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Abstract

We prove the existence of infinitely many solutions for a class of elliptic Dirichlet
problems with non-symmetric nonlinearities. In particular, this result gives a positive
answer to a well known conjecture formulated by A. Bahri and P.L. Lions, at least when
the domains are cubes of Rn.
The proof is based on a minimization method which does not require the use of techniques
of deformation from the symmetry. This method allows us to piece together solutions of
Dirichlet problems in suitable subdomains, so we obtain infinitely many nodal solutions
with a prescribed nodal structure.
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1 Introduction

In this paper we are concerned with Dirichlet problems of the form

−∆u = |u|p−1u+ ψ in Ω, u = 0 on ∂Ω (1.1)

where Ω is a bounded domain of Rn with n ≥ 1, ψ ∈ L2(Ω), p > 1 and p < n+2
n−2 when n ≥ 3.

The solutions of problem (1.1) are the critical points of the energy functional Eψ : H1
0 (Ω)→ R,

defined by

Eψ(u) =
1

2

∫
Ω
|∇u|2dx− 1

p+ 1

∫
Ω
|u|p+1dx−

∫
Ω
ψudx (1.2)

where, under our assumptions, the exponent p+ 1 is less than the critical Sobolev exponent
2∗ = 2n

n−2 for n ≥ 3.
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If ψ ≡ 0 in Ω, the functional Eψ is even, so the equivariant Lusternik-Schnirelmann theory for
Z2-symmetric sets may be applied and guarantees the existence of infinitely many solutions
(see for instance [1, 3, 9, 18–20, 29, 30, 37, 39]).
A natural question, which goes back to the beginning of the eighties, is whether the infinite
number of solutions still persists for ψ 6≡ 0.
In particular, this question was raised to the attention by Rabinowitz in his monograph on
minmax methods (see [39, Remark 10.58]). In [4] Bahri proved that, if n ≥ 3 and 1 < p < n+2

n−2 ,

then there exists an open dense set of ψ in L2(Ω) such that problem (1.1) admits infinitely
many solutions. In [8] Bahri and Lions proved that, if n ≥ 3 and 1 < p < n

n−2 , then

problem (1.1) admits infinitely many solutions for every ψ ∈ L2(Ω). These results suggest
the following conjecture, proposed by Bahri and Lions in [8]: the multiplicity result obtained
in [8] holds also under the more general assumption 1 < p < n+2

n−2 .
In the present paper we prove that, if the domain Ω is a cube of Rn, then problem (1.1) has
infinitely many solutions for every ψ ∈ L2(Ω). Thus, for n ≥ 3, our result shows that the
Bahri-Lions conjecture is true at least when Ω is a cube of Rn.
In order to show that the infinite number of solutions we have for ψ ≡ 0 persists under
perturbations, a detailed analysis was originally carried on in [2, 3, 5–8, 26, 31, 32, 38, 41, 45]
by Ambrosetti, Bahri, Beresticki, Ekeland, Ghoussoub, Krasnoselskyii, Lions, Marino, Prodi,
Rabinowitz, Struwe and Tanaka by introducing new perturbation methods.
More recently, a new approach to tackle the break of symmetry in elliptic problems has been
developed by Bolle, Chambers, Ghoussoub and Tehrani (see [10, 11, 17]). However, that
approach (which works also for more general nonlinear problems) did not allow to solve the
Bahri-Lions conjecture.
Related results can be found also in other, more recent, papers (see for example [40] and
references therein).
In the present paper we develop a method introduced in [34] in order to construct infinitely
many nodal solutions of problem (1.1), having a prescribed nodal structure.
The idea is to piece together the solutions of Dirichlet problems in suitable subdomains of
Ω. A similar idea has been first used by Struwe in earlier papers (see [41–43] and references
therein). We consider as nodal regions some subdomains of Ω that are deformations of cubes
by suitable Lipschitz maps (so we obtain nodal solutions having a “check” nodal structure).
Notice that Lipschitz conditions combined with the covering of Rn by cubes with vertices in
Zn have been also used in some recent papers by Rabinowitz and Byeon in order to construct
solutions with a prescribed pattern for the Allen-Cahn model equation (see [14, 15] and
references therein).
The main result of the present paper is stated in Theorem 2.1 (which is a direct consequence
of Proposition 2.2) and says that if Ω is a cube of Rn, n ≥ 1, p > 1 and p < n+2

n−2 when n > 2,

then for all ψ ∈ L2(Ω) there exist infinitely many nodal solutions of problem (1.1), having
as nodal structure suitable partitions of Ω in subdomains that are Lipschitz deformations
of arbitrarily small cubes. More precisely, in Proposition 2.2 we prove that there exists
k̄ ∈ N such that for all positive integer k ≥ k̄ there exist at least two solutions uk(x) and
vk(x) of problem (1.1) such that the nodal regions of the functions uk

(
x
k

)
and vk

(
x
k

)
, after

translations, tend to the cube Ω as k → ∞. Moreover, the number of nodal regions of uk,
vk and their energy Eψ(uk), Eψ(vk) tend to infinity as k → ∞, while the size of the nodal
regions tends to zero.
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Notice that, in dimension n = 1, the existence of infinitely many solutions for all ψ in L2(Ω)
follows from a result obtained by Ehrmann in [25] (see also [24, 28] for related results).
However, the method used by Ehrmann relies on a shooting argument, typical of ordinary
differential equations, combined with counting the oscillations of the solutions in the interval
Ω. On the contrary, in the present paper we use a method which is more similar to the one
introduced by Nehari in [35], that can be in a natural way extended to the case n > 1. In
fact, Nehari’s method was used by Coffman in [19, 20] and, independently, by Hempel in
[29, 30] to study an analogous problem for partial differential equations.
More recently, Nehari’s method has been used also by Conti, Terracini and Verzini to study
optimal partition problems, existence of changing sign solutions etc. (see [21–23, 46]).
Let us remark that Nehari consider an odd differential operator (so the corresponding energy
functional is even) and prove that for every positive integer k there exists a solution having
exactly k nodal regions. On the contrary, as Ehrmann in [25], we find solutions with a large
number of nodal regions. However, let us point out that our multiplicity result is sharp
because, as we proved in [34, Proposition 3.5], ψ can be chosen in L2(Ω) in such a way that
problem (1.1) does not have solutions with a small number of nodal regions: more precisely,
for every positive integer h there exists ψh in L2(Ω) such that every solution of problem (1.1)
with ψ = ψh has at least h nodal regions.
Now, let us describe the method we use to prove our result. For every cube Ω of Rn and every
positive integer k, let us consider the kn cubic open subdomains Ck1 , C

k
2 , . . . , C

k
kn , having all

the same size, such that Ω = ∪kni=1C
k
i . So, these subdomains are pairwise disjoint and, for all

i ∈ {1, . . . , kn} the cube kCki is a translation of the cube Ω.
Moreover, for all L ∈]0, 1[, let us consider the set DL of all the deformations T : Ω→ Ω such
that T differs from the identity map in Ω by a Lipschitz function with Lipschitz constant L,
T (Ω) = Ω and T (F ) = F for every face F of the cube Ω. Notice that, since L ∈]0, 1[, every
deformation T ∈ DL is a bilipschitz map in Ω. Then, for all T in DL and k in N, by using a
Nehari type minmax argument in every subdomain T (Cki ) with i ∈ {1, . . . , kn}, we construct
two distinct nodal functions uTk and vTk in H1

0 (Ω) whose nodal regions are the subdomains
T (Cki ), for i = 1, . . . , kn, and such that, for k large enough, uTk and vTk satisfy equation (1.1)
in each nodal region and are solutions of the Dirichlet problem (1.1) in Ω when, in addition,
they satisfy a suitable stationary property. Moreover, the construction of uTk and vTk shows
that vTk behaves as −uTk when k →∞.
Now, for all k ∈ N, we minimize the energy functional Eψ in the set {uTk : T ∈ DL};
moreover, we show that, if the minimum is achieved by a map TLk in DLk with Lk ∈]0, L[,

then the corresponding function u
TLk
k satisfies the stationarity condition which allows us to

conclude that it is a solution of problem (1.1) for k large enough.
Indeed, we show that there exists a sequence (Lk)k of positive numbers such that limk→∞ Lk =

0 and TLk ∈ DLk ∀k ∈ N, so Lk ∈]0, L[ for k large enough and the solution uk = u
TLk
k satisfies

all the assertions of Proposition 2.2 (in analogous way one can construct the solutions vk that
behaves as −uk when k →∞).
In particular, we obtain that TLk tends as k → ∞ to the identity map in Ω and that the
rescaled nodal regions kTLk (Cki ), after translations, tend to the cube Ω as k →∞, uniformly
with respect to i ∈ {1, . . . , kn}.
The existence of such a sequence (Lk)k, which plays a crucial role in the proof, is strictly
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related to a minimality property of the cubes in Rn. In fact, the functions uTk
(
x
k

)
, suitably

rescaled, tend as k → ∞ to solutions of the equation (1.1) with ψ = 0. Therefore, since the
effect of the term ψ tends to vanish as k →∞, the rescaled nodal regions kTLk (Cki ), suitably
translated, tend to polyhedra as k → ∞. Among these polyhedra, the cubes of Rn are the
unique minimizers of the “shape factor” ϕ(χ) defined by

ϕ(χ) = m(χ)|χ|2
(

1
p+1
− 1

2∗

)
, (1.3)

where |χ| is the volume of χ and

m(χ) = min

{∫
χ
|∇U |2dx : U ∈ H1

0 (χ),

∫
χ
|U |p+1dx = 1

}
(1.4)

(notice that ϕ(χ) depends only on the shape of χ and not on its size because it is invariant
with respect to translations and rescaling of χ). Therefore, taking into account the asymptotic

behaviour of Eψ(u
TLk
k ) as k →∞, the minimality of TLk implies that ϕ(kTLk (Cki ))→ ϕ, where

ϕ denotes the shape factor of every cube of Rn, while the volumes |kTLk (Cki )| → 1 as k →∞,
uniformly with respect to i ∈ {1, . . . , kn}.
As a consequence, taking also into account the conditions of TLk on ∂Ω, we infer that, after
translations, the rescaled nodal regions kTLk (Cki ) tend to Ω as k → ∞ and there exists a
sequence (Lk)k having the desired properties.
It is clear that our method does not require techniques of deformations from the symmetry and
may be applied to more general problems. For example, it may be easily adapted to deal with
the case where in problem (1.1) the nonlinear term |u|p−1u is replaced by c+(u+)p− c−(u−)p

with c+ and c− two positive constants. Moreover, this method may be adapted to work even
in case of nonlinear elliptic equations involving critical Sobolev exponents. For example,
it allows us to obtain in this case a multiplicity result similar to Theorem 2.1, which is
announced in Theorem 3.18.

2 Variational framework and statement of the main results

Our aim is to prove the following theorem.

Theorem 2.1. Let Ω be a cube of Rn with n ≥ 1, let p > 1 and p < n+2
n−2 when n ≥ 3. Then,

for every ψ ∈ L2(Ω), problem (1.1) admits infinitely many solutions.

Without any loss of generality, we can assume that

Ω = {x = (x1, . . . , xn) ∈ Rn : 0 < xi < 1 for i = 1, . . . , n}. (2.1)

For all positive integer k and for all z ∈ Zn, let us set

Ckz =
1

k
(z + Ω) and σ(z) = (−1)

∑n
i=1 zi (2.2)

(thus, in particular, we have C1
0 = Ω).
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Notice that for all k ∈ N we have Ckz ⊆ Ω if and only if 0 ≤ zi ≤ k − 1 for i = 1, . . . , n;
moreover, if we set

Zk = {z = (z1, . . . , zn) ∈ Zn : 0 ≤ zi ≤ k − 1 for i = 1, . . . , n}, (2.3)

we have
Ω =

⋃
z∈Zk

C
k
z and Ckz ∩ Ckz′ = ∅ for z 6= z′ (z, z′ ∈ Zk). (2.4)

Then, the following proposition holds (it obviously implies Theorem 2.1).

Proposition 2.2. Under the assumptions of Theorem 2.1, if Ω is the cube (2.1), for all
ψ ∈ L2(Ω) there exists k̄ ∈ N such that for every k ≥ k̄ problem (1.1) admits two solutions uk
and vk having the following properties (here we consider uk and vk extended by the value zero
in Rn \ Ω). For all k ≥ k̄ there exist two bilipschitz maps Tk,u, Tk,v : Ω → Ω (with Lipschitz
constants independent of k) such that for every choice of zk in Zk the functions Uzk and Vzk
defined by

Uzk(x) =
σ(zk)

k
2
p−1

uk

[
x

k
+ Tk,u

(
zk

k

)]
∀x ∈ Rn, ∀k ≥ k̄, (2.5)

Vzk(x) =
−σ(zk)

k
2
p−1

vk

[
x

k
+ Tk,v

(
zk

k

)]
∀x ∈ Rn, ∀k ≥ k̄, (2.6)

restricted to Ω, both converge as k →∞ to a positive solution of problem (1.1) with ψ ≡ 0 in
Ω, satisfying

E0(U) = min{E0(U) : U ∈ H1
0 (Ω) \ {0}, E′0(U)[U ] = 0}. (2.7)

Moreover, the sequences (Tk,u)k and (Tk,v)k both converge to the identity map uniformly in

Ω, while the domains k
[
Tk,u

(
Ck
zk

)
− Tk,u

(
zk

k

)]
and k

[
Tk,v

(
Ck
zk

)
− Tk,v

(
zk

k

)]
tend to Ω as

k →∞ for every choice of zk in Zk.

