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Abstract

We prove the existence of infinitely many solutions for a class of elliptic Dirichlet

problems with non-symmetric nonlinearities. In particular, this result gives a positive
answer to a well known conjecture formulated by A. Bahri and P.L. Lions, at least when
the domains are cubes of R™.
The proof is based on a minimization method which does not require the use of techniques
of deformation from the symmetry. This method allows us to piece together solutions of
Dirichlet problems in suitable subdomains, so we obtain infinitely many nodal solutions
with a prescribed nodal structure.
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1 Introduction
In this paper we are concerned with Dirichlet problems of the form
—Au=|ufPlu41p  in Q, u=0 on JN (1.1)

where (2 is a bounded domain of R™ with n > 1, € L?(Q), p > 1 and p < Z—f% when n > 3.
The solutions of problem (1.1) are the critical points of the energy functional Ey, : H}(€2) — R,

defined by
_1 2dr — 1 Pl g, /
Ey(u) = 5 /Q |Vul“dx o /Q |u|P™ dx Qwudl‘ (1.2)

where, under our assumptions, the exponent p + 1 is less than the critical Sobolev exponent
2% = 2”2 for n > 3.
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If ¢» = 0 in €, the functional Ey is even, so the equivariant Lusternik-Schnirelmann theory for
Zo-symmetric sets may be applied and guarantees the existence of infinitely many solutions
(see for instance [1, 3, 9, 18-20, 29, 30, 37, 39)).

A natural question, which goes back to the beginning of the eighties, is whether the infinite
number of solutions still persists for ¥ Z 0.

In particular, this question was raised to the attention by Rabinowitz in his monograph on
minmax methods (see [39, Remark 10.58]). In [4] Bahri proved that, if n > 3and 1 < p < 242,
then there exists an open dense set of ¢ in L?(Q) such that problem (1.1) admits infinitely
many solutions. In [8] Bahri and Lions proved that, if n > 3 and 1 < p < -5, then
problem (1.1) admits infinitely many solutions for every ¢ € L?(£). These results suggest
the following conjecture, proposed by Bahri and Lions in [8]: the multiplicity result obtained
in [8] holds also under the more general assumption 1 < p < Z—J_rg

In the present paper we prove that, if the domain  is a cube of R™, then problem (1.1) has
infinitely many solutions for every ¢ € L?(Q2). Thus, for n > 3, our result shows that the
Bahri-Lions conjecture is true at least when 2 is a cube of R".

In order to show that the infinite number of solutions we have for @ = 0 persists under
perturbations, a detailed analysis was originally carried on in [2, 3, 5-8, 26, 31, 32, 38, 41, 45]
by Ambrosetti, Bahri, Beresticki, Ekeland, Ghoussoub, Krasnoselskyii, Lions, Marino, Prodi,
Rabinowitz, Struwe and Tanaka by introducing new perturbation methods.

More recently, a new approach to tackle the break of symmetry in elliptic problems has been
developed by Bolle, Chambers, Ghoussoub and Tehrani (see [10, 11, 17]). However, that
approach (which works also for more general nonlinear problems) did not allow to solve the
Bahri-Lions conjecture.

Related results can be found also in other, more recent, papers (see for example [40] and
references therein).

In the present paper we develop a method introduced in [34] in order to construct infinitely
many nodal solutions of problem (1.1), having a prescribed nodal structure.

The idea is to piece together the solutions of Dirichlet problems in suitable subdomains of
Q. A similar idea has been first used by Struwe in earlier papers (see [41-43] and references
therein). We consider as nodal regions some subdomains of €2 that are deformations of cubes
by suitable Lipschitz maps (so we obtain nodal solutions having a “check” nodal structure).
Notice that Lipschitz conditions combined with the covering of R™ by cubes with vertices in
Z™ have been also used in some recent papers by Rabinowitz and Byeon in order to construct
solutions with a prescribed pattern for the Allen-Cahn model equation (see [14, 15] and
references therein).

The main result of the present paper is stated in Theorem 2.1 (which is a direct consequence
of Proposition 2.2) and says that if Q is a cube of R", n > 1,p > 1 and p < Z—fg when n > 2,
then for all 1y € L?(2) there exist infinitely many nodal solutions of problem (1.1), having
as nodal structure suitable partitions of € in subdomains that are Lipschitz deformations
of arbitrarily small cubes. More precisely, in Proposition 2.2 we prove that there exists
k € N such that for all positive integer k¥ > k there exist at least two solutions wu(z) and
vg(z) of problem (1.1) such that the nodal regions of the functions uy () and v (%), after
translations, tend to the cube €2 as k — oo. Moreover, the number of nodal regions of wug,
v and their energy Fy(uy), Ey(vi) tend to infinity as & — oo, while the size of the nodal
regions tends to zero.



Notice that, in dimension n = 1, the existence of infinitely many solutions for all ¥ in L?(Q)
follows from a result obtained by Ehrmann in [25] (see also [24, 28] for related results).
However, the method used by Ehrmann relies on a shooting argument, typical of ordinary
differential equations, combined with counting the oscillations of the solutions in the interval
Q. On the contrary, in the present paper we use a method which is more similar to the one
introduced by Nehari in [35], that can be in a natural way extended to the case n > 1. In
fact, Nehari’s method was used by Coffman in [19, 20] and, independently, by Hempel in
[29, 30] to study an analogous problem for partial differential equations.

More recently, Nehari’s method has been used also by Conti, Terracini and Verzini to study
optimal partition problems, existence of changing sign solutions etc. (see [21-23, 46]).

Let us remark that Nehari consider an odd differential operator (so the corresponding energy
functional is even) and prove that for every positive integer k there exists a solution having
exactly k nodal regions. On the contrary, as Ehrmann in [25], we find solutions with a large
number of nodal regions. However, let us point out that our multiplicity result is sharp
because, as we proved in [34, Proposition 3.5], 1 can be chosen in L?() in such a way that
problem (1.1) does not have solutions with a small number of nodal regions: more precisely,
for every positive integer h there exists ¥, in L?(Q2) such that every solution of problem (1.1)
with ¢ = 1, has at least h nodal regions.

Now, let us describe the method we use to prove our result. For every cube 2 of R™ and every
positive integer k, let us consider the k™ cubic open subdomains C’{“ , Cé“ e C,ljn, having all

the same size, such that Q = Uf;@f . So, these subdomains are pairwise disjoint and, for all
i€ {1,...,k"} the cube kC¥ is a translation of the cube Q.

Moreover, for all L €]0, 1[, let us consider the set Dy, of all the deformations T : Q — Q such
that T differs from the identity map in € by a Lipschitz function with Lipschitz constant L,
T(Q) = Q and T(F) = F for every face F' of the cube Q. Notice that, since L €]0, 1], every
deformation T' € Dy, is a bilipschitz map in Q. Then, for all 7 in D, and k in N, by using a
Nehari type minmax argument in every subdomain 7'(CF) with i € {1,...,k"}, we construct
two distinct nodal functions u and v} in H{(Q) whose nodal regions are the subdomains
T(Cf), for i =1,...,k™, and such that, for k large enough, u{ and ?)Z; satisfy equation (1.1)
in each nodal region and are solutions of the Dirichlet problem (1.1) in © when, in addition,
they satisfy a suitable stationary property. Moreover, the construction of u{ and UZ: shows
that v,{ behaves as —u;‘g when k — oo.

Now, for all k € N, we minimize the energy functional E, in the set {ul : T € Dp};
moreover, we show that, if the minimum is achieved by a map T,f in Dy, with L €0, L],

. . TE . . . .- .
then the corresponding function w,* satisfies the stationarity condition which allows us to
conclude that it is a solution of problem (1.1) for k large enough.
Indeed, we show that there exists a sequence (Ly, ) of positive numbers such that limy_,oo Ly =
L

0 and TkL € Dy, Vk € N, so Ly, €]0, L[ for k large enough and the solution uj; = ufk satisfies
all the assertions of Proposition 2.2 (in analogous way one can construct the solutions vy that
behaves as —uy when k — o0).

In particular, we obtain that Tk,L tends as k — oo to the identity map in Q and that the
rescaled nodal regions k7T kL(CZk), after translations, tend to the cube 2 as k& — oo, uniformly
with respect to i € {1,...,k"}.

The existence of such a sequence (Lg)k, which plays a crucial role in the proof, is strictly



related to a minimality property of the cubes in R™. In fact, the functions u;‘g (%), suitably

rescaled, tend as k — oo to solutions of the equation (1.1) with ¢ = 0. Therefore, since the
effect of the term v tends to vanish as k — oo, the rescaled nodal regions kaL(Cf), suitably
translated, tend to polyhedra as k — oo. Among these polyhedra, the cubes of R™ are the
unique minimizers of the “shape factor” ¢(x) defined by

o) = mO P FH7), (13)

where |x| is the volume of x and

m(x) = min{/x \VU|?dz : U € Hi(x), /X|U|p+1da: = 1} (1.4)

(notice that ¢(x) depends only on the shape of y and not on its size because it is invariant
with respect to translations and rescaling of x). Therefore, taking into account the asymptotic
behaviour of E (uZ’“L ) as k — oo, the minimality of T)F implies that o(kT}L(CF)) — ©, where
% denotes the shape factor of every cube of R™, while the volumes [KTF(CF)| — 1 as k — oo,
uniformly with respect to i € {1,...,k"}.

As a consequence, taking also into account the conditions of T; ,f on 0f), we infer that, after
translations, the rescaled nodal regions kaL (C’f) tend to 2 as k — oo and there exists a
sequence (L), having the desired properties.

It is clear that our method does not require techniques of deformations from the symmetry and
may be applied to more general problems. For example, it may be easily adapted to deal with
the case where in problem (1.1) the nonlinear term |u|P~1u is replaced by cy (u™)? —c_(u™)P
with ¢y and c_ two positive constants. Moreover, this method may be adapted to work even
in case of nonlinear elliptic equations involving critical Sobolev exponents. For example,
it allows us to obtain in this case a multiplicity result similar to Theorem 2.1, which is
announced in Theorem 3.18.

