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Abstract
We introduce a quasi-periodic restricted Hamiltonian to describe the secular motion of a
small-mass planet in a multi-planetary system. In particular, we refer to the motion of υ-
And bwhich is the innermost planet among those discovered in the extrasolar system orbiting
around the υ-Andromedæ A star. We preassign the orbits of the Super-Jupiter exoplanets υ-
And c and υ-And d in a stable configuration. The Fourier decompositions of their secular
motions are reconstructed by using the well-known technique of the (so-called) frequency
analysis and are injected in the equations describing the orbital dynamics ofυ-Andb under the
gravitational effects exerted by those two external exoplanets (that are expected to be major
ones in such an extrasolar system). Therefore, we end up with a Hamiltonian model having
2+3/2 degrees of freedom; its validity is confirmed by the comparisonwith several numerical
integrations of the complete four-body problem. Furthermore, themodel is enriched by taking
into account also the effects due to the relativistic corrections on the secular motion of the
innermost exoplanet. We focus on the problem of the stability of υ-And b as a function of the
parameters that mostly impact on its orbit, that are the initial values of its inclination and the
longitude of its node (as they are measured with respect to the plane of the sky). In particular,
we study the evolution of its eccentricity, which is crucial to exclude orbital configurations
with high probability of (quasi)collision with the central star in the long-time evolution of the
system. Moreover, we also introduce a normal form approach, that is based on the complete
average of our restricted model with respect to the angles describing the secular motions
of the major exoplanets. Therefore, our Hamiltonian model is further reduced to a system
with 2 degrees of freedom, which is integrable because it admits a constant of motion that is
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related to the total angular momentum. This allows us to very quickly preselect the domains
of stability for υ-And b, with respect to the set of the initial orbital configurations that are
compatible with the observations.

Keywords Normal forms · Hamiltonian perturbation theory · Exoplanets · N-body
planetary problem

1 Introduction

The υ-Andromedæ systemwas the first ever to be discovered among the ones that host at least
two exoplanets. In fact, a few years after the discovery of the first exoplanet, the evidence for
multiple companions of the υ-Andromedæ system was announced (see Mayor and Queloz
1995; Butler et al. 1999, respectively). In particular, the observations made with the detection
technique of the radial velocity (hereafter, RV) revealed the existence of orbital objects with
three different periods, 4.6, 241 and 1267 days, which revolve around υ-Andromedæ A, that
is the brightest star of a binary hosting also the red dwarf υ-Andromedæ B. Such exoplanets
were named υ-And b, c and d in increasing order with respect to their distance from themain
star. Since υ-Andromedæ B is very far with respect to these other bodies (i.e., ∼ 750AU),
it is usual to not consider its negligible gravitational effects when the dynamical behavior of
the planetary system orbiting around υ-Andromedæ A is studied.

None of the present detection methods allows us to know all the orbital parameters of
an extrasolar planet. For instance, the RV technique does not provide any information about
both the inclination and the longitude of node. In the υ-Andromedæ case, these two orbital
elements were measured (although with rather remarkable error bars) for both υ-And c and
υ-And d thanks to observational data taken from the Hubble Space Telescope (see McArthur
et al. 2010). The information provided by such an application of astrometry significantly
complemented the knowledge about this extrasolar system; in fact, it has led to the evalua-
tion of the masses of υ-And c and υ-And d (ranging in 13.98+2.3

−5.3 MJ and 10.25+0.7
−3.3 MJ ,

respectively) and of their mutual inclination (29.9◦ ± 1◦). It is well known that only mini-
mum limits for the masses can be deduced by observations made with the RV method (due
to the intrinsic limitations of such a technique). Moreover, the mutual inclination between
planetary orbits plays a crucial role for what concerns the stability of extrasolar systems (see,
e.g., Volpi et al. 2019). Thus, the orbital configuration of υ-Andromedæ is probably one of
the most accurately known among the extrasolar multi-planetary systems which have been
discovered so far.

The question of the orbital stability of υ-Andromedæ is quite challenging. Numerical
integrations revealed that unstable orbits are frequent.Moreover, these extensive explorations
allowed to locate four different regions of initial values of the orbital parameters (consistent
with all observational constraints) yielding dynamically stable orbital configurations for the
three planets of the system (see Deitrick et al. 2015). All these sets of parameters correspond
to values of the mass of υ-And c that are relatively small, in the sense that they are much
closer to the lower bound of the range 13.98+2.3

−5.3 MJ than to the upper one. On the other
hand, according to a numerical criterion inspired from normal form theory and introduced in
Locatelli et al. (2022), themost robust orbital configurations correspond to the largest possible
value of the mass of υ-And c in the above range. In the vicinity of the initial conditions giving
rise to the most robust orbital configuration, the existence of KAM tori for the dynamics of
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a secular three-body problem including υ-And c and υ-And d was proved in a rigorous
computer–assisted way (see Caracciolo et al. 2022).

In the present paper, we aim to extend the study of the stability to the orbital dynamics
of υ-And b, still adopting a hierarchical approach. In the case of the particular extrasolar
system under consideration, this means that we assume the mass of υ-And b so small1 with
respect to the ones of υ-And c and υ-And d, that the motion of the innermost planet b can be
modeled with a good approximation via a restricted four-body problem. More precisely, in
order to study the dynamical behavior, we preassign the secular motions of the Super-Jupiter
exoplanets c and d in correspondence to the quasi-periodic orbit that is expected to be the
most robust. The Fourier decompositions of the secular motions of c and d are reconstructed
by using the well-known technique of the (so-called) frequency analysis (see, e.g., Laskar
2005) and are injected in the equations describing the orbital dynamics of υ-And b, under
the gravitational effects exerted by those two external exoplanets. This way to introduce a
quasi-periodic restricted model has been recently used to study the long-term dynamics of
our Solar System (see Mogavero and Laskar 2022; Hoang et al. 2022).

The advantage of introducing a secular quasi-periodic restricted Hamiltonian looks evi-
dent. In our present case (referring to the υ-Andromedæ system with planets b , c , d), we
start with a Hamiltonian model having 9 degrees of freedom, ending up with a simpler one
with 2 + 3/2 degrees of freedom, where the short periods are dropped. This explains why
numerical explorations of the restricted Hamiltonian model are much faster. Our main pur-
pose is further promoting this procedure, in such a way to introduce a new simplified model
with just two degrees of freedom. Indeed, in the present paper, we show that this can be done
by adopting a suitable normal form approach, which is so accurate to produce an integrable
Hamiltonian that can be used to efficiently characterize the stability domain with respect to
the unknown orbital parameters of υ-And b, i.e., the inclination and the longitude of the
node.

The present work is organized as follows. In Sect. 2, frequency analysis is used to recon-
struct the Fourier decompositions of the secular motions of the outer exoplanets υ-And c
and υ-And d. In Sect. 3, the secular quasi-periodic restricted Hamiltonian model (with
2+3/2 degrees of freedom) is introduced and validated through the comparison with several
numerical integrations of the complete four-body problem, hosting planets b , c , d of the
υ-Andromedæ system. The double normalization procedure allowing to perform a sort of
averaging which further simplifies the model is described with a rather general approach
in Sect. 4. In Sect. 5, this normal form procedure is applied to the quasi-periodic restricted
Hamiltonian, in such away to derive an integrablemodelwith 2 degrees of freedomdescribing
the secular orbital dynamics of υ-And b . Such a simplified model is used to study υ-And b
stability domain in the parameters space of the initial values of the inclination and the longi-
tude of node. All this computational procedure is repeated in Sect. 6 starting from a version
of the secular quasi-periodic restricted Hamiltonian model which includes also relativistic
corrections; this allows us to appreciate the effects on the orbital dynamics due to general
relativity.

1 Actually, the mass of υ-And b is unknown, but it has been determined its minimal value m sin i, which is
about 1/3 of the one of υ-And c (that, in turn, is less than 1/2 of the minimal mass of υ-And d). Moreover,
our modelization is further motivated by the fact that the semi-major axis of the innermost exoplanet is (more
than) one order of magnitude smaller than the other ones; thus, the gravitational interactions between υ-And b
and υ-And c or υ-And d are expected to be negligible with respect to the one between the outer planets.
We recall that the RV measurements also detected the presence of a fourth exoplanet in the system, namely
υ-And e (see Curiel et al. 2011). However, since it is expected to be in a 3 : 1 external resonance with υ-And d
and the minimal mass of υ-And e is nearly equal to the Jupiter one, its effects on the orbital dynamics of the
innermost exoplanet of the system look to be negligible.

123



   28 Page 4 of 41 R. Mastroianni, U. Locatelli

Table 1 Chosen values of the
masses and of the initial orbital
parameters for υ-And c and
υ-And d, compatible with the
observed data available, as
reported in McArthur et al.
(2010)

υ-And c υ-And d

m [MJ ] 15.9792 9.9578

a(0) [AU ] 0.829 2.53

e(0) 0.239 0.31

i(0) [◦] 6.865 25.074

M(0) [◦] 355 335

ω(0) [◦] 245.809 254.302

�(0) [◦] 229.325 7.374

2 Determination of the outer planets motion

To prescribe the orbits of the giant planets υ-And c and υ-And d, we start from the Hamilto-
nian of the three-body problem (hereafter, 3BP) in Poincaré heliocentric canonical variables,
using the formulation based on the reduced masses β2 , β3 , that is

H =
3∑

j=2

(
p j · p j

2 β j
− G m0 m j

r j

)
+ p2 · p3

m0
− G m2 m3

|r2 − r3| , (1)

where m0 is the mass of the star, m j , r j , p j , j = 2, 3, are the masses, astrocentric position
vectors and conjugated momenta of the planets, respectively, G is the gravitational constant
and β j = m0m j/(m0 + m j ), j = 2, 3, are the reduced masses. Let us remark that, in
the following, we use the indexes 2 and 3, respectively, for the inner (υ-And c) and outer
(υ-And d) planets between the giant ones, while the index 1 is used to refer to υ-And b

In order to set up a quasi-periodic restricted model for the description of the motion of υ-
And b, we need to characterize the motion of the giant planets; this can be done through
the frequency analysis method, starting from the numerical integration of the complete
3BP Hamiltonian, reported in Eq. (1) (i.e., before any expansions and averaging2). Thus,
we numerically integrate the complete Hamiltonian (1) using a symplectic method of type
SBAB3 , which is described in Laskar and Robutel (2001). As initial orbital parameters
for the outer planets, we adopt those reported in Table 1, corresponding to the most robust
planetary orbit compatible with the observed data available for υ-And c and υ-And d (see
McArthur et al. 2010), according to the criterion of “minimal area” explained in Locatelli
et al. (2022).

Having fixed as initial orbital parameters the ones described in Table 1, it is possible
to compute their correspondent values in the Laplace reference frame (i.e., the invariant
reference frame orthogonal to the total angular momentum vector r2 × p2 + r3 × p3 ) and
to perform the numerical integration of the full 3BP corresponding to these initial values.

2 We remark that, in principle, the frequency analysis method can be performed starting from the secular
3BP Hamiltonian at order two in masses; more precisely, in order to compute the secular Hamiltonian, the
dependence on the fast angles λ2, λ3 need to be removed. It can be done by “averaging by scissors,” that is
equivalent to do a first order (in the mass ratios) averaging (simply meaning to remove from the Hamiltonian
the terms depending upon the mean anomalies of the planets); otherwise, in order to have a more accurate
representation, this elimination can be done through a canonical transformation, corresponding to a second
order (in the mass ratios) averaging (see Locatelli and Giorgilli 2000). However, we have observed that the
Fourier decomposition given by the second order in masses numerical integration is not enough accurate for
such a kind of model and that a more detailed approximation of the orbits of the outer giant planets υ-And c,
υ-And d is required.
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Then, it is possible to express the discrete results produced by the numerical integrations in
the canonical Poincaré variables (ξ j , η j ), (Pj , Q j ) (momenta coordinates) given by3

ξ j = √
2	 j cos(γ j ) = √

2� j

√
1 −

√
1 − e2j cos(� j ) ,

η j = √
2	 j sin(γ j ) = −√

2� j

√
1 −

√
1 − e2j sin(� j ) , j = 1, 2, 3 ,

Pj = √
2
 j cos(θ j ) = 2

√
� j

4
√
1 − e2j sin

(
i j

2

)
cos(� j ) ,

Q j = √
2
 j sin(θ j ) = −2

√
� j

4
√
1 − e2j sin

(
i j

2

)
sin(� j )

(2)

where � j = β j
√

μ j a j , β j = m0m j/(m0 + m j ) , μ j = G (
m0 + m j

)
, and e j , i j , ω j , � j ,

� j = ω j +� j refer, respectively, to the eccentricity, inclination, argument of the periastron,
longitudes of the node and of the periastron of the j-th planet.