The proof is reported in Section 3.

In order to prove Theorem 2.1 and Proposition 2.2, we proceed as follows. For every t ∈ [0, 1]
and i ∈ {1, . . . , n}, let us consider the set

F ti = {(x1, . . . , xn} ∈ Ω : xi = t} (2.8)

(in particular, if t = 0 or t = 1, F ti is a face of the cube Ω).
Now, let us fix L ∈]0, 1[ and consider the set DL of the admissible deformations of Ω defined
by

DL = {T : Ω→ Ω : T (Ω) = Ω, T (F ti ) = F ti for t = 0, 1, i = 1, . . . , n,

|T (x)− T (y)− x+ y| ≤ L|x− y| ∀x, y ∈ Ω}.
(2.9)

Notice that for every deformation T ∈ DL one can write T (x) = I(x) + S(x) where I(x) = x
∀x ∈ Ω and S : Ω → Rn is a Lipschitz continuous function with Lipschitz constant L.
Moreover, we have

(1− L)|x− y| ≤ |T (x)− T (y)| ≤ (1 + L)|x− y| ∀x, y ∈ Ω (2.10)
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where 1 − L > 0 because we assumed L ∈]0, 1[. Thus, T is invertible and both T and T−1

are Lipschitz continuous functions in Ω.
Other important consequences of the definition of DL are presented in next proposition where
we describe some geometrical properties of the deformations T (F ti ) of the sets F ti with respect
to the straight lines orthogonal to F ti (these properties motivate the introduction of this class
of admissible deformations).

Proposition 2.3. Let T ∈ DL and L ∈]0, 1[. Then

a) for all t ∈ [0, 1], i ∈ {1, . . . , n} and y ∈ Ω there exists a unique x ∈ F ti such that
Pi ◦ T (x) = Pi(y), where Pi denotes the orthogonal projection of Rn on the subspace
{x = (x1, . . . , xn) ∈ Rn : xi = 0} (that is, every straight line orthogonal to F ti meets
T (F ti ) in a unique point);

b) for all t′, t′′ in [0, 1] such that t′ < t′′ and for all x′ ∈ F t
′
i and x′′ ∈ F t

′′
i such that

Pi ◦ T (x′) = Pi ◦ T (x′′), we have Ti(x
′) < Ti(x

′′) (that is, the deformation T (F ti ) of the
set F ti meets every straight line orthogonal to F ti in a unique point whose ith coordinate
increases as t increases).

Proof. In order to prove (a), first notice that, for all t ∈ [0, 1], i ∈ {1, . . . , n} and y ∈ Ω, there
exists x ∈ F ti such that Pi ◦ T (x) = Pi(y).
In fact, let us consider the function Pi◦T : F ti → F 0

i , which is a continuous function satisfying

Pi ◦ T (F ti ∩ F 0
j ) ⊆ F 0

i ∩ F 0
j , Pi ◦ T (F ti ∩ F 1

j ) ⊆ F 0
i ∩ F 1

j ∀j ∈ {1, . . . , n} \ {i}. (2.11)

Therefore, since Pi(y) ∈ F 0
i , there exists x ∈ F ti such that Pi ◦ T (x) = Pi(y) (as follows from

[33]).
Now, let us prove that such a x is unique. Arguing by contradiction, assume that there exists
another x̃ in F ti , x̃ 6= x, such that Pi ◦ T (x̃) = Pi(y), which implies

[T (x)− T (x̃)] · (x− x̃) = 0. (2.12)

Since T ∈ DL with L ∈]0, 1[, we infer that

|T (x)− T (x̃) + x̃− x| ≤ L|x− x̃| (2.13)

and, as a consequence,
|T (x)− T (x̃) + x̃− x|2 < |x− x̃|2 (2.14)

because x 6= x̃. On the other hand, from (2.12) we obtain

|T (x)− T (x̃) + x̃− x|2 = |T (x)− T (x̃)|2 + |x̃− x|2 − 2[T (x)− T (x̃)] · (x− x̃)

= |T (x)− T (x̃)|2 + |x̃− x|2

> |x̃− x|2
(2.15)

in contradiction with (2.14).
Thus, (a) is completely proved.
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In order to prove (b), we argue again by contradiction and assume that there exist t′, t′′ in
[0, 1] such that t′ < t′′ and x′ ∈ F t′i , x′′ ∈ F t′′i such that

Pi ◦ T (x′) = Pi ◦ T (x′′) and Ti(x
′) ≥ Ti(x′′). (2.16)

Notice that (2.16) implies
[T (x′)− T (x′′)] · (x′ − x′′) ≤ 0. (2.17)

Therefore, we obtain

|T (x′)− T (x′′) + x′′ − x′|2 = |T (x′)− T (x′′)|2 + |x′ − x′′|2 − 2[T (x′)− T (x′′)] · (x′ − x′′)
≥ |T (x′)− T (x′′)|2 + |x′ − x′′|2

≥ |x′ − x′′|2.
(2.18)

On the other hand, since T ∈ DL with L ∈]0, 1[ and x′ 6= x′′, we infer that

T (x′)− T (x′′) + |x′′ − x′|2 ≤ L2|x′ − x′′|2 < |x′ − x′′|2 (2.19)

in contradiction with (2.18).
Thus, we can conclude that, if Pi ◦ T (x′) = Pi ◦ T (x′′) and t′ < t′′, then Ti(x

′) < Ti(x
′′), so

the proof is complete.

Now, we exploit the class of admissible deformations DL in order to construct the solutions
uk and vk. We first construct the solutions uk (then one can proceed in a similar way to
construct the solutions vk). For all k ∈ N, z ∈ Zk and T ∈ DL with L ∈]0, 1[, let us set

Eψ(k, z, T ) = inf

{
Eψ : u ∈ H1

0 (T (Ckz )),

∫
T (Ckz )

|u|p+1dx = 1

}
. (2.20)

Since p < n+2
n−2 when n ≥ 3, one can easily verify that the infimum in (2.20) is achieved.

Moreover, for all k ∈ N and L ∈]0, 1[, also the infimum

inf{Eψ(k, z, T ) : z ∈ Zk, T ∈ DL} (2.21)

is achieved, as one can prove by standard arguments using Ascoli-Arzelà Theorem.
For the construction of the functions uk we need the following Lemmas.

Lemma 2.4. For all L ∈]0, 1[ we have

lim
k→∞

min{Eψ(k, z, T ) : z ∈ Zk, T ∈ DL} =∞ (2.22)

and there exists k(L) ∈ N such that, for all k ≥ k(L), z ∈ Zk and T ∈ DL, the infimum

inf

{
Eψ(u) : u ∈ H1

0 (T (Ckz )),

∫
T (Ckz )

|u|p+1dx < 1

}
(2.23)

is achieved by a unique minimizing function ũTk,z. Moreover, we have

lim
k→∞

sup

{∫
T (Ckz )

|∇ũTk,z|2dx : z ∈ Zk, T ∈ DL

}
= 0. (2.24)
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Proof. For all k ∈ N, let us consider zk ∈ Zk and Tk ∈ DL realizing the minimum (2.22) and
ūk ∈ H1

0 (T (Ck
zk

)) realizing the minimum Eψ(k, zk, Tk).

Let us extend the function ūk in all of Ω by the value zero in Ω \Ck
zk

. Since Tk ∈ DL ∀k ∈ N,
taking into account the second inequality in (2.10), we obtain

lim
k→∞

measTk(C
k
zk) = 0, (2.25)

so (up to a subsequence) ūk → 0 almost everywhere in Ω. It follows that

lim
k→∞

∫
Ω
|∇ūk|2dx =∞ (2.26)

otherwise, since p < n+2
n−2 for n ≥ 3, ūk → 0 also in Lp+1(Ω), which is impossible because∫

Ω |ūk|
p+1dx = 1 ∀k ∈ N. As a consequence, since

Eψ(k, zk, T
k) =

1

2

∫
Ω
|∇ūk|2dx−

1

p+ 1
−
∫

Ω
ūkψ dx, (2.27)

we obtain (2.22).
Notice that (2.22) implies that for all L ∈]0, 1[ there exists k(L) ∈ N satisfying

0 < min

{
Eψ(u) : u ∈ H1

0 (T (Ckz )),

∫
T (Ckz )

|u|p+1dx = 1

}
∀k ≥ k(L), ∀z ∈ Zk, ∀T ∈ DL.

(2.28)
Since Eψ(0) = 0, it follows by standard arguments that for all k ≥ k(L), z ∈ Zk and T ∈ DL

there exists ũTk,z ∈ H1
0 (T (Ckz )) such that

Eψ(ũTk,z) = min

{
Eψ(u) : u ∈ H1

0 (T (Ckz )),

∫
T (Ckz )

|u|p+1dx < 1

}
. (2.29)

Taking into account that

Eψ(ũTk,z) ≤ Eψ(0) = 0 ∀k ≥ k(L), ∀z ∈ Zk, ∀T ∈ DL, (2.30)

it follows that

sup

{∫
T (Ckz )

|∇ũTk,z|2dx : k ≥ k(L), z ∈ Zk, T ∈ DL

}
<∞. (2.31)

In order to prove (2.24), we argue by contradiction and assume that for all k ≥ k(L) there
exist zk ∈ Zk and Tk ∈ DL such that

lim inf
k→∞

∫
Tk(Ck

zk
)
|∇ũTk

k,zk
|2dx > 0. (2.32)

From (2.31) we infer that the sequence (ũTk
k,zk

)k (with ũTk
k,zk

extended by the value zero outside

Tk(C
k
zk

)) is bounded in H1
0 (Ω). Moreover, up to a subsequence, ũTk

k,zk
→ 0 as k →∞ almost
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everywhere in Ω because Tk ∈ DL, so meas(Tk(C
k
zk

)) → 0 as k → ∞. Therefore, ũTk
k,zk
→ 0

as k →∞ also in Lp+1(Ω). Then, from Eψ(ũTk
k,zk

) ≤ 0 ∀k ∈ N it follows easily that

lim sup
k→∞

∫
Tk(Ck

zk
)
|∇ũTk

k,zk
|2dx = 0 (2.33)

in contradiction with (2.32). Thus, we can conclude that (2.24) holds.
Finally, notice that the functional Eψ is strictly convex in a suitable neighborhood of zero.

Therefore, for k large enough, ũTk
k,zk

is the unique minimizing function for (2.23) for all z ∈ Zk
and T ∈ DL. So the proof is complete.

Lemma 2.5. For all k ≥ k(L), z ∈ Zk and T ∈ DL, there exists a function uTk,z in H1
0 (T (Ckz ))

such that uTk,z 6≡ ũTk,z, σ(z)[uTk,z − ũTk,z] ≥ 0 in T (Ckz ) and

Eψ(uTk,z) = Mψ(uTk,z)

= min{Mψ(u) : u ∈ H1
0 (T (Ckz )), u 6≡ ũTk,z, σ(z)[u− ũTk,z] ≥ 0 in T (Ckz )}

(2.34)

where, for all u ∈ H1
0 (T (Ckz )), Mψ(u) is defined by

Mψ(u) = max{Eψ(ũTk,z + t(u− ũTk,z)) : t ≥ 0}. (2.35)

Proof. First notice that the maximum in (2.35) is achieved for all u ∈ H1
0 (T (Ckz )) because p >

1. Now, let us consider a sequence (ui)i in H1
0 (T (Ckz )) such that ui 6≡ ũTk,z, σ(z)[ui− ũTk,z] ≥ 0

in T (Ckz ) ∀i ∈ N and

lim
i→∞

Mψ(ui) = inf{Mψ(u) : u ∈ H1
0 (T (Ckz )), u 6≡ ũTk,zk , σ(z)[u− ũTk,z] ≥ 0 in T (Ckz )}.