2 Variational framework and statement of the main results

Our aim is to prove the following theorem.

Theorem 2.1. Let Q) be a cube of R™ withn > 1, let p > 1 and p < Z—J_rg when n > 3. Then,
for every 1 € L*(Q), problem (1.1) admits infinitely many solutions.

Without any loss of generality, we can assume that
Q={r=(z1,...,2p) €eR" : 0< ;<1 fori=1,...,n}. (2.1)

For all positive integer k and for all z € Z", let us set

n

ck = %(z +Q) and o(z) = (=1)Zi=1 % (2.2)

z

(thus, in particular, we have C} = Q).



Notice that for all £ € N we have C’f CQifandonly if 0 < z; < k—1fori=1,...,n;
moreover, if we set

Zy={2=(21,...,2n) €Z" : 0<2z;<k—1 fori=1,...,n}, (2.3)
we have i
Q= U C, and CFNChk =0 for 2# 2 (2,7 € Zy). (2.4)
2E€Z),

Then, the following proposition holds (it obviously implies Theorem 2.1).

Proposition 2.2. Under the assumptions of Theorem 2.1, if Q is the cube (2.1), for all
Y € L?(Q) there exists k € N such that for every k > k problem (1.1) admits two solutions uy,
and vy, having the following properties (here we consider uy, and vy extended by the value zero
in R"\ Q). For all k > k there exist two bilipschitz maps Ty, Ty : Q@ — Q (with Lipschitz
constants independent of k) such that for every choice of 2 in Zy the functions Ui and Vi
defined by

k k
Uon(z) = 280, [x + Tho <Z>] Vz € R", Vk >k, (2.5)
Py K
(o k -
Vale) = —280,, {x + Tho <Z>} Ve € R", Yk >k, (2.6)
ey k

restricted to €, both converge as k — oo to a positive solution of problem (1.1) with ¢ =0 in
Q, satisfying

Eo(U) = min{Ey(U) : U € Hy()\ {0}, Ey(U)[U] =0} (2.7)
Moreover, the sequences (T )k and (Tk)r both converge to the identity map uniformly in
Q, while the domains k |:Tk,u (ka) — Tk (%)] and k [Tk,v (C’fk) — T (%)} tend to Q2 as
k — oo for every choice of 2* in Zy.
The proof is reported in Section 3.
In order to prove Theorem 2.1 and Proposition 2.2, we proceed as follows. For every t € [0, 1]
and 7 € {1,...,n}, let us consider the set

Fl={(z1,...,2,} €Q : z; =1} (2.8)

(in particular, if t = 0 or t = 1, F is a face of the cube Q).
Now, let us fix L €]0, 1] and consider the set Dy, of the admissible deformations of € defined
by

Dp={T:Q—=Q :TQ)=Q, T(F})=F! fort=0,1,i=1,...,n,

- (2.9)
T(x) —T(y) —x +y| < Lz —y| Y,y € Q}.

Notice that for every deformation T' € Dy, one can write T'(x) = I(z) + S(z) where I(z) = x
Vr € Qand S :  — R" is a Lipschitz continuous function with Lipschitz constant L.
Moreover, we have

A-L)z—yl <[T@)-THI <A+ L)z—yl Vr,yeQ (2.10)



where 1 — L > 0 because we assumed L €]0,1[. Thus, T is invertible and both T' and T~}
are Lipschitz continuous functions in .

Other important consequences of the definition of Dy, are presented in next proposition where
we describe some geometrical properties of the deformations T'(F}) of the sets F} with respect
to the straight lines orthogonal to F (these properties motivate the introduction of this class
of admissible deformations).

Proposition 2.3. Let T € Dy, and L €)0,1[. Then

a) for allt € [0,1], i € {1,...,n} and y € Q there exists a unique v € F! such that
P; o T(x) = Pi(y), where P; denotes the orthogonal projection of R™ on the subspace
{x = (z1,...,2,) € R™ : z; =0} (that is, every straight line orthogonal to F! meets
T(F}) in a unique point);

b) for all t', t" in [0,1] such that t' < t" and for all ' € F! and 2" € F!" such that

P,oT(2') = P,oT(z"), we have T;(z') < T;(z") (that is, the deformation T(F}) of the

set F! meets every straight line orthogonal to F! in a unique point whose ith coordinate

increases as t increases).

Proof. In order to prove (a), first notice that, for all t € [0,1],7 € {1,...,n} and y € Q, there
exists z € F} such that P, o T'(x) = P;(y).
In fact, let us consider the function P;oT : F}f — F?, which is a continuous function satisfying

PoT(FINF))CF)NE), PoT(F/NF})CF'NF  Vje{l,...,n}\{i}. (2.11)

Therefore, since P;(y) € F), there exists « € F! such that P; o T(z) = Pi(y) (as follows from
[33]).

Now, let us prove that such a x is unique. Arguing by contradiction, assume that there exists
another 7 in F}, T # x, such that P, o T(z) = P;(y), which implies

[T(z) —T(z)]- (x—2)=0. (2.12)
Since T € Dy, with L €]0, 1], we infer that
|T(x) —T(z)+ 2 — x| < Ljx — 7| (2.13)

and, as a consequence,
IT(z) — T(%) + % — z|* < |z — 2|2 (2.14)
because z # Z. On the other hand, from (2.12) we obtain
T(x) = T(@) + & — a|* = |T(x) = T(@)]* + |7 — 2f* = 2[T(z) - T(2)] - (2 - )
=|T(z) - T(&)* +|& — 2| (2.15)
> |7 — xf?

in contradiction with (2.14).
Thus, (a) is completely proved.



In order to prove (b), we argue again by contradiction and assume that there exist ¢',¢" in
[0,1] such that # < " and 2’ € F}', 2 € F!" such that

PoT(z') =P oT(2") and T;(2") > T;(z"). (2.16)
Notice that (2.16) implies
[T(z') —T(z")] (2’ —2") <0. (2.17)
Therefore, we obtain
T(2') = T(a") + 2" —a'|> = |T(2') = T(a")? + |¢' — 2"|* = 2[T(a’) = T(2")] - (2" — 2")
> |T(z') = T(a")[? + |’ —2"|?
> |z’ — 2"|2.
(2.18)
On the other hand, since T' € Dy, with L €]0,1[ and 2’ # z”, we infer that
T(z") =T (") + |2" — o'|* < LPa’ — 2")? < |2’ — 2" (2.19)

in contradiction with (2.18).
Thus, we can conclude that, if P;oT(z') = P, o T(2") and ¢’ < ¢”, then T;(2') < T;(2"), so
the proof is complete.

O
Now, we exploit the class of admissible deformations Dy, in order to construct the solutions
ug and vg. We first construct the solutions wuy (then one can proceed in a similar way to
construct the solutions vg). For all k € N, z € Z and T € D, with L €]0, 1], let us set

Ey(k,2,T) = inf {Ew . w e HY(T(CYY), / lu[PHde = 1} : (2.20)
T(Ct)

Since p < Z—i‘% when n > 3, one can easily verify that the infimum in (2.20) is achieved.

Moreover, for all k € N and L €]0, 1], also the infimum
inf{Ey(k,2,T) : z€ Zy, T € Dy} (2.21)

is achieved, as one can prove by standard arguments using Ascoli-Arzela Theorem.
For the construction of the functions u; we need the following Lemmas.

Lemma 2.4. For all L €]0, 1] we have
lim min{Ey(k,2,T) : z€ Zy, T € D} =00 (2.22)
k—ro0

and there exists k(L) € N such that, for all k > k(L), z € Zy, and T € Dy, the infimum

inf{%(u) e HY(T(CH), / \u|p+1dx<1} (2.23)
T(Ck)

s achieved by a unique minimizing function ﬂ;‘gz. Moreover, we have
b

lim sup / \Val |*de @ z€ Zy, T € Dpy =0. (2.24)
k—o00 T(Ck) ’

z



Proof. For all k € N, let us consider z* € Z; and T}, € Dy, realizing the minimum (2.22) and
uy € H} (T(ka)) realizing the minimum Ey(k, 2%, T).

Let us extend the function uy in all of © by the value zero in 2\ ka. Since Ty, € Dy, Vk € N,
taking into account the second inequality in (2.10), we obtain

lim meas T},(C%) =0, (2.25)

k—o0

so (up to a subsequence) u, — 0 almost everywhere in Q. It follows that

lim / Vg |*dz = oo (2.26)
Q

k—o0

otherwise, since p < Z—‘*‘% for n > 3, 4 — 0 also in LP*1(Q2), which is impossible because

Jq lak|PT dz =1 Vk € N. As a consequence, since

1 1
Ey(k, 2, T") = 2/Q Vi |2dx — P /Quw dz, (2.27)

we obtain (2.22).