However, the numerical integrations do not allow to obtain a complete knowledge of the
motion laws t �→ (ξ j (t), η j (t)), t �→ (Pj (t), Q j (t)) ( j = 2, 3), producing only discrete
time series made by sets of finite points computed on a regular grid in the interval [0, T ] . The
computational method of frequency analysis (hereafter, FA) allows, however, to reconstruct
with a good accuracy the motion laws by using suitable continuous in the time variable t
functions. This has been done recently in Mogavero and Laskar (2022) and Hoang et al.
(2022), in order express the motion of the Jovian planets of our Solar System as a Fourier
decomposition including just a few of the main terms. In the present Section, we basically
follow that approach; therefore, here we limit ourselves to report some definitions which are
essential in order to make our computational procedure well definite (see, e.g., Laskar 2005
for an introduction and a complete exposition about FA).We consider analytic quasi-periodic
motion laws t �→ z(t). This means that the function z : R �→ C admits the following Fourier
series decomposition:

z(t) =
∑

k∈Zn

akei(k·ωt+ϑk), (3)

where ω ∈ R
n is the so-called fundamental angular velocity vector, while ak ∈ R+ ∪{0} and

ϑk ∈ T , ∀ k ∈ Z
n ; moreover, the sequence {ak}k∈Zn is assumed to satisfy an exponential

decay law, i.e., |ak| ≤ c e−|k|σ ∀ k ∈ Z
n with c and σ real positive parameters. The FA allows

us to find an approximation of z(t) of the following form:

z(t) �
NC∑

s=1

as;T ei(ν(s)
T t+ϑs;T ) (4)

whereNC is the number of componentswewant to consider. Equation (4) is an approximation
of the motion z(t) in the sense that if NC → +∞ and T → +∞ , the right-hand side of (4)
converges to (3). Moreover, as;T ∈ R+ and ϑs;T ∈ [0, 2π) are called, respectively, the

amplitude and the initial phase of the s-th component, while ν
(s)
T is a local maximum point

of the function

ν �→ A(ν) = 1

T

∣∣∣∣
∫ T

0
z(t) e−iνt W(t) dt

∣∣∣∣ , (5)

3 The definition of the Poincaré variables (ξ1, η1), (P1, Q1) will be useful in the following Sections.
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whereW is a suitable weight function such that
∫ T
0 W(t) dt = T . Following Laskar (2005),

we use the so-called Hanning filter, defined (in [0, T ]) as W(t) = 1 − cos[π(2t/T − 1)] .
The numerical integration of the 3BP (Eq. 1) produces a discretization of the sig-

nals4 t �→ ξ j (t) + iη j (t) and t �→ Pj (t) + i Q j (t) , that are {(ξ j (s�), η j (s�))}NP
s=0

and {(Pj (s�), Q j (s�))}NP
s=0 ( j = 2, 3), where s = 0, . . . ,NP and the sampling time is

� = T /NP . These discretizations allow to compute (by numerical quadrature) the integral
in (5) and, consequently, a few of local maximum points of the function (5) considering, as
z(t), ξ2(t) + iη2(t) , ξ3(t) + iη3(t) , P2(t) + i Q2(t) and P3(t) + i Q3(t) .

Then, we use the FA to compute a quasi-periodic approximation of the secular dynamics
of the giant planets υ-And c and υ-And d, i.e.,

ξ j (t) + iη j (t) �
NC∑

s=1

A j,sei(k j,s ·θ(t)+ϑ j,s ) ,

Pj (t) + i Q j (t) �
ÑC∑

s=1

Ã j,sei(k̃ j,s ·θ(t)+ϑ̃ j,s ) ,

(6)

j = 2, 3 , where the angular vector

θ(t) = (θ3(t), θ4(t), θ5(t)) = (ω3 t, ω4 t, ω5 t) := ω t (7)

depends linearly on time and ω ∈ R
3 is the fundamental angular velocity vector whose

components are listed in the following:

ω3 = −2.4369935819462266 × 10−3 ,

ω4 = −1.04278712796661375 × 10−3 ,

ω5 = 4.88477275490260560 × 10−3 .

(8)

Hereafter, the secular motion of the outer planets t �→ (ξ j (t), η j (t), Pj (t), Q j (t)), j =
2, 3, is approximated as it is written in both the r.h.s. of formula (6). The numerical values
of the coefficients which appear in the quasi-periodic decompositions5 of the motions laws
are reported in Tables 2, 3, 4 and 5.

In order to verify that the numerical solutions are well approximated by the quasi-periodic
decompositions computed above, we compare the time evolution of the variables ξ2, ξ3, η2,
η3, P2, P3, Q2, Q3 as obtained by the numerical integration and by the FA. Figure1 shows that
the quasi-periodic approximations nearly perfectly superpose to the plots of the numerical
solutions.

4 Actually, the numerical integration of the complete problem allows to determine also a discretization of the
fast variables

√
2�2 cos(λ2) + i

√
2�2 sin(λ2) and

√
2�3 cos(λ3) + i

√
2�3 sin(λ3) ; however, we are not

interested in these variables. Thus, we do not report their decompositions as they are provided by the FA.
5 Of course, the exact quasi-periodic decompositions include infinite terms in the Fourier series. In order to
reduce the computational effort, we limit ourselves to consider just a few components, which are the main
and most reliable ones, according to the following criteria. We take into account those terms corresponding
to low-order Fourier harmonics, i.e.,

∑5
j=3 |k j | ≤ 5 or

∑5
j=3 |k̃ j | ≤ 5 , and such that there are small

uncertainties on the determination of the frequencies as linear combinations of the fundamental ones, i.e.,

|ν(s)
T − k(s) · ω| ≤ 2 × 10−7 or |ν(s)

T − k̃
(s) · ω| ≤ 2 × 10−7 .

123



Secular orbital dynamics of the innermost exoplanet of the… Page 7 of 41    28 

Table 2 Decomposition of the signal ξ2(t) + i η2(t) as it is provided by the FA

s ν
(s)
T k(s)

3 k(s)
4 k(s)

5 |ν(s)
T − k(s) · ω| As ϑs

0 −2.43699358194622660 1 0 0 0.0000 3.8182 × 10−1 4.611

1 −1.04274752029517815 0 1 0 3.9608 × 10−8 1.4219 × 10−1 2.434

2 1.22065297958166112 −1 0 2 9.2959 × 10−9 9.0935 × 10−2 3.898

3 −3.83123872535040154 2 −1 0 3.8689 × 10−8 4.0358 × 10−2 3.593

Table 3 Decomposition of the signal ξ3(t) + i η3(t) as it is provided by the FA

s ν
(s)
T k(s)

3 k(s)
4 k(s)

5 |ν(s)
T − k(s) · ω| As ϑs

0 −2.43699698221569363 1 0 0 3.4003 × 10−9 5.6387 1.469

1 −1.04278712796661375 0 1 0 0.0000 1.1039 2.437

2 −3.83100979083359590 2 −1 0 1.9025 × 10−7 2.7811 3.566

3 1.22065393849870793 −1 0 2 2.9324 × 10−10 2.4050 7.556

Table 4 Decomposition of the signal P2(t) + i Q2(t) as it is provided by the FA

s ν
(s)
T k̃(s)

3 k̃(s)
4 k̃(s)

5 |ν(s)
T − k̃

(s) · ω| Ãs ϑ̃s

0 4.88477275490260560 0 0 1 0.0000 5.5389 2.670

1 −9.75856551797929864 2 0 −1 1.944 × 10−7 4.9772 1.914

2 −8.36452054946431114 1 1 −1 3.2915 × 10−8 2.2433 4.351

3 6.27899221605471031 −1 1 1 1.3007 × 10−8 1.2854 5.208

4 3.49055804503076465 1 −1 1 8.2559 × 10−9 1.0041 1.678

Table 5 Decomposition of the signal P3(t) + i Q3(t) as it is provided by the FA

s ν
(s)
T k̃(s)

3 k̃(s)
4 k̃(s)

5 |ν(s)
T − k̃

(s) · ω| Ãs ϑ̃s

0 4.88477277322339754 0 0 1 1.8321 × 10−11 5.6348 5.812

1 −9.75856522554671181 2 0 −1 1.9469 × 10−7 5.1543 3.333

2 −8.36452090216070580 1 1 −1 3.2563 × 10−8 2.3352 1.209

3 3.49054260511432292 1 −1 1 2.3696 × 10−8 1.3434 4.821

4 6.27897429080374707 −1 1 1 4.9181 × 10−9 9.7673 3.664

3 The secular quasi-periodic restricted (SQPR) Hamiltonian

Having preassigned the motion of the two outer planets υ-And c and υ-And d , it is now
possible to properly define the secularmodel for a quasi-periodic restricted four-bodyproblem
(hereafter, 4BP). We start from the Hamiltonian of the 4BP, given by

H4B P =
3∑

j=1

(
p j · p j

2 β j
− G m0 m j

r j

)
+

∑

1≤i< j≤3

pi · p j

m0
−

∑

1≤i< j≤3

G mi m j

|r i − r j | . (9)
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Fig. 1 Dynamical behavior of the variables ξ2, ξ3, η2, η3, P2, P3, Q2, Q3 (their definition is reported in (2))
as it is computed by numerical integration of the complete (non secular) three-body problem and by the
quasi-periodic approximation provided by the FA; the corresponding plots are in blue and red, respectively
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We recall that the so-called secular model of order one in the masses is given by averaging
with respect to the mean motion angles, i.e.,

Hsec(ξ , η, P, Q) =
∫

T3

H4B P (�,λ, ξ , η, P, Q)

8π3 dλ1dλ2dλ3 . (10)

In the l.h.s. of the equation above, we disregard the dependence on the actions �, because
in the secular approximation of order one in the masses their values � j = β j

√
μ j a j ,

j = 1, 2, 3, are constant. Due to the d’Alembert rules (see, e.g., Murray and Dermott 1999;
Morbidelli 2002), it is well known that the secular Hamiltonian can be expanded in the
following way:

Hsec(ξ , η, P, Q) =
N /2∑

s=0

∑

|i |+|l|+
|m|+|n|=2s

ci,l,m,n

3∏

j=1

ξ
i j
j η

l j
j P

m j
j Q

n j
j , (11)

where N is the order of truncation in powers of eccentricity and inclination. We fix N = 8
in all our computations.

Since we aim at describing the dynamical secular evolution of the innermost planet υ-
And b , it is sufficient to consider the interactions between the two pairs υ-And b, υ-And c
and υ-And b, υ-And d. In more details, let Hi−j

sec be the secular Hamiltonian derived from
the three-body problem for the planets i and j, averaging with respect to the mean longitudes
λi , λj . Its expansion writes as

Hi−j
sec (ξi, ηi, Pi, Qi, ξj, ηj, Pj, Qj) =

N /2∑

s=0

∑

|i |+|l|+
|m|+|n|=2s

ci,l,m,n

∏

j=i,j

ξ
i j
j η

l j
j P

m j
j Q

n j
j . (12)

Therefore, a restricted non-autonomous model which approximates the secular dynamics of
υ-And b can be defined by considering the terms

H1−2
sec (ξ1, η1, P1, Q1, ξ2(t), η2(t), P2(t), Q2(t))

+H1−3
sec (ξ1, η1, P1, Q1, ξ3(t), η3(t), P3(t), Q3(t)) ,

where ξ2(t),η2(t),…P3(t), Q3(t) are replacedwith the correspondingquasi-periodic approx-
imationswritten in both the r.h.s. appearing in formula (6). Let us stress that, having prescribed
the motion of the two outermost planets υ-And c and υ-And d , at this stage the Hamiltonian
H2−3

sec does not need to be reconsidered; indeed, it would introduce additional terms that
disappear in the equations of motion (see formula (15)).

We can finally introduce the quasi-periodic restricted Hamiltonian model for the secular
dynamics of υ-And b ; it is given by the following 2+3/2 degrees of freedom Hamiltonian:

Hsec, 2+ 3
2
( p, q, ξ1, η1, P1, Q1) = ω3 p3 + ω4 p4 + ω5 p5

+H1−2
sec (ξ1, η1, P1, Q1, ξ2(q), η2(q), P2(q), Q2(q))

+H1−3
sec (ξ1, η1, P1, Q1, ξ3(q), η3(q), P3(q), Q3(q)) , (13)

where the pairs of canonical coordinates referring to the planets υ-And c and υ-And d (that
are ξ2 , η2 ,…P3 , Q3) are replaced by the corresponding finite Fourier decomposition written
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in formula (6) as a function of the angles θ , renamed6 as q, i.e.,

q = (q3, q4, q5) := (θ3, θ4, θ5) = θ . (14)

Let us focus on the summands appearing in the first row of (13), i.e., the Hamiltonian term
ω · p , where ω is the fundamental angular velocity vector (defined in formula (8)) and
p = (p3, p4, p5) is made by three so-called dummy variables, which are conjugated to the
angles q. The role they play is made clear by the equations of motion for the innermost planet,
which write in the following way in the framework of the restricted quasi-periodic secular
approximation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇3 = ∂Hsec, 2+ 3
2
/∂ p3 = ω3

q̇4 = ∂Hsec, 2+ 3
2
/∂ p4 = ω4

q̇5 = ∂Hsec, 2+ 3
2
/∂ p5 = ω5

ξ̇1 = −∂Hsec, 2+ 3
2
/∂η1 = −∂

(H1−2
sec + H1−3

sec

)
/∂η1

η̇1 = ∂Hsec, 2+ 3
2
/∂ξ1 = ∂

(H1−2
sec + H1−3

sec

)
/∂ξ1

Ṗ1 = −∂Hsec, 2+ 3
2
/∂ Q1 = −∂

(H1−2
sec + H1−3

sec

)
/∂ Q1

Q̇1 = ∂Hsec, 2+ 3
2
/∂ P1 = ∂

(H1−2
sec + H1−3

sec

)
/∂ P1

. (15)

Due to the occurrence of the termω · p in the HamiltonianHsec, 2+ 3
2
, the first three equations

admit q(t) = ωt as a solution, in agreement with formulæ (7) and (14). This allows to
reinject the wanted quasi-periodic time dependence in the Fourier approximations ξ2(q),
η2(q), . . . P3(q), Q3(q). As a matter of fact, we do not need to compute the evolution of
(p3(t), p4(t), p5(t)) because they do not exert any influence on the motion of υ-And b ; they
are needed just if one is interested in checking that the energy is preserved, because it is given
by the evaluation of Hsec, 2+ 3

2
.

We also recall that, in order to produce a restricted quasi-periodic secular model, it is
possible to apply the closed-form averaging, which is compared in Mastroianni (2023) with
the computational method that is adopted here and is based on the expansions in Laplace
coefficients. Finally, we emphasize what is discussed below.

Remark 3.1 The HamiltonianHsec, 2+ 3
2
is invariant with respect to a particular class of rota-

tions. Thus, it admits a constant of motion that could be reduced, so to decrease7 by one the
number of degrees of freedom of the model.