(2.36)
Then, let us set wi = ‖ui−ũTk,z‖

−1
Lp+1(ui−ũTk,z) and notice that, obviously, Mψ(ui) = Mψ(ũTk,z+

wi). Moreover notice that, since the sequence (wi)i is bounded in Lp+1, (2.36) implies that
it is bounded also in H1

0 . Since p < n+2
n−2 when n ≥ 3, it follows that (up to a subsequence)

(wi)i converges weakly in H1
0 , in Lp+1 and almost everywhere to a function ŵ ∈ H1

0 (T (Ckz )).
As a consequence, ‖ŵ‖Lp+1 = 1 and σ(z)ŵ ≥ 0 in T (Ckz ). Indeed, wi → ŵ as i→∞ strongly
in H1

0 (T (Ckz )). In fact, since we have the weak convergence, arguing by contradiction assume
that ‖wi‖2H1

0
does not converge to ‖ŵ‖2

H1
0

as i→∞, that is∫
T (Ckz )

|∇ŵ|2dx < lim
i→∞

∫
T (Ckz )

|∇wi|2dx, (2.37)

which, combined with the weak convergence, implies Mψ(ũ + ŵ) < limi→∞Mψ(ũ + wi).
Therefore, we obtain a contradiction because ŵ 6≡ 0 and, as a consequence, limi→∞Mψ(ũ+
wi) ≤ Mψ(ũ + ŵ) because of (2.36). Thus, we can conclude that wi → ŵ in H1

0 (T (Ckz )) as
i→∞, which imples limi→∞Mψ(ũ+ wi) = Mψ(ũ+ ŵ).
Moreover, since p > 1, there exists t̂ > 0 such that Eψ(ũTk,z + t̂ŵ) = Mψ(ũTk,z + t̂ŵ), so all the

assertions in Lemma 2.5 hold with uTk,z = ũTk,z + t̂ŵ.
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Remark 2.6. Notice that the function uTk,z given by Lemma 2.5, for k large enough, satisfies

Eψ(uTk,z) ≥ Eψ(k, z, T ) because uTk,z 6≡ ũTk,z in T (Ckz ).
Thus, by (2.22) we get

lim
k→∞

min{Eψ(uTk,z) : z ∈ Zk, T ∈ DL} =∞. (2.38)

Now, we extend every function uTk,z in all of Ω by the value zero outside T (Ckz ) and we consider

the function uTk ∈ H1
0 (Ω) defined by uTk =

∑
z∈Zk u

T
k,z. Using Ascoli-Arzelà Theorem, one

can verify that for all k ≥ k(L) there exists an admissible deformation TLk ∈ DL such that

Eψ(u
TLk
k ) = min{Eψ(uTk ) : T ∈ DL}. (2.39)

In next section we show that u
TLk
k is a solution of problem (1.1) for k large enough and that

Proposition 2.2 holds with uk = u
TLk
k and Tk,u = TLk . In order to construct the solutions vk,

we proceed in analogous way. In fact, as in Lemma 2.5, for all k ≥ k(L), z ∈ Zk and T ∈ DL,
there exists also a function vTk,z in H1

0 (T (Ckz )) such that vTk,z 6= ũTk,z, σ(z)[vTk,z − ũTk,z] ≤ 0 in

T (Ckz ) and

Eψ(vTk,z) = Mψ(vTk,z) = min{Mψ(v) : v ∈ H1
0 (T (Ckz )), v 6≡ ũTk,z, σ(z)[v−ũTk,z] ≤ 0 in T (Ckz )}.

(2.40)
Then, we set vTk =

∑
z∈Zk v

T
k,z (where vTk,z is extended in Ω by the value zero outside T (Ckz ))

and, using Ascoli-Arzelà Theorem, we minimize Eψ(vTk ) with respect to T in DL. If Tk,v ∈ DL

is a minimizing admissible deformation, the function v
Tk,v
k is a solution of problem (1.1) for

k large enough and Proposition 2.2 holds with vk = v
Tk,v
k , as we show in next section.

3 Asymptotic estimates and proof of the main results

In this section we describe the asymptotic behaviour as k → ∞ of the functions uk and vk,
arising in Proposition 2.2, we constructed in Section 2. Then, we show that these functions
are solutions of problem (1.1) for k large enough and satisfy all the assertions of Proposition
2.2.
As follows from Proposition 2.3, for all T ∈ DL, i ∈ {1, . . . , n} and t ∈ [0, 1], the set T (F ti ) is

the graph of a function f t,Ti : F 0
i → R and

T (Ckz ) = {x ∈ Ω : f
zi
k
,T

i ◦ Pi(x) < xi < f
zi+1

k
,T

i ◦ Pi(x) for i = 1, . . . , n} ∀k ∈ N, ∀z ∈ Zk.
(3.1)

In next lemma we prove that f t,Ti is a Lipschitz continuous function.

Lemma 3.1. If T ∈ DL with L ∈]0, 1[, then for all i ∈ {1, . . . , n} and t ∈ [0, 1] we have

|f t,Ti (x)− f t,Ti (y)| ≤ L

1− L
|x− y| ∀x, y ∈ F 0

i . (3.2)
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Proof. For all x, y in F 0
i , there exist xt, yt in F ti such that Pi ◦T (xt) = x, Pi ◦T (yt) = y and,

as a consequence, f t,Ti (x) = Ti(x
t), f t,Ti (y) = Ti(y

t).
Thus, since xti = yti = t and T ∈ DL, we obtain

|f t,Ti (x)− f t,Ti (y)| = |Ti(xt)− Ti(yt)| = |Ti(xt)− Ti(yt)− xti + yti |
≤ |T (xt)− T (yt)− xt + yt|
≤ L|xt − yt|.

(3.3)

Moreover, since L ∈]0, 1[, we obtain

|x− y| = |Pi ◦ T (xt)− Pi ◦ T (yt)| = |Pi[T (xt)− T (yt) + yt − xt − (yt − xt)]|
≥ |xt − yt| − |Pi[T (xt)− T (yt) + yt − xt]|
≥ (1− L)|xt − yt|

(3.4)

which, combined with (3.3), implies (3.2).

Let us denote by Lip(f t,Ti ) the best Lipschitz constant of the function f t,Ti , that is

Lip(f t,Ti ) = sup

{
|f t,Ti (x)− f t,Ti (y)|

|x− y|
: x, y ∈ Pi(Ω), x 6= y

}
. (3.5)

Then, from (3.2) it follows that Lip(f t,Ti )→ 0 as L→ 0.
Corollary 3.3 shows, in some sense, that also the converse in true. Notice that, if we set
ST (x) = T (x)− x ∀x ∈ Ω, then T ∈ DL if and only if

Lip(ST ) := sup

{
|ST (x)− ST (y)|
|x− y|

: x, y ∈ Ω, x 6= y

}
≤ L. (3.6)

Moreover, it is obvious that the set DL may be also written as

DL = {T : Ω→ Ω : T (Ω) = Ω, T (F ti ) = F ti for t = 0, 1, i = 1, . . . , n, Lip(ST ) ≤ L}. (3.7)

Lemma 3.2. Let T ∈ DL with L ∈]0, 1[ and assume that there exists Λ ∈
]
0, 1

n

[
such that

Lip(F t,Ti ) ≤ Λ ∀t ∈ [0, 1], ∀i ∈ {1, . . . , n} (3.8)

and

|f t1,Ti (x)− f t2,Ti (x) + t2− t1| ≤ Λ|t1− t2| ∀t1, t2 ∈ [0, 1], ∀i ∈ {1, . . . , n}, ∀x ∈ F 0
i . (3.9)

Then,

|T (x)− T (y)− x+ y| ≤ (n+ 1)
√
nΛ

1− nΛ
|x− y| ∀x, y ∈ Ω, (3.10)

that is Lip(ST ) ≤ (n+1)
√
nΛ

1−nΛ , so T ∈ DL(Λ) with L(Λ) = (n+1)
√
nΛ

1−nΛ .
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Proof. Notice that Ti(x) = fxi,Ti (Pi ◦ T (x)) for all x ∈ Ω and i ∈ {1, . . . , n}.
Thus, for x, y ∈ Ω and h = y − x, we obtain

Ti(x+ h)− Ti(x)− hi = fxi+hi,Ti (Pi ◦ T (x+ h))− fxi,Ti (Pi ◦ T (x+ h))− hi
+ fxi,Ti (Pi ◦ T (x+ h))− fxi,Ti (Pi ◦ T (x))

= µihi +
n∑
j=1

νji [Tj(x+ h)− Tj(x)]

(3.11)

where, for all i and j in {1, . . . , n}, µi and νji are suitable numbers in [−Λ,Λ] because of our

assumptions on the functions f t,Ti .
It follows that

|Ti(x+ h)− Ti(x)− hi| ≤ Λ|hi|+ Λ
n∑
j=1

|Tj(x+ h)− Tj(x)− hj |+ Λ
n∑
j=1

|hj | ∀i ∈ {1, . . . , n}

(3.12)
and, summing up,

n∑
i=1

|Ti(x+ h)− Ti(x)− hi| ≤ (1 + n)Λ
n∑
i=1

|hi|+ nΛ
n∑
i=1

|Ti(x+ h)− Ti(x)− hi|. (3.13)

Since Λ < 1
n , we obtain

n∑
i=1

|Ti(x+ h)− Ti(x)− hi| ≤
(n+ 1)Λ

1− nΛ

n∑
i=1

|hi| (3.14)

which implies

|T (x+ h)− T (x)− h| ≤
n∑
i=1

|Ti(x+ h)− Ti(x)− hi| ≤
(n+ 1)Λ

1− nΛ

n∑
i=1

|hi| ≤
(n+ 1)

√
nΛ

1− nΛ
|h|.

(3.15)
So the proof is complete.

The following corollary is a direct consequence of Lemma 3.2.

Corollary 3.3. Let (Tk)k be a sequence in DL with L ∈]0, 1[ and assume that, for a suitable
sequence (Λk)k in

]
0, 1

n

[
, the same conditions as in Lemma 3.2 are satisfied with T replaced

by Tk and Λ by Λk for all k ∈ N.
Then, limk→∞ Λk = 0 implies limk→∞ Lip(STk) = 0.

Remark 3.4. Notice that, if Lip(STk)−→ 0 as k → ∞, then STk converges to a constant
function S∞ uniformly in Ω. Moreover, taking into account that Tk ∈ DL ∀k ∈ N so Tk
must satisfy suitable conditions on ∂Ω, we can say that S∞ ≡ 0, that is Tk converges to the
identity function in Ω.

Now, let us prove the assertions of Proposition 2.2 for the function uk = u
TLk
k (in a similar

way one can proceed for the function vk = vTk,vk ). First, we prove the following proposition
(here we use the notation introduced in Lemmas 2.4 and 2.5).
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Proposition 3.5. For all k ≥ k(L) the function uk = u
TLk
k (extended to Rn by the value zero

in Rn \ Ω) has the following asymptotic behaviour.
For every choice of zk in Zk, there exists a function T̂ : Ω→ Rn such that

T̂ (0) = 0, (1− L)|x− y| ≤ |T̂ (x)− T̂ (y)| ≤ (1 + L)|x− y| ∀x, y ∈ Ω (3.16)

and, if we set χ := T̂ (Ω), the function Uzk defined by

Uzk(x) = σ(zk)k
− 2
p−1u

TLk
k

(
x

k
+ TLk

(
zk

k

))
∀x ∈ Rn, (3.17)

restricted to χ, as k → ∞ converges in H1(χ) to a positive solution Uχ of the Dirichlet
problem

−∆U = |U |p−1U in χ, U = 0 on ∂χ, (3.18)

satisfying (∫
χ
|Uχ|p+1dx

)− 2
p−1
∫
χ
|∇Uχ|2dx = m(χ), (3.19)

where

m(χ) := min

{∫
χ
|∇U |2dx : U ∈ H1

0 (χ),

∫
χ
|U |p+1dx = 1

}
. (3.20)

Moreover, we have

lim
k→∞

k

(
n−2 p+1

p−1

)
Eψ(u

TLk
k,zk

) = lim
k→∞

[
1

2

∫
χ
|∇Uzk |2dx−

1

p+ 1

∫
χ
|Uzk |p+1dx

]
=

1

2

∫
χ
|∇Uχ|2dx−

1

p+ 1

∫
χ
|Uχ|p+1dx

=

(
1

2
− 1

p+ 1

)
[m(χ)]

p+1
p−1 .

(3.21)

Proof. For all k ∈ N, let us rescale problem (1.1) by replacing every function u ∈ H1
0 (Ω) by

the function Rku ∈ H1
0 (kΩ) defined by

Rku(x) = k
− 2
p−1u

(x
k

)
∀x ∈ kΩ (3.22)

(here Rku is extended by the value zero outside kΩ).
Then, our problem becomes

−∆U = |U |p−1U + ψk in kΩ, U = 0 on ∂(kΩ) (3.23)

where ψk ∈ L2(kΩ) is defined by

ψk(x) = k
− 2p
p−1ψ

(x
k

)
∀x ∈ kΩ. (3.24)

Moreover, the corresponding functional becomes

Ek(U) =
1

2

∫
kΩ
|∇U |2dx− 1

p+ 1

∫
kΩ
|U |p+1dx−

∫
kΩ
ψkU dx, (3.25)
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defined for all u ∈ H1
0 (kΩ).

Since TLk ∈ DL ∀k ∈ N, so in particular it satisfies (2.10), also the function kTLk

(
x+zk

k

)
,

defined for all x ∈ Ω, satisfies (2.10) and, as a consequence,

kTLk

(
x+ zk

k

)
∈ B

(
kTLk

(
zk

k

)
, (1 + L)

√
n

)
∀x ∈ Ω. (3.26)

Therefore, using Ascoli-Arzelà Theorem, we infer that (up to a subsequence) the function

kTLk

(
·+zk
k

)
−kTLk

(
zk

k

)
converges as k →∞ to a function T̂ : Ω−→B(0, (1+L)

√
n) uniformly

in Ω. As a consequence, T̂ satisfies (3.16) in Ω.

