
red-dashed line is the symptotic lognormal for η = 5 and a = 4. In the computation the nucleation rate matches an exponential decay.

Fig. 6. Standard deviation of the asymptotic distribution Eq. (28), as a function of the reduced time constant for fluctuation,τ́F . Computations were done for the same
values of τ́N and a = ωτG = 4 and η = 5 (panel a) and η = 8 (panel b): red solid squares (τ́N = 0.005), blue solid squares (τ́N = 0.1), magenta empty squares (τ́N =

0.5), gray empty diamonds (τ́N = 1) and dark gray solid circles (τ́N = 1.5). In the figures, the red straight line marks the standard deviation of the lognormal-type
PDF for τ = 0.
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where Γ(•) is the gamma function and ατ = 2v(∞, τ)/c. In Eq. (29a)
reduced time and volume are used. In the classical KJMA theory for 3D-
transformations the actual nucleation rate is I(τ) = I0e− τ4 , that implies
measuring time in τN units (see previous sections and [15]). The v(∞, τ)
expression was computed in ref. [15] according to:

v(∞, τ) = 1
4
e− τ4

(

τ2Γ
(
1
4
, τ4

)

− 2τΓ
(
2
4
, τ4

)

+Γ
(
3
4
, τ4

))

, (29b)

where Γ(a, b) =
∫∞

b xa− 1e− xdx is the incomplete gamma function. The
behavior of both v(∞, τ) and ατ is displayed in Fig. 7 and shows that the
two functions are nearly proportional.

The PDF for KJMA compliant transformation, f(v, t), is computed
using Eqs. (6), (29a), with the actual nucleation rate above reported.
Fig. 8 shows the computed PDFs for several values of the reduced time.
Notably, these distributions are in very good agreement with the outputs
of computer simulations of KJMA transformations [15] (and references
therein). The degree of transformation (volume of transformed phase
divided by total volume) is 6 % for t = 0.5, 34 % at t = 0.8 and 98 % at
t = 1.4 (close to the asymptotic value). In the same panel the dashed line
is the asymptotic PDF for KJMA transformation with site-saturated
nucleation. Worthy to note is the completely different behavior of the
functions. For site saturated nucleation the PDF, in 1-3D, is in excellent
accord with the Gamma distributions [8,28].

Because of the τ-dependence of v(∞, τ), for the KJMA model the
average value A(v, t) differs from the Aτ coefficient of the FP equation for
fτ. The A(v, t) function is reported in Fig. 9 for various values of time. In
the limit t→0 the function approaches the linear behavior of A0 =

v(∞,0) − v, and exhibits a maximum as time increases.
It is worth noticing that the A and B coefficients employed in

sect.2.2.1 and 2.3.2.1 are not suitable for modeling the PDF of a classical
KJMA transformation (i.e. with constant rates of both nucleation and
growth). This outcome is quite evident based on the asymptotic behavior
of the PDF for simultaneous nucleation (PDF of τ-crystals). In fact, when
transformation is completed, crystals give rise to a subdivision of space
that is the Poisson-Voronoi tessellation with a gamma distribution PDF.

3. Final remarks and Conclusions

In the previous section we have shown how the PDF is ruled by the
interplay between nucleation rate and τ − PDF, the latter being related
to crystal growth. For this reason, use of the present approach for
modeling experimental PDFs requires the knowledge of, at least, one of
these two quantities. For instance, from the knowledge of I(t), the PDF

can be computed for a given fτ and then compared to the data. In the case
of slow varying nucleation rate, information on the τ − PDF could be
gained by measuring the PDF in the low time domain where I(t) and fτ
are nearly decoupled in the PDF expression.

We point out that the verification of the accord between experi-
mental distributions and analytical PDFs (such as those discussed in this
paper) is by no means trivial. In fact, the accord with the data can be
eventually deemed using statistical approaches as discussed, for
example, in [29,30]. In this context, it is worth quoting the recent work
by Sun and Zangari [31] who presented a detailed modeling of the PDFs
of electrodeposited particles, using lognormal, gamma and even Weibull
distributions [32].