In order to clarify the statement above, it is convenient to introduce a complete set of
action-angle variables, defining two new pairs of canonical coordinates ξ1 = √

2	1 cos(�1),
η1 = √

2	1 sin(−�1), P1 = √
2
1 cos(�1), Q1 = √

2
1 sin(−�1), referring to a pair of
orbital angles of υ-And b, i.e.,�1 and�1 , that are the longitudes of the pericenter and of the
node, respectively (see definition (2) of the Poincaré canonical variables). Thus, it is possible

6 This replacement of symbols has been done just in order to write three pairs of canonical coordinates as
(p j , q j ), j = 3, 4, 5, in agreement with the traditional notation that is adopted in many treatises about
Hamiltonian mechanics.
7 This reduction is performed in Chap. 6 of Mastroianni (2023) in such a way to introduce a further simplified
model with 2 + 2/2 degrees of freedom. In the present work, we prefer not to perform such a reduction, in
order to make the role of the angular (canonical) variables more transparent, clarifying their meaning for what
concerns the positions of the exoplanets.
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Table 6 Available data for the
orbital parameters of the
exoplanet υ-And b. The values
above are reported from Table 13
of McArthur et al. (2010)

υ-And b

m sin(i) [MJ ] 0.69 ± 0.016

a(0) [AU ] 0.0594 ± 0.0003

e(0) 0.012 ± 0.005

ω(0) [◦] 44.106 ± 25.561

to verify the following invariance law:

−
∂ Hsec, 2+ 3

2

∂ξ1

∂ ξ1

∂�1
−

∂ Hsec, 2+ 3
2

∂η1

∂ η1

∂�1
−

∂ Hsec, 2+ 3
2

∂ P1

∂ P1

∂�1
−

∂ Hsec, 2+ 3
2

∂ Q1

∂ Q1

∂�1

+
∂ Hsec, 2+ 3

2

∂q3
+

∂ Hsec, 2+ 3
2

∂q4
+

∂ Hsec, 2+ 3
2

∂q5
= 0 .

Therefore, p3 + p4 + p5 + 	1 + 
1 is preserved; such a quantity, apart from an inessential
additional constant, is equivalent to the total angular momentum.

The above invariance law is better understood, recalling that q3 and q4 correspond to the
longitudes of the pericenters of υ-And c and υ-And d, respectively, while q5 refers to the
longitude of the nodes of υ-And c and υ-And d (that in the Laplace frame, determined by
taking into account only these two exoplanets are opposite one to the other). This identification
is due to the way we have determined (q3, q4, q5) by decomposing some specific signals of
the secular dynamics of the outer exoplanets (this is made by using the frequency analysis,
as it is explained in Sect. 2). Thus, the aforementioned invariance law is due to the fact that
the dynamics of the model we are studying does depend just on the pericenters arguments
of the three exoplanets and on the difference between the longitude of the nodes of υ-And b
and υ-And c, i.e., �1 − �2 = �1 − �3 − π . Therefore, the Hamiltonian is invariant with
respect to any rotation of the same angle that is applied to all the longitudes of the nodes; as it
is well known, by Noether theorem, this is equivalent to the preservation of the total angular
momentum.

3.1 Numerical validation of the SQPRmodel

In order to validate our secular quasi-periodic restricted (hereafter SQPR) model describing
the dynamics of υ-And b, we want to compare the numerical integrations of the complete
4BP with the ones of the equations of motion (15). Let us recall that the chosen values of
parameters and initial conditions for the two outer planets are given in Table 1. For what
concerns the orbital elements of the innermost planet υ-And b, both the inclination i1 and
the longitude of the ascending node �1 are unknown (see, e.g., McArthur et al. 2010). The
available data for υ-And b are reported in Table 6. Among the possible values of the initial
orbital parameters ofυ-Andb, we have chosen a1 , e1, M1 andω1 as in the stable prograde trial
PRO2 described in Deitrick et al. (2015). They are reported in Table 7 and are compatible
with the available ranges of values appearing in Table 6. Let us recall that the dynamical
evolution of the SQPR model does not depend on the mass of υ-And b; therefore, the choice
about its value is not reported in Table 7. For what concerns the unknown initial values of
the inclination and of the longitude of nodes, we have decided to vary them so as to cover a
2D regular grid of values (i1(0), �1(0)) ∈ Ii × I� = [6.865◦, 34◦] × [0◦, 360◦], dividing
Ii and I�, respectively, in 20 and 60 sub-intervals; this means that the widths of the grid
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Table 7 Values of the initial
orbital parameters for υ-And b as
they have been selected in the
stable prograde trial PRO2 of
Deitrick et al. (2015) (Table 3)

υ-And b

a(0) [AU ] 0.0594

e(0) 0.011769

M(0) [◦] 103.53

ω(0) [◦] 51.14

steps are equal to 1.35675◦ and 6◦ in inclination and longitude of nodes, respectively. Let
us recall that the lowest possible value of the interval Ii, i.e., i2(0) = 6.865◦, corresponds
to the inclination of υ-And c. Considering values smaller than i2(0) could be incoherent
with the assumptions leading to the SPQR model we have just introduced; indeed, the factor
1/ sin(i1(0)) increases the mass of the exoplanet by one order of magnitude with respect to
the minimal one. Therefore, for small values of i1(0) the mass of υ-And b could become
so large that the effects exerted by its gravitational attraction on the outer exoplanets could
not be neglected anymore. On the other hand, it will be shown in the sequel that the stability
region for the orbital motion of υ-And b nearly completely disappears for values of i1(0)
larger than 34◦. These are the reasons behind our choice about the lower and upper limits of
Ii.

We emphasize that the study of the stability domain, as it is deduced by the numerical
integrations, can help us to obtain information about the possible ranges of the unknown
values (i1(0),�1(0)). Moreover, the comparisons between the numerical integrations of the
complete 4BP and the ones of the SQPR model aim to demonstrate that the agreement is
sufficiently good so that it becomes possible to directly work with the latter Hamiltonian
model, that has to be considered easier than the former, because the degrees of freedom are
2 + 3/2 instead of 9.

3.1.1 Numerical integration of the complete four-body problem

For each pair of values (i1(0) ,�1(0)) ∈ Ii × I� ranging in the 20× 60 regular grid we have
previously prescribed, we first compute the corresponding initial orbital elements of the three
exoplanets in the Laplace reference frame, then we perform the numerical integration of the
complete 4BP Hamiltonian (9) by using the symplectic method of type SBAB3 . Contrary to
the SPQRmodel, the numerical integrations of the 4BP are affected by the mass of υ-And b;
its value is simply fixed in such a way that m1 = 0.674/ sin(i1(0)) .

The largest value reached by the eccentricity can be considered as a very simple numerical
indicator about the stability of the orbital configurations. Themaximum eccentricity obtained
along each of the 21 × 60 numerical integrations is reported in the left panel of Fig. 2.
In particular, since we are interested in initial conditions leading to regular behavior, i.e.,
avoiding quasi-collisions, every time that the eccentricity e1 exceeds a threshold value (fixed
to be equal to 0.85), in the color-grid plots its maximal value is arbitrarily set equal to one.
Moreover, since we expect that υ-And c is the most massive planet in that extrasolar system
and being it the closest one to υ-And b, it is natural to focus the attention also on the mutual
inclination between υ-And b and υ-And c . Let us recall that it is defined in such a way that

cos(imutbc ) = cos(i1) cos(i2) + sin(i1) sin(i2) cos(�1 − �2) ; (16)

therefore, for each numerical integration it is also possible to compute the maximal value
reached by imutbc . The results are reported in the right panel of Fig. 2. In both those panels,
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Fig. 2 Color-grid plots of the maximal value reached by the eccentricity of υ-And b (on the left) and by
the mutual inclination between υ-And b and υ-And c (on the right). The maxima are computed during the
symplectic numerical integrations of the 4BP which cover a timespan of 105 yr

Fig. 3 Color-grid plots of themaximal value reached by the eccentricity ofυ-Andb. Themaxima are computed
during the symplectic numerical integrations of the 4BP which cover a timespan of 105 yr. The results are
obtained by numerical integrations which refer to sets of initial conditions that differ (passing from one panel
to another) just because of the choice of the initial values of the mean anomaly; from left to right, the plots
refer to M1(0) equal to 51.4286◦, 205.714◦, and 308.571◦, respectively

the color-grid plots are provided as functions of the initial values of the longitude of nodes
�1 and the inclination i1 , which are reported on the x and y axes, respectively. By comparing
the two plots in Figure panels 2a and b, one can easily appreciate that the regions which have
to be considered as dynamically unstable, because the eccentricity of e1 can grow to large
values, correspond also to large mutual inclinations of the planetary orbits of υ-And b and
υ-And c.

We remark that the value of the initialmean anomaly M1(0) ismissing among the available
observational data reported in Table 6. As a matter of fact, mean anomalies of exoplanets are
in general so poorly known that usually their values are not reported in the public databases.8

However, in order to understand if (and up towhat extent) the initial value M1(0) can affect the
dynamics of υ-And b , we repeat all the numerical integrations of the 4BP for four different
initial values of M1 , chosen so as to have one of them belonging to each of the quadrants
[0◦, 90◦] , [90◦, 180◦] , [180◦, 270◦] and [270◦, 360◦] . In Fig. 3 we report three examples;
in particular, they show the color-grid plots of the maximal value reached by the eccentricity
e1 , taking M1(0) as 360◦/7 = 51.4286◦, 4 ·360◦/7 = 205.714◦ and 6 ·360◦/7 = 308.571◦,

8 See, e.g., http://exoplanet.eu/.
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Fig. 4 Color-grid plots of the maximal value reached by the eccentricity of υ-And b (on the left) and by
the mutual inclination between υ-And b and υ-And c (on the right). The maxima are computed during the
symplectic numerical integrations of the 4BP which cover a timespan of 105 yr. As the only difference with
respect to the numerical integration whose results are reported in Fig. 2, here the mass of υ-And b is always
kept fixed so as to be equal to its minimal value m1 = 0.674

respectively. For what concerns the region [90◦, 180◦], let us recall that Fig. 2a refers to
M1(0) = 103.53◦. The comparison between Figs. 2a and 3 shows that the choice of the value
of M1(0) does not seem to produce any remarkable impact on the global structure of the
dynamical stability of these exoplanetary orbits.

Moreover, the same conclusion applies also to the increasing factor 1/ sin(i1(0)) (with
i1(0) ∈ Ii) which multiplies the minimal mass of υ-And b in such a way to determine the
value of m1 . In fact, substantial differences are not observed between Figs. 2 and 4.

3.1.2 Numerical integration of the secular quasi-periodic restricted model

We want now to compare the previous results with those found in the SQPR approximation
of the four-body problem, performing numerical integrations of the system of equations (15).
In order to make these comparisons coherent, also here we consider the data listed in Table 7
as initial conditions for the orbital elements of υ-And bwhich are completed with the values
of (i1(0) ,�1(0)) ranging in the 20 × 60 regular grid that covers Ii × I� = [6.865◦, 34◦] ×
[0◦, 360◦]. At the beginning of the computational procedure, the initial values of the orbital
elements are determined in the Laplace reference frame, which is fixed by taking into account
only the two outermost planets (i.e., the total angular momentum of the system is given only
by the sum of the angular momentum of υ-And c and υ-And d ). Of course, this is made in
agreement with our choice to consider a restricted framework, because we are assuming that
the mass of υ-And b is so small that can be neglected.

For each numerical integration we compute the maximal value reached by the eccentricity
e1 and the mutual inclination imutbc . The results are reported in the color-grid plots of the left
and right panels of Fig. 5, respectively. Once again, they are provided as functions of �1(0)
and i1(0) , whose values appear on the x and y axes, respectively.

Comparing Fig. 2awith 5a and Fig. 2bwith 5b, respectively, we can immediately conclude
the striking similarity of the color-grid plots, implying the same dependence of the dynamics
on the initial values of the orbital elements i1(0) and�1(0) in either model. In particular, the
regions of stability located at the two lateral sides of the plots, where the orbit of υ-And b
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Fig. 5 Color-grid plots of the maximal value reached by the eccentricity of υ-And b (on the left) and by the
mutual inclination between υ-And b and υ-And c (on the right). The maxima are computed along the RK4
numerical integrations of the equations of motion (15) of the SQPR model, covering a timespan of 105 yr

Fig. 6 Behavior of the fundamental angular velocity ν as obtained by applying the frequency map analysis
method to the signal ξ1(t)+iη1(t) , computed through the RK4 numerical integration of the SQPRmodel (15),
covering a timespan of 1.31072 · 105 yr. We take, as initial conditions, (i1(0), �1(0)) ∈ {6.865◦} × I� for
the left panel and (i1(0), �1(0)) ∈ {10.9353◦} × I� for the right one

does not become very eccentric, are identical. This occurs also for what concerns the plots of
the maximal mutual inclination. However, some discrepancies are evident in the central parts
of the panels, i.e., for values of �1(0) ranging between 90◦ and 270◦. We stress that this lack
of agreement between the results provided by the two models is expected in these central
regions of the panels. Indeed, let us recall that the SQPR model has been introduced starting
from some classical expansions in powers of eccentricities and inclinations. Therefore, it
is reasonable to expect a deterioration of the accuracy of the SQPR model in the orbital
dynamics depicted in the central regions of the plots where large values of the eccentricity
e1 and the mutual inclination are attained. We emphasize that similar remarks about the very
strong impact of the initial value �1(0) on the orbital stability of υ-And b can be found in
Sect. 4.2 of Piskorz et al. (2017).