From Lemmas 2.4 and 2.5 we infer that Rkũ
TLk
k,zk

and Rku
TLk
k,zk

belong to H1
0 (kCk

zk
) and that

Ek(Rkũ
TLk
k,zk

) = min

{
Ek(U) : U ∈ H1

0 (kTLk (Ckzk)),

∫
kTLk (Ck

zk
)
|U |p+1 < 1

}
∀k ∈ N,

(3.27)

lim
k→∞

Ek(Rkũ
TLk
k,zk

) = lim
k→∞

∫
kTLk (Ck

zk
)
|∇RkũT

L
k

k,zk
|2dx = 0. (3.28)

Moreover,

Ek(Rku
TLk
k,zk

) = Mk(Rku
TLk
k,zk

) = min{Mk(U) : U ∈ H1
0 (kTLk (Ckzk)), U 6≡ RkũT

L
k

k,zk
,

σ(zk)[U −RkũT
L
k

k,zk
] ≥ 0 in kTLk (Ckzk)}

(3.29)

where Mk(U) is defined by

Mk(U) = max{Ek(RkũT
L
k

k,zk
+ t(U −RkũT

L
k

k,zk
) : t ≥ 0} ∀U ∈ H1

0 (kTLk (Ckzk)). (3.30)

Notice that ∫
kΩ
ψ2
kdx = k

n− 4p
p−1

∫
Ω
ψ2dx (3.31)

where n < 4p
p−1 under our assumptions on p. In fact, for n ≤ 4 it is obviously true because

p > 1 while for n > 4 it is true because 1 < p < n+2
n−2 , as one can easily verify by direct

computation (taking into account that n+2
n−2 <

n
n−4). As a consequence, we obtain in particular

lim
k→∞

∫
kTLk (Ck

zk
)
ψ2
kdx = 0. (3.32)

Therefore, we infer that the function Uzk satisfies all the assertions in Proposition 3.5, that
is its restriction to χ converges to a positive solution Uχ of the asymptotic problem (3.18),
satisfying the minimality condition (3.19).
In fact, (3.28) and (3.32) imply

0 < lim inf
k→∞

[
1

2

∫
χ
|∇Uzk |2dx−

1

p+ 1

∫
χ
|Uzk |p+1dx

]
≤ lim sup

k→∞

[
1

2

∫
χ
|∇Uzk |2dx−

1

p+ 1

∫
χ
|Uzk |p+1dx

]
<∞

(3.33)
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and

lim
k→∞

[∫
χ
|∇Uzk |2dx−

∫
χ
|Uzk |p+1dx

]
= 0. (3.34)

It follows that

lim sup
k→∞

∫
χ |∇Uzk |

2dx(∫
χ |Uzk |p+1dx

) 2
p+1

<∞ (3.35)

so, up to a subsequence,
(∫

χ |Uzk |
p+1dx

)− 1
p+1

Uzk converges as k →∞ to a positive function

Uχ ∈ H1
0 (χ) almost everywhere in χ, strongly in Lp+1(χ) and weakly in H1(χ).

Moreover, the minimality property of u
TLk
k,zk

implies, by standard arguments, that∫
χ
|∇Uχ|2dx = m(χ) (3.36)

and that, as k → ∞, Uzk converges strongly in H1(χ) to the function Uχ = m(χ)
1
p−1Uχ,

which is a positive solution of problem (3.18).
Therefore, taking also into account (3.24), we obtain

lim
k→∞

k

(
n−2 p+1

p−1

)
Eψ

(
u
TLk
k,zk

)
= lim

k→∞
Ek
(
Rku

TLk
k,zk

)
= lim

k→∞

[
1

2

∫
χ
|∇Uzk |2dx−

1

p+ 1

∫
χ
|Uzk |p+1dx

]
=

(
1

2
− 1

p+ 1

)
[m(χ)]

p+1
p−1 .

(3.37)

So the proof is complete.

In next lemma we describe other properties of the function T̂ and of the domain T̂ (Ω) arising
in Proposition 3.5.

Lemma 3.6. Let (zk)k, T̂ and χ be as in Proposition 3.5. Then, the function ST̂ : Ω→ Rn

defined by ST̂ (x) = T̂ (x)− x ∀x ∈ Ω, satisfies the Lipschitz condition

|ST̂ (x)− ST̂ (y)| ≤ L|x− y| ∀x, y ∈ Ω. (3.38)

Moreover, for every i ∈ {1, . . . , n} there exist two functions f0
i , f

1
i : Pi(χ) → R, Lipschitz

continuous with Lipschitz constant L
1−L , such that f0

i ◦ Pi(0) = 0, f0
i ◦ Pi(x) < f1

i ◦ Pi(x)
∀x ∈ χ and

χ = {x ∈ Rn : Pi(x) ∈ Pi(χ), f0
i ◦ Pi(x) < xi < f1

i ◦ Pi(x) for i = 1, . . . , n}. (3.39)

Proof. Notice that, as the functions STLk
: Ω→ Rn defined by STLk

(x) = TLk (x)−x ∀x ∈ Ω, also

the functions k
[
TLk

(
x+zk

k

)
− TLk

(
zk

k

)
− x

k

]
are Lipschitz continuous with Lipschitz constant
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L for all k ∈ N. Therefore, as k →∞, we infer that the function ST̂ satisfies (3.38). In order
to obtain the functions f0

i and f1
i , we use Lemma 3.1. From (3.1) it follows that

TLk (Ckzk) = {x ∈ Ω : f
zki
k
,TLk

i ◦ Pi(x) < xi < f
zki +1

k
,TLk

i ◦ Pi(x) for i = 1, . . . , n}. (3.40)

Now, notice that, as the functions f
zki
k
,TLk

i and f
zki +1

k
,TLk

i , also the functions f0
i,k and f1

i,k defined
by

f0
i,k(x) = k

[
f
zki
k
,TLk

i

(
x

k
+ Pi ◦ TLk

(
zk

k

))
− f

zki
k
,TLk

i ◦ Pi ◦ TLk
(
zk

k

)]
(3.41)

and

f1
i,k(x) = k

[
f
zki +1

k
,TLk

i

(
x

k
+ Pi ◦ TLk

(
zk

k

))
− f

zki
k
,TLk

i ◦ Pi ◦ TLk
(
zk

k

)]
(3.42)

are both Lipschitz continuous with Lipschitz constant L
1−L . Moreover, for all k ∈ N we have

f0
i,k(0) = 0 ∀i ∈ {1, . . . , n}, k

∣∣∣∣TLk (x+ zk

k

)
− TLk

(
zk

k

)∣∣∣∣ ≤ (1+L)
√
n ∀x ∈ Ω (3.43)

and

f1
i,k(x)− f0

i,k(x) ≥ (1− L)|x1
i,k − x0

i,k| ≥ (1− L) > 0 ∀x ∈ Pi(χ), ∀i ∈ {1, . . . , n}, ∀k ∈ N,
(3.44)

where x1
i,k and x0

i,k are the points in Ω such that

k

[
TLk

(
x1
i,k + zk

k

)
− TLk

(
zk

k

)]
= (x, f1

i,k(x)) (3.45)

and

k

[
TLk

(
x0
i,k + zk

k

)
− TLk

(
zk

k

)]
= (x, f0

i,k(x)), (3.46)

which implies |x1
i,k − x0

i,k| ≥ 1.

Therefore, by Ascoli-Arzelà Theorem we can say that, up to a subsequence, the functions f1
i,k

and f0
i,k converge as k →∞ uniformly in Pi(χ) respectively to functions f1

i and f0
i satisfying

all the assertions in Lemma 3.6.

Lemma 3.7. Let (zk)k and χ be as in Proposition 3.5. Then, for every choice of zk in
Zk, the domain χ is a cube of Rn having a vertex in the origin and the sides of lenght 1.
Moreover, we have

lim
k→∞

max{
∣∣kn|TLk (Ckz )| − 1

∣∣ : z ∈ Zk} = 0 (3.47)

(where |TLk (Ckz )| denotes the volume of TLk (Ckz )) and

lim
k→∞

max

{∣∣∣∣k(n−2 p+1
p−1

)
Eψ(u

TLk
k,z)−

(
1

2
− 1

p+ 1

)
m̄

p+1
p−1

∣∣∣∣ : z ∈ Zk
}

= 0 (3.48)

where m̄ = m(Ω).
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Proof. Notice that, as we pointed out in the proof of Proposition 3.5, the effect of the term
ψ in problem (1.1) tends to vanish as k → ∞ because in the rescaled problem (3.23) ψ is
replaced by the function ψk defined by (3.31) and, since n < 4p

p−1 ,

lim
k→∞

∫
kΩ
ψ2
kdx = lim

k→∞
k
n− 4p

p−1

∫
Ω
ψ2dx = 0. (3.49)

As a consequence, taking into account the minimality of TLk , the interfaces between the
domains kTLk (Ckz ), with z ∈ Zk, tend to be flat, so these domains tend as k → ∞ to
polyhedra with 2n faces, having minimality properties inherited by the analogous properties
of the domains kTLk (Ckz ), related to the minimality of TLk .
In particular, arguing as in the proof of Proposition 3.5, one can show in addition that,

for every ρ > 0, the function k
[
TLk

(
x+zk

k

)
− TLk

(
zk

k

)]
(up to a subsequence) converges as

k →∞ to a function T̂ uniformly in the domain Ωρ = ∪z∈ZρC
1
z, where

Zρ = {z ∈ Zn : |z| < ρ, zk + z ∈ Zk ∀k ∈ N} (3.50)

(not only in Ω, which is strictly enclosed in Ωρ for ρ >
√
n).

Moreover, if we set χz := T̂ (C1
z ) ∀z ∈ Zρ, the number

∑
z∈Zρ [m(χz)]

p+1
p−1 has to be as small

as possible for all ρ > 0. By symmetry reasons, among this polyhedra χ, the cubes of Rn

are the unique minimizers of the value ϕ(χ) := m(χ)|χ|2
(

1
p+1
− 1

2∗

)
(where |χ| is the volume

of χ and m(χ) is defined in (3.20)) that is, if we set ϕ̄ = ϕ(Ω), ϕ(χ) = ϕ̄ if χ is a cube and
ϕ(χ) > ϕ̄ otherwise (notice that ϕ(χ) depends only on the shape of χ and not on its size
because it is invariant with respect to translations and rescaling of χ).
By Proposition 3.5, for every choice of zk in Zk, the corresponding limit domain χ satisfies

lim
k→∞

kn|TLk (Ckzk | = |χ| (3.51)

and

lim
k→∞

k
n−2 p+1

p−1Eψ(u
TLk
k,zk

)[kn|TLk (Ckzk)|]2
(

1
p+1
− 1

2∗

)
p+1
p−1 =

(
1

2
− 1

p+ 1

)
[m(χ)]

p+1
p−1 |χ|2

(
1
p+1
− 1

2∗

)
p+1
p−1

=

(
1

2
− 1

p+ 1

)
[ϕ(χ)]

p+1
p−1 ,

(3.52)

which implies

lim
k→∞

k

(
n−2 p+1

p−1

)
Eψ(u

TLk
k,zk

) =

(
1

2
− 1

p+ 1

)
[ϕ(χ)]

p+1
p−1 |χ|2

(
1

2∗−
1
p+1

)
p+1
p−1 . (3.53)

Therefore, taking into account the minimality of TLk , it follows that, for every choice of zk

in Zk, the limit domain χ is a cube, that is ϕ(χ) = ϕ̄. As a consequence, since it is true for
every choice of zk in Zk, we can say that

lim
k→∞

max

{∣∣∣∣kn−2 p+1
p−1Eψ(u

TLk
k,z)[kn|TLk (Ckz )|]2

(
1
p+1
− 1

2∗

)
p+1
p−1 −

(
1

2
− 1

p+ 1

)
ϕ̄
p+1
p−1

∣∣∣∣ : z ∈ Zk
}

= 0.

(3.54)
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Now, let us set

ϕk(z) =

[
k
n−2 p+1

p−1

(
1

2
− 1

p+ 1

)−1

Eψ(u
TLk
k,z)

] p−1
p+1

[kn|TLk (Ckz )|]2
(

1
p+1
− 1

2∗

)
. (3.55)

Then, we have

k
n−2 p+1

p−1Eψ(u
TLk
k ) = k

n−2 p+1
p−1

∑
z∈Zk

Eψ(u
TLk
k,z)

=

(
1

2
− 1

p+ 1

) ∑
z∈Zk

[ϕk(z)]
p+1
p−1 [kn|TLk (Ckz )|]−2

(
1
p+1
− 1

2∗

)
p+1
p−1 .

(3.56)

Taking into account the minimality of TLk , since
∑

z∈Zk |T
L
k (Ckz )| = 1, we obtain

[ϕk(z)]
p+1
p−1 = µk[k

n|TLk (Ckz )|]2
(

1
p+1
− 1

2∗

)
p+1
p−1

+1 ∀k ∈ N, ∀z ∈ Zk (3.57)

where µk > 0 is a suitable Lagrange multiplier. It follows that

|TLk (Ckz )| = 1

kn

(
[ϕk(z)]

p+1
p−1

µk

) 1

2( 1
p+1−

1
2∗ )

p+1
p−1 +1

∀k ∈ N, ∀z ∈ Zk (3.58)

which, summing up, yields

µ

1

2( 1
p+1−

1
2∗ )

p+1
p−1 +1

k =
1

kn

∑
z∈Zk

[ϕk(z)]

1

2( 1
p+1−

1
2∗ )+

p−1
p+1 . (3.59)

Since
lim
k→∞

max{|ϕk(z)− ϕ̄| : z ∈ Zk} = 0 (3.60)

(because of (3.54)), we obtain

lim
k→∞

1

kn

∑
z∈Zk

[ϕk(z)]

1

2( 1
p+1−

1
2∗ )+

p−1
p+1 = ϕ̄

1

2( 1
p+1−

1
2∗ )+

p−1
p+1 (3.61)

which implies

lim
k→∞

µk = ϕ̄
p+1
p−1 . (3.62)

From (3.57) we get

kn|TLk (Ckz )| =

[
ϕk(z)]

p+1
p−1

µk

] 1

2( 1
p+1−

1
2∗ )

p+1
p−1 +1

. (3.63)

Thus, we can easily obtain (3.47) from (3.60) and (3.62) and then (3.48) from (3.47) and
(3.54). Finally, we can say that, for every choice of zk in Zk, the corresponding limit domain
χ is a cube of Rn with sides of lenght 1. Moreover, the construction of χ shows that this
cube has a vertex in the origin, so the proof is complete.
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Lemma 3.8. For all k ∈ N and L ∈]0, 1[, let TLk ∈ DL be a minimizing deformation as in
Section 2. Then, for all i ∈ {1, . . . , n}, we have

lim
k→∞

sup

{∣∣∣∣f hk ,TLki ◦ Pi ◦ TLk
(
z
k

)
− f

h
k
,TLk

i ◦ Pi ◦ TLk
(
ζ
k

)∣∣∣∣∣∣∣Pi ◦ TLk ( zk)− Pi ◦ TLk ( ζk)∣∣∣ : h ∈ {0, 1, . . . , k},

z, ζ ∈ Zk, z 6= ζ, zi = ζi = h

}
= 0.