In ref. [33–35] the crystal size distribution functions of diamond
crystals − grown by HFCVD (hot filament chemical vapor deposition)
and MPCVD (microwave plasma CVD) on Si substrate − have been
measured together with microscopic growth law and nucleation kinetics
that was obtained by direct counting of crystals. The experimental
crystal size distribution functions exhibit a power law behavior that has
been interpreted, in ref. [36], based on Eq. (17).

The approach presented in sect.2.2 can be employed to have an
insight into the growth kinetics when the PDF is known, and fluctuations
are negligible. For instance, constant nucleation rate and a growth rate
of crystal of the form dv

dt∝eαv (with constant α) leads to the exponential
PDF, f∝e− αv (see [16] for the PDF expression for growth rate depending
on crystal size). On the other hand, similar PDF is also consistent with an
exponential decay of the nucleation rate, I∝e− τ/τN , and a logarithmic
behavior of crystal growth with finite asymptotic size. Notably, this kind
of distribution has been measured in experiments on crystal (plagio-
clase) formation during cooling of basaltic liquid, under isothermal and
non-isothermal conditions [37,38]. Furthermore, for a constant rate of
crystal growth and an exponential decay (in time) of the nucleation rate,
the PDF increases exponentially up to the maximum crystal size. On the
other hand, constant rates of both nucleation and growth imply a uni-
form PDF, if fluctuations are negligible.

In conclusion, in this paper we derive the FP equation for modeling
the PDF of crystal size in phase transformations ruled by progressive
nucleation and growth. The PDF is modeled as the superposition of the
PDF of τ-crystals (τ-PDF). It is shown that the coefficients of growth and
diffusion of the FP equation are appropriate averages of the fτ. The
functional form of the coefficients is investigated for the Gaussian,
lognormal and gamma τ-PDFs. For time dependence of growth and
fluctuation terms in accord with a simple exponential, the fτ is either

Fig. 7. Plot of the ατ (red solid line) and v(∞, τ) (black dashed line) quantities
as a function of reduced time τ. The asymptotic value of the τ-crystal population
has been multiplied by a constant factor (2/c ≅ 30).

Fig. 8. PDFs for KJMA growth where the fτ
ʹs are given by one-parameter

gamma distribution. The parameter is τ-dependent according to the function
of Fig. 7. Time values are: t = 0.5(blue solid triangles), t = 0.8 (green solid
squares) and t = 1.4 (red solid circles). The asymptotic PDF for site saturated
nucleation, namely the one parameter Gamma distribution with α3D = 5.586, is
displayed as dashed line.
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Gaussian or lognormal, subject to the dependence of the coefficients
with crystal size (sections 2.3.1 and 2.3.2.1), where the nucleation rate
matches a stretched exponential. For size independent coefficients
(section 2.2) and vanishing fluctuations, lognormal-like PDF stems from
the functional form of the nucleation rate, that is a stretched exponential
with n = 2 [12]. In fact, in the absence of fluctuations the PDF is a
truncated lognormal where the cut-off in the volume domain is removed
once fluctuations are included. This also occurs for the lognormal fτ
(section 2.3.2.1) where, in the absence of fluctuations, the volume
cannot exceed the value v(0,∞) = eωτG . However, in this limiting case
the whole distribution is not lognormal; its functional form is deter-
mined by the nucleation rate. We found that the time constant for
nucleation and the strength of the fluctuation affect the distribution to a
greater extent. On the other side, the time constant for fluctuation does
not affect the distribution, markedly, apart from the lognormal case at
low τF́ (section 2.3.2.1).

For KJMA compliant transformations the τ-PDF is the one-parameter
gamma distribution in which the parameter is a function of actual time
and birth time of nuclei. At odd with the previous cases, the Aτ(v, t)
coefficient, entering the FP equation for fτ, depends on τ. It is found that
in this case the coefficient for the FP equation of the whole PDF needs to
be computed as τ-average of Aτ over the [I(τ)fτ] function. Computations
of the mean growth rate, A, as a function of time and crystal volume,
have been done. As time increases the A vs v function deviates from the
initial linear trend A(v, t→0) = A0(v, ∞) = v(∞, 0) − v, giving rise to
maximum in the v domain and a decreasing A for given v.
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Appendices