A further exploration of the stable and chaotic regions of Fig. 5a can be done by applying
the so-called frequency map analysis method (see, e.g., Laskar 1999), in order to study the
signal ξ1(t) + iη1(t) produced by the numerical integration of the system (15), i.e., in the
SQPR approximation. We perform the numerical integrations as prescribed at the beginning
of the present Section, taking into account only a few values in Ii for the initial inclinations,
i.e., i1(0) = 6.865◦, 8.22175◦, 9.5785◦, 10.9353◦ and �1(0) ∈ I� . In Fig. 6, we report the
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behavior of the angular velocity corresponding to the first component of the approximation
of ξ1(t) + iη1(t), as obtained by applying the FA computational algorithm; therefore, this
quantity is related to the precession rate of �1 . As initial value for the inclination i1(0), we
fix 6.865◦ for Fig. 6a and 10.9353◦ for Fig. 6b. We do not report the cases (i1(0),�1(0)) ∈
{8.22175◦, 9.5785◦} × I� , since the behavior of those plots is similar to the ones in Fig. 6.
The situation is well described in Fig. 6b and analogous considerations can be done for
Fig. 6a. For what concerns the values of �1(0) in the range [0,∼ 50◦] and [∼ 325◦, 360◦]
we can observe a regular behavior of the angular velocity ν which is also monotone with
the only exception of the local minimum. According to the interpretation of the frequency
map analysis (in light of KAM theory), such a regular regime is due to the presence of many
invariant toriwhich fill the stability region located at the two lateral sides of the plot 5a. Instead
for values of �1(0) in [∼ 50◦,∼ 70◦] ∪ [∼ 300◦, ∼ 325◦] and �1(0) in [∼ 120◦, ∼ 270◦]
we observe a strongly irregular behavior, which corresponds to the lateral green stripes and
the internal green region of Fig. 5a. Thus, they represent chaotic regions in proximity of a
secular resonance. Indeed, in Fig. 6b the angular velocity is constant for values of �1(0) in
[∼ 70◦, ∼ 85◦] and [∼ 280◦, ∼ 300◦] (corresponding to part of the blue central stripes of
Fig. 5a). More precisely, the value of ν is equal to � −1.04 · 10−3 , that is ω4 , i.e., one of
the fundamental angular velocities which characterize the quasi-periodic motion of the outer
planets (see Eq. (8)). This allows us to conclude that they represent the stable central part of
a resonant region.

4 Introduction of a secular model by a normal form approach

This section aims at manipulating the Hamiltonian with normal form algorithms in order to
define a new model that is more compact; this allows us to simulate the secular dynamics
of υ-And b with much faster numerical integrations. In fact, we describe a reduction of
the number of degrees of freedom (DOF) of our Hamiltonian model. For such a purpose,
we apply two normal form methods: first, we perform the construction of an elliptic torus,
hence, we proceed removing the angles (q3, q4, q5 ) whose evolution is linearly depending
on time. The latter elimination is made by applying a normalization method à la Birkhoff in
such a way to introduce a so-called resonant normal form9 that includes, at least partially,
the long-term effects due to the outer planets motion.

4.1 Normal form algorithm constructing elliptic tori

In Giorgilli et al. (2014), the existence of invariant elliptic tori in 3D planetary problems with
n bodies has been proved by using a normal form method which is explicitly constructive.
However, such an approach does not look suitable to be directly applied to Hamiltonian
secular models, because in this latter case the separation between fast and slow dynamics is
lost. Therefore, we follow the explanatory notes (Locatelli et al. 2022), where the algorithm
constructing the normal form for elliptic tori is compared with the classical one à la Kol-
mogorov, which is at the basis of the original proof scheme of the KAM theorem. We first
summarize this general procedure leading to the construction of elliptic tori. We then add
some comments explaining how this general method can be suitably adapted to our problem.

9 Resonant normal forms play a relevant role in the proof of the celebrated Nekhoroshev theorem (see, e.g.,
Giorgilli 2022).
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We start considering a Hamiltonian H(0) written as follows:

H(0)( p, q, I,α) = E(0) + ω(0) · p + 	(0) · I +
∑

s≥0

∑

l≥3

f (0,s)
l ( p, q, I,α)

+
∑

s≥1

f (0,s)
0 (q) +

∑

s≥1

f (0,s)
1 (q, I,α) +

∑

s≥1

f (0,s)
2 ( p, q, I,α) ,

(17)

where E(0) is a constant term, representing the energy, ( p, q) ∈ R
n1 ×T

n1 , (I,α) ∈ R
n2≥0 ×

T
n2 are action-angle variables and (ω(0),	(0)) ∈ R

n1 × R
n2 is the angular velocity vector.

The symbol f (r ,s)
l is used to denote a function of the variables ( p, q, I,α) , such that l is the

total degree in the square root of the actions ( p , I), s is the index such that the maximum
trigonometric degree, in the angles (q,α) , is sK (for a fixed positive integer K ) and r refers
to the normalization step. In more details, we can say that f (0,s)

l ∈ Pl,sK , which is a class of
functions that we introduce as follows.

Definition 4.1 We say that g ∈ Pl,sK if g ∈
⋃

m̂≥0, l̂≥0
2m̂+̂l=l

P̂m̂ ,̂l,sK , where

P̂m̂ ,̂l,sK =
{

g : Rn1 × T
n1 × R

n2≥0 × T
n2 → R :

g( p, q, I,α)=
∑

m∈Nn1
|m|=m̂

∑

l∈Nn2

|l|=̂l

∑

k∈Zn1

|k|+|̂l|≤sK

∑

l̂ j =−l j ,−l j +2,...,l j
j=1,...,n2

cm,l,k,̂l pm
(√

I
)l

ei
(
k·q+̂l ·α)

}
.

A few remarks about the above definition are in order. First, since we deal with real functions,
the complex coefficients must be such that cm,l,−k,−̂l = c̄m,l,k,̂l . Moreover, the rules about

the integer coefficients vector l̂ are such that, ∀ j = 1, . . . , n2 , the j-th component of the
Fourier harmonic l̂ j (that refers to the angle α j ) must have the same parity with respect to
the corresponding degree l j of

√
I j and must satisfy the inequality10 |̂l j | ≤ l j .

Let us here emphasize that our SQPR model of the secular dynamics of υ-And b can be
reformulated in such a way to be described by a Hamiltonian of the type (17); this will be
explained in detail at the beginning of Sect. 5.

The following statement plays a substantial role, since it ensures that the structure of the
functions f (r ,s)

l is preserved while the normalization algorithm is iterated.

Lemma 4.1 Let us consider two generic functions g ∈ Pl,sK and h ∈ Pm,r K , where K is a
fixed positive integer number. Then

{g, h} = Lh g ∈ Pl+m−2, (r+s)K ∀ l, m, r , s ∈ N ,

where we trivially extend the definition 4.1 in such a way that P−2, sK = P−1, sK = {0}
∀ s ∈ N.

The algorithm constructing the normal form for elliptic tori is applied to Hamiltonians of
the type (17), where the terms appearing in the second row (namely,∑

s≥1
∑2

l=0 f (0,s)
l ( p, q, I,α) ) are considered as the perturbation to remove. Therefore,

10 These rules are inherited from the polynomial structure of the canonical coordinates describing the small
oscillations that are transverse to the elliptic torus. For instance, it is easy to verify that the restrictions on
the indexes appearing in definition 4.1 is satisfied when the change of variables (50) is plugged into the
Hamiltonian (13).
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one can easily realize that such a perturbation must be sufficiently small so that the proce-
dure behaves well as regards convergence. There are general situations where this essential
smallness condition is satisfied. For instance, this occurs forHamiltonian systems in the neigh-
borhood of a stable equilibrium point; in fact, it is possible to prove that, f (0,s)

l = O(εs) ,
where ε is a small parameter which denotes the first approximation of the distance (expressed
in terms of the actions) between the elliptic torus and the stable equilibrium point. The
elimination of the small perturbing terms can be done through a sequence of canonical trans-
formations, leading the Hamiltonian in the following final form:

H(∞)( p̃, q̃, Ĩ, α̃) = E(∞) + ω(∞) · p̃ + 	(∞) · Ĩ +
∑

s≥0

∑

l≥3

f (∞,s)
l ( p̃, q̃, Ĩ, α̃) , (18)

with f (∞,s)
l ∈ Pl,sK . Therefore, for any initial conditions of type (0, q̃0, 0, α̃) (where

q̃0 ∈ T
n1 and the value of α̃ ∈ T

n2 does not play any role11), the motion law
( p̃(t), q̃(t), Ĩ(t), α̃(t)) = (0, q̃0 + ω(∞)t, 0, α̃) is a solution of the Hamilton’s equations
related toH(∞) . This quasi-periodic solution (having ω(∞) as constant angular velocity vec-
tor) lies on the n1-dimensional invariant torus such that the values of the action coordinates
are p̃ = 0, Ĩ = 0 .

The generic r-th step of the algorithm is defined as follows. Let us assume that after r − 1
normalization steps the expansion of the Hamiltonian can be written as

H(r−1)( p, q, I,α) = E(r−1) + ω(r−1)· p + 	(r−1)· I +
∑

s≥0

∑

l≥3

f (r−1,s)
l ( p, q, I,α)

+
∑

s≥r

f (r−1,s)
0 (q) +

∑

s≥r

f (r−1,s)
1 (q, I,α) +

∑

s≥r

f (r−1,s)
2 ( p, q, I,α),

(19)

with f (r−1,s)
l ∈ Pl,sK . By comparing formula (17) with (19), one immediately realizes that

the assumption above is satisfied in the case with r = 1 for what concerns the expansion of
the initial Hamiltonian H(0).

The r-th normalization step consists of three substeps, each of them involving a canonical
transformation which is expressed in terms of the Lie series having χ

(r)
0 , χ(r)

1 , χ(r)
2 as gen-

erating function, respectively. Therefore, the new Hamiltonian that is introduced at the end
of the r-th normalization step is defined as follows:

H(r) = exp
(

L
χ

(r)
2

)
exp

(
L

χ
(r)
1

)
exp

(
L

χ
(r)
0

)
H(r−1) , (20)

where exp
(
Lχ

) · = ∑
j≥0(L j

χ ·)/ j ! is the Lie series operator, Lχ · = {·, χ} is the Lie
derivative with respect to the dynamical function χ , and {·, ·} represents the Poisson bracket.

11 Indeed, when Ĩ = 0 ∀ α̃ ∈ T
n2 , the canonical coordinates (

√
2 Ĩ j cos(α̃ j ) ,

√
2 Ĩ j sin(α̃ j )) are mapped into

the origin of the j th subspace that is transversal to the elliptic torus. This fictitious singularity of the action-
angle variables (I,α) is completely harmless just because all the normalization algorithm can be performed
working on Hamiltonians whose expansions are made by terms belonging to sets of functions of typePl,sK .
We stress that all the algorithm could be reformulated using polynomial canonical coordinates to describe the
dynamics in the subspaces transversal to the elliptic torus; in particular, this is done with complex pairs of
canonical coordinates in Caracciolo (2022). In the sequel, we adopt an exposition entirely based on the use of
the action-angle coordinates, which makes the algorithm easier to understand.
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First substep (of the r-th normalization step)

Thefirst substep aims to remove the termdepending only on the angles12 q up to trigonometric
degree r K , i.e., f (r−1,r)

0 (included in the first sum of the second row of (19)), which has to

be considered as O(εr ) . The first generating function χ
(r)
0 (q) is determined by solving the

following homological equation:

{ω(r−1) · p, χ(r)
0 } + f (r−1,r)

0 (q) =
〈

f (r−1,r)
0

〉

q
. (21)

Since f (r−1,r)
0 ∈ P0,r K , its Fourier expansion can be written f (r−1,r)

0 (q) =∑
|k|≤r K c(r−1)

k eik·q . Because of the homological Eq. (21), we find

χ
(r)
0 (q) =

∑

0<|k|≤r K

c(r−1)
k

i k · ω(r−1)
eik·q ; (22)

the above solution is well defined if the non-resonance condition

k · ω(r−1) �= 0 ∀ 0 < k ≤ r K

is satisfied. We can now apply the Lie series operator exp
(
L

χ
(r)
0

)
to H(r−1) . This allows us

to write the expansion of the new intermediate Hamiltonian as follows:

H(I ; r)( p, q, I,α) = exp
(

L
χ

(r)
0

)
H(r−1)

= E(r) + ω(r−1) · p + 	(r−1) · I +
∑

s≥0

∑

l≥3

f (I ; r ,s)
l ( p, q, I,α)

+
∑

s≥r

f (I ; r ,s)
0 (q) +

∑

s≥r

f (I ; r ,s)
1 (q, I,α) +

∑

s≥r

f (I ; r ,s)
2 ( p, q, I,α) ,

(23)

where (by abuse of notation) for the new canonical coordinates we adopt the same symbols as
the old ones. From a practical point of view, the new Hamiltonian terms can be conveniently
defined in such a way to mimic what is usually done in any programming language. First,
we introduce the new summands as the old ones, so that f (I ; r ,s)

l = f (r−1,s)
l ∀ l ≥ 0 ,

s ≥ 0 . Hence, each term generated by Lie derivatives with respect to χ
(r)
0 is added to the

corresponding class of functions. By a further abuse of notation, this is made by the following
sequence13 of redefinitions:

f (I ; r ,s+ jr)
l−2 j ←↩

1

j ! L j

χ
(r)
0

f (r−1,s)
l ∀ l ≥ 0, 1 ≤ j ≤ �l/2�, s ≥ 0 , (24)

where with the notation a ←↩ b we mean that the quantity a is redefined so as to be equal
a + b . In fact, since χ

(r)
0 ∈ P0,r K , Lemma 4.1 ensures that each application of the Lie

derivative operator L
χ

(r)
0

decreases by 1 the degree in p (that is obviously equivalent to 2 in

12 This first substep of the algorithm is basically useless when the explicit construction of the normal form
related to an elliptic torus is started from the Hamiltonian Hsec, 2+3/2 described in (51). Indeed, in the case
under study just the so-called dummy actions are affected by this kind of canonical change of variables, which
is defined by a Lie series with a generating function depending on the angles q only. Aiming to make a
rather general discussion of the computational procedure, we keep in the algorithm the description of this first
normalization substep.
13 From a practical point of view, since we have to deal with finite series, that are truncated in such a way that
the index s goes up to a fixed order calledNS , we have to require also that 1 ≤ j ≤ min

{�l/2�, �(NS −s)/r�} .
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the square root of the actions), while the trigonometrical degree in the angles q is increased
by r K . By using repeatedly such a simple rule, one can easily verify that f (I ; r ,s)

l ∈ Pl,sK

∀ l ≥ 0, s ≥ 0 . Moreover, due to the homological Eq. (21), we set f (I ; r ,r)
0 = 0 and update

the energy value in such a way that E(r) = E(r−1) +
〈

f (r−1,r)
0

〉

q
, where 〈·〉q is used to denote

the angular average with respect to q.