Notice that (2.22) implies that for all L €]0, 1] there exists k(L) € N satisfying

0 < min {Ew(u) . we HY(T(CYY), / lu[Pde = 1} Vk > k(L), ¥z € Zy, VT € Dy,
T(C%)

(2.28)
Since Ey(0) = 0, it follows by standard arguments that for all ¥ > k(L), z € Z;, and T' € Dy,
there exists ﬂgz € H}(T(CF)) such that

Ey (i ,) = min {Ew(u) cu e HH(T(CYY), / lu[PHde < 1} . (2.29)
’ T(Ch)

Taking into account that
Ey(iy,) < Ey(0) =0 Vk>k(L), Vz € Zy, VT € Dy, (2.30)

it follows that

sup {/T( ’ |V&£,Z|2d:p c k>k(L), z€ Zy, T € DL} < 00. (2.31)

z

In order to prove (2.24), we argue by contradiction and assume that for all k& > k(L) there
exist zF € Z, and T}, € Dy, such that

k—o0

lim inf /T o )|va;ffvzk|2dx > 0. (2.32)
k Lk

From (2.31) we infer that the sequence (ﬂ:’“zk) k. (with ﬂg’“zk extended by the value zero outside

T k(ka)) is bounded in H{ (). Moreover, up to a subsequence, ﬂf’“zk — 0 as k — oo almost

8



everywhere in € because Ty € Dy, so meas(Tk(C’ )) = 0 as k — oo. Therefore, uk , — 0
as k — 0o also in LP*1(2). Then, from E¢( ) < 0 Vk € N it follows easily that

lim sup/ |Vu L2dr =0 (2.33)
Ti(C*,

k—oo

in contradiction with (2.32). Thus, we can conclude that (2.24) holds.
Finally, notice that the functional Ey is strictly convex in a suitable neighborhood of zero.
Therefore, for k large enough, u " © 1s the unique minimizing function for (2.23) for all z € Zj

and T € Dy,. So the proof is complete
O

Lemma 2.5. Forallk > k(L), z € Zy, andT € Dy, there exists a function U;}F,z in HY (T(CY))
such that u}sz # ﬂ;‘gz, U(z)[u;‘gz - afz] >0 in T(C*) and

Ey(uk, ;) = My(ui..)

~ . (2.34)
= min{My(u) : ue Hy(T(CL)), u# i, o(2)[u—ai.] >0 inT(CY)}
where, for all w € HY(T(CY)), My (u) is defined by
My(u) = max{Ey(af,, + t(u—aj)) : t>0}. (2.35)

Proof. First notice that the maximum in (2.35) is achieved for all u € H} (T(C¥)) because p >
1. Now, let us consider a sequence (u;); in Hi(T(C¥)) such that u; # @l _, o(2)[u; —al ] >0
in T(CF) Vi € N and

Zlig}o My (u;) = inf{My(uv) : u€ HNT(CF)), u ﬂazk, o(z)[u— a{z] >0in T(CY)}.
(2.36)
Then, let us set w; = [Ju;—1y, zHLP+1(u'L uk ) and notice that, obviously, My, (u;) = MM&ZZ—F
w;). Moreover notice that, since the sequence (w;); is bounded in LPT!, (2.36) implies that
it is bounded also in H}. Since p < ”*2 when n > 3, it follows that (up to a subsequence)
(w;); converges weakly in H}, in Lerl and almost everywhere to a function w € H} (T(C¥)).
As a consequence, ||@]|p+1 = 1 and o(2)w > 0 in T(CF). Indeed, w; — 0 as i — oo strongly
in HOI(T(Cf)) In fact, since we have the weak convergence, arguing by contradiction assume
that HwZHfLIé does not converge to ||ﬁ)H§{é as i — 0o, that is

/ |V |2de < 'lim/ \Vw; |*de, (2.37)
T(Ck) oo JT(CF)

which, combined with the weak convergence, implies My (@ + W) < lim;oo My (% + w;).
Therefore, we obtain a contradiction because w # 0 and, as a consequence, lim; o, My, (@ +
w;) < My(@ + ) because of (2.36). Thus, we can conclude that w; — @ in H(T(CF)) as
i — 0o, which imples lim; oo My, (0 4+ w;) = My (0 + ).
Moreover, since p > 1, there exists > 0 such that Ew(ﬂ%:z + ) = M¢(ﬂiz + 1), so all the
assertions in Lemma 2.5 hold with ug = ﬁ{ |+t

O



Remark 2.6. Notice that the function u;‘g . given by Lemma 2.5, for k large enough, satisfies
Ew(u:lgz) > Ey(k,z,T) because u;‘gz B2 &;{}Z in T(CF).
Thus, by (2.22) we get

lim min{Ey(uf ) : 2z € Zy, T € D1} = 0. (2.38)

k—o00

Now, we extend every function uf _in all of Q by the value zero outside 7'(C¥) and we consider

the function u] € HJ(€2) defined by ul = > 7 “;}F,z- Using Ascoli-Arzela Theorem, one
can verify that for all k > k(L) there exists an admissible deformation T} € Dy, such that

Ew(ufff ) = min{Ey(uf) : T € Dr}. (2.39)

L
In next section we show that uZ’“ is a solution of problem (1.1) for k large enough and that

Proposition 2.2 holds with u; = u;‘:’f and T}, = TkL. In order to construct the solutions vy,
we proceed in analogous way. In fact, as in Lemma 2.5, for all k > k(L), z € Zp and T € Dy,
there exists also a function U}{,Z in H}(T(CF)) such that vlzz # &gz, O'(Z)[U]Z:Z - ﬂgz} <0in
T(CF) and

Ey(vy,.) = My(vg.) = min{My (v) : v € Hy(T(CE)), v # @ ., 0(2)[v—ix ] <0 in T(CI)}.

(2.40)
Then, we set v} =3, Z U]Z: . (where UIZ _ is extended in by the value zero outside T'(C¥))
and, using Ascoli-Arzela Theorem, we minimize Ey(vi) with respect to T in Dy,. If Ty, € Dy,
is a minimizing admissible deformation, the function U;‘:k’” is a solution of problem (1.1) for

k large enough and Proposition 2.2 holds with v = v,:?“’“, as we show in next section.

3 Asymptotic estimates and proof of the main results

In this section we describe the asymptotic behaviour as k& — oo of the functions uj and vy,

arising in Proposition 2.2, we constructed in Section 2. Then, we show that these functions

are solutions of problem (1.1) for k large enough and satisfy all the assertions of Proposition

2.2

As follows from Proposition 2.3, for all T € Dy, i € {1,...,n} and t € [0, 1], the set T(F}) is

the graph of a function ff 7 F? — R and

k 2 zi+1 T

TCY)={xecQ : ff" oP(x)<az; < f,* 7 oPx)fori=1,...,n} VkeN, Vze Z,.

(3.1)

In next lemma we prove that ff Tis a Lipschitz continuous function.

Lemma 3.1. If T € Dy, with L €]0,1], then for alli € {1,...,n} and t € [0,1] we have

| — y| Va,y € FY. (3.2)

@) - Wl <

10



Proof. For all z,y in F?, there exist 2%, 3! in F} such that P;oT(z) = 2, P,o T(y') = y and,
as a consequence, f; (x) = Ty(z'), f{'" (y) = T(y").
Thus, since ! = y! =t and T' € Dy, we obtain

7 @) = 7 W) = 1T") = Ty = | Ti(a') = Ti(y') — 2 + o
< [Ta") - T —a' +4 (3.3)
< L|z* — Y.

Moreover, since L €]0, 1[, we obtain

o =yl =P oT (") = PoT(y")| = |RIT(") — T(y) +y' — ' — (v —a"))|
> |o —y'| - |P[T(") = T(y") +y' — ]| (3.4)
> (1= L)la' — |

which, combined with (3.3), implies (3.2).

O
Let us denote by Lip( ff ’T) the best Lipschitz constant of the function fzt ’T, that is
tT N ptT
Lip(f;") = sup { i (3‘2, — ;‘}‘ Wl . T,y € P(Q), = # y} : (3.5)

Then, from (3.2) it follows that Lip(ff’T) —0as L —0.
Corollary 3.3 shows, in some sense, that also the converse in true. Notice that, if we set
Str(x) =T(x) —z Vr € Q, then T' € Dy, if and only if

|S(2) — St(y)|
lz -yl

Lip(Srt) := sup{ cx,y €Q, x# y} <L. (3.6)

Moreover, it is obvious that the set Dy may be also written as
Dp={T:Q—=Q : TQ)=Q, T(F!)=F}fort=0,1, i=1,...,n, Lip(Sr) < L}. (3.7)
Lemma 3.2. Let T € Dy, with L €]0,1[ and assume that there exists A € |0, L[ such that
Lip(FI'") <A Vte[0,1], Vie{l,...,n} (3.8)
and

1T @) = 2T (@) +ta—th] S Aty —ta] Vit €[0,1], Vie {1,...,n}, Vo € F2. (3.9)

3 K3

Then,

n+1)y/nA _
1)~ 1) a4yl < LTV v e (3.10)

that is Lip(St) < @HINIA 5o T e Dy sy with L(A) = OHVA,

11



Proof. Notice that Tj(z) = f7""(P;o T(z)) for all z € @ and i € {1,...,n}.
Thus, for z,y € Q and h = y — x, we obtain
Ti(w +h) = Ti(x) = hi = [T (P T(w + ) = [ (Pro T(w + 1)) — by

z;, T 5 T — f e] X
+f (p T(x +h)) = [ (P o T(x)) (3.11)

= uih; +ZV i(z 4+ h) —T;(z)]

where, for all ¢ and j in {1,...,n}, u; and sz are suitable numbers in [—A, A] because of our
assumptions on the functions ff T
It follows that

I Ti(z + h) — Ti(@) — byl < Alhal + A [Tj(@ + h) = Tj(a) — hyl + A |hy| Vie{L,...,n}
j=1 j=1
(3.12)

and, summing up,

S T+ h) = Ti(z) — bl < (L+n)AD il +nA | To(z +h) — Ty(x) — hal.  (3.13)
) =1 i=1

Since A < %, we obtain

S+ h) - Tifa) - by < SEDA Zw (3.14)
=1

1—n

which implies

1 —nA 1 —nA
(3.15)

|T($+h)_T($)_h|§i|Ti(ZE+h)—Ti(IL‘)—hi|_ (n+1)A Z|h|_w‘ h.
i=1 ;

So the proof is complete.
O
The following corollary is a direct consequence of Lemma 3.2.

Corollary 3.3. Let (Ty)r be a sequence in Dy, with L €]0,1] and assume that, for a suitable
sequence (A)x in ]O, % [, the same conditions as in Lemma 3.2 are satisfied with T replaced
by Ty, and A by Ay for all k € N.