A) Definition of averages over nucleation rate

Let us consider the probability entering Eq. (9):

I(τ)fτ(v, t)dτ
∫

I(τ)fτ(v, t)dτ =
I(τ)fτ(v, t)dτdv

dv
∫

I(τ)fτ(v, t)dτ. (A1)

The numerator in the second fraction is equal to the number of crystals nucleated between τ, τ+dτ with volume, at time t, in the range v,v + dv. In
fact, fτ(v, t)dv is the conditional probability a τ-nucleus, (i.e. formed between τ,τ + dτ) has volume in the range v, v+dv (at time t), i.e. ΔN(τ,τ+dτ;v,v+dv)

I(τ)dτ =

fτ(v, t)dv, from which ΔN(τ, τ+τ; v, v+dv) = I(τ)fτ(v, t)dτdv.

Fig. 9. Trend of the average value of A coefficient (for κ=1) with crystal volume, for several values of reduced time, t: t = 0.3(green triangles), t = 0.5 (blue solid
squares), t = 0.8 (red solid circles), and t = 1 (black solid diamonds). The black dashed line is the function A0 = v(∞,0) − v, that is the limit of A for t→0.
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The denominator in the last fraction of Eq. (A1) is equal to the total number of crystals, at time t, with volume in the range v,v + dv: dv
∫ t

0 I(τ)fτ(v,
t)dτ = ΔN(0, t; v, v + dv). As a consequence, the ratio above equals ΔN(τ,τ+dτ;v,v+dv)

ΔN(0,t;v,v+dv) that is the probability that a nucleation event occurs between τ and
τ +dτ and leads to a nucleus with volume in the range (v,v + dv) at time t.

B) Solution of the FP equation for size-independent a and b coefficients

In this Appendix we discuss the solution of Kolmogorov’s second equation for fτ(v, t) in the limiting case of size independent a and b coefficients:

∂fτ(v, t)
∂t

= −
∂[aτ(t)fτ(v, t) ]

∂v
+

∂2[bτ(t)fτ(v, t) ]
∂v2

, (B1)

with bτ(t) = Bτ(t)/2 and initial condition fτ(v, τ) = δ(v − v0). The Fourier transform of this equation, in the v variable, gives the following ordinary
differential equation (t > τ),

∂fτ(ω, t)
∂t

= − iaτ(t)ωfτ(ω, t) − ω2bτ(t)fτ(ω, t) (B2)

with solution fτ(ω, t) = e− iω[v0+φ1(t,τ)]e− ω2φ2(t,τ) where φ1(t, τ) =
∫ t

τ aτ(x)dx and φ2(t, τ) =
∫ t

τ bτ(x)dx. The inverse Fourier transform of Eq. (B2) even-
tually provides,

fτ(v, t) =
1
̅̅̅̅̅̅̅̅̅̅̅
4πφ2

√ e−
(v0+φ1(t,τ)− v)2

4φ2 . (B3)

For aτ(t) ≡ a(t) = γe− αt the quantity v0 +φ1(t, τ) = ξ(t, τ) = v0 +γ
α (e

− ατ − e− αt) is the average value of v over fτ. The Dirac delta distribution is
recovered in the limit φ2→0 (i.e. B→0).

C) Solution of the FP equation for a = a1(t)v and b = 0

In this case the FP equation is

∂f(v, t)
∂t

= −
a1(t)∂[vf(v, t) ]

∂v
. (C1)

By setting a1(t)∂t = ∂t́ and F(v, t́ ) = vf(v, t(tʹ)) the equation becomes,

∂F(v, t́ )
∂t́

= −
∂[F(v, tʹ) ]

∂lnv
. (C2)

The solution of Eq. (C2) is in the form F = Φ(lnv − t́ ), namely f(v, t) = 1
v Φ(lnv − lnu(t)), with lnu(t) =

∫ t
0 a1(x)dx. Therefore, the PDF is conserved in

time and for Dirac delta PDF, at t = 0, Φ(•) = δ(•) and the solution is f(v, t) = 1
v δ(lnv − lnv(t)), where u(t) is the average value of v (Eq. (25a)).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jcrysgro.2024.127970.