Second substep (of the r-th normalization step)

The second substep aims to remove the term that is linear in
√
I and independent on p ,

i.e., f (I ;r ,r)
1 , which is included in the second sum appearing in the second row of (23). The

second generating function χ
(r)
1 (q, I,α) is determined solving the following homological14

equation:

{ω(r−1) · p + 	(r−1) · I, χ(r)
1 } + f (I ; r ,r)

1 (q, I,α) = 0 . (25)

Since f (I ; r ,r)
1 ∈ P1,r K , we can write its expansion as

f (I ; r ,r)
1 (q, I,α) =

∑

0≤|k|≤r K−1

n2∑

j=1

√
I j

[
c(+)
k, j ei(k·q+α j ) + c(−)

k, j ei(k·q−α j )
]

;

due to the homological Eq. (25), we find

χ
(r)
1 (q, I,α) =

∑

0≤k≤r K−1

n2∑

j=1

√
I j

[ c(+)
k, j

i
(
k · ω(r−1) + �

(r−1)
j

)ei(k·q+α j )

+ c(−)
k, j

i
(
k · ω(r−1) − �

(r−1)
j

)ei(k·q−α j )
]

. (26)

The above expression iswell definedprovided that thefirstMelnikovnon-resonance condition
is satisfied, i.e.,

min
0<|k|≤r K−1

|l|=1

∣∣∣k · ω(r−1) + l · 	(r−1)
∣∣∣ ≥ γ

(r K )τ
and min

|l|=1

∣∣∣ l · 	(r−1)
∣∣∣ ≥ γ , (27)

for a pair of fixed values of γ > 0 and τ > n1 − 1 (see Locatelli et al. (2022) and reference
therein).

We can now apply the transformation exp
(

L
χ

(r)
1

)
to the HamiltonianH(I ; r) . By the usual

abuse of notation (i.e., the new canonical coordinates are denoted with the same symbols of

14 In the r.h.s. of (25) we do not need to put any term produced by an angular average (similar to that appearing,

for instance, in the r.h.s. of the homological Eq. (21)), because
〈

f (I ; r ,r)
1

〉

q,α
= 0 . In fact, since f (I ; r ,r)

1 is

linear in
√
I and belongs to P1,r K , from definition (4.1) it easily follows that in the expansion of f (I ; r ,r)

1
all the terms include the dependence on e±iα j with j = 1, . . . , n2 , leading to a null mean over the angles.
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the old ones), the expansion of the new Hamiltonian can be written as

H(I I ; r)( p, q, I,α) = exp
(

L
χ

(r)
1

)
H(I ; r)

= E(r) + ω(r−1) · p + 	(r−1) · I +
∑

s≥0

∑

l≥3

f (I I ; r ,s)
l ( p, q, I,α)

+
∑

s≥r+1

f (I I ; r ,s)
0 (q) +

∑

s≥r

f (I I ; r ,s)
1 (q, I,α) +

∑

s≥r

f (I I ; r ,s)
2 ( p, q, I,α) ,

(28)

where in the last row of the previous formula, it is possible to start the first sum from r + 1
instead of r , being f (I I ; r ,r)

0 = f (I ; r ,r)
0 = 0 . In an analogous way as in the first substep, it is

convenient to first define the newHamiltonian terms as the old ones, i.e., f (I I ; r ,s)
l = f (I ; r ,s)

l

∀ l ≥ 0 , s ≥ 0 . Hence, each term generated by the Lie derivatives with respect to χ
(r)
1 is

added to the corresponding class of functions. This is made by the following sequence15 of
redefinitions:

f (I I ; r ,s+ jr)
l− j ←↩

1

j ! L j

χ
(r)
1

f (I ; r ,s)
l ∀ l ≥ 0, 1 ≤ j ≤ l, s ≥ 0 ,

f (I I ; r ,2r)
0 ←↩

1

2
L2

χ
(r)
1

(
ω(r−1) · p + �(r−1) · I

)
.

(29)

In fact, since χ
(r)
1 ∈ P1,r K is linear in

√
I , each application of the Lie derivative operator

L
χ

(r)
1

decreases by 1 the degree in square root of the actions, while the trigonometrical degree

in the angles is increased by r K ; such a rule holds because of Lemma 4.1. Moreover, thanks
to the homological Eq. (25), one can easily remark that f (I I ; r ,r)

1 = 0 . A repeated application

of Lemma 4.1 allows us to verify also that f (I I ; r ,s)
l ∈ Pl,sK , ∀l ≥ 0, s ≥ 0 .

Third substep (of the r-th normalization step)

The last substep aims to remove the term f (I I ; r ,r)
2 which is quadratic in the square root of the

actions (i.e., either quadratic in
√
I or linear in p ) and included in the third sum appearing

in the second row of (28). The third generating function χ
(r)
2 ( p, q, I,α) is determined by

solving the following homological equation:

{ω(r−1) · p + 	(r−1) · I, χ(r)
2 } + f (I I ; r ,r)

2 ( p, q, I,α) =
〈

f (I I ; r ,r)
2

〉

q,α
. (30)

Since f (I I ; r ,r)
2 ∈ P2,r K , we can write it (according to definition 4.1 with 2m̂ + l̂ = 2 and

s = r ) as follows:

f (I I ; r ,r)
2 ( p, q, I,α) =

∑

m∈Nn1
|m|=1

∑

k∈Zn1
|k|≤r K

cm,k pmei k·q

+
∑

l∈Nn2
|l|=2

∑

k∈Zn1

|k|+|̂l|≤r K

∑

l̂ j =−l j ,−l j +2,...,l j
j=1,...,n2

c̃l,k,̂l

(√
I
)l

ei
(
k·q+̂l·α) .

15 From a practical point of view, since we have to deal again with series truncated in such a way that the
index s goes up to a fixed order called NS , we have to require also that 1 ≤ j ≤ min {l, �(NS − s)/r�} .
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Due to the homological Eq. (30), we obtain

χ
(r)
2 ( p, q, I,α) =

∑

m∈Nn1
|m|=1

∑

k∈Zn1
0<|k|≤r K

cm,k pmei k·q

i k · ω(r−1)

+
∑

l∈Nn2
|l|=2

∑

k∈Zn1

0<|k|+|̂l|≤r K

∑

l̂ j =−l j ,−l j +2,...,l j
j=1,...,n2

c̃l,k,̂l

(√
I
)l

ei
(
k·q+̂l·α)

i
(
k · ω(r−1) + l̂ · 	(r−1)) ,

(31)

provided that both the non-resonance condition and the Melnikov one of second kind are
satisfied, i.e.,

k · ω(r−1) �= 0 ∀ 0 < k ≤ r K , min
0<|k|≤r K−2

|l|=2

∣∣∣k · ω(r−1) + l · 	(r−1)
∣∣∣ ≥ γ

(r K )τ
, (32)

with the same values of the constant parameters γ > 0 and τ > n1 − 1 appearing in (27).

We can nowapply the transformation exp
(

L
χ

(r)
2

)
to theHamiltonianH(I I ; r) . By the usual

abuse of notation (i.e., the new canonical coordinates are denoted with the same symbols as
the old ones), the expansion16 of the new Hamiltonian can be written as

H(r)( p, q, I,α) = exp
(

L
χ

(r)
2

)
H(I I ; r)

= E(r) + ω(r−1) · p + 	(r−1) · I +
∑

s≥0

∑

l≥3

f (r ,s)
l ( p, q, I,α)

+
∑

s≥r+1

f (r ,s)
0 (q) +

∑

s≥r+1

f (r ,s)
1 (q, I,α) +

∑

s≥r

f (r ,s)
2 ( p, q, I,α) .

(33)

Once again, it is convenient to first define the new Hamiltonian terms as the old ones, i.e.,
f (r ,s)
l = f (I I ; r ,s)

l ∀ l ≥ 0 , s ≥ 0 . Hence, each term generated by the Lie derivatives with

respect to χ
(r)
2 is added to the corresponding class of functions. This is made by the following

sequence17 of redefinitions:

f ( r ,s+ jr)
l ←↩

1

j ! L j

χ
(r)
1

f (I I ; r ,s)
l ∀ l ≥ 0, j ≥ 1, s ≥ 0 ,

f (r , jr)
2 ←↩

1

j ! L j

χ
(r)
2

(
ω(r−1) · p + 	(r−1) · I

)
∀ j ≥ 1 .

(34)

In fact, since χ
(r)
2 ∈ P2,r K is either quadratic in

√
I or linear in p, each application of the

Lie derivative operator L
χ

(r)
2

does not modify the degree in the square root of the actions,

while the trigonometric degree in the angles is increased by r K . By applying Lemma 4.1,
one can verify also that f (r ,s)

l ∈ Pl,sK , ∀l ≥ 0, s ≥ 0 .
Because of the homological Eq. (30), it immediately follows that the term that cannot be

removed, that is f (r ,r)
2 =

〈
f (I I ; r ,r)
2

〉

q,α
∈ P2,0 , is exactly of the same type with respect to

16 In the third row of (33), it is possible to start the second sum from r + 1 instead of r , being f (r ,r)
1 =

f (I I ; r ,r)
1 = 0 .

17 From a practical point of view, since we have to deal with series truncated in such a way that the index s
goes up to a fixed order called NS , we have to require also that 1 ≤ j ≤ �(NS − s)/r� .
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the main term that is linear in the actions, i.e., ω(r−1) · p + 	(r−1) · I . It looks then natural
to update the angular velocity vectors so that

ω(r) = ω(r−1) + ∇ p

(〈
f (I I ; r ,r)
2

〉

q,α

)
, 	(r) = 	(r−1) + ∇I

(〈
f (I I ; r ,r)
2

〉

q,α

)
, (35)

where, as usual, the symbols∇ p and∇I denote the gradientwith respect to the action variables

p and I , respectively, and to set f (r ,r)
2 = 0 . Therefore, the expansion of the Hamiltonian

H(r) can be rewritten as

H(r)( p, q, I,α) = E(r) + ω(r) · p + 	(r) · I +
∑

s≥0

∑

l≥3

f (r ,s)
l ( p, q, I,α)

+
∑

s≥r+1

2∑

l=0

f (r ,s)
l ( p, q, I,α) ,

(36)

where f (r ,s)
l ∈ Pl,sK and E(r) ∈ P0,0 is a constant.

It is nowpossible to iterate the algorithm, by performing the (next) (r+1)-th normalization
step. The convergence of this normal form algorithm is proved in Caracciolo (2022) under
suitable conditions.

In order to implement such a kind of normalization algorithm with the aid of a computer,
we have to deal with Hamiltonians including a finite number of summands in their expansions
in Taylor–Fourier series. To fix the ideas, let us suppose that we set a truncation rule in such
a way as to neglect all the terms with a trigonometric degree greater than NS K , for a fixed
positive integer value of the parameter NS . After iteratively performing NS steps of the
constructive algorithm, we end up with an approximation of the Hamiltonian which is in the
normal form corresponding to an elliptic torus, i.e.,

H(NS)( p, q, I,α) = E(NS) + ω(NS) · p + 	(NS) · I +
NS∑

s=0

∑

l≥3

f (NS ,s)
l ( p, q, I,α) . (37)

The Hamiltonian H(NS) represents the natural starting point for the application of a second
(Birkhoff-like) algorithm, which aims to produce a new normal form in such a way to remove
the dependence on the angles q, as explained in the next subsection.

4.2 Construction of the resonant normal form in such a way to average with respect
to the angles q

Consider a Hamiltonian18 H(0)
B of the form:

H(0)
B ( p, q, I,α) = EB + ωB · p + 	B · I +

NS∑

s=0

∑

l≥3

g(0,s)
l ( p, q, I,α) , (38)

where EB is a constant term, representing the energy, ( p, q) ∈ R
n1×T

n1 , (I,α) ∈ R
n2≥0×T

n2

are action-angle variables, (ωB ,	B) ∈ R
n1 ×R

n2 are the frequencies,NS is a fixed positive
integer (ruling the truncations in the Fourier series) and g(0,s)

l ∈ Pl,sK , ∀ l ≥ 0, 0 ≤
s ≤ NS . In practice, we are starting from the normalized Hamiltonian of the previous

18 We use the symbol H(0)
B instead of H(0) to distinguish this starting Hamiltonian from the one of the

previous normalization algorithm, which is written in Eq. (17).
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subsectionH(NS) , given by Eq. (37), where we have definedH(0)
B := H(NS) , EB := E(NS) ,

(ωB ,	B) := (ω(NS),	(NS)) and g(0,s)
l := f (NS ,s)

l ∈ Pl,sK ∀ l ≥ 0, 0 ≤ s ≤ NS ; this is
done also in order to simplify the notation. By comparison with Eq. (37), it is easy to remark
that g(0,s)

l := f (NS ,s)
l = 0 , ∀ 0 ≤ l ≤ 2 , 1 ≤ s ≤ NS .