(3.64)

Proof. Arguing by contradiction, assume that for some i ∈ {1, . . . , n} there exist sequences
(hk)k, (zk)k, (ζk)k such that hk ∈ {0, 1, . . . , k}, zk ∈ Zk, ζk ∈ Zk, zk 6= ζk, zki = ζki = hk
∀k ∈ N and (up to a subsequence)

lim
k→∞

∣∣∣∣f hkk ,TLki ◦ Pi ◦ TLk
(
zk

k

)
− f

hk
k
,TLk

i ◦ Pi ◦ TLk
(
ζk

k

)∣∣∣∣∣∣∣Pi ◦ TLk ( zkk )− Pi ◦ TLk ( ζkk )∣∣∣ > 0. (3.65)

We say that there exist two sequences (ẑk)k and (ζ̂k)k in Zk such that ẑki = ζ̂ki = hk,
|ẑk − ζ̂k| = 1 ∀k ∈ N and

lim inf
k→∞

∣∣∣∣f hkk ,TLki ◦ Pi ◦ TLk
(
ẑk

k

)
− f

hk
k
,TLk

i ◦ Pi ◦ TLk
(
ζ̂k

k

)∣∣∣∣∣∣∣Pi ◦ TLk ( ẑkk )− Pi ◦ TLk ( ζ̂kk )∣∣∣ > 0. (3.66)

In fact, if lim supk→∞ |zk − ζk| < 2, it is obvious because in this case |zk − ζk| = 1 for k large
enough (so we can set ẑk = zk and ζ̂k = ζk). On the contrary, if lim supk→∞ |zk − ζk| ≥ 2,
let us set νk =

∑n
j=1 |zki − ζki |. Then, one can choose νk + 1 points π0, π1, . . . , πνk in Zk such

that
π0 = zk, πνk = ζk, |πj − πj−1| = 1 ∀j ∈ {1, . . . , νk} (3.67)

(notice that all the points π0
k , π1

k , . . . ,
πνk
k must belong to F

hk
k
i because of the choice of νk).

Therefore, we obtain∣∣∣∣f hkk ,TLki ◦ Pi ◦ TLk
(
zk

k

)
− f

hk
k
,TLk

i ◦ Pi ◦ TLk
(
ζk

k

)∣∣∣∣
≤

νk∑
j=1

∣∣∣∣f hkk ,TLki ◦ Pi ◦ TLk
(πj
k

)
− f

hk
k
,TLk

i ◦ Pi ◦ TLk
(πj−1

k

)∣∣∣∣
≤ max

1≤j≤νk

∣∣∣∣f hkk ,TLki ◦ Pi ◦ TLk
(πj
k

)
− f

hk
k
,TLk

i ◦ Pi ◦ TLk
(πj−1

k

)∣∣∣∣∣∣Pi ◦ TLk (πjk )− Pi ◦ TLk (πj−1

k

)∣∣ ·

·
νk∑
j=1

∣∣∣Pi ◦ TLk (πjk )− Pi ◦ TLk (πj−1

k

)∣∣∣

(3.68)
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where∣∣∣Pi ◦ TLk (πjk )− Pi ◦ TLk (πj−1

k

)∣∣∣ ≤ ∣∣∣TLk (πjk )− TLk (πj−1

k

)∣∣∣ ≤(1 + L)
∣∣∣πj
k
− πj−1

k

∣∣∣
∀j ∈ {1, . . . , νk},

(3.69)

which implies

νk∑
j=1

∣∣∣Pi ◦ TLk (πjk )− Pi ◦ TLk (πj−1

k

)∣∣∣ ≤ (1 + L)

νk∑
j=1

∣∣∣πj
k
− πj−1

k

∣∣∣
≤ (1 + L)

√
n− 1

∣∣∣∣zkk − ζk
k

∣∣∣∣
≤
√
n− 1

1 + L

1− L

∣∣∣∣TLk (zkk
)
− TLk

(
ζk

k

)∣∣∣∣
(3.70)

where∣∣∣∣TLk (zkk
)
− TLk

(
ζk

k

)∣∣∣∣
≤
∣∣∣∣Pi ◦ TLk (zkk

)
− Pi ◦ TLk

(
ζk

k

)∣∣∣∣+

∣∣∣∣f hkk ,TLki ◦ Pi ◦ TLk
(
zk

k

)
− f

hk
k
,TLk

i ◦ Pi ◦ TLk
(
ζk

k

)∣∣∣∣
(3.71)

and, by Lemma 3.1∣∣∣∣f hkk ,TLki ◦ Pi ◦ TLk
(
zk

k

)
− f

hk
k
,TLk

i ◦ Pi ◦ TLk
(
ζk

k

)∣∣∣∣ ≤ L

1− L

∣∣∣∣Pi ◦ TLk (zkk
)
− Pi ◦ TLk

(
ζk

k

)∣∣∣∣ .
(3.72)

Therefore, (3.65) implies

lim inf
k→∞

max
1≤j≤νk

∣∣∣∣f hkk ,TLki ◦ Pi ◦ TLk
(πj
k

)
− f

hk
k
,TLk

i ◦ Pi ◦ TLk
(πj−1

k

)∣∣∣∣∣∣Pi ◦ TLk (πjk )− Pi ◦ TLk (πj−1

k

)∣∣ > 0. (3.73)

So, if the maximum in (3.73) is achieved for j = jk, our assertion (3.66) holds for ẑk = πjk
and ζ̂k = πjk−1.
Now, for all i ∈ {1, . . . , n} let us consider the vector ei = (ei1, . . . , e

i
n) ∈ Rn such that eii = 1,

eij = 0 for j 6= i, i, j ∈ {1, . . . , n} and the function δki : Ω→ Rn defined by

δki (x) = k

[
TLk

(
z

k
+
ei

k

)
− TLk

(z
k

)]
∀x ∈ Ω such that

zj
k
≤ xj <

zj + 1

k
∀j ∈ {1, . . . , n} with z ∈ Zk.

(3.74)

Notice that the set ZΩ = ∪k∈N 1
kZk is a subset of Ω, ZΩ = Ω and, for all i ∈ {1, . . . , n},

the sequence of functions δki |ZΩ
, up to a subsequence, converges as k → ∞ to a function

δi : ZΩ → Rn.

20



Taking into account Lemma 3.7, for all x ∈ ZΩ we have

δi(x) · δi(x) = 1, δi(x) · δj(x) = 0 for i 6= j, ∀x ∈ ZΩ, ∀i, j ∈ {1, . . . , n}. (3.75)

Moreover, we infer that

lim inf
k→∞

∣∣∣∣δki ( ẑkk
)
− ei

∣∣∣∣ > 0 (3.76)

because of (3.66), while

lim
k→∞

δki

[
Pi

(
ẑk

k

)]
= ei (3.77)

because of the conditions satisfied by TLk on the boundary of Ω.
Therefore, since

lim
k→∞

∣∣∣∣δi( ẑkk
)
− δki

(
ẑk

k

)∣∣∣∣ = 0 (3.78)

and δi

[
Pi

(
ẑk

k

)]
= ei ∀k ∈ N, it follows that

lim inf
k→∞

∣∣∣∣δi( ẑkk
)
− δi

[
Pi

(
ẑk

k

)]∣∣∣∣ > 0. (3.79)

On the other hand, since ẑki ≤ k, we obtain

∣∣∣∣δi( ẑkk
)
− δi

[
Pi

(
ẑk

k

)]∣∣∣∣ ≤ ẑki∑
j=1

∣∣∣∣δi( ẑk − jeik

)
− δi

(
ẑk − (j − 1)ei

k

)∣∣∣∣
≤ k max

1≤j≤ẑki

∣∣∣∣δi( ẑk − jeik

)
− δi

(
ẑk − (j − 1)ei

k

)∣∣∣∣ .
(3.80)

We say that the last term tends to zero as k → ∞ that is, if the maximum in (3.80) is
achieved for j = jk, we have

lim
k→∞

k

∣∣∣∣δi( ẑk − jkeik

)
− δi

(
ẑk − (jk − 1)ei

k

)∣∣∣∣ = 0. (3.81)

In fact, assume that (up to a subsequence) the sequence k
[
δi

(
ẑk−(jk−1)ei

k

)
− δi

(
ẑk−jkei

k

)]
converges as k →∞ to a vector in Rn, we denote by Diδ̂i, and the sequences δi

(
ẑk−(jk−1)ei

k

)
converge to some vectors δ̂i in Rn. Then, we have that δ̂i · δ̂j = 0 for i 6= j and δ̂i · δ̂i = 1

for i, j ∈ {1, . . . , n} (because of Lemma 3.7). Therefore, in order to prove that Diδ̂i = 0, it
suffices to prove that Diδ̂i · δ̂j = 0 ∀j ∈ {1, . . . , n}.
First, notice that Diδ̂i · δ̂i = 0. In fact, we have

Diδ̂i · δ̂i =
1

2
lim
k→∞

k

[
δi · δi

(
ẑk − (jk − 1)ei

k

)
− δi · δi

(
ẑk − jkei

k

)]
, (3.82)
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where the limit is equal to zero because

δi · δi
(
ẑk − jkei

k

)
= δi · δi

(
ẑk − (jk − 1)ei

k

)
= 1 ∀k ∈ N. (3.83)

In order to prove that Diδ̂i · δ̂j = 0 for j 6= i, notice that, since δi · δj ≡ 0 in ZΩ, we have

0 = lim
k→∞

k

[
δi · δj

(
ẑk − (jk − 1)ei

k

)
− δi · δj

(
ẑk − jkei

k

)]
= Diδ̂i · δ̂j + δ̂i ·Diδ̂j . (3.84)

Moreover, we have

Diδ̂j = Dj δ̂i = lim
k→∞

k2

[
TLk (ẑk − (jk − 1)ei + ej)− TLk

(
ẑk − (jk − 1)ei

k

)

− TLk
(
ẑk − jkei + ej

k

)
+ TLk

(
ẑk − jkei

k

)] (3.85)

and, as a consequence,

δ̂i ·Diδ̂j = δ̂i ·Dj δ̂i =
1

2
lim
k→∞

k

[
δi · δi

(
ẑk − jkei + ej

k

)
− δi · δi

(
ẑk − jkei

k

)]
= 0 (3.86)

because δi · δi ≡ 1 in ZΩ. Therefore, from (3.84) we obtain Diδ̂i · δj = 0 also for i 6= j, so

Diδ̂i = 0.
Then, from (3.80) we infer that

lim
k→∞

∣∣∣∣δi( ẑkk
)
− δi

[
Pi

(
ẑk

k

)]∣∣∣∣ = 0 (3.87)

in contradiction with (3.79).
Thus, we can conclude that (3.65) cannot hold and (3.64) is true. So the proof is complete.

Indeed, the minimality of TLk allows us to prove a stronger result, stated in the following
corollary.

Corollary 3.9. Under the same assumptions of Lemma 3.8, for all i ∈ {1, . . . , n} we have

lim
k→∞

sup

 |f
h
k
,TLk

i (x)− f
h
k
,TLk

i (y)|
|x− y|

: h ∈ {0, 1, . . . , k}, x, y ∈ F 0
i , x 6= y

 = 0. (3.88)

Proof. Since, under our assumptions on the values of TLk on ∂Ω, Pi ◦ TLk is a one-to-one map

between F
h
k

0 and F 0
i , (3.88) is equivalent to

lim
k→∞

sup

{
|f

h
k
,TLk

i ◦ Pi ◦ TLk (x)− f
h
k
,TLk

i ◦ Pi ◦ TLk (y)|
|Pi ◦ TLk (x)− Pi ◦ TLk (y)|

: h ∈ {0, 1, . . . , k},

x, y ∈ F
h
k
i , x 6= y

}
= 0.

(3.89)
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Arguing by contradiction, assume that there exist sequences (hk)k, (xk)k, (yk)k such that

hk ∈ {0, 1, . . . , k}, xk and yk belong to F
h
k
i , xk 6= yk ∀k ∈ N and (up to a subsequence)

lim
k→∞

|f
hk
k
,TLk

i ◦ Pi ◦ TLk (xk)− f
hk
k
,TLk

i ◦ Pi ◦ TLk (yk)|
|Pi ◦ TLk (xk)− Pi ◦ TLk (yk)|

> 0. (3.90)

Notice that the interfaces between the domains kTLk (Ckz ), z ∈ Zk, tend to be flat because of
the minimality of the admissible deformation TLk and, as follows from Lemmas 3.7 and 3.8,
up to translations these domains tend to Ω that is, for every choice of zk in Zk, the domain

k
[
TLk (Ckz )− TLk

(
zk

k

)]
tends to C1

0 = Ω.