Data availability

Data will be made available on request.

References

[1] S. Torquato, H.W. Haslach Jr, Random heterogeneous materials: microstructure
and macroscopic properties, Appl. Mech. Rev. 55 (2002) B62–B63.

[2] K.K. Alaneme, E.A. Okotete, Recrystallization mechanisms and microstructure
development in emerging metallic materials: A review, J. Sci.: Adv. Mater. Devices
4 (2019) 19–33.

[3] B.R. Lawn, R.F. Cook, Probing material properties with sharp indenters: a
retrospective, J. Mater. Sci. 47 (2012) 1–22, https://doi.org/10.1007/s10853-011-
5865-1.

[4] M. Castro, A. Sánchez, F. Domínguez-Adame, Lattice model for kinetics and grain-
size distribution in crystallization, Phys. Rev. B 61 (2000) 6579–6586, https://doi.
org/10.1103/PhysRevB.61.6579.

[5] P.R. Rios, J.D.C.P.T.D. Oliveira, V.T.D. Oliveira, J.A.D. Castro, Microstructural
descriptors and cellular automata simulation of the effects of non-random nuclei
location on recrystallization in two dimensions, Materials Research 9 (2006)
165–170.

[6] D. Crespo, T. Pradell, Evaluation of time-dependent grain-size populations for
nucleation and growth kinetics, Phys. Rev. B 54 (1996) 3101–3109, https://doi.
org/10.1103/PhysRevB.54.3101.

[7] D. Crespo, T. Pradell, M.T. Clavaguera-Mora, N. Clavaguera, Microstructural
evaluation of primary crystallization with diffusion-controlled grain growth, Phys.
Rev. B 55 (1997) 3435–3444, https://doi.org/10.1103/PhysRevB.55.3435.

[8] J. Farjas, P. Roura, Cell size distribution in a random tessellation of space governed
by the Kolmogorov-Johnson-Mehl-Avrami model: Grain size distribution in

crystallization, Phys. Rev. B 78 (2008) 144101, https://doi.org/10.1103/
PhysRevB.78.144101.

[9] E. Pineda, P. Bruna, D. Crespo, Cell size distribution in random tessellations of
space, Phys. Rev. E 70 (2004) 066119, https://doi.org/10.1103/
PhysRevE.70.066119.

[10] A.N. Shiryayev, Selected works of AN Kolmogorov: Volume II probability theory
and mathematical statistics, Springer Science & Business Media, 1992. http
s://books.google.com/books?hl=it&lr=&id=04R8mqrUIb0C&oi=fnd&p
g=PR1&dq=Selected+works+of+A.N.+Kolmogorov,+Vol.+II,+Probability+The
ory+and+Mathematical+Statistics,+A.N.+Shiryayev+(Ed),+Kluwer+Academic+
Publisher+1992,+Dordrecht,+Boston,+London,+chapter+9.&ots=kRgldDxp
Qb&sig=S07XP5lXCjhJ4XR1_wLvMajeyyo (accessed July 31, 2024).

[11] N.G. Van Kampen, Stochastic processes in physics and chemistry, Elsevier, 1992.
https://books.google.com/books?hl=it&lr=&id=3e7XbMoJzmoC&oi=fnd
&pg=PP2&dq=1)%09N.G.+Van+Kampen,+Stochastic+Processes+in+Physics+
and+Chemistry,+North+Holland+Publishing+Company,+1981,+Amsterdam,+
New+York,+Oxford&ots=Afu5vZpcpM&sig=aUyqnQd04VWf9DwGBFJE-lV7uRU
(accessed July 31, 2024).

[12] R.B. Bergmann, A. Bill, On the origin of logarithmic-normal distributions: An
analytical derivation, and its application to nucleation and growth processes,
J. Crystal Growth 310 (2008) 3135–3138.

[13] A. Bill, R.B. Bergmann, Development of the Grain Size Distribution During the
Crystallization of an Amorphous Solid, MRS Online Proceedings Library (OPL)
1308 (2011) mrsf10-1308.