The aim of the present algorithm is to delete the dependence of H(0)
B on the angles q ,

reducing by n1 the number of degrees of freedom. In order to do this, we have to act on the
terms g(0,s)

l ( p, q, I,α) such that s ≥ 1 and l ≥ 3, removing their dependence on q ; indeed,

for s = 0 , the sum
∑

l≥3 g(0,0)
l ( p, I) does not depend on the angles, thus it is already in

normal form. This elimination can be done by a sequence of canonical transformations. If
convergent, this would lead the Hamiltonian to the following final normal form:

H(∞)
B ( p̃, Ĩ, α̃) = EB + ωB · p̃ + 	B · Ĩ +

∞∑

s=0

∑

l≥3

g(∞,s)
l ( p̃, Ĩ, α̃) , (39)

where ( p̃, Ĩ, α̃) denote the new variables; it is evident that, having removed the dependence
on q̃ , the conjugate momenta vector p̃ is constant. However, as typical of the computational
procedures à la Birkhoff, the constructive algorithm produces divergent series if the nor-
malization is iterated infinitely many times. For this reason, it is convenient to look for an
optimal order of normalization to which the algorithm is stopped. In our approach, we have
not to consider such a problem, because we are dealing with truncated series; this is done in
order to keep our discussion as close as possible to the practical implementations where the
maximal degree in actions of the expansions is usually rather low.

The generic r-th step of this new normalization algorithm is defined as follows. After r −1
steps, the Hamiltonian (38) takes the form

H(r−1)
B ( p, q, I,α) = EB + ωB · p + 	B · I +

∑

l≥3

g(r−1,0)
l ( p, I)

+
NS∑

s=1

∑

3≤l≤r+1

g(r−1,s)
l ( p, I,α) +

NS∑

s=1

∑

l≥r+2

g(r−1,s)
l ( p, q, I,α) ,

(40)

with g(r−1,s)
l ∈ Pl,sK .

The r-th normalization step consists of a sequence ofNS substeps, each of them involving
a canonical transformation which is expressed in terms of the Lie series having χ

( j; r)
B as

generating function, with j = 1, . . . ,NS . Therefore, the new Hamiltonian introduced at the
end of the r-th normalization step of this algorithm is defined as follows:

H(r)
B = exp

(
L

χ
(NS ; r)

B

)
. . . exp

(
L

χ
(3; r)
B

)
exp

(
L

χ
(2; r)
B

)
exp

(
L

χ
(1; r)
B

)
H(r−1)

B . (41)

The generating functionsχ
( j; r)
B are defined so as to remove the dependence on q from the per-

turbing term of lowest order in the square root of the actions, i.e.,
∑NS

s=1 g(r−1,s)
r+2 ( p, q, I,α) .
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j-th substep of the r-th step of the algorithm constructing the resonant normal form

After j − 1 substeps, the Hamiltonian can be written as follows:

H( j−1; r)
B ( p, q, I,α) = EB + ωB · p + 	B · I +

∑

l≥3

g( j−1; r ,0)
l ( p, I)

+
NS∑

s=1

∑

3≤l≤r+1

g( j−1; r ,s)
l ( p, I,α) +

j−1∑

s=1

g( j−1; r ,s)
r+2 ( p, I,α)

+
NS∑

s= j

g( j−1; r ,s)
r+2 ( p, q, I,α) +

NS∑

s=1

∑

l≥r+3

g( j−1; r ,s)
l ( p, q, I,α),

(42)

where, for j = 1 , we set H(0; r)
B := H(r−1)

B and g(0; r ,s)
l = g(r−1,s)

l , ∀l ≥ 0, ∀ 0 ≤ s ≤ NS .

The j-th substep generating function χ
( j; r)
B is determined by the following homological

equation:

{ωB · p + 	B · I , χ
( j; r)
B } + g( j−1; r , j)

r+2 ( p, q, I,α) =
〈
g( j−1; r , j)

r+2

〉

q
. (43)

Proceeding in a similar way as in the description of the third substep of Sect. 4.1, first we
write the expansion of the perturbing function in the form

g( j−1; r , j)
r+2 ( p, q, I,α) =

∑

2|m|+|l|=r+2

∑

m∈Nn1

∑

l∈Nn2

∑

k∈Zn1

|k|+|̂l|≤ j K

∑

l̂ j2=−l j2 ,−l j2+2,...,l j2
j2=1,...,n2

cm,l,k,̂l pm
(√

I
)l

ei
(
k·q+̂l ·α) . (44)

The solution of the homological Eq. (43) is then

χ
( j; r)
B ( p, q, I,α) =

∑

2|m|+|l|=r+2

∑

m∈Nn1

∑

l∈Nn2

∑

k∈Zn1 , |k|>0
|k|+|̂l|≤ j K

∑

l̂ j2=−l j2 ,−l j2+2,...,l j2
j2=1,...,n2

cm,l,k,̂l

i
(
k · ωB + l̂ · 	B

) pm
(√

I
)l

ei
(
k·q+̂l·α) .

(45)

We can now apply the transformation exp
(
L

χ
( j; r)
B

)
to the Hamiltonian H( j−1; r)

B . By the

usual abuse of notation (i.e., the new canonical coordinates are denotedwith the same symbols
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of the old ones), the expansion of the new Hamiltonian can be written as

H( j; r)
B ( p, q, I,α) = exp

(
L

χ
( j; r)
B

)
H( j−1; r)

B

= EB + ωB · p + 	B · I +
∑

l≥3

g( j; r ,0)
l ( p, I)

+
NS∑

s=1

∑

3≤l≤r+1

g( j; r ,s)
l ( p, I,α) +

j∑

s=1

g( j; r ,s)
r+2 ( p, I,α)

+
NS∑

s= j+1

g( j; r ,s)
r+2 ( p, q, I,α) +

NS∑

s=1

∑

l≥r+3

g( j; r ,s)
l ( p, q, I,α) .

(46)

In a similar way to what has been done previously, it is convenient to first define the new
Hamiltonian terms as the old ones, i.e., g( j; r ,s)

l = g( j−1; r ,s)
l ∀ l ≥ 0 , 0 ≤ s ≤ NS ; hence,

each term generated by the Lie derivativeswith respect toχ
( j; r)
B is added to the corresponding

class of functions. This is made by the following sequence19 of redefinitions

g( j; r ,s+mj)
l+mr ←↩

1

m! Lm
χ

( j; r)
B

g( j; r ,s)
l ∀ l ≥ 0, 1 ≤ m ≤ �(NS − s)/ j�, 0 ≤ s ≤ NS ,

g( j; r ,mj)
2+mr ←↩

1

m! Lm
χ

( j; r)
B

(ωB · p + �B · I) ∀ 1 ≤ m ≤ �NS/ j� .

(47)

In fact, since χ
( j; r)
B ∈ Pr+2, j K , each application of the Lie derivative operator L

χ
( j; r)
B

increases the degree in square root of the actions and the trigonometrical degree in the
angles by r and j K , respectively. Moreover, thanks to the homological Eq. (43) and the
second rule included in formula (47) (in the case with m = 1), one can easily remark that

g( j; r , j)
r+2 =

〈
g( j−1; r , j)

r+2

〉

q
. By applying Lemma 4.1 one can verify also that g( j; r ,s)

l ∈ Pl,sK ,

∀l ≥ 0, s ≥ 0 .
The r-th step of the algorithm constructing the resonant normal form is completed at the

end of the iterative repetition of the j-th substep for j = 1, . . . , NS . Therefore, the expansion
of the Hamiltonian can be written in the following form:

H(r)
B ( p, q, I,α) = exp

(
L

χ
(NS ; r)

B

)
· · · exp

(
L

χ
(1; r)
B

)
H(r−1)

B

= EB + ωB · p + 	B · I +
∑

l≥3

g(r ,0)
l ( p, I)

+
NS∑

s=1

∑

3≤l≤r+2

g(r ,s)
l ( p, I,α) +

NS∑

s=1

∑

l≥r+3

g(r ,s)
l ( p, q, I,α) ,

(48)

where g(r ,s)
l := g(NS; r ,s)

l , ∀ l ≥ 0 , 0 ≤ s ≤ NS . Then, the normalization algorithm can
be iteratively repeated. Since we are interested in the computer implementation, we consider
finite sequences of Hamiltonians whose expansion is truncated up to a finite degree, say,NL

19 From a practical point of view, since we have to deal with series truncated in such a way that the indexes
s and l do not exceed the threshold values NS and NL , respectively, we have to require that 1 ≤ m ≤
min ((NL − l)/r , �(NS − s)/ j�) , which is more restrictive with respect to the corresponding rule appearing
in (47).
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in the square root of the actions. Therefore, the iteration of NL − 2 normalization steps of
the algorithm constructing the resonant normal form are sufficient to obtain

H(NL−2)
B ( p, I,α) = EB + ωB · p + 	B · I +

NS∑

s=0

NL∑

l=3

g(NL−2,s)
l ( p, I,α) . (49)

The Hamiltonian (49) does not depend on the angles q. Therefore, the corresponding actions
p are constant and they can be considered as parameters whose values are fixed by the initial
conditions; this allows us to decrease the number of degrees of freedom by n1 , passing from
n1 + n2 to n2.

5 Application of the normalization algorithms to the secular
quasi-periodic restrictedmodel of the dynamics of �-And b

The SQPR model can be reformulated in such a way as to resume the form of a Hamiltonian
of the type (17), to which we can sequentially apply both normalization procedures described
in the two previous subsections. In fact, the canonical change of variables

ξ1 = √
2I1 cos(α1) , η1 = √

2I1 sin(α1) ,

P1 = √
2I2 cos(α2) , Q1 = √

2I2 sin(α2) ,
(50)

allows to rewrite the expansion of the SQPR Hamiltonian (13) as follows:

Hsec, 2+3/2( p, q, I,α) = ω3 p3 + ω4 p4 + ω5 p5

+
NL∑

l1+l2=0
(l1, l2)∈N2

∑

(k3, k4, k5)∈Z3

|k|≤NS K

∑

k j =−l j ,−l j +2,...,l j
j=1, 2

cl,k(
√

I1)
l1(
√

I2)
l2ei(k1α1+k2α2+k3q3+k4q4+k5q5), (51)

where k = (k1, . . . , k5) ∈ Z
5 . The r.h.s. of the above equation can be expressed in the

general and more compact form described in Eq. (17), by setting n1 = 3 , n2 = 2 , ω(0) =
ω = (ω3, ω4, ω5) ∈ R

3, that are the fundamental frequencies of the two outer planets
(described in Eq. (8)), while 	(0) ∈ R

2 can be easily determined by performing the so-
called diagonalization of the Hamiltonian part that is quadratic in the square root of the
actions I and not depending on the angles q (see, e.g., Giorgilli et al. 1989). In the equation
above, the parameters NL and NS define the truncation order of the expansions in Taylor
and Fourier series, respectively, in such a way to represent on the computer just a finite
number of terms that are not too many to handle with; in our computations we fix NL = 6
as maximal power degree in square root of the actions and we include Fourier terms up to a
maximal trigonometric degree of 8, puttingNS = 4 , K = 2 . We recall that setting K = 2 is
quite natural for Hamiltonian systems close to stable equilibria as it is for models describing
the secular planetary dynamics, see, e.g., Giorgilli et al. (2017). Let us also remark that a
simple reordering of the summands according to the total trigonometric degree |k| in the
angles (q,α) allows us to represent the second row of formula (51) as a sum of Hamiltonian
terms each of them is belonging to a functions class of type Pl,sK , which is unique for any
positive integer K if we ask for the minimality of the index s. These comments can be used
all together in order to formally verify that the new expansion of Hsec, 2+3/2 in (51) can be
finally reexpressed in the same form as H(0) in (17).
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Furthermore, in the case of our SQPR model of the secular dynamics of υ-And b, the
only term depending on the action variables p (that are the so-called dummy variables) is
ω(0) · p ; thus, none of the Hamiltonian term f (0,s)

l depends on p . This fact would allow to
introduce some simplification in the computational algorithm. For instance, the value of the
angular velocity vector ω(0) is not modified during the first normalization procedure (i.e., the
algorithmic construction of the elliptic tori) and it remains equal to its initial value, given
by the fundamental frequencies described in (8). Therefore, the expansion of the starting
Hamiltonian in the special case of our SQPR model can be rewritten as

H(0)( p, q, I,α) = E(0) + ω(0) · p + 	(0) · I +
NS∑

s=0

NL∑

l=3

f (0,s)
l (q, I,α)

+
NS∑

s=1

2∑

l=0

f (0,s)
l (q, I,α) ;

(52)

however, in our opinion, for what concerns the general description of the previous subsections
it has been worth to consider also an eventual dependence of f (0,s)

l on p in order to keep the
discussion of the constructive procedure as general as possible.

The first algorithm to be applied aims to construct the normal form corresponding to an
invariant elliptic torus. It starts from the HamiltonianHsec, 2+3/2 rewritten in the same form
asH(0) in (17) (more precisely as in (52)) and its computational procedure is fully detailed in
Sect. 4.1. Therefore, we performNS normalization steps of this first normalization algorithm.
This allows us to bring the Hamiltonian in the following (intermediate) normal form:

H(NS)( p, q, I,α) = E(NS) + ω(NS) · p + 	(NS) · I +
NS∑

s=0

NL∑

l=3

f (NS ,s)
l (q, I,α) ,

where f (NS ,s)
l ∈ Pl,sK ∀ l = 3, . . . , NL , s = 0 , . . . , NS and the angular velocity vector

related to the angles q is such that ω(NS) = ω(0) = (ω3, ω4, ω5), whose components are
given in (8).