Then, limy,_,, Ay, = 0 implies limy,_,o, Lip(St,) = 0.

Remark 3.4. Notice that, if Lip(S7,) — 0 as & — oo, then S, converges to a constant
function S, uniformly in Q. Moreover, taking into account that Ty, € Dy Vk € N so T}
must satisfy suitable conditions on 0€2, we can say that S, = 0, that is T} converges to the

identity function in €.
. " . T . .
Now, let us prove the assertions of Proposition 2.2 for the function uy = u,* (in a similar

way one can proceed for the function v = ng,v). First, we prove the following proposition
(here we use the notation introduced in Lemmas 2.4 and 2.5).

12



L
Proposition 3.5. For all k > k(L) the function uy = u:’“ (extended to R™ by the value zero
in R™\ Q) has the following asymptotic behaviour. B
For every choice of 2* in Z, there exists a function T : @ — R™ such that

T(0)=0, (-Le—yl<|T(@)-TW<A+L)z—yl Voyel  (3.16)

and, if we set xy 1= T(Q), the function Uk defined by
. k
Uo(z) = o(2F)k 7 Tu (i +TF <’Zk> ) Vz € R™, (3.17)

restricted to x, as k — oo converges in H'(x) to a positive solution Uy of the Dirichlet
problem

—~AU = |UP7IU  inx, U=0 ondy, (3.18)
satisfying
2
T p—1
([1wprian) ™ [ vuPas = meu), (3.19)
X X
where
m(x) == min{/ |VU|?dz : U € H(x), /yUP“dx = 1}. (3.20)
X X
Moreover, we have
+1 TL 1 1
klg]gok< 2 1)Ew( kzk) = hm [/ VU« | dm_p—i—l/ |U, k\p+ldx]
/yVU Pd:p— / |Uy [P dx (3.21)

Proof. For all k € N, let us rescale problem (1.1) by replacing every function u € H(Q) by
the function RFu € HE(kQ) defined by

k 1, (T
Rfu(x) = k™ r1u (k‘) Vo € kQ (3.22)

(here R*u is extended by the value zero outside k).
Then, our problem becomes

—AU = [UP7'U +4,  in kQ, U=0 ond(kQ) (3.23)

where 9y, € L?(kQ) is defined by

Yi(z) = kg (%) Vo € kQ. (3.24)
Moreover, the corresponding functional becomes
1 1
E*U) = / |VU|?dx — / \U[Pdx —/ YU d, (3.25)
2 Jka p+1Jko kQ

13



defined for all u € H} (k).
Since TF € Dy, Vk € N, so in particular it satisfies (2.10), also the function KT} (‘”Z ),

defined for all z € , satisfies (2.10) and, as a consequence,

KTk <‘” sz> cB <kaL <Z:> (1+ L)\/ﬁ> vV € Q. (3.26)

Therefore, using Ascoli-Arzela Theorem, we infer that (up to a subsequence) the function
kTE ( ) —kTE ( ) converges as k — oo to a function 7' : @ — B(0, (1+L)\/n) uniformly
in Q. As a consequence, T satisfies (3.16) in Q.

From Lemmas 2.4 and 2.5 we infer that R*@ Lk and Rk belong to Hj(kC¥,) and that

L
E’f(Rkaszk) = min {Ek(U) . U € Hy (kT (CR)), / |UpPtt < 1} vk € N,
’ KTE(CR)

(3.27)
L
lim EF(RFa'*,) = lim IV REG, dea; = 0. (3.28)
k—o0 k.2 k—o0 kT]f(Ck )
Moreover,
L L L
E*(RFu, ) = ME(RPu ) = min{M*(U) : U € HY(kTE(CK)), U # RFa, ", 529)

o (MU — Rrik,] > 0 in KTE(CK)}
where M*(U) is defined by

L
MH(U) = max{E*(R¥@, ", + t(U — R Z O >0} VU e HA(KTE(CR)).  (3.30)

Notice that
2 n——2 2
Ypde =k »-1 / Yidx (3.31)
Q

k2

where n < [% under our assumptions on p. In fact, for n < 4 it is obviously true because

p > 1 while for n > 4 it is true because 1 < p < 22 as one can easily verify by direct

n—27
n+2

computation (taking into account that 25 < —It2). As a consequence, we obtain in particular

lim Yidr = 0. (3.32)
koo JrTkE(Ck)

Therefore, we infer that the function U, satisfies all the assertions in Proposition 3.5, that
is its restriction to x converges to a positive solution U, of the asymptotic problem (3.18),
satisfying the minimality condition (3.19).

In fact, (3.28) and (3.32) imply

1 1
0 < lim inf /\VUH dx—/|UZkyP+1dx
k—o0 2 +1 X

< lim sup [/ VU i [*dx — / |Uzk|p+1dl’:| < 00
k—o0 2 X p+1 X

14
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and

lim [/ VUZk|2d:L‘—/|Uzk|p+1dx} =0. (3.34)
X X

k—o0

It follows that
[ VU 2z
lim sup X — < 00 (3.35)

(U pda)

1
T p+l cps .
S0, up to a subsequence, <fx |U x |p+1dx) " U,k converges as k — oo to a positive function

U, € H}(x) almost everywhere in y, strongly in LP*1(x) and weakly in H'().
L

Moreover, the minimality property of uzkzk implies, by standard arguments, that
/ VU [2dz = m(x) (3.36)
X

) R—
and that, as k — oo, U,x converges strongly in H'(x) to the function Uy, = m(x)?1Uy,
which is a positive solution of problem (3.18).

Therefore, taking also into account (3.24), we obtain

_9ptl L L
i K (75) = i 2 (1)

k—00 k—o0
1
- [3 [ ferte]

So the proof is complete.

In next lemma we describe other properties of the function 7" and of the domain T(Q) arising
in Proposition 3.5.
Lemma 3.6. Let (zk)k, T and X be as in Proposition 3.5. Then, the function Sy : Q—-R"
defined by Si(x) = T(z) — x Vx € Q, satisfies the Lipschitz condition

|S3(x) = Sp() < Lz —yl  Vo,yeq. (3.38)

Moreover, for every i € {1,...,n} there exist two functions f°, f} : P;(x) — R, Lipschitz

(2
continuous with Lipschitz constant <27, such that f2 o P,(0) = 0, f2 o Pi(z) < f} o Pi(x)
Vz € x and
x={z €R" : Piz) € P(x), floP(x)<z;< floPl(x) fori=1,...,n}. (3.39)
Proof. Notice that, as the functions STkL : @ — R" defined by STkL (z) = TE(x)—2 Vo € Q, also
the functions & [T,f (%) — TkL (%) — %} are Lipschitz continuous with Lipschitz constant
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L for all k € N. Therefore, as k — oo, we infer that the function Sy satisfies (3.38). In order
to obtain the functions f? and f!, we use Lemma 3.1. From (3.1) it follows that

zi-c+1

z? TL
TkL(ka):{xGQ PR o P(n)<mi < f F

L
7T]€

oPj(x) fori=1,...,n}.  (3.40)

oL 24 L
Now, notice that, as the functions f;* T and f; ® F, also the functions fi(?k and f}’k defined
by
iTL x I Zk iTL I zk:
fSk(JU) =k|f,* k <k + P, o T, </<7>) — £ ¥ oPoT (k‘) (3.41)
and

2F 7L (1 Sk 2k L S
Fanlw) =k | f;FF <k+P2'0TkL <k>) — T e Pe Ty (k) (342)

are both Lipschitz continuous with Lipschitz constant % Moreover, for all £ € N we have

z

Tk (“I;Zk> — Tk (;)‘ < (1+L)vVn Yz eQ (3.43)

R0 =0 Vvie{l,....n}, &k

and

fie@) = fr(@) > (1= D)z, —adi| > (1= L) >0 Vo€ P(x), Vie{l,...,n}, VkEN,
(3.44)

where lek and %Qk are the points in € such that

xk 2k P
7t (’“,:) -1 (k)] = (a. flu(e)) (3.45)

Y 2k Sk
TF (’f}j) — Ttk <k>] = (z, [0 (z)), (3.46)

which implies |z}, —29,| > 1.

k

k

Therefore, by Ascoli-Arzela Theorem we can say that, up to a subsequence, the functions fi1 i
and f?, converge as k — oo uniformly in P;(Y) respectively to functions f} and f? satisfying
all the assertions in Lemma 3.6.

O

Lemma 3.7. Let (2F), and x be as in Proposition 3.5. Then, for every choice of z* in
Zy, the domain x is a cube of R™ having a vertex in the origin and the sides of lenght 1.
Moreover, we have
lim max{|k"|TE(CH)| —1] : z€ Z} =0 (3.47)
k—o00

(where |TE(CF)| denotes the volume of TE(CY)) and

. n—22tl TL 1 1 _ p+l
Jim s {2 ) - (5 )

L z€ Zk} =0 (3.48)

where m = m(2).
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Proof. Notice that, as we pointed out in the proof of Proposition 3.5, the effect of the term
¥ in problem (1.1) tends to vanish as k — oo because in the rescaled problem (3.23) v is
replaced by the function vy defined by (3.31) and, since n < p4fpl,

. 2 . n—i 2
lim Yide = lim k" »=1 [ ¢*dx = 0. (3.49)
k—oo JrO k—o00 Q

As a consequence, taking into account the minimality of TkL, the interfaces between the
domains k‘T,f(C'f), with z € Zj, tend to be flat, so these domains tend as k — oo to
polyhedra with 2n faces, having minimality properties inherited by the analogous properties
of the domains kT (C¥), related to the minimality of T}

In particular, arguing as in the proof of Proposition 3.5, one can show in addition that,

for every p > 0, the function & [T k]:: (%) - T ,f (%)} (up to a subsequence) converges as

k — oo to a function T’ uniformly in the domain Q, = U.¢z péi, where
Z,={2€Z" : |2| <p, 2" +2¢€ 7 Vk € N} (3.50)

(not only in §, which is strictly enclosed in Q, for p > \/n).