[14] V.G. Dubrovskii, Analytic form of the size distribution in irreversible growth of
nanoparticles, Phys. Rev. E 99 (2019) 012105, https://doi.org/10.1103/
PhysRevE.99.012105.

[15] M. Tomellini, Fokker-Planck equation for the particle size distribution function in
KJMA transformations, Physica A: Statistical Mechanics and Its Applications 615
(2023) 128515.

M. Tomellini and M. De Angelis Journal of Crystal Growth 650 (2025) 127970 

10 

https://doi.org/10.1016/j.jcrysgro.2024.127970
http://refhub.elsevier.com/S0022-0248(24)00408-1/h0005
http://refhub.elsevier.com/S0022-0248(24)00408-1/h0005
http://refhub.elsevier.com/S0022-0248(24)00408-1/h0010
http://refhub.elsevier.com/S0022-0248(24)00408-1/h0010
http://refhub.elsevier.com/S0022-0248(24)00408-1/h0010
https://doi.org/10.1007/s10853-011-5865-1
https://doi.org/10.1007/s10853-011-5865-1
https://doi.org/10.1103/PhysRevB.61.6579
https://doi.org/10.1103/PhysRevB.61.6579
http://refhub.elsevier.com/S0022-0248(24)00408-1/h0025
http://refhub.elsevier.com/S0022-0248(24)00408-1/h0025
http://refhub.elsevier.com/S0022-0248(24)00408-1/h0025
http://refhub.elsevier.com/S0022-0248(24)00408-1/h0025
https://doi.org/10.1103/PhysRevB.54.3101
https://doi.org/10.1103/PhysRevB.54.3101
https://doi.org/10.1103/PhysRevB.55.3435
https://doi.org/10.1103/PhysRevB.78.144101
https://doi.org/10.1103/PhysRevB.78.144101
https://doi.org/10.1103/PhysRevE.70.066119
https://doi.org/10.1103/PhysRevE.70.066119
https://books.google.com/books?hl=it&amp;lr=&amp;id=04R8mqrUIb0C&amp;oi=fnd&amp;pg=PR1&amp;dq=Selected+works+of+A.N.+Kolmogorov,+Vol.+II,+Probability+Theory+and+Mathematical+Statistics,+A.N.+Shiryayev+(Ed),+Kluwer+Academic+Publisher+1992,+Dordrecht,+Boston,+London,+chapter+9.&amp;ots=kRgldDxpQb&amp;sig=S07XP5lXCjhJ4XR1_wLvMajeyyo
https://books.google.com/books?hl=it&amp;lr=&amp;id=04R8mqrUIb0C&amp;oi=fnd&amp;pg=PR1&amp;dq=Selected+works+of+A.N.+Kolmogorov,+Vol.+II,+Probability+Theory+and+Mathematical+Statistics,+A.N.+Shiryayev+(Ed),+Kluwer+Academic+Publisher+1992,+Dordrecht,+Boston,+London,+chapter+9.&amp;ots=kRgldDxpQb&amp;sig=S07XP5lXCjhJ4XR1_wLvMajeyyo
https://books.google.com/books?hl=it&amp;lr=&amp;id=04R8mqrUIb0C&amp;oi=fnd&amp;pg=PR1&amp;dq=Selected+works+of+A.N.+Kolmogorov,+Vol.+II,+Probability+Theory+and+Mathematical+Statistics,+A.N.+Shiryayev+(Ed),+Kluwer+Academic+Publisher+1992,+Dordrecht,+Boston,+London,+chapter+9.&amp;ots=kRgldDxpQb&amp;sig=S07XP5lXCjhJ4XR1_wLvMajeyyo
https://books.google.com/books?hl=it&amp;lr=&amp;id=04R8mqrUIb0C&amp;oi=fnd&amp;pg=PR1&amp;dq=Selected+works+of+A.N.+Kolmogorov,+Vol.+II,+Probability+Theory+and+Mathematical+Statistics,+A.N.+Shiryayev+(Ed),+Kluwer+Academic+Publisher+1992,+Dordrecht,+Boston,+London,+chapter+9.&amp;ots=kRgldDxpQb&amp;sig=S07XP5lXCjhJ4XR1_wLvMajeyyo