It is now possible to apply the second algorithm aiming to construct a resonant normal
form where the dependence on the angles q = (q3, q4, q5) is completely removed. Such
a normalization starts from the Hamiltonian H(NS) obtained after the first normalization
procedure. Therefore, we perform NL − 2 normalization steps of the above algorithm, each
of them involvingNS substeps as described inSect. 4.2; this allowsus to bring theHamiltonian
in the following (final) normal form:

H2DO F ( p, I,α) = EB + ωB · p + 	B · I

+
NL∑

l=3

g(NL−2,0)
l (I) +

NS∑

s=1

NL∑

l=3

g(NL−2,s)
l (I,α) ,

(53)

where g(NL−2,s)
l ∈ Pl,sK ∀ l = 3, . . . , NL , s = 0 , . . . , NS and it still holds true that

ωB = ω(0) .
All the algebraic manipulations that are prescribed by the normal form algorithms have

been performedbyusing the symbolicmanipulatorMathematica as a programming frame-
work.
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We emphasize that H2DO F is an integrable Hamiltonian. In fact, due to the preservation
of the total angular momentum, discussed in Remark 3.1, the following invariance law20 is
satisfied:

∂ H2DO F

∂α1
+ ∂ H2DO F

∂α2
= 0; (54)

thus, from the Hamilton’s equations forH2DO F , we can immediately deduce that I1 + I2 is
a constant of motion. Therefore,H2DO F is integrable because of the Liouville theorem (see,
e.g., Giorgilli 2022), since it admits a complete system of constants of motion in involution,
that are the dummy variables p (which could be disregarded in (53), reducing the model to
2 DOF), I1 + I2 and the Hamiltonian itself.

In view of the numerical explorations of the dynamical evolution of our new model
described by the integrable Hamiltonian H2DO F ( p, I,α), it is convenient to introduce the
canonical transformations related to the so-called semi-analytic method of integration for the
equations of motion (see, e.g., Giorgilli et al. 2017). In order to fix the ideas, let us focus
on the second algorithm, designed to construct a resonant normal form. This normalization
procedure can be summarized by the transformation that is obtained by iteratively applying
all the Lie series to the canonical variables. This is done as follows:

Ii = exp

(
L

χ
(NS ;NL −2)
B

)
. . . exp

(
L

χ
(2;NL −2)
B

)
exp

(
L

χ
(1;NL −2)
B

)
. . . . . .

. . . exp

(
L

χ
(NS ; 1)
B

)
. . . exp

(
L

χ
(2; 1)
B

)
exp

(
L

χ
(1; 1)
B

)
Ii

∣∣∣∣
I= Ĩ
α=α̃

,

αi = exp

(
L

χ
(NS ;NL −2)
B

)
. . . exp

(
L

χ
(2;NL −2)
B

)
exp

(
L

χ
(1;NL −2)
B

)
. . . . . .

. . . exp

(
L

χ
(NS ; 1)
B

)
. . . exp

(
L

χ
(2; 1)
B

)
exp

(
L

χ
(1; 1)
B

)
αi

∣∣∣∣
I= Ĩ
α=α̃

,

(55)

for i = 1, 2 . We introduce the symbol CB to denote the change of coordinates21 defined by
the above expressions, i.e., (I,α) = CB(q, Ĩ, α̃) . We can proceed in the same way for what
concerns the algorithm constructing the normal form corresponding to an invariant elliptic
torus. In fact, we first introduce the application of all the Lie series to the canonical variables

20 Equation (54) can be easily checked, by explicitly performing the derivatives on the expansions (53) which
are computed usingMathematicaHowever, it isworth to sketch also amore conceptual justification. Indeed,
it would not be difficult to verify that all the Lie series introduced in Sects. 4.1–4.2 preserve the invariance law
described in Remark 3.1. By comparing the definitions of the canonical coordinates in (50) and (2), one can
immediately realize that the angles −α1 and −α2 are nothing but the longitudes of the pericenter and of the
node, respectively, of υ-And b. Therefore, taking into account thatH2DO F does not depend on the angles q,
the invariance law discussed in Remark 3.1 can be rewritten in the form (54).
21 Since none of the generating functions χ

( j; r)
B depends on p , the way that these dummy variables are

modified by the application of the Lie series does not really matter, because they do not enter in Hamilton’s
equations of motion (15), under the Hamiltonian Hsec, 2+3/2 . Since, however, the generating functions do
depend on q (but not on their conjugate actions p, as we have remarked just above) in the arguments of CB
we have included also the angles q that are not affected by any modification due to the application of the Lie
series.
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in such a way to write, ∀ i = 1, 2 ,

Ii = exp

(
L

χ
(NS )

2

)
exp

(
L

χ
(NS )

1

)
exp

(
L

χ
(NS )

0

)
. . .

. . . exp
(

L
χ

(1)
2

)
exp

(
L

χ
(1)
1

)
exp

(
L

χ
(1)
0

)
Ii

∣∣∣∣
I= Î
α=α̂

,

αi = exp

(
L

χ
(NS )

2

)
exp

(
L

χ
(NS )

1

)
exp

(
L

χ
(NS )

0

)
. . .

. . . exp
(

L
χ

(1)
2

)
exp

(
L

χ
(1)
1

)
exp

(
L

χ
(1)
0

)
αi

∣∣∣∣
I= Î
α=α̂

;

(56)

finally, we use the symbol C to summarize the whole change of coordinates that is defined
by the whole expression above, i.e., (I,α) = C (q, Î, α̂) . Let us now introduce the function
F : T3 × R

2≥0 × T
2 → R

2≥0 × T
2, which is defined so that

F (q, Ĩ, α̃) = C
(
q,CB(q, Ĩ, α̃)

)
, (57)

where we have omitted to put the ˜ symbol on top of q in order to stress that the angles
q are not affected by the change of coordinates. Moreover, let also introduce the symbol
A to denote the usual canonical transformation defining the action-angle variables for the
harmonic oscillator, i.e., by formula (50), in our case this means that

A(I,α) = (√
2I1 cos(α1),

√
2I1 sin(α1),

√
2I2 cos(α2),

√
2I2 sin(α2)

)
. (58)

By applying the Exchange Theorem (see Gröbner 1967; Giorgilli 2003), the solutions of
the equations of motions related to H2DO F can be mapped to those for Hsec, 2+3/2 . Indeed,
assume that t �→ (

p̃(t), q̃(t), Ĩ(t), α̃(t)
)
is an orbit corresponding to the integrable flow

induced by H2DO F ; in particular, in our model we have that q̃(t) = ωBt = ωt , where the
components of the angular velocity vector ω are given in Eq. (8). Therefore, the orbit

t �→ (
ωt , A(F (ωt, Ĩ(t), α̃(t))

))
(59)

is an approximate22 solution of the Hamilton’s Eq. (15).
For our purposes, it is also useful to construct the inverse of the functionF , which maps

from the original canonical coordinates to the ones referring to the resonant normal form.
Therefore, it is convenient to replace all the compositions of Lie series appearing in the r.h.s.

22 There are at least two substantial reasons for which this motion law, produced by a (so-called) semi-analytic
integration scheme, is not an exact solution of Eq. (15). Let us recall that Lie series define near-to-the-identity
canonical transformations that are well defined on suitable restrictions of the phase space. However, we are
always working with finite truncated series; therefore, the corresponding changes of variables cannot preserve
exactly the solutions because infinite tails of summands are neglected. Moreover, in the resonant normal form
H2DO F described in (53) we do not include the remainder terms; let us recall that they become dominant
if the Birkhoff algorithm is iterated infinitely many times, making the series expansion of the normal form
to be divergent. Therefore, the semi-analytic solutions are prevented to be exact also because of this second
source of truncations acting on the series expansion of the Hamiltonians (instead of the Lie series defining the
canonical transformations). As a final remark, let us also recall that, in order to be canonical, the change of
coordinates should include also the dummy actions p, in which we are not interested at all because they do
not exert any role in the equations of motion (15).
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of (56) with the following expressions, ∀ i = 1, 2 :

Îi = exp
(

L−χ
(1)
0

)
exp

(
L−χ

(1)
1

)
exp

(
L−χ

(1)
2

)
. . .

. . . exp

(
L−χ

(NS )

0

)
exp

(
L−χ

(NS )

1

)
exp

(
L−χ

(NS )

2

)
Ii ,

α̂i = exp
(

L−χ
(1)
0

)
exp

(
L−χ

(1)
1

)
exp

(
L−χ

(1)
2

)
. . .

. . . exp

(
L−χ

(NS )

0

)
exp

(
L−χ

(NS )

1

)
exp

(
L−χ

(NS )

2

)
αi ;

(60)

gathering all the corresponding changes of coordinates allows us to define23 C−1(q, I,α).
Proceeding in an analogous way, we can introduce the inverse function of CB ; in more detail,
we can start from formula (55), by reversing the order of all the Lie series and by changing
the sign to all the generating functions, then we can define C−1

B (q, I,α). Therefore, we can
introduce also

F−1(q, I,α) = C−1
B

(
q,C−1(q, I,α)

)
. (61)

We are now ready to exploit the (cheap) numerical solutions of the 2 DOF integrable
Hamiltonian, which is described in (53), in order to retrieve information about the sec-
ular dynamics of υ-And b through our SQPR model. This can be done thanks to the
knowledge of the approximate solution (59). The initial conditions are selected in the
same way as in Sect. 3.1.2: we consider the initial orbital elements reported in Table 7
and the minimal possible value of the mass of υ-And b , i.e., m1 = 0.674 MJ . These
data are completed with the values of (i1(0) ,�1(0)) ranging in the 20 × 60 regular grid
that covers Ii × I� = [6.865◦, 34◦] × [0◦, 360◦]; moreover, all these initial values of
the orbital elements are translated in the Laplace reference frame, which refers only to
the two outermost exoplanets. Hence, we can compute a set of 21 × 60 initial condi-
tions of type

(
I(0),α(0)

) = A−1
(
ξ1(0), η1(0), P1(0), Q1(0)

)
, by using formula (2) with

j = 1 , (50) and the definition (58). Finally, we can translate the initial conditions to initial
values of the canonical coordinates found after the resonant normal form, by computing(
Ĩ(0), α̃(0)

) = F−1
(
0, I(0),α(0)

)
.

As shown below, an important information is obtained by a criterion allowing to iden-
tify those domains of initial conditions in which the series are either divergent or slowly
converging. We introduce such a criterion to preselect initial conditions that are admissi-
ble. From a mathematical point of view, the identity (I(0),α(0)) = (IO(0),αO(0)) :=
F
(
0,F−1

(
0, I(0),α(0)

))
holds in a domain where the normalization procedure is con-

vergent, provided that no truncations are applied to the series F and F−1 and that the
computation of the series is not affected by any round-off errors. Due to the errors and trun-
cations introduced in the computation, however, in general we obtain that (I(0),α(0)) �=
(IO (0),αO(0)) . In the domain where the series expansions are rapidly converging the dif-
ference (I(0),α(0))− (IO(0),αO (0)) is small. When, instead, we obtain a large difference,

23 Of course, since also C−1 : T3 × R
2≥0 × T

2 → R
2≥0 × T

2 (i.e., C and C−1 share the same domains

and codomains, which are different between them), then C−1 cannot be considered as the inverse function in
a strict sense. However, if we extend trivially both these functions, in such a way to introduce Ĉ (q, I, α) =(
q,C (q, I,α)

)
and Ĉ−1(q, I,α) = (

q,C−1(q, I, α)
)
, then Ĉ−1 would really be the inverse function of Ĉ

(where elementary properties of the Lie series described in Chap. 4 of Giorgilli (2003) are also used and the
small effects due to the truncations are neglected). Therefore, it is by a harmless abuse of notation that we are
adopting the symbol C−1. The same abuse will be made for what concerns the symbols C−1

B andF−1.
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Fig. 7 Graphical representation
of the definitions about the initial
conditions

this is an indicator that we are outside the domain of convergence of the series. The situation
is represented graphically in Fig. 7.

In view of the above, we define the following preselection criterion of admissible initial
conditions. For any initial condition (I(0),α(0)), we compute the quantities

r1 =
√

I1(0) −
√

I O
1 (0)

√
I1(0)

, r2 =
√

I2(0) −
√

I O
2 (0)

√
I2(0)

. (62)

The use of the quantities
√

I1 and
√

I2 is motivated by the fact that they are of the same order
of magnitude as the eccentricity and the inclination of υ-And b , respectively. Moreover, it
is useful to define also the following ratios

R1(t) =
√(

ξ̃1(t)
)2 + (

η̃1(t)
)2

√(
ξ̃1(0)

)2 + (
η̃1(0)

)2 , R2(t) =
√(

P̃1(t)
)2 + (

Q̃1(t)
)2

√(
P̃1(0)

)2 + (
Q̃1(0)

)2 , (63)

where

t �→ (
ωt, ξ̃1(t), η̃1(t), P̃1(t), Q̃1(t)

) := (
ωt, A(F (ωt, Ĩ(t), α̃(t))

))

is the approximate solution of Hamilton’s equations (15), as produced by the semi-analytic
integration scheme summarized in formula (59). Comparing formula (63) with the definition
of the Poincaré canonical variables in (2), it is easy to realize thatR1 andR2 are functions of
the time that describe the behavior of the orbital excursions with respect to the eccentricity
and the inclination ofυ-Andb , respectively.We then investigate the behavior of the following
function:

ẽ1(t) =
√
2 Ĩ1(t)

�1
− Ĩ 21 (t)

�2
1

. (64)

Note that ẽ1 would be equal to the eccentricity of υ-And b if Ĩ1 was replaced by
(
ξ21 +η21

)
/2,

with (ξ1, η1) defined in (2). However, the new action Ĩ1 is conjugated to
(
ξ̃21 + η̃21

)
/2 which

is only nearly equal to
(
ξ21 + η21

)
/2 , since the composition of the transformations C and

CB is near-to-identity. Therefore, we can consider ẽ1 as an approximate evaluation of the
eccentricity under the resonant normal form model.