~ +1
Moreover, if we set x, := T(C}) Vz € Z,, the number Zzezp [m(xz)]zf1 has to be as small
as possible for all p > 0. By symmetry reasons, among this polyhedra y, the cubes of R"

are the unique minimizers of the value ¢(y) := m(X)lx|2<P%_2i*) (where |x| is the volume
of x and m(y) is defined in (3.20)) that is, if we set ¢ = p(2), p(x) = @ if x is a cube and
©(x) > @ otherwise (notice that ¢(x) depends only on the shape of x and not on its size
because it is invariant with respect to translations and rescaling of ).

By Proposition 3.5, for every choice of z* in Zj,, the corresponding limit domain y satisfies

lim k™| TE(CH| = |x| (3.51)
k—oo

(3.52)
which implies
. n—22tl TL 1 1 p+l ol _ 1 \p+l
klggok( p_1>E¢(“k,kzk) = <2 - p+1> [P OOl x| (#-5)55 (3.53)

Therefore, taking into account the minimality of TkL, it follows that, for every choice of z*
in Zj, the limit domain x is a cube, that is p(x) = ¢. As a consequence, since it is true for
every choice of z¥ in Zj,, we can say that
)= E S Y=
= S S R
2 p+1 ?

+1 L 1L
lim max{]WilEw<uf,z>[k”m£<c§>rf@ﬂ >

k—o0

1z € 7o =0.
}(3.54)



Now, let us set

p-1
P [ e <; B pj—l)ﬂ E¢(Ukkz)] " [k"\T]f(Cf)Hz(ﬁ_%)
Then, we have
e E ) <1 S Bl
z€2y,
N <; B p4l_1> Z [‘Pk(z)]z%[k:”|TkL(C§)H—2(p11—2L*)§T1

2E€7)
Taking into account the minimality of T}F, since >, 71T 'L(CF)| = 1, we obtain

p+1

11 \ptl
(er(F = el THEHPFTFIET vken vae g,
where pi > 0 is a suitable Lagrange multiplier. It follows that
1

ptlN\ o7 1 _1VpFLl_

| 2 4B
]T,f(Cf)]—M(M> S VkEN, Vz € Z

HE

which, summing up, yields

Since
lim max{|¢r(z) —¢| : 2€ Zx} =0
k—oo

(because of (3.54)), we obtain

which implies

From (3.57) we get

K TE(CF)| = [s%(i)lj—] (7=

S
of 1 i)p+1+1

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

Thus, we can easily obtain (3.47) from (3.60) and (3.62) and then (3.48) from (3.47) and
(3.54). Finally, we can say that, for every choice of z* in Z, the corresponding limit domain
X is a cube of R™ with sides of lenght 1. Moreover, the construction of xy shows that this

cube has a vertex in the origin, so the proof is complete.
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Lemma 3.8. For all k € N and L €]0,1], let T,f € Dy, be a minimizing deformation as in
Section 2. Then, for alli € {1,...,n}, we have

E7TL P E7TL
{ff Forott ()~ 1f ootk (5)
lim sup :hed{0,1,...,k},
L(F) - PoTE(f)) (3.64)

Z?CGZka Z#Ca ZZ:C’L:h}:O

Proof. Arguing by contradiction, assume that for some i€ {l,...,n} there exist sequences
(hi)ks (2)k, (CF)i, such that hy € {0,1,...,k}, 2% € Zi, ¢* € Zi, # (k==
Vk € N and (up to a subsequence)
h
T o PoTE (%) - 5T o p o (ﬁf)’
lim >0 (3.65)
k—oo

We say that there exist two sequences (%) and (ék)k in Zp such that 2F = Q:f = hyg,
% — K =1 Vk € N and

f’“’ oPoTL( ) f’“’T oPoTé(%)‘
TOREG)

In fact, if limsup,,_,.. [2* — ¢¥| < 2, it is obvious because in this case |2¥ — ¢¥| = 1 for k large
enough (so we can set 2¥ = zF and (¥ = ¢¥). On the contrary, if limsup,,_, . |2¥ — ¢¥| > 2,

lim inf > 0. (3.66)
k—00

let us set vF = 3" |2 — ¢F|. Then, one can choose v} + 1 points 7, 71, ..., Tk in Z; such
j=11* % v
that
mo=2" m,=C |mj-mial=1 Vie{l,...,u} (3.67)
by
(notice that all the points 72, 74, ..., Tk must belong to F,* because of the choice of vy).

Therefore, we obtain

hy k hy k
T oPF;o Tk <> [i" T oP;o TkL <§{:)
TL

1 po Tk< ) fk7kogoT,£<7”I;1)‘

h h
fiTvalf OPi OT]{{/ (TI'T:) o fiTk7TkL OPi OT]{{/ (71']-]6_1) (368)
< .
SR R TE(R) - R TE ()

() - R ()]
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where

PioTF (%) — PoTf (FJ;)’ < ’TkL (%) i (ﬂ]};)’ <1+L) ‘% B ij_ll (3.69)
Vie{l,...,u},

which implies

Vi Vi
oL (T _ p L”J*1’< ‘ﬁ_ﬁifl
;onTk (k) PZoTk( ; ) _(1+L); L
k
<S(U+LWn—1|7— - (3.70)
1+L| (2" e
< fn—_1-—= Z ) 2
where

“()n (5)

<|poT! (z]:) —PoTk <Ckk>‘ T o otk <ZZ> _pETE G po Tk <Ckk>‘
(3.71)
and, by Lemma 3.1
5T po Tk <z]:> T poTE (Cl:)‘ < % PoTE <Zkk> _PoT) <€:>‘
(3.72)
Therefore, (3.65) implies
A oo ()~ 1 o po T (52)
BB T Renr ) - ren ) O

So, if the maximum in (3.73) is achieved for j = ji, our assertion (3.66) holds for 2% = 7;,
and ék = Tj,—1-

Now, for all i € {1,...,n} let us consider the vector ¢! = (¢!, ..., e!) € R" such that e = 1,
e;'» =0for j#i,4,5 € {1,...,n} and the function 6* : Q — R" defined by

oy — gl (24 €Y (2
5Z(x)—k[Tk <k+k> T (k)]
Vo € Q suchthat%§$j<zjl—:

(3.74)

Vi e{l,...,n} with z € Z.

Notice that the set Zg = UkeN%Zk is a subset of Q, Zg = Q and, for all i € {1,...,n},
the sequence of functions 5f up to a subsequence, converges as k — oo to a function
(5,' o — R™,

lzg’
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Taking into account Lemma 3.7, for all x € Zg we have

di(z) - di(x) =1, di(x) - 0j(x) =0 for i # j, Vo € Zqg, Vi,j€{l,...,n}. (3.75)

/\k )

oF ( k) —é
i o* 3k

klgglo ) [Pi <k:>} =e; (3.77)

because of the conditions satisfied by TkL on the boundary of 2.

Therefore, since
ék X k
il — | =96 =0 3.78
() (%)) 379

and 6; [ : (;)} — ¢ Vk € N, it follows that

3k 3k
=) =6 | P | — . )
5<k> 5Z{Z(k)H>o (3.79)
On the other hand, since 2 < k, we obtain
Z Z : R — et Z2F—(j—1)e
(%) 5@{3(0]!—;@( =)o ()|
2k — jel 2k —(j—1)é
(=) o (=)

We say that the last term tends to zero as k — oo that is, if the maximum in (3.80) is
achieved for j = ji, we have

5; <Zk_k‘7’“€z> — 5 <Zk_(3k’“_1)ez> ‘ =0. (3.81)

sk . i
In fact, assume that (up to a subsequence) the sequence k [(5 ; (%) <Z — ke’ )

Jk De’ %
1

Moreover, we infer that

lim inf
k—oco

>0 (3.76)

because of (3.66), while

lim

lim inf
k—o0

(3.80)

< k max
1<j<zk

lim &

k—o0

converges as k — 0o to a vector in R”, we denote by D; (5“ and the sequences §; (

converge to some vectors 4; in R™. Then, we have that d; - 6 =0 for i #j and 4 3 =
0,

for i,j € {1,...,n} (because of Lemma 3.7). Therefore, in order to prove that D; b =
suffices to prove that D;d; - 5 =0Vje{l,...,n}.
First, notice that D; 6;-0; =0. In fact, we have
o 1 sk (s 1 i sk s i
Diéi-di:f lim k& 5151 w —5151 w y (3.82)
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where the limit is equal to zero because

sk i sk (s 7
5; - 6; (Zkf’“e):a,--a,- <Z(9]’;1)6>:1 Vk € N. (3.83)

In order to prove that Di&- . 5j = 0 for j # 4, notice that, since §; - 6; = 0 in Zg, we have
sk _ (5 _1)et sk i i o A
0= tim k|60, (== VN g (TN L pss 46 Dby (3.84)

Moreover, we have

Di Aj = Dj&‘ = lim k2

k—o00

k

sk N ) j sk N )
— _|_J —
S (AR gt ,j)]

) ) sk (i 1)ef
TE(E* — (o — D)el +ef) — T} <Z(Jk>€
(3.85)

and, as a consequence,

S sk _ iy i sk i
5i'Di6j:5i'Dj5i:;kli_)rlgok[5i'5i<z ]1;: +e>_5i,5i<z k]ke)]:() (3.86)

because 0; - §; = 1 in Zg. Therefore, from (3.84) we obtain Di& -0; = 0 also for i # j, so

D;b; = 0.
2k 2k
i\ — ) =6 |B|— ||| = .
(%)=~ (%)]|- o2
in contradiction with (3.79).

Then, from (3.80) we infer that

Thus, we can conclude that (3.65) cannot hold and (3.64) is true. So the proof is complete.
O

Indeed, the minimality of TkL allows us to prove a stronger result, stated in the following

corollary.