https://books.google.com/books?hl=it&amp;lr=&amp;id=04R8mqrUIb0C&amp;oi=fnd&amp;pg=PR1&amp;dq=Selected+works+of+A.N.+Kolmogorov,+Vol.+II,+Probability+Theory+and+Mathematical+Statistics,+A.N.+Shiryayev+(Ed),+Kluwer+Academic+Publisher+1992,+Dordrecht,+Boston,+London,+chapter+9.&amp;ots=kRgldDxpQb&amp;sig=S07XP5lXCjhJ4XR1_wLvMajeyyo
https://books.google.com/books?hl=it&amp;lr=&amp;id=04R8mqrUIb0C&amp;oi=fnd&amp;pg=PR1&amp;dq=Selected+works+of+A.N.+Kolmogorov,+Vol.+II,+Probability+Theory+and+Mathematical+Statistics,+A.N.+Shiryayev+(Ed),+Kluwer+Academic+Publisher+1992,+Dordrecht,+Boston,+London,+chapter+9.&amp;ots=kRgldDxpQb&amp;sig=S07XP5lXCjhJ4XR1_wLvMajeyyo
https://books.google.com/books?hl=it&amp;lr=&amp;id=3e7XbMoJzmoC&amp;oi=fnd&amp;pg=PP2&amp;dq=1)%09N.G.+Van+Kampen,+Stochastic+Processes+in+Physics+and+Chemistry,+North+Holland+Publishing+Company,+1981,+Amsterdam,+New+York,+Oxford&amp;ots=Afu5vZpcpM&amp;sig=aUyqnQd04VWf9DwGBFJE-lV7uRU
https://books.google.com/books?hl=it&amp;lr=&amp;id=3e7XbMoJzmoC&amp;oi=fnd&amp;pg=PP2&amp;dq=1)%09N.G.+Van+Kampen,+Stochastic+Processes+in+Physics+and+Chemistry,+North+Holland+Publishing+Company,+1981,+Amsterdam,+New+York,+Oxford&amp;ots=Afu5vZpcpM&amp;sig=aUyqnQd04VWf9DwGBFJE-lV7uRU
https://books.google.com/books?hl=it&amp;lr=&amp;id=3e7XbMoJzmoC&amp;oi=fnd&amp;pg=PP2&amp;dq=1)%09N.G.+Van+Kampen,+Stochastic+Processes+in+Physics+and+Chemistry,+North+Holland+Publishing+Company,+1981,+Amsterdam,+New+York,+Oxford&amp;ots=Afu5vZpcpM&amp;sig=aUyqnQd04VWf9DwGBFJE-lV7uRU
https://books.google.com/books?hl=it&amp;lr=&amp;id=3e7XbMoJzmoC&amp;oi=fnd&amp;pg=PP2&amp;dq=1)%09N.G.+Van+Kampen,+Stochastic+Processes+in+Physics+and+Chemistry,+North+Holland+Publishing+Company,+1981,+Amsterdam,+New+York,+Oxford&amp;ots=Afu5vZpcpM&amp;sig=aUyqnQd04VWf9DwGBFJE-lV7uRU
http://refhub.elsevier.com/S0022-0248(24)00408-1/h0060
http://refhub.elsevier.com/S0022-0248(24)00408-1/h0060
http://refhub.elsevier.com/S0022-0248(24)00408-1/h0060
http://refhub.elsevier.com/S0022-0248(24)00408-1/h9005
http://refhub.elsevier.com/S0022-0248(24)00408-1/h9005
http://refhub.elsevier.com/S0022-0248(24)00408-1/h9005
https://doi.org/10.1103/PhysRevE.99.012105
https://doi.org/10.1103/PhysRevE.99.012105
http://refhub.elsevier.com/S0022-0248(24)00408-1/h0075
http://refhub.elsevier.com/S0022-0248(24)00408-1/h0075
http://refhub.elsevier.com/S0022-0248(24)00408-1/h0075


[16] M. Tomellini, On the grain size distribution function in KJMA compliant growth,
Journal of Crystal Growth 584 (2022) 126579.
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