Therefore, (3.90) is possible only if limk→∞ k|xk − yk| =∞ (otherwise, up to a subsequence,

the segment {xk + t(yk−xk) : t ∈ [0, 1]} meets only a finite number of subdomains C
k
z with

z ∈ Zk). In this case, if xk ∈ Ck
zk

and yk ∈ Ck
ζk

for suitable zk and ζk in Zk, we have

|kxk − zk| ≤
√
n, |kyk − ζk| ≤

√
n ∀k ∈ N, lim

k→∞
|zk − ζk| =∞ (3.91)

and∣∣∣f hkk ,TLki ◦ Pi ◦ TLk (xk)− f
hk
k
,TLk

i ◦Pi ◦ TLk (yk)
∣∣∣

≤
∣∣∣∣f hkk ,TLki ◦ Pi ◦ TLk (xk)− f

hk
k
,TLk

i ◦ Pi ◦ TLk
(
zk

k

)∣∣∣∣
+

∣∣∣∣f hkk ,TLki ◦ Pi ◦ TLk
(
zk

k

)
− f

hk
k
,TLk

i ◦ Pi ◦ TLk
(
ζk

k

)∣∣∣∣
+

∣∣∣∣f hkk ,TLki ◦ Pi ◦ TLk
(
ζk

k

)
− f

hk
k
,TLk

i ◦ Pi ◦ TLk (yk)

∣∣∣∣
(3.92)

where

lim
k→∞

∣∣∣∣f hkk ,TLki ◦ Pi ◦ TLk
(
zk

k

)
− f

hk
k
,TLk

i ◦ Pi ◦ TLk
(
ζk

k

)∣∣∣∣∣∣∣Pi ◦ TLk ( zkk )− Pi ◦ TLk ( ζkk )∣∣∣ = 0 (3.93)

(as follows from Lemma 3.8) and

lim
k→∞

∣∣∣∣f hkk ,TLki ◦ Pi ◦ TLk
(
xk
)
− f

hk
k
,TLk

i ◦ Pi ◦ TLk
(
zk

k

)∣∣∣∣∣∣∣Pi ◦ TLk (xk)− Pi ◦ TLk
(
zk

k

)∣∣∣ = 0, (3.94)

lim
k→∞

∣∣∣∣f hkk ,TLki ◦ Pi ◦ TLk
(
yk
)
− f

hk
k
,TLk

i ◦ Pi ◦ TLk
(
ζk

k

)∣∣∣∣∣∣∣Pi ◦ TLk (yk)− Pi ◦ TLk
(
ζk

k

)∣∣∣ = 0 (3.95)

because the segments
{
xk + t

(
zk

k − x
k
)

: t ∈ [0, 1]
}

and
{
yk + t

(
ζk

k − y
k
)

: t ∈ [0, 1]
}

are

respectively enclosed in the subdomains C
k
zk and C

k
ζk .

23



Moreover, for k large enough, we have∣∣∣∣Pi ◦ TLk (xk)− Pi ◦ TLk
(
zk

k

)∣∣∣∣ ≤ ∣∣∣∣TLk (xk)− TLk
(
zk

k

)∣∣∣∣ ≤ (1 + L)

(
xk − zk

k

)
≤ (1 + L)|xk − yk| ≤ 1 + L

1− L
|TLk (xk)− TLk (yk)|

(3.96)

and, analogously,∣∣∣∣Pi ◦ TLk (yk)− Pi ◦ TLk
(
ζk

k

)∣∣∣∣ ≤ (1 + L)|xk − yk| ≤ 1 + L

1− L
|TLk (xk)− TLk (yk)| (3.97)

with

|TLk (xk)−TLk (yk)| ≤ |Pi◦TLk (xk)−Pi◦TLk (yk)|+
∣∣∣∣f hkk ,TLki ◦ Pi ◦ TLk (xk)− f

hk
k
,TLk

i ◦ Pi ◦ TLk (yk)

∣∣∣∣
(3.98)

where∣∣∣∣f hkk ,TLki ◦ Pi ◦ TLk (xk)− f
hk
k
,TLk

i ◦ Pi ◦ TLk (yk)

∣∣∣∣ ≤ L

1− L
|Pi ◦ TLk (xk)− Pi ◦ TLk (yk)| (3.99)

because of Lemma 3.1.
In a similar way we obtain∣∣∣Pi ◦ TLk (zkk

)
− Pi ◦ TLk

(
ζk

k

) ∣∣∣ ≤ ∣∣∣Pi ◦ TLk (xk)− Pi ◦ TLk (yk)∣∣∣
+

∣∣∣∣Pi ◦ TLk (zkk
)
− Pi ◦ TLk

(
xk
)∣∣∣∣+

∣∣∣∣Pi ◦ TLk (ζkk
)
− Pi ◦ TLk

(
yk
)∣∣∣∣ .

(3.100)

Therefore, it follows easily that (3.90) cannot be true.
Thus, we have a contradiction, so (3.88) holds and the proof is complete.

Lemma 3.10. Under the same assumptions as in Lemma 3.8, for all i ∈ {1, . . . , n} we have
also

lim
k→∞

sup
{
|k [f

h
k
,TLk

i (x)− f
h−1
k
,TLk

i (x)]− 1| : h ∈ {1, . . . , k}, x ∈ F 0
i

}
= 0. (3.101)

Proof. Arguing by contradiction, assume that for all k ∈ N there exist hk ∈ {1, . . . , k} and
xk ∈ F 0

i such that

lim
k→∞

k

[
f
hk
k
,TLk

i (xk)− f
hk−1

k
,TLk

i (xk)

]
6= 1 (3.102)

for some i ∈ {1, . . . , n}.
For all k ∈ N, let us choose yk ∈ Ω and zk ∈ Zk such that

yk ∈ Ckzk , Pi(y
k) = xk and f

hk−1

k
,TLk

i (xk) ≤ yki ≤ f
hk
k
,TLk

i (xk) ∀k ∈ N. (3.103)
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Therefore, we have

TLk (C
k
zk) =

{
y ∈ Ω : f

hk−1

k
,TLk

i ◦ Pi(y) ≤ yi ≤ f
hk
k
,TLk

i ◦ Pi(y) for i = 1, . . . , n

}
∀k ∈ N.

(3.104)

Taking into account Lemmas 3.7, 3.8 and Corollary 3.9, the domain k
[
T kL(C

k
zk)− TLk

(
zk

k

)]
tends to C

1
0 = Ω as k →∞.

On the other hand, this convergence is not possible if (3.102) holds for some i ∈ {1, . . . , n}.
Thus, we have a contradiction, (3.102) cannot hold for any i ∈ {1, . . . , n} and (3.101) is true.
So the proof is complete.

Now, for all i ∈ {1, . . . , n}, t ∈ [0, 1] and k ∈ N, let us consider the function f̃ t,k,Li : F 0
i → [0, 1]

defined by

f̃ t,k,Li (x) = f
h−1
k
,TLk

i (x) + (kt− h+ 1)[f
h
k
,TLk

i (x)− f
h−1
k
,TLk

i (x)]

∀x ∈ F 0
i , ∀t ∈

[
h− 1

k
,
h

k

]
, h ∈ {1, . . . , k}.

(3.105)

Proposition 3.11. For all i ∈ {1, . . . , n}, t ∈ [0, 1] and k ∈ N, the functions f̃ t,k,Li defined
by (3.105) have the following properties:

lim
k→∞

sup
{

Lip(f̃ t,k,Li ) : i ∈ {1, . . . , n}, t ∈ [0, 1]
}

= 0 (3.106)

lim
k→∞

sup

{
1

|t1 − t2|
|f̃ t1,k,Li (x)−f̃ t2,k,Li (x)− t1 + t2| :

i ∈ {1, . . . , n}, t1, t2 ∈ [0, 1], t1 6= t2, x ∈ F 0
i

}
= 0.

(3.107)

Proof. Taking into account the definition of f̃ t,k,Li , properties (3.106) and (3.107) follow by
direct computation respectively from Corollary 3.9 and Lemma 3.10.

Lemma 3.12. Let f̃ t,k,Li be the functions defined in (3.105). Then, for all x ∈ Ω there exists

y ∈ Ω such that f̃xi,k,Li ◦ Pi(y) = yi ∀i ∈ {1, . . . , n} (that is, y belongs to the graph of f̃xi,k,Li

for i = 1, . . . , n).

Proof. From Proposition 2.3 and (3.105) we infer that f̃ t,k,Li ◦Pi(y) is strictly increasing with
respect to t in the interval [0, 1] for all i ∈ {1, . . . , n}, k ∈ N, y ∈ Ω. Moreover, we have

0 = f̃0,k,L
i ◦ Pi(y) ≤ yi ≤ f̃1,k,L

i ◦ Pi(y) = 1 (3.108)

so for all y ∈ Ω there exists a unique ti(y) ∈ [0, 1] such that f̃
ti(y),k,L
i ◦ Pi(y) = yi. Let us set

t(y) = (t1(y), . . . , tn(y)). Then, the function t(y), defined for all y ∈ Ω, is continuous in Ω
and satisfies

t(F 0
i ) ⊆ F 0

i and t(F 1
i ) ⊆ F 1

i ∀i ∈ {1, . . . , n}. (3.109)
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Therefore, from [33] we infer that for all x ∈ Ω there exists at least one y ∈ Ω such that
t(y) = x, that is ti(y) = xi for all i ∈ {1, . . . , n}.
Thus, since ti(y) = xi is equivalent to f̃xi,k,Li ◦ Pi(y) = yi, the proof is complete.

Lemma 3.13. Let f̃ t,k,Li be the functions defined in (3.105). Then, there exists k̃1 ∈ N such
that for all k ≥ k̃1 the following property holds: for all x ∈ Ω there exists a unique y ∈ Ω
such that

f̃xi,k,Li ◦ Pi(y) = yi ∀i ∈ {1, . . . , n}. (3.110)

Proof. In Lemma 3.12 we proved that for all k ∈ N and for all x ∈ Ω there exists at least one
y ∈ Ω satisfying (3.110). Now, we have to prove that for k large enough such a y is unique.
For all L ≥ 0 let us set Ci(L) = {x ∈ Rn : |xi| ≤ L|Pi(x)|} and notice that the graph of

f̃xi,k,Li is enclosed in y + Ci(Lip(f̃xi,k,Li )).

One can verify by direct computation that ∩1≤i≤nCi(Li) = {0} when Li < (n − 1)−
1
2 ∀i ∈

{1, . . . , n}.
Therefore, if Lip(f̃xi,k,Li ) < (n− 1)−

1
2 ∀i ∈ {1, . . . , n}, y is the unique point in Rn satisfying

(3.110). On the other hand, taking into account (3.106) of Proposition 3.11, we infer that
there exists k̃1 ∈ N such that

Lip(f̃ t,k,Li ) < (n− 1)−
1
2 ∀k ≥ k̃1, ∀i ∈ {1, . . . , n}, ∀t ∈ [0, 1]. (3.111)

Thus, the assertion of Lemma 3.13 holds for such a k̃1, so the proof is complete.

Definition 3.14. Taking into account Lemma 3.13, for all k ≥ k̃1 we can define a function
T̃Lk : Ω→ Ω in the following way. For all x ∈ Ω we set T̃Lk (x) = y where y is the unique point
in Ω satisfying (3.110), given by Lemma 3.13

Taking into account the properties of the function f̃ t,k,Li defined by (3.105) one can verify

by standard arguments that T̃Lk is a one-to-one continuous function and that (T̃Lk )−1 is

continuous too. Moreover, for all i ∈ {1, . . . , n} and t ∈ [0, 1], T̃Lk (F ti ) is the graph of the

function f̃ t,k,Li (that is f
t,T̃Lk
i = f̃ t,k,Li ), T̃Lk (F ti ) = F ti for t ∈ {0, 1} and

T̃Lk (Ckz ) = TLk (Ckz ) ∀k ≥ k̃1, ∀z ∈ Zk. (3.112)

Proposition 3.15. For all k ≥ k̃1 and L ∈]0, 1[, let T̃Lk be the function introduced in Defi-

nition 3.14. Then, there exists k̃2 ∈ N such that T̃Lk ∈ DL ∀k ≥ k̃2. Moreover, there exists a

sequence of positive numbers (Lk)k such that limk→∞ Lk = 0 and T̃Lk ⊆ DLk ∀k ≥ k̃2.

Proof. From Proposition 3.11 we infer that there exists a sequence of positive numbers (Λk)k
such that limk→∞ Λk = 0 and

Lip(f̃ t,k,Li ) ≤ Λk ∀k ∈ N, ∀i ∈ {1, . . . , n}, ∀t ∈ [0, 1], (3.113)

|f̃ t1,k,Li (x)− f̃ t2,k,Li (x)− t1 + t2| ≤ Λk|t1− t2| ∀k ∈ N, ∀i ∈ {1, . . . , n}, ∀x ∈ F 0
i . (3.114)

Since Λk → 0, we can choose kn ∈ N such that Λk < 1
n ∀k ≥ kn. Hence, taking into

account that f̃ t,k,Li = f
t,T̃Lk
i , from Lemma 3.2 we infer that, for all k ≥ kn, T̃Lk ∈ DLk where
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Lk = (n+1)
√
nΛk

1−nΛk
. Since Lk → 0 as k → ∞, we can choose k̃2 such that Lk ≤ L ∀k ≥ k̃2. So

the proof is complete.

Now, we can show that the function uk = u
TLk
k is a solution of problem (1.1) for k large

enough and satisfies all the assertions of Proposition 2.2 (in a similar way one can argue for
the function vk).