Corollary 3.9. Under the same assumptions of Lemma 3.8, for all i € {1,...,n} we have

h pL h L
Kotk _ rE7E
i sup 4 @) = 15 )

c he{0,1,... .k FP = 0. 3.88
k’—)OO |x_y| E{’ ) ) }7 m7y€ ’L’x#y ( )

Proof. Since, under our assumptions on the values of TkL on 0f), P, o Tk,L is a one-to-one map

h
between Ff and F), (3.88) is equivalent to

lim sup
k—o0

ched0,1,...,k},

,x#y}zo-

»TE L nk L
{fi o Pyo TE(z) — f7'% o Pyo TE(y)|

[P o TE(z) — Py o TE(y)] (3.89)

>3

x,y € F;
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Arguing by contradiction, assume that there exist sequences (hg)x, (#¥)z, (y¥)i such that
h
hi € {0,1,...,k}, 2F and y* belong to F*, 2% # y* Vk € N and (up to a subsequence)

hg L

7’T ’
AT o Po Tt - M o Bo TG
k—o00 |PioTkL(xk) P,oTkL( )|

> 0. (3.90)

Notice that the interfaces between the domains k:Tk,L (CF), 2z € Zy, tend to be flat because of
the minimality of the admissible deformation 7, kL and, as follows from Lemmas 3.7 and 3.8,
up to translations these domains tend to Q that is, for every choice of z* in Zj, the domain
k|TL(Ch) — 1L (%)} tends to CF = Q.

Therefore, (3.90) is possible only if limy_,«, k2% — y¥| = oo (otherwise, up to a subsequence,

the segment {z* +t(y* —2¥) : t € [0,1]} meets only a finite number of subdomains élz with
2 € Z,). In this case, if ¥ € C’fk and y* € C’é“k for suitable z¥ and ¢* in Z,, we have

ka® — | < Vi, Jkyt = ¢M <V vEEN,  lim |2 - F = oo (3.91)
and
Tk Lo k ek L,k
5 o PoTab) - f, oBoTk<y>\
hy hp k
hg L k hy L k
+ fivak oP,LOTkL<Zk>_ka7Tk oBOTé(i)‘
hk L k hi L
+|f:F T oPoTE (Ck‘> — f* T o Py o TE(y¥)
(3.92)
where }
g L L
o pott () - i onoty (4))
lim ~0 (3.93)
(5)- et @)
(as follows from Lemma 3.8) and
thlef k T 2k
£5 o ol (a%) — £, o P o T (ﬁ’
lim — 0, (3.94)
k—oo OTL (xk) PZ‘OTL (ﬁ)‘
% TL :
FEE o R () = 1T o ot (§))
lim ~0 (3.95)
—00

because the segments {xk +t (% - :ck> s telo, 1]} and {yk +t (% - y"“) s telo, 1]} are

respectively enclosed in the subdomains 5’; and 61&.
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Moreover, for k large enough, we have

L/ k L 2 L.k L 2 k 2
P oTy (2") — P oTy, ” < |Ty (2%) = Ty, ” <(141L) N
L (3.96)
<+ D)t~y < 17 ITHEY) - THP)
and, analogously,
Ny e PR T o T o N
PoTHu) ~ ProTd (S-)| < 4 Dl — oM < 7 ITEGH) - THGH] 3.97)
with
Lo k Lok Lk Lo k B 1L Lk B 1L Lok
Ty (7)) =Ty (y")| < |PoTy (x%) = PioTy (y")[+|fi* 7F o Pio Ty (2%) — f;* 7% o P o Ty (y")
(3.98)

where

L L L
5T o PoThat) — (T o ProTHWM| < 27 IPo THEY) — ProTEGY| (3.99)

because of Lemma 3.1.
In a similar way we obtain

k k
PoTk <Zk> _PpoTk (i) ’ <

P oTh (ﬂ“) _PoTk (y’f)(

k k
+ PioTkL (Zk) —PioTk{“ (:Uk> + PioTkL (k) —PioTkL (yk) .
(3.100)
Therefore, it follows easily that (3.90) cannot be true.
Thus, we have a contradiction, so (3.88) holds and the proof is complete.
O
Lemma 3.10. Under the same assumptions as in Lemma 3.8, for all i € {1,...,n} we have
also
h pL h—1 pL
Jim sup {|k [f"" (x)— £, F "F(@)] -1 : he{l,....k}, z€ F} =0. (3.101)
—00

Proof. Arguing by contradiction, assume that for all £ € N there exist hy € {1,...,k} and

r¥ € F? such that
b L b=t L

R VA GRS A COI R (3.102)

for some i € {1,...,n}.
For all k € N, let us choose y* € Q and 2z* € Zj, such that

hp—1 h
k ’TkL Mg L

yreCk, Py = and £ F E @R <yF <R VEeN (3.103)

'3 =
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Therefore, we have

hy—1

TkL(CI;k):{QGQ AL

L h L
T} k7

oPi(y)SyiSfik”“oB(y)fori:1,...,n} Vk € N.
(3.104)

Taking into account Lemmas 3.7, 3.8 and Corollary 3.9, the domain & [Tf (élzk) — TkL (%)}
tends to 6(1) =Qas k — cc.
On the other hand, this convergence is not possible if (3.102) holds for some i € {1,...,n}.
Thus, we have a contradiction, (3.102) cannot hold for any ¢ € {1,...,n} and (3.101) is true.
So the proof is complete.

O
Now, foralli € {1,...,n},t € [0,1] and k € N, let us consider the function ;-t’k’L : F? — [0,1]
defined by

- h=1 b bl
Fobt () = £F T @)+ (bt — h e+ D @) - £ @)
~ (3.105)
Vz € FP, Vt € [hkl’ﬂ , hed{l,... k}.

Proposition 3.11. For alli € {1,...,n}, t € [0,1] and k € N, the functions fka defined
by (3.105) have the following properties:

)

lim sup {Lip(ﬁ’k’L) cie{l,....n}, telo, 1]} —0 (3.106)
k—o0

. 1 - -
lim sup ]ffl’k’L(m)—fo’k’L(x) —t1 +to| :
k—o0 |t1 —tg‘
(3.107)
(&S {17-"7n}7 t1,t2 € [07 1]7 t1 #tQ; HARS FZO} = 0.

Proof. Taking into account the definition of fI"* properties (3.106) and (3.107) follow by

(2
direct computation respectively from Corollary 3.9 and Lemma 3.10.

O

Lemma 3.12. Let fl-t’k’L be the functions defined in (3.105). Then, for all x € Q there exists
y € Q such that Ji-mi’k’L o Pi(y) =y Vi € {1,...,n} (that is, y belongs to the graph of ?i’k’L
fori=1,...,n).

Proof. From Proposition 2.3 and (3.105) we infer that ﬁ’k’L o P;(y) is strictly increasing with
respect to ¢ in the interval [0,1] for all i € {1,...,n}, k € N, y € Q. Moreover, we have

0=f" oP(y) <y < i oy =1 (3.108)

so for all y € Q there exists a unique t;(y) € [0, 1] such that fl.t"(y)’k’L o Pi(y) = y;. Let us set
t(y) = (t1(y), ..., tn(y)). Then, the function t(y), defined for all y € €, is continuous in O
and satisfies

t(F)CF) and t(FHCF!' Vie{l,...,n}. (3.109)
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Therefore, from [33] we infer that for all z € ) there exists at least one y €  such that
t(y) = x, that is t;(y) = z; for all i € {1,...,n}.
Thus, since ¢;(y) = z; is equivalent to fflkL o P;(y) = y;, the proof is complete.

U

Lemma 3.13. Let ;t’k’L be the functions defined in (3.105). Then, there exists k1 € N such
that for all k > ki the following property holds: for all x € Q) there exists a unique y €
such that

frklo Py =y Vie{l,...,n}. (3.110)

Proof. In Lemma 3.12 we proved that for all k € N and for all €  there exists at least one
y € Q satisfying (3.110). Now, we have to prove that for k large enough such a ¥ is unique.

For all £ > 0 let us set C3(£) = {z € R* : |z;| < L|Pi(z)|} and notice that the graph of
frekL s enclosed in y + Ci(Lip(f7%F)).

One can verify by direct computation that Mi<;<,C;(L£;) = {0} when £; < (n — 1)*% Vi €
{1,...,n}.

Therefore, if Lip(ﬂx“k’L) < (n-— 1)_% Vi e {1,...,n}, y is the unique point in R" satisfying
(3.110). On the other hand, taking into account (3.106) of Proposition 3.11, we infer that
there exists l?:l € N such that

Lip(f7"1) < (n—1)"2  Vk>hy, Vie{l,...,n}, V€ [0,1]. (3.111)

Thus, the assertion of Lemma 3.13 holds for such a ki, so the proof is complete.
O

Definition 3.14. Taking into account Lemma 3.13, for all k£ > 12:1 we can define a function
T, lf : Q — Q in the following way. For all = € Q we set TkL (r) = y where y is the unique point
in ) satisfying (3.110), given by Lemma 3.13

Taking into account the properties of the function ff’k’L defined by (3.105) one can verify
by standard arguments that T, 'L is a one-to-one continuous function and that (ﬁf)*1 is
continuous too. Moreover, for all i € {1,...,n} and ¢ € [0,1], T,f(ﬂt) is the graph of the

~, 7L ~ ~
function ff’k’L (that is f:’T’“ = ff’k’L), TL(F}) = F! for t € {0,1} and
TE(CH =THCY)  VE >k, Vze 2. (3.112)

Proposition 3.15. For all k > ki and L €)0, 1], let f,f be the function introduced in Defi-
nition 8.14. Then, there exists 1272 € N such that TkL € Dy Vk > 1212. Moreover, there exists a
sequence of positive numbers (Ly ), such that limg_,oo Ly = 0 and TkL C Dy, Vk > /%2.

Proof. From Proposition 3.11 we infer that there exists a sequence of positive numbers (Ag)g
such that limy_,., A = 0 and
Lip(f***) < A,  VkeN, Vie{l,...,n}, Vt€[0,1], (3.113)

|frokl@) — flobl@) — ) 4ty < Aglti—ta]  VhkeN, Vie{l,...,n}, Vo € F2. (3.114)

Since A, — 0, we can choose k, € N such that Ay < % Vk > k,. Hence, taking into
.k, L t.TF
bl _

account that f; , from Lemma 3.2 we infer that, for all £k > k,, T ,f € Dy, where
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Ly = % Since Ly — 0 as kK — oo, we can choose ko such that L, < LVk> ka. So

the proof is complete.

. O
Now, we can show that the function uj = uf’“ is a solution of problem (1.1) for k large
enough and satisfies all the assertions of Proposition 2.2 (in a similar way one can argue for
the function vy).
Notice that uf"'L = uZ’CL , where TVkL € Dy is the function introduced in Definition 3.14, because
TE(CY) = TE(CE) V= € 7.

L ~
First, we prove that ufk is a solution of the Dirichlet problem in every subdomain T} (C¥)

for all z € Z; and then we show that it satisfies a suitable stationarity condition which allows
us to prove that, indeed, it is a solution of the Dirichlet problem (1.1) in the domain €.

Lemma 3.16. There exists ki1(L) € N such that, for all k > ki(L) and z € Zy, the function
7L
k

uzz is a solution of the Dirichlet problem

—Au=[uPlu+1p  in TECP), u=0 on OTE(CH. (3.115)

7L ~
Proof. For all k € N and z € Zj, let us consider the function G;‘:’“Z : TE(CF) x R — R such

L ~
that GZZ“Z (z,-) € C3(R) Va € TE(CF) and

TE P! : _TF
Gl (x,t) = o + (x)t if o(2)[t — u,",(2)] = 0, (3.116)
7L 7L
0°G, (x, 1) Gl L
8’t2 = 8t2’ (z, 4", () if o(2)[t — @t (2)] <0, (3.117)

7L
where ﬂ:’“z is the function given by Lemma 2.4 which, for k£ large enough, is a solution of
problem (3.115) because it is a local minimum of the functional Ey, in H} (TVkL(Cf))
T

TE o : .
Moreover, let us set g,* (z,t) = 5= (x,t). Then, let us consider the functional EkyszL :

HY(TE(CF)) = R defined by

1 FL
E,  7i(u)= / |Vu|?dz —/ GZ’C (z,u) dx. (3.118)
o 2 Tk T

7L
Since p > 1, for k large enough one can verify that for all u # fLZkZ there exists t,, > 0 such
that

_TL _TL L
E, o (i + tulu — @) lu— @, ] = 0 (3.119)

L
if and only if [o(2)[u — ﬁf’“z ()] V 0 # 0; in this case such a t,, is unique; in the other case we
have

~L - ~L
By o (i + t(u— ) [u— 2] > 0 V>0 (3.120)

/
FL
k2T,
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and

. Tk _TE
tlgglo E . L (uk b t(u— gy, z)) = 00. (3.121)
_TL T,f
When [o(z)[u — @,",(z)] V0 # 0, one can verify by direct computation that Ek TL( P
7L L
t(u — ﬁf’“z)) [u — ﬁf’“z] is positive for ¢ €]0, ¢,[ and negative for ¢t > t,, so
T _TE _TE _TL
E,mjkL (ukj; + ty(u — ukj;)) = max{Ek’zJ:kL (ukj; +t(u — ukj;)) .t >0} (3.122)
Moreover, one can verify that
_TF _TF _TE _TF
El’; 7TL( ro Ftu(u — k) [u— @t v —ak] < 0. (3.123)
Assume, for example, that o(z) = 1 (in a similar way one can argue when o(z) = —1). In
this case, we have
_TL _TL TL TL _TL _TE
Ek,zj;kL (ukfz + t(u - uk?z)) :Elaz,’fL (uk z + t[(u - uk ) Vv O])+ tE]/.37 7TL (uk z) [(u - uk z) A O]
2
+—= [ \V[(u—uk )/\0]|da:
2 JiEen
t* T T
- 2P/~L |t 1P (u— ") A 0)%dx vt > 0,
Ty (CF)
(3.124)
where
/ Tk
EkZTL(ukz)[(ufukz)/\O] =0 (3.125)
_TE . .
because %" is a solution of problem (3.115).
Notice that
. .
Lol ) AoPds
TECE)
p-1 2
=L p+1 =L p+1
< /~ g [P+ da [ |(u — ) A O+ da
TEeh) TiE(Ch) ’
(3.126)
where, as follows from Lemma 2.4,
. _TE i1
lim max / |a " |P™de © z € Zy p = 0. (3.127)
hvoe TEeh)

Moreover, we have

2

p+1
/N IV[(u — uk ) A0)|2dz > Ay /~ |(u — uk ) A 0P dz Vk €N, Vz € Z;
TE(CE) TE(CE)
(3.128)
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where, for all k € N,

Ak = min /~ \Vol’dx : 2z € Zy, v € H} (ka(C’f)), /~ P lde =1 . (3.129)
T (CF) TiE(Ch)

We say that limg_.o \rx = co. In fact, otherwise, there exist suitable sequences (zk) g in R™,
and (vg)y in H3(Q) such that z¥ € Z, vy =0 in Q\ C’fk, Jo lvg/PTdz =1 Vk € N and (up
to a subsequence) limg_,o0 [q |Vog|2dx < oo.
As a consequence, since p < Z—f% when n > 3, there exists v € H} () such that (up to a
subsequence) vy — U as k — oo weakly in H}(Q), in LPT1(Q) and almost everywhere in (2.
Taking into account that limj_,., meas T, ,f (Ck) = 0, the almost everywhere convegence im-
plies that ¥ = 0 in ©, in contradiction with the convergence in LP*1(£2) because kaL(CZ;) |og [P
dxr =1 Vk € N. Thus, we can conclude that limy_,,, A = oo.
It follows that, for k large enough,

7L

B, (i 0N < B~ (alF itk Vi > 0, Yu € H(CP). (3.130
k,z,TkL(uk,z—I_t[(u_uk,z)v ]) < k,z,TkL(uk,z"‘t(“_“k, ) t>0, Vu € Hy(C7). (3.130)

z

As a consequence, if we set

~ L FL
= {ue HyTHCY) : u i, B p (-5 =0}, (3131)
FL
we have u,* € I' and
TE TE .
Ey(ut) = Ek,z,fﬁ,f (up,t,) = min Ek,z,TkL' (3.132)
Therefore, there exists a Lagrange multiplier i € R such that
FL FLFL  FL FL
;/c,zjkL (“kfcz)[v] =H { ;szkL (uk,kz)[uk,kz - uk,kz’v] + E];’Z’ka (“kfcz)[v]} Vv € H&(Cf)
3.133
W (3.133)
In particular, if we choose v = u;*, — 4", , we obtain 4 = 0 because
TEh TE T
;C,Z,Tkl’ (uk"z)[uk"z — uk’;] =0 (3.134)
while
" TE.. TF .TF TF _TF
k.2 TL (th)[uk"z T U Ug T uk,z] # 0. (3135)
biadh] k
7L
Thus, “Zkz is a weak solution of the Dirichlet problem
7L L ~ ~
—Auz’fz = g(=, uf’;) in TF(CF), u=0 on dTE(CF). (3.136)
L 7L ~
On the other hand, since uZ’“Z > ﬂg’fz in TL(CF), we have
FL FL L FL ~
9(@,w, (2)) = |us ()P ul (2) + () Vo e TE(CE). (3.137)
TL
So uzkz is a solution of problem (3.115) and the proof is complete.
O
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Proposition 3.17. Under the assumptions of Proposition 2.2, there exists k € N such that
7L 7L _
the function U;;Fk =2 ez, u;’g’“z is a solution of problem (1.1) for all k > k.

7L
Proof. From Lemma 3.16 we infer that, for a suitable k1(L) € N, E{b(ug’“ )[v] = 0 for all
v e HY(TF(CH), z € Zy, k > ki (L).

L
Now, we have to prove that E{b(u:’“ )[v] =0 Vv € H}(Q). Taking into account Lemma 3.16,
we obtain

TL Tk
Byl = [ (7 - Fo = i Pt o - el da
. p=1,, _
k;k /TL () vuk |uk | U @Z)U} (3.138)
Z/ Vuk V) do
rez, JOTE(CE)

~ L
wher vy, , denotes the outward normal on 9T (C¥). Thus, in order to obtain Lk, (UZ’“ )v] =0,
we prove that

Vuh (¢) = Vurk () Vo e OTEH(CE) nOTE(CE) (3.139)

for all z1,29 € Zj such that |z; — 29| = 1 (that is when ZFkL(Cfl) and T,f(CfQ) are adjacent
subdomains of Q).

7L
Notice that, since for all k¥ > ki(L) and z € Zj the function uf’“z is a solution of problem

(3.115), for all vector field ® € C}(Q2, R") we obtain

E;,(uf'f)[@.vuff]:/Q[VUZ'CL-V(@.W?) TP (@ v ) (@ - Valh )] da

Z/TLCk Valt 9@ V) — T (@) = (@ ) da
(3.140)
Z/E)TLck Vuk sz) (® - vy,) do.