Notice that u
TLk
k = u

T̃Lk
k , where T̃Lk ∈ DL is the function introduced in Definition 3.14, because

TLk (Ckz ) = T̃Lk (CLz ) ∀z ∈ Zk.
First, we prove that u

T̃Lk
k is a solution of the Dirichlet problem in every subdomain T̃Lk (Ckz )

for all z ∈ Zk and then we show that it satisfies a suitable stationarity condition which allows
us to prove that, indeed, it is a solution of the Dirichlet problem (1.1) in the domain Ω.

Lemma 3.16. There exists k1(L) ∈ N such that, for all k ≥ k1(L) and z ∈ Zk, the function

u
T̃Lk
k,z is a solution of the Dirichlet problem

−∆u = |u|p−1u+ ψ in T̃Lk (Ckz ), u = 0 on ∂T̃Lk (Ckz ). (3.115)

Proof. For all k ∈ N and z ∈ Zk, let us consider the function G
T̃Lk
k,z : T̃Lk (Ckz ) × R → R such

that G
T̃Lk
k,z(x, ·) ∈ C2(R) ∀x ∈ T̃Lk (Ckz ) and

G
T̃Lk
k,z(x, t) =

|t|p+1

p+ 1
+ ψ(x)t if σ(z)[t− ũT̃

L
k
k,z(x)] ≥ 0, (3.116)

∂2G
T̃Lk
k,z(x, t)

∂t2
=

∂2G
T̃Lk
k,z

∂t2
(x, ũ

T̃Lk
k,z(x)) if σ(z)[t− ũT̃

L
k
k,z(x)] ≤ 0, (3.117)

where ũ
T̃Lk
k,z is the function given by Lemma 2.4 which, for k large enough, is a solution of

problem (3.115) because it is a local minimum of the functional Eψ in H1
0 (T̃Lk (Ckz )).

Moreover, let us set g
T̃Lk
k,z (x, t) =

∂G
T̃Lk
k,z

∂t (x, t). Then, let us consider the functional E
k,z,T̃Lk

:

H1
0 (T̃Lk (Ckz ))→ R defined by

E
k,z,T̃Lk

(u) =
1

2

∫
T̃Lk (Ckz )

|∇u|2dx−
∫
T̃Lk (Ckz )

G
T̃Lk
k,z(x, u) dx. (3.118)

Since p > 1, for k large enough one can verify that for all u 6≡ ũ
T̃Lk
k,z there exists tu > 0 such

that

E′
k,z,T̃Lk

(
ũ
T̃Lk
k,z + tu(u− ũT̃

L
k
k,z)
)
[u− ũT̃

L
k
k,z ] = 0 (3.119)

if and only if [σ(z)[u− ũT̃
L
k
k,z(x)] ∨ 0 6≡ 0; in this case such a tu is unique; in the other case we

have

E′
k,z,T̃Lk

(
ũ
T̃Lk
k,z + t(u− ũT̃

L
k
k,z)
)
[u− ũT̃

L
k
k,z ] > 0 ∀t > 0 (3.120)

27



and

lim
t→∞

E
k,z,T̃Lk

(
ũ
T̃Lk
k,z + t(u− ũT̃

L
k
k,z)
)

=∞. (3.121)

When [σ(z)[u − ũT̃
L
k
k,z(x)] ∨ 0 6≡ 0, one can verify by direct computation that E′

k,z,T̃Lk

(
ũ
T̃Lk
k,z +

t(u− ũT̃
L
k
k,z)
)
[u− ũT̃

L
k
k,z ] is positive for t ∈]0, tu[ and negative for t > tu, so

E
k,z,T̃Lk

(
ũ
T̃Lk
k,z + tu(u− ũT̃

L
k
k,z)
)

= max{E
k,z,T̃Lk

(
ũ
T̃Lk
k,z + t(u− ũT̃

L
k
k,z)
)

: t > 0}. (3.122)

Moreover, one can verify that

E′′
k,z,T̃Lk

(
ũ
T̃Lk
k,z + tu(u− ũT̃

L
k
k,z)
)
[u− ũT̃

L
k
k,z , u− ũ

T̃Lk
k,z ] < 0. (3.123)

Assume, for example, that σ(z) = 1 (in a similar way one can argue when σ(z) = −1). In
this case, we have

E
k,z,T̃Lk

(
ũ
T̃Lk
k,z + t(u− ũT̃

L
k
k,z)
)

=E
k,z,T̃Lk

(
ũ
T̃Lk
k,z + t[(u− ũT̃

L
k
k,z) ∨ 0]

)
+ tE′

k,z,T̃Lk

(
ũ
T̃Lk
k,z

)
[(u− ũT̃

L
k
k,z) ∧ 0]

+
t2

2

∫
T̃Lk (Ckz )

|∇[(u− ũT̃
L
k
k,z) ∧ 0]|2dx

− t2

2
p

∫
T̃Lk (Ckz )

|ũT̃
L
k
k,z |

p−1[(u− ũT̃
L
k
k,z) ∧ 0]2dx ∀t > 0,

(3.124)

where

E′
k,z,T̃Lk

(
ũ
T̃Lk
k,z

)
[(u− ũT̃

L
k
k,z) ∧ 0] = 0 (3.125)

because ũ
T̃Lk
k,z is a solution of problem (3.115).

Notice that∫
T̃Lk (Ckz )

|ũT̃
L
k
k,z |

p−1[(u− ũT̃
L
k
k,z) ∧ 0]2dx

≤

(∫
T̃Lk (Ckz )

|ũT̃
L
k
k,z |

p+1dx

) p−1
p+1
(∫

T̃Lk (Ckz )
|(u− ũT̃

L
k
k,z) ∧ 0|p+1dx

) 2
p+1

(3.126)

where, as follows from Lemma 2.4,

lim
k→∞

max

{∫
T̃Lk (Ckz )

|ũT̃
L
k
k,z |

p+1dx : z ∈ Zk

}
= 0. (3.127)

Moreover, we have∫
T̃Lk (Ckz )

|∇[(u− ũT̃
L
k
k,z) ∧ 0]|2dx ≥ λk

(∫
T̃Lk (Ckz )

|(u− ũT̃
L
k
k,z) ∧ 0|p+1dx

) 2
p+1

∀k ∈ N, ∀z ∈ Zk

(3.128)
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where, for all k ∈ N,

λk = min

{∫
T̃Lk (Ckz )

|∇v|2dx : z ∈ Zk, v ∈ H1
0

(
T̃Lk (Ckz )

)
,

∫
T̃Lk (Ckz )

|v|p+1dx = 1

}
. (3.129)

We say that limk→∞ λk = ∞. In fact, otherwise, there exist suitable sequences (zk)k in Rn,
and (vk)k in H1

0 (Ω) such that zk ∈ Zk, vk ≡ 0 in Ω \ Ck
zk

,
∫

Ω |vk|
p+1dx = 1 ∀k ∈ N and (up

to a subsequence) limk→∞
∫

Ω |∇vk|
2dx <∞.

As a consequence, since p < n+2
n−2 when n ≥ 3, there exists v̄ ∈ H1

0 (Ω) such that (up to a

subsequence) vk → v̄ as k →∞ weakly in H1
0 (Ω), in Lp+1(Ω) and almost everywhere in Ω.

Taking into account that limk→∞meas T̃Lk (Ckz ) = 0, the almost everywhere convegence im-
plies that v̄ ≡ 0 in Ω, in contradiction with the convergence in Lp+1(Ω) because

∫
T̃Lk (Ckz )

|vk|p+1

dx = 1 ∀k ∈ N. Thus, we can conclude that limk→∞ λk =∞.
It follows that, for k large enough,

E
k,z,T̃Lk

(
ũ
T̃Lk
k,z+t[(u−ũT̃

L
k
k,z)∨0]

)
≤ E

k,z,T̃Lk

(
ũ
T̃Lk
k,z+t(u−ũT̃

L
k
k,z)
)

∀t > 0, ∀u ∈ H1
0 (Ckz ). (3.130)

As a consequence, if we set

Γ = {u ∈ H1
0 (T̃Lk (Ckz )) : u 6≡ ũT̃

L
k
k,z , E

′
k,z,T̃Lk

(u)[u− ũT̃
L
k
k,z ] = 0}, (3.131)

we have u
T̃Lk
k,z ∈ Γ and

Eψ(u
T̃Lk
k,z) = E

k,z,T̃Lk
(u
T̃Lk
k,z) = min

Γ
E
k,z,T̃Lk

. (3.132)

Therefore, there exists a Lagrange multiplier µ ∈ R such that

E′
k,z,T̃Lk

(u
T̃Lk
k,z)[v] = µ

{
E′′
k,z,T̃Lk

(u
T̃Lk
k,z)[u

T̃Lk
k,z − ũ

T̃Lk
k,z , v] + E′

k,z,T̃Lk
(u
T̃Lk
k,z)[v]

}
∀v ∈ H1

0 (Ckz ).

(3.133)

In particular, if we choose v = u
T̃Lk
k,z − ũ

T̃Lk
k,z , we obtain µ = 0 because

E′
k,z,T̃Lk

(u
T̃Lk
k,z)[u

T̃Lk
k,z − ũ

T̃Lk
k,z ] = 0 (3.134)

while

E′′
k,z,T̃Lk

(u
T̃Lk
k,z)[u

T̃Lk
k,z − ũ

T̃Lk
k,z , u

T̃Lk
k,z − ũ

T̃Lk
k,z ] 6= 0. (3.135)

Thus, u
T̃Lk
k,z is a weak solution of the Dirichlet problem

−∆u
T̃Lk
k,z = g(x, u

T̃Lk
k,z) in T̃Lk (Ckz ), u = 0 on ∂T̃Lk (Ckz ). (3.136)

On the other hand, since u
T̃Lk
k,z ≥ ũ

T̃Lk
k,z in T̃Lk (Ckz ), we have

g
(
x, u

T̃Lk
k,z(x)

)
= |uT̃

L
k
k,z(x)|p−1u

T̃Lk
k,z(x) + ψ(x) ∀x ∈ T̃Lk (Ckz ). (3.137)

So u
T̃Lk
k,z is a solution of problem (3.115) and the proof is complete.
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Proposition 3.17. Under the assumptions of Proposition 2.2, there exists k̄ ∈ N such that

the function u
T̃Lk
k =

∑
z∈Zk u

T̃Lk
k,z is a solution of problem (1.1) for all k ≥ k̄.

Proof. From Lemma 3.16 we infer that, for a suitable k1(L) ∈ N, E′ψ(u
T̃Lk
k )[v] = 0 for all

v ∈ H1
0 (T̃Lk (Ckz )), z ∈ Zk, k ≥ k1(L).

Now, we have to prove that E′ψ(u
T̃Lk
k )[v] = 0 ∀v ∈ H1

0 (Ω). Taking into account Lemma 3.16,
we obtain

E′ψ(u
T̃Lk
k )[v] =

∫
Ω

[∇uT̃
L
k
k · ∇v − |u

T̃Lk
k |

p−1u
T̃Lk
k v − ψv] dx

=
∑
k∈Zk

∫
T̃Lk (Ckz )

[∇uT̃
L
k
k · ∇v − |u

T̃Lk
k |

p−1u
T̃Lk
k v − ψv] dx

=
∑
k∈Zk

∫
∂T̃Lk (Ckz )

v (∇uT̃
L
k
k · νk,z) dσ

(3.138)

wher νk,z denotes the outward normal on ∂T̃Lk (Ckz ). Thus, in order to obtain E′ψ(u
T̃Lk
k )[v] = 0,

we prove that

∇uT̃
L
k
k,z1

(x) = ∇uT̃
L
k
k,z2

(x) ∀x ∈ ∂T̃Lk (Ckz1) ∩ ∂T̃Lk (Ckz2) (3.139)

for all z1, z2 ∈ Zk such that |z1 − z2| = 1 (that is when T̃Lk (Ckz1) and T̃Lk (Ckz2) are adjacent
subdomains of Ω).

Notice that, since for all k ≥ k1(L) and z ∈ Zk the function u
T̃Lk
k,z is a solution of problem

(3.115), for all vector field Φ ∈ C1
0(Ω,Rn) we obtain

E′ψ(u
T̃Lk
k )[Φ · ∇uT̃

L
k
k ] =

∫
Ω

[∇uT̃
L
k
k · ∇(Φ · ∇uT̃

L
k
k )− |uT̃

L
k
k |

p−1u
T̃Lk
k (Φ · ∇uT̃

L
k
k )− ψ(Φ · ∇uT̃

L
k
k )] dx

=
∑
z∈Zk

∫
T̃Lk (Ckz )

[∇uT̃
L
k
k · ∇(Φ · ∇uT̃

L
k
k )− |uT̃

L
k
k |

p−1u
T̃Lk
k (Φ · ∇uT̃

L
k
k )− ψ(Φ · uT̃

L
k
k )] dx

=
∑
z∈Zk

∫
∂T̃Lk (Ckz )

(∇uT̃
L
k
k · νk,z)

2(Φ · νk,z) dσ.
(3.140)

Thus, it is easy to verify that in order to prove (3.139) it suffices to show that there exists k̄
such that

E′ψ(u
T̃Lk
k )[Φ · ∇uT̃

L
k
k ] = 0 ∀Φ ∈ C1

0(Ω,Rn), ∀k ≥ k̄. (3.141)

From Proposition 3.15 we infer that there exists k̄ ≥ k1(L) such that T̃Lk ∈ DL/2 ∀k ≥ k̄.