Thus, it is easy to verify that in order to prove (3.139) it suffices to show that there exists k
such that _ _
/ T;CL TkL 170 mwn 1.
Ey(u* )[®@-Vu,r =0 Vo € Cy(2,R"), Vk > k. (3.141)

From Proposition 3.15 we infer that there exists k > k1(L) such that TkL € Dpjp Yk > k.
Now, for all 7 € R and ® € C}(Q,R"), let us consider the function Ty ¢ : Q — Q defined by
the Cauchy problem

0T ()

5 =doT, ¢(x), Too(r)=2 VT €R, Vo e. (3.142)
-
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One can verify by standard arguments that for all ® € C}(Q,R") there exists 7o > 0 such
that T ¢ o TkL € Dy V1 € [~Tg, 7). It follows that

TL TEL T, poTL T, ooTL o
By(ut )= Y Ey(ul) < > Ey(w, "% ) = Ey(u, ") Vr€[-7p,70] (3.143)
ZGZk zEZk
because of the minimality of TkL Moreover, notice that
d TL TL TL
EElﬁ(ukk 0T g)l oo = —Ey(w," )[® - Vu, b, (3.144)
so we have to prove that
d T -1
%Ew(uk o TT7¢)|T:0 =0. (3.145)

Arguing by contradiction, assume that (3.145) does not hold. We can assume, for example,
that p N
TE _
—Ey(u” 0T ¢),_, <0 (3.146)
(otherwise we replace ® by —®). Therefore, there exists a sequence of positive numbers (7;);
such that lim; ., 75, = 0 and

TL T .
Ey(ut oT g) < Ey(@,*) Vi e N. (3.147)

We say that, as a consequence of (3.146), for i large enough we have

max{ S By (it o Tk +ta(uph o Ty — ik o Th)) + 6. 2 0¥z € Z b < Byl ).
2E7)
(3.148)
In fact, arguing by contradiction, assume that (up to a subsequence still denoted by (7;);)
the inequality (3.148) does not hold.
Then, for all i € N and 2z € Z, there exists ¢, ; > 0 such that

TE TE 1 TR T ‘
> Byligt o T + tai(wyh, o Tl — iyt o T %)) = By(w,t)  VieN.  (3.149)
2EZ)

Since p > 1, the sequence (¢, ;); is bounded Vz € Zj,. Moreover, taking into account that

TL

7L 7L 7L
Ey(iy +t(u), — 4,0)) < Ey(wt)  Vt#1, V2 € 2y, (3.150)

we infer that lim; ;o t.; =1 Vz € Zj, and

_TL _1 TL _1 _TL 1 TL
Z Ey (ukkz ° Tn,@ + tz,i(uk,kz ° Tn,cb - ukkz © Tn,¢>)) > Ey(u")
2EZ)
T TL o Tp . (3.151)
> Z Ey (uk’; + tz,i(ukfz — ukkz)) Vi € N.

2E€Zy,
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As a consequence, for all i € N there exists 7] €]0, 7;[ such that

7L
@ Z Ey(ift o T, q,+tz,(u,” oT 4~ oTg)) >0 VieN  (3152)
ZEZk T=T;
which, as ¢ — oo, implies
d 7L
d—E¢(u;€’“ 0T M), >0, (3.153)
T )

in contradiction with (3.146). Thus, (3.148) holds. From Lemma 2.4 we infer that, if we

choose k large enough, for all k > k, z € Z;, and i € N there exists a unique minimizing
. ~TT7:,<I>OTk ~TTZ'7¢OTICL ”‘TkL 3 1 y L
function ) . Moreover, 4} w,* in Hy(2), as i — oo, Yk > k, Vz € Z}.
. . Ty, ooT}k . . ‘
Then, using the functions 1, ;’q)o ¥ and arguing as in the proof of Lemma 3.16, for 7 large
T, TL
enough we obtain the functions uy, e

O~L . O~L
The construction of the functions ug z“q) T and UZT;’(I) T shows also that
T, ¢oT} TF _
Ey(a,; Y < Ey (i~ o T %) (3.154)
and
oT TE TL L
Ey(u ;;erp ) < maX{Ed,( pe ol +t(ukz T - ufk oT ) : t>0 Vz € Zj.
(3.155)
Therefore, from (3.148) and (3.155) we obtain
L L TL 1
Ed)( )>max ZEd’ oT —i—tz(ukZoT_ kaoT;cp)): t,>0Vz e Z
2EZy,
Tz <I>OT Tz <I>OT
> Y By ") = By, )
2E€7)
(3.156)

for i large enough, in contradiction with (3.143).
So we can conclude that L E, < ol L ) =0, that is F/ (uk )[CD Vuk ] = 0 for all vector
field & € CL (0, R™).

L —
Thus, u;‘:’“ is a solution of problem (1.1) for all £ > k.
O

Proof of Proposition 2.2 (conclusion). If € is the cube (2.1), all the assertions of Proposition
7L ~
2.2 hold for k large enough if we set uy = uf’“ and Ty, = TkL (or Ty, = T,CL) where the
L
function uz’“ and the admissible deformation T; kL are obtained by the minimizing method

described in Section 2 (the functions vy = vak’” are obtained in a similar way: it suffices to
7L

L ~ — —
replace o(z) by o(z)+1). Notice that we have uZ’“ = uZ’“ (where T} : Q — Q is the function
introduced in Definition 3.14) because T (CK) = TE(CK) Vz € Zj.
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In fact, Proposition 3.17 guarantees that there exists k& € N such that UZ’“L is a solution of
problem (1.1) for all k > k.

The asymptotic behaviour of u; as k — oo is described by Proposition 3.5, Lemma 3.7 and
Proposition 3.15. In fact, Proposition 3.5 shows that for every choice of z* in Zj, up to a
subsequence, the function U, as k — oo converges in H'(x) to a positive solution U, of the
Dirichlet problem —AU = [U[P~1U in x, U = 0 on 9y, satisfying

2
</|UX|P+1dx) p+1/|VUX|2d:v:min{/|VU2dx U € Hy(y), /\U|p+1d:p:1}
X X X X

(3.157)
where x is a bounded domain of R"™. Lemma 3.7 says that the minimality of the admissible
deformation T,f implies that x must be a cube of R” having a vertex in the origin and the sides
of length 1 and finally Proposition 3.15 guarantees that T,f € Dy, for a suitable sequence
(Lg)g in )0, 1] such that limy_,o L = 0 so, as a consequence, xy = C} = Q and TkL converges
as k — oo to the identity function uniformly in © (as pointed out in Remark 3.4).

Notice that TkL € Dy Vk € N but, unlike TvkL, we cannot say that TkL € Dy, Vk € N. However,
we can say that also T,f converges to the identity function uniformly in € because, taking
into account the definition of T ,f , we have

THz) e TE(CY)  vVaelk, vze z, (3.158)

SO, aS a consequence,
— n
sup{| Ty} () = TF(2)] + w € Q)< (14 L)\kf. (3.159)

Therefore, all the assertions in Proposition 2.2 hold for T}, = ka and also for T}, = TkL, o)
the proof is complete.

O
Theorem 2.1 is a direct consequence of Proposition 2.2.

Notice that our method to construct solutions having this checked nodal structure does not
require any technique of deformation from the symmetry and it works in case of more general
nonlinearities, even when they are not perturbations of symmetric nonlinearities by lower
order terms.

For example, it works when in problem (1.1) the term |u|P~'u + ) is replaced by c (u)? —
c—(u")P 4+ with c;. >0, c- >0 and ¢y # c_.

Moreover, notice that our method works also when the nonlinear term has critical growth.
For example, for n > 2 and A € R let us consider the Dirichlet problem

“Au=|ulfEut dutd inQ,  u=0 ondQ (3.160)

whose solutions are critical points of the energy functional F : H}(2) — R defined by

1 -2 n A
f(u):2/QVu|2d:U— nQn /Q|u|7122dx—2/9u2dac—/gwudx. (3.161)

33



It is well known that, if A =0 and ¥ = 0 in €2, problem (3.160) has only the trivial solution
u = 0 for every bounded starshaped domain €2, as a consequence of the Pohozaev identity
(see [36]).

When n > 4, ¢ = 0 in € and X is positive and strictly less than the first eigenvalue of the
Laplace operator —A in H&(Q), there exists a positive solution that concentrates as a Dirach
mass as A — 0 (see [12, 13] etc.); the existence of nodal solutions is studied for example in
[16] etc..

Notice that also when ¥ = 0 in 2, so that the functional F is even, the problem of finding
infinitely many solutions is difficult because the well known Palais-Smale compactness con-
dition is not satisfied, as a consequence of the presence of the critical Sobolev exponent (see
[12, 13, 44] etc.).

When Q is a cube of R", our method, combined with some estimates as in [13], allows us
to construct infinitely many solutions with many nodal regions and arbitrarily large energy
level for all A > 0 and ¢ € L?(€).

In fact, as we prove in a paper in preparation, the following theorem holds (see also [27] for
the particular case where 2 is a cube and ¥ = 0 in Q).

Theorem 3.18. Assume that € is a cube of R™ with n > 4 and X\ > 0. Then, for every
W € L2(Q), problem (3.160) admits infinitely many solutions.

More precisely, if Q is for example the cube (2.1), for all p € L*(Q) there exists k € N such
that, for every k > k, problem (3.160) admits a solution uy, having the following properties.
For all k > k there exists T, € Dy, such that, for every choice of z* in Zj, the function

U, ok 7= Ug : belongs to H} (Tk(ka)) (here we consider uy, .« extended by the value zero

in R\ Q).
Moreover, there exist e, > 0 and my, € C& = Q such that e, — 0 as k — oo and the function
Uy defined by

Ty, (Ck
k( Sk

n—2 k
Ur(z) = o(2%) (E—’“> T g [Eljx—i—Tk (Hkm’“ﬂ VzeR", VkeN  (3.162)

converges as k — oo to a function U € D(R") such that

~AU=U""7, U>0 inR", U(0) = I%{%XU. (3.163)

The sequence (T} converges to the identity map uniformly in Q while the domains k Tk(ka)

=Ty, (%) ] tend to the cube Q as k — oo for every choice of z* in Zj,.

Furthermore, for all k > k there exists also another solution v, of problem (3.160) such that
the function —uvy, presents an asymptotic behaviour as uy when k — oco.
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