Now, for all τ ∈ R and Φ ∈ C1
0(Ω,Rn), let us consider the function Tτ,Φ : Ω → Ω defined by

the Cauchy problem

∂Tτ,Φ(x)

∂τ
= Φ ◦ Tτ,Φ(x), T0,Φ(x) = x ∀τ ∈ R, ∀x ∈ Ω. (3.142)
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One can verify by standard arguments that for all Φ ∈ C1
0(Ω,Rn) there exists τ̄Φ > 0 such

that Tτ,Φ ◦ T̃Lk ∈ DL ∀τ ∈ [−τ̄Φ, τ̄Φ]. It follows that

Eψ(u
T̃Lk
k ) =

∑
z∈Zk

Eψ(u
T̃Lk
k,z) ≤

∑
z∈Zk

Eψ(u
Tτ,Φ◦T̃Lk
k,z ) = Eψ(u

Tτ,Φ◦T̃Lk
k ) ∀τ ∈ [−τ̄Φ, τ̄Φ] (3.143)

because of the minimality of T̃Lk . Moreover, notice that

d

dτ
Eψ(u

T̃Lk
k ◦ T

−1
τ,Φ)|τ=0

= −E′ψ(u
T̃Lk
k )[Φ · ∇uT̃

L
k
k ], (3.144)

so we have to prove that
d

dτ
Eψ(u

T̃Lk
k ◦ T

−1
τ,Φ)|τ=0

= 0. (3.145)

Arguing by contradiction, assume that (3.145) does not hold. We can assume, for example,
that

d

dτ
Eψ(u

T̃Lk
k ◦ T

−1
τ,Φ)|τ=0

< 0 (3.146)

(otherwise we replace Φ by −Φ). Therefore, there exists a sequence of positive numbers (τi)i
such that limi→∞ τi = 0 and

Eψ(u
T̃Lk
k ◦ T

−1
τi,Φ

) < Eψ(ũ
T̃Lk
k ) ∀i ∈ N. (3.147)

We say that, as a consequence of (3.146), for i large enough we have

max

∑
z∈Zk

Eψ
(
ũ
T̃Lk
k,z ◦ T

−1
τi,Φ

+ tz(u
T̃Lk
k,z ◦ T

−1
τi,Φ
− ũT̃

L
k
k,z ◦ T

−1
τi,Φ

)
)

: tz ≥ 0 ∀z ∈ Zk

 < Eψ(u
T̃Lk
k ).

(3.148)
In fact, arguing by contradiction, assume that (up to a subsequence still denoted by (τi)i)
the inequality (3.148) does not hold.
Then, for all i ∈ N and z ∈ Zk, there exists tz,i ≥ 0 such that∑

z∈Zk

Eψ
(
ũ
T̃Lk
k,z ◦ T

−1
τi,Φ

+ tz,i(u
T̃Lk
k,z ◦ T

−1
τi,Φ
− ũT̃

L
k
k,z ◦ T

−1
τi,Φ

)
)
≥ Eψ(u

T̃Lk
k ) ∀i ∈ N. (3.149)

Since p > 1, the sequence (tz,i)i is bounded ∀z ∈ Zk. Moreover, taking into account that

Eψ(ũ
T̃Lk
k,z + t(u

T̃Lk
k,z − ũ

T̃Lk
k,z)
)
< Eψ(u

T̃Lk
k,z) ∀t 6= 1, ∀z ∈ Zk, (3.150)

we infer that limi→∞ tz,i = 1 ∀z ∈ Zk and∑
z∈Zk

Eψ
(
ũ
T̃Lk
k,z ◦ T

−1
τi,Φ

+ tz,i(u
T̃Lk
k,z ◦ T

−1
τi,Φ
− ũT̃

L
k
k,z ◦ T

−1
τi,Φ

)
)
≥ Eψ(u

T̃Lk
k )

≥
∑
z∈Zk

Eψ
(
ũ
T̃Lk
k,z + tz,i(u

T̃Lk
k,z − ũ

T̃Lk
k,z)
)

∀i ∈ N.
(3.151)
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As a consequence, for all i ∈ N there exists τ ′i ∈]0, τi[ such that

d

dτ

∑
z∈Zk

Eψ
(
ũ
T̃Lk
k,z ◦ T

−1
τ,Φ + tz,i(u

T̃Lk
k,z ◦ T

−1
τ,Φ − ũ

T̃Lk
k,z ◦ T

−1
τ,Φ)

)
|τ=τ ′

i

≥ 0 ∀i ∈ N (3.152)

which, as i→∞, implies
d

dτ
Eψ(u

T̃Lk
k ◦ T

−1
τ,Φ)|τ=0

≥ 0, (3.153)

in contradiction with (3.146). Thus, (3.148) holds. From Lemma 2.4 we infer that, if we
choose k̄ large enough, for all k ≥ k̄, z ∈ Zk and i ∈ N there exists a unique minimizing

function ũ
Tτi,Φ◦T̃

L
k

k,z . Moreover, ũ
Tτi,Φ◦T̃

L
k

k,z → ũ
T̃Lk
k,z in H1

0 (Ω), as i→∞, ∀k ≥ k̄, ∀z ∈ Zk.

Then, using the functions ũ
Tτi,Φ◦T̃

L
k

k,z and arguing as in the proof of Lemma 3.16, for i large

enough we obtain the functions u
Tτi,Φ◦T̃

L
k

k,z .

The construction of the functions ũ
Tτi,Φ◦T̃

L
k

k,z and u
Tτi,Φ◦T̃

L
k

k,z shows also that

Eψ(ũ
Tτi,Φ◦T̃

L
k

k,z ) ≤ Eψ(ũ
T̃Lk
k,z ◦ T

−1
τi,Φ

) (3.154)

and

Eψ(u
Tτi,Φ◦T̃

L
k

k,z ) ≤ max

{
Eψ(ũ

T̃Lk
k,z ◦ T

−1
τi,Φ

+ t
(
u
T̃Lk
k,z ◦ T

−1
τi,Φ
− ũT̃

L
k
k,z ◦ T

−1
τi,Φ

)
)

: t ≥ 0

}
∀z ∈ Zk.

(3.155)
Therefore, from (3.148) and (3.155) we obtain

Eψ(u
T̃Lk
k ) > max

∑
z∈Zk

Eψ
(
ũ
T̃Lk
k,z ◦ T

−1
τi,Φ

+ tz(u
T̃Lk
k,z ◦ T

−1
τi,Φ
− ũT̃

L
k
k,z ◦ T

−1
τi,Φ

)
)

: tz ≥ 0 ∀z ∈ Zk


≥
∑
z∈Zk

Eψ
(
u
Tτi,Φ◦T̃

L
k

k,z

)
= Eψ

(
u
Tτi,Φ◦T̃

L
k

k

)
(3.156)

for i large enough, in contradiction with (3.143).

So we can conclude that d
dτEψ

(
u
T̃Lk
k ◦ T

−1
τi,Φ

)
= 0, that is E′ψ(u

T̃Lk
k )[Φ·∇uT̃

L
k
k ] = 0 for all vector

field Φ ∈ C1
0(Ω,Rn).

Thus, u
T̃Lk
k is a solution of problem (1.1) for all k ≥ k̄.

Proof of Proposition 2.2 (conclusion). If Ω is the cube (2.1), all the assertions of Proposition

2.2 hold for k large enough if we set uk = u
T̃Lk
k and Tk,u = TLk (or Tk,u = T̃Lk ) where the

function u
TLk
k and the admissible deformation TLk are obtained by the minimizing method

described in Section 2 (the functions vk = v
Tk,v
k are obtained in a similar way: it suffices to

replace σ(z) by σ(z) + 1). Notice that we have u
TLk
k = u

T̃Lk
k (where T̃Lk : Ω→ Ω is the function

introduced in Definition 3.14) because TLk (Ckz ) = T̃Lk (Ckz ) ∀z ∈ Zk.

32



In fact, Proposition 3.17 guarantees that there exists k̄ ∈ N such that u
T̃Lk
k is a solution of

problem (1.1) for all k ≥ k̄.
The asymptotic behaviour of uk as k → ∞ is described by Proposition 3.5, Lemma 3.7 and
Proposition 3.15. In fact, Proposition 3.5 shows that for every choice of zk in Zk, up to a
subsequence, the function Uzk , as k →∞ converges in H1(χ) to a positive solution Uχ of the
Dirichlet problem −∆U = |U |p−1U in χ, U = 0 on ∂χ, satisfying(∫

χ
|Uχ|p+1dx

)− 2
p+1
∫
χ
|∇Uχ|2dx = min

{∫
χ
|∇U |2dx : U ∈ H1

0 (χ),

∫
χ
|U |p+1dx = 1

}
(3.157)

where χ is a bounded domain of Rn. Lemma 3.7 says that the minimality of the admissible
deformation TLk implies that χ must be a cube of Rn having a vertex in the origin and the sides

of length 1 and finally Proposition 3.15 guarantees that T̃Lk ∈ DLk for a suitable sequence

(Lk)k in ]0, 1[ such that limk→∞ Lk = 0 so, as a consequence, χ = C1
0 = Ω and T̃Lk converges

as k →∞ to the identity function uniformly in Ω (as pointed out in Remark 3.4).
Notice that TLk ∈ DL ∀k ∈ N but, unlike T̃Lk , we cannot say that TLk ∈ DLk ∀k ∈ N. However,
we can say that also TLk converges to the identity function uniformly in Ω because, taking

into account the definition of T̃Lk , we have

TLk (x) ∈ T̃Lk (Ckz ) ∀x ∈ Ckz , ∀z ∈ Zk (3.158)

so, as a consequence,

sup{|TLk (x)− T̃Lk (x)| : x ∈ Ω} ≤ (1 + L)

√
n

k
. (3.159)

Therefore, all the assertions in Proposition 2.2 hold for Tk,u = T̃Lk and also for Tk,u = TLk , so
the proof is complete.

Theorem 2.1 is a direct consequence of Proposition 2.2.

Notice that our method to construct solutions having this checked nodal structure does not
require any technique of deformation from the symmetry and it works in case of more general
nonlinearities, even when they are not perturbations of symmetric nonlinearities by lower
order terms.
For example, it works when in problem (1.1) the term |u|p−1u+ ψ is replaced by c+(u+)p −
c−(u−)p + ψ with c+ > 0, c− > 0 and c+ 6= c−.
Moreover, notice that our method works also when the nonlinear term has critical growth.
For example, for n > 2 and λ ∈ R let us consider the Dirichlet problem

−∆u = |u|
4

n−2u+ λu+ ψ in Ω, u = 0 on ∂Ω (3.160)

whose solutions are critical points of the energy functional F : H1
0 (Ω)→ R defined by

F(u) =
1

2

∫
Ω
|∇u|2dx− n− 2

2n

∫
Ω
|u|

2n
n−2dx− λ

2

∫
Ω
u2dx−

∫
Ω
ψudx. (3.161)
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It is well known that, if λ = 0 and ψ ≡ 0 in Ω, problem (3.160) has only the trivial solution
u ≡ 0 for every bounded starshaped domain Ω, as a consequence of the Pohozaev identity
(see [36]).
When n ≥ 4, ψ ≡ 0 in Ω and λ is positive and strictly less than the first eigenvalue of the
Laplace operator −∆ in H1

0 (Ω), there exists a positive solution that concentrates as a Dirach
mass as λ → 0 (see [12, 13] etc.); the existence of nodal solutions is studied for example in
[16] etc..
Notice that also when ψ ≡ 0 in Ω, so that the functional F is even, the problem of finding
infinitely many solutions is difficult because the well known Palais-Smale compactness con-
dition is not satisfied, as a consequence of the presence of the critical Sobolev exponent (see
[12, 13, 44] etc.).
When Ω is a cube of Rn, our method, combined with some estimates as in [13], allows us
to construct infinitely many solutions with many nodal regions and arbitrarily large energy
level for all λ > 0 and ψ ∈ L2(Ω).
In fact, as we prove in a paper in preparation, the following theorem holds (see also [27] for
the particular case where Ω is a cube and ψ ≡ 0 in Ω).

Theorem 3.18. Assume that Ω is a cube of Rn with n ≥ 4 and λ > 0. Then, for every
ψ ∈ L2(Ω), problem (3.160) admits infinitely many solutions.
More precisely, if Ω is for example the cube (2.1), for all ψ ∈ L2(Ω) there exists k̄ ∈ N such
that, for every k ≥ k̄, problem (3.160) admits a solution uk having the following properties.
For all k ≥ k̄ there exists Tk ∈ DL such that, for every choice of zk in Zk, the function
uk,zk := uk |

Tk(Ck
zk

)
belongs to H1

0

(
Tk(C

k
zk

)
)

(here we consider uk,zk extended by the value zero

in Rn \ Ω).
Moreover, there exist εk > 0 and mk ∈ C1

0 = Ω such that εk → 0 as k →∞ and the function
Uk defined by

Uk(x) = σ(zk)
(εk
k

)n−2
2
uk,zk

[
εk
k
x+ Tk

(
zk +mk

k

)]
∀x ∈ Rn, ∀k ∈ N (3.162)

converges as k →∞ to a function U ∈ D(Rn) such that

−∆U = U
n+2
n−2 , U > 0 in Rn, U(0) = max

Rn
U. (3.163)

The sequence (Tk)k converges to the identity map uniformly in Ω while the domains k
[
Tk(C

k
zk

)

−Tk
(
zk

k

) ]
tend to the cube Ω as k →∞ for every choice of zk in Zk.

Furthermore, for all k ≥ k̄ there exists also another solution vk of problem (3.160) such that
the function −vk presents an asymptotic behaviour as uk when k →∞.
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