For each pair
(
i1(0),�1(0)

)
of the 21 × 60 points defining the grid which covers Ii ×

I� = [6.865◦, 34◦] × [0◦, 360◦] we determine the corresponding initial conditions of type
(I(0),α(0)), as explained above, and we proceed as follows:

• if max{r1, r2} > 1, then the corresponding initial condition is considered as “non-
admissible,” i.e., outside the domain of applicability of the series. Then, we skip the step
below and pass directly to consider the next initial conditions of the grid;
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Fig. 8 Color-grid plots of the maximal values reached by the ratioR1 (on the left) andR2 (on the right); see
the text for more details

Fig. 9 Color-grid plots of the
maximum of the function ẽ1(t),
which is defined in (64)

• If the initial conditions is admissible, we numerically24 solve the equations of motion for
the integrable Hamiltonian model with 2 DOF described in (53), using a RK4 method
and starting from

(
0, Ĩ(0), α̃(0)

)
; during such a numerical integration, we compute the

maximal values attained by the three previously defined quantitative indicators, that are

R1MAX = max
t

{R1(t)}, R2MAX = max
t

{R2(t)}, ẽ1MAX = max
t

{ẽ1(t)}.
The results about the maxima of the functions defined in (63)–(64) are reported in Figs. 8
and 9. The white central regions of those pictures correspond to those pairs

(
i1(0),�1(0)

)

for which we obtain failure of the preliminary test, i.e., max{r1, r2} > 1. We immediately
recognize that the missing part of the plots (where the determination of the initial conditions
is considered so unreliable that the corresponding numerical integrations are not performed

24 In principle, the Liouville theorem ensures us that the Hamilton equations for H2DO F can be solved
analytically by the quadratures method (see, e.g., Giorgilli 2022), but, from a practical point of view, numerical
integrations are much easier to implement.
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at all) nearly coincides with the central region of Fig. 2a, where the orbital eccentricity of υ-
And b reaches critical values. We conclude that the stability domain in the space of the initial
values of i1(0) and �1(0) (which are unknown observational data) can be reconstructed in
a reliable way through the application of the above criterion, which only involves the series
transformations, as well as through the numerical solutions of our integrable secular model
with 2 DOF. We emphasize that this allows to reduce significantly the computational cost
with respect to the long-term symplectic integrations of the complete four-body problem,
which is a 9 DOF Hamiltonian system.

Comparing the regions of the stability domain at the border near the (white) central ones,
we see that all three numerical indicators plotted in Figs. 8 and 9 increase their valueswhen the
unstable zone is approached. This is in agreement with the expectations and the comparison
with Fig. 2a. On the other hand, the 2 DOF secular model is unable to capture the region
of instability internal to the stable one, highlighted by two green stripes starting from the
bottom of Fig. 2a in correspondence with �1(0) = 0◦ = 360◦. The two curved stripes look
rather symmetric, and they join each other around the point

(
i1(0), �1(0)

) � (
30◦, 0◦) =(

30◦, 360◦). Since the dependence of the Hamiltonian on the angles q (which describes the
dynamics of the outer exoplanets) is removed from the 2DOF model, it seems reasonable
that some of the resonances are not present in the normal form generated by the algorithm à
la Birkhoff, although they play a remarkable role in the dynamics of more complex models.

6 Secular orbital evolution of �-And b taking also into account
relativistic effects

In this section, we study the dynamics of υ-And b in the framework of a secular quasi-
periodic restricted Hamiltonian model where also corrections due to general relativity are
taken into account. Since we focus on the orbital dynamics of the innermost planet of the
υ-Andromedæ system and it is very close to a star that is about 30% more massive than the
Sun (let us recall that the value of the semi-major axis of υ-And b is reported in Table 7, i.e.,
a1 = 0.0594 AU), it is natural to expect that the corrections due to general relativity can play
a relevant role for the system under consideration. Similarly as in the previous sections, we
study these effects in the framework of a 2 DOF secular model. We start by considering the
following Hamiltonian:

H = H4B P + HG R ,

where H4B P defines the four-body problem (see (9)) and HG R describes the general (post-
Newtonian) relativistic corrections to the Newtonianmechanics. FollowingMigaszewski and
Goździewski (2009), the secular quasi-periodic restricted Hamiltonian which includes cor-
rections due to the general relativity (hereafter, GR) is obtained by removing the dependence
of the Hamiltonian on the fast angles. Therefore, we introduce

H(G R)
sec =

∫

T3

H4B P

8π3 dλ1dλ2dλ3 +
∫

T

HG R

2π
dM1 := H(N G)

sec + 〈HG R〉M1 , (65)

where the expansion of the mean of the 4B P Hamiltonian H(N G)
sec (recall definition (10)) is

explicitly written in Eq. (11), while the average of the GR contribution with respect to the
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mean anomaly of υ-And b is given by

〈HG R〉M1 = − 3G2 m2
0 m1

a2
1c2

√
1 − e21

+ 15G2 m2
0 m1

8a2
1c2

− G2 m0 m2
1

8a2
1c2

, (66)

c being the velocity of light in vacuum. In the above expression of 〈HG R〉M1 , the summand
where the eccentricity of υ-And b (i.e., e1) occurs in the denominator is the only to be
untrivial, in the sense that the other two give additional constant contribution to the secular
Hamiltonian and, then, they can be disregarded. By proceeding in a similar way to what has
been already done for the classical expansions of the initial Hamiltonian (1), it is possible to
express 〈HG R〉M1 in the Poincaré variables (ξ1, η1), described in Eq. (2).

Thus, keeping in mind the procedure explained in Sect. 3, one easily realizes that the
secular quasi-periodic restricted model of the dynamics of υ-And b which includes rela-
tivistic corrections (hereafter, SQPR-GR) can be described by the following 2 + 3/2 DOF
Hamiltonian:

H(G R)

sec, 2+ 3
2
( p, q, ξ1, η1, P1, Q1) = ω3 p3 + ω4 p4 + ω5 p5

+ H(N G)
sec (q3, q4, q5, ξ1, η1, P1, Q1) + 〈HG R〉M1 (ξ1, η1) ,

(67)

where the angular velocity vectorω = (ω3, ω4, ω5 ) is given in (8) andH(N G)
sec can be replaced

byH1−2
sec +H1−3

sec appearing in formula (13). Finally, in the frameworkof this SQPR-GRmodel,
the equations for the orbital motion of the innermost planet can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇3 = ∂H(G R)

sec,2+ 3
2
/∂ p3 = ω3

q̇4 = ∂H(G R)

sec,2+ 3
2
/∂ p4 = ω4

q̇5 = ∂H(G R)

sec,2+ 3
2
/∂ p5 = ω5

ξ̇1 = −∂
(
H(N G)

sec (q3, q4, q5, ξ1, η1, P1, Q1) + 〈HG R〉M1 (ξ1, η1)
)

/∂η1

η̇1 = ∂
(
H(N G)

sec (q3, q4, q5, ξ1, η1, P1, Q1) + 〈HG R〉M1 (ξ1, η1)
)

/∂ξ1

Ṗ1 = −∂H(N G)
sec (q3, q4, q5, ξ1, η1, P1, Q1)/∂ Q1

Q̇1 = ∂H(N G)
sec (q3, q4, q5, ξ1, η1, P1, Q1)/∂ P1

. (68)

6.1 Numerical integration of the SQPR-GRmodel

Similarly as in Sect. 3.1.2, we numerically integrate the equations of motion for the sec-
ular quasi-periodic restricted Hamiltonian with general relativistic corrections, defined in
formula (68). As initial values of the orbital parameters a1(0), e1(0), M1(0) and ω1(0) we
take those reported in Table 7; moreover, we set m1 = 0.674 as value for the mass of
υ-And b and (i1(0) ,�1(0)) ranging in the 20 × 60 regular grid that covers Ii × I� =
[6.865◦, 34◦] × [0◦, 360◦]. Hence, it is possible to compute the corresponding initial val-
ues of the orbital elements in the Laplace reference frame (which is determined taking into
account υ-And c and υ-And d only) and to perform 21× 60 numerical integrations starting
from all these initial data. Once again, for each numerical integration, we are interested in
determining the maximal values reached by the eccentricity of υ-And b and by the maximal
mutual inclination between υ-And b and υ-And c . The results are reported in the color-grid
plots of Fig. 10.
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Fig. 10 Color-grid plots of the maximal value reached by the eccentricity of υ-And b (on the left) and by the
mutual inclination between υ-And b and υ-And c (on the right). The maxima are computed during the RK4
numerical integrations (each of them covering a timespan of 105 yr) of the SQPR-GR equations ofmotion (68),
which cover a timespan of 105 yr

Fig. 11 Behavior of the fundamental angular velocity ν as obtained by applying the frequency map analysis
method to the signal ξ1(t) + iη1(t) , computed through the RK4 numerical integration of the SQPR-GR
model (68), covering a timespan of 1.31072·105 yr.We take, as initial conditions, (i1(0), �1(0)) ∈ {6.865◦}×
I� for the left panel and (i1(0), �1(0)) ∈ {10.9353◦} × I� for the right one

By comparing Fig. 10a with Fig. 5a, one can immediately realize that the regions colored
in blue are much wider in the former than in the latter one. Indeed, the darker regions refer to
initial conditions which generate motions with maximal values of the eccentricity of υ-And b
that are relatively low,while the zones colored in red or yellow correspond to such large values
of the eccentricity implying that those orbits have to be considered unstable. Therefore, our
numerical explorations highlight that the effects due to general relativity play a stabilizing
role on the orbital dynamics of the innermost planet. This conclusion is in agreement with
was already remarked about the past evolution of our Solar System, in particular for what
concerns the orbital eccentricity of Mercury (see Laskar and Gastineau 2009).

Moreover, as already done in Sect. 3.1.2, in order to further explore the stable and
chaotic regions of Fig. 10a, we apply the frequency map analysis method to the signal
ξ1(t)+ iη1(t) as produced by the numerical integration of the system (68), i.e., in the SQPR-
GR approximation. We perform the numerical integrations as described at the beginning of
the present Section, taking into account only a few values in Ii for the initial inclinations,
i.e., i1(0) = 6.865◦, 8.22175◦, 9.5785◦, 10.9353◦ and�1(0) ∈ I� . In Fig. 11 we report the
behavior of the angular velocity ν corresponding to the first component of the approximation
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of ξ1(t) + iη1(t), as obtained by applying the FA computational algorithm; we recall that
this quantity is related to the precession rate of �1 . As initial value for the inclination i1(0)
we fix 6.865◦ for Fig. 11a and 10.9353◦ for Fig. 11b. Also here, we do not report the cases
(i1(0),�1(0)) ∈ {8.22175◦, 9.5785◦} × I� , since the behavior of these plots is similar to
the ones in Fig. 11.

The situation is well described by Fig. 11a and analogous considerations hold for Fig. 11b
apart a few main differences which will be highlighted in the following discussion. When
the values of �1(0) are ranging in [0,∼ 120◦] and [∼ 260◦, 360◦] we can observe a regular
behavior of the angular velocity ν which is also nearly monotone, with the only exception
around a local minimum. According to the frequency map analysis method, such a regular
regime is due to the presence of many invariant tori which fill the stability region located at
the two lateral sides of the plot 10a. In the case of Fig. 11a, this also applies when �1(0) is
ranging in [∼ 150◦,∼ 220◦], which corresponds to the stable blue internal area of Fig. 10a.
On the other hand, in the case of Fig. 11b, for the same range of initial values of the node
longitude of υ-And b, the behavior is not so regular; this is in agreement with the fact that in
correspondence with i1(0) ∼ 11◦ the plot of the maximal values of e1 in the central region
highlights the occurrence of chaotical phenomena. Moreover, for what concerns values of
�1(0) in [∼ 120◦, ∼ 150◦] and [∼ 220◦, ∼ 260◦] (corresponding to the green stripes of
Fig. 10a), Fig. 11a shows a behavior typical of the crossing of a resonance in the chaotic region
surrounding a separatrix. The value of the angular velocity for which this phenomenon takes
place is, again, related to ω4 � −1.04 · 10−3 (as it can be easily appreciated looking to the
small plateau appearing in Fig. 11b).

Comparing Fig. 11 with Fig. 6, the enlargement of the stable region is evident. Moreover,
we can also see howmuch this phenomenon is influenced by themodification of the pericenter
precession rate of the inner planet due to relativistic effects. Indeed, looking at the values
reported on the y-axis of Figs. 11 and 6, one can appreciate that the fundamental angular
velocity, in the case of the SQPR model, takes values remarkably closer to zero with respect
to those assumed in the case of the SQPR-GR model.

6.2 Application of the normalization algorithms to the secular quasi-periodic
restrictedmodel of the dynamics of �-And b with relativistic corrections

Starting from Hamiltonian (67), we can reapply the normalization algorithms described in
Sects. 4.1 and 4.2. All this computational procedure ends up with the introduction of a new
2 DOF Hamiltonian25 model which can be written in the following form (analogous to the
one reported in formula (53)):

H(G R)
2DO F (I,α) = EB;G R + 	B;G R · I +

NS∑

s=0

NL∑

l=3

h(NL−2,s)
l (I,α) , (69)

where EB;G R ∈ R, 	B;G R ∈ R
2 and h(NL−2,s)

l ∈ Pl,2 s ∀ l = 3, . . . , NL , s =
0 , . . . , NS . We emphasize that also H(G R)

2DO F is integrable because of the same rea-

sons already discussed in Sect. 5; indeed, after having checked that ∂H(G R)
2DO F/∂α1 +

∂H(G R)
2DO F/∂α2 = 0 , we can apply the Liouville theorem, because there are two independent

constants of motion, i.e., I1 + I2 and H(G R)
2DO F itself.

25 In the expansion (69), the term that is linear in the dummy actions (i.e., ωB · p) is removed, because it is
irrelevant for the present discussion.
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Fig. 12 Color-grid plots of the maximal values reached by the ratio R1(t) (on the left) and the function ẽ(t)
(on the right), which are defined in (63)–(64). These laws of motion are computed along the flow induced by

the 2 DOF Hamiltonian H(G R)
2DO F which takes into account also GR corrections and is defined in (69), in the

particular case with NS = 5 andNL = 6

Fig. 13 Same as in Fig. 12, in the case with NS = 6 andNL = 5

Moreover, also for this new model we can reproduce the same kind of numerical explo-
ration described in Sect. 5. In particular,we can compute the values of the numerical indicators
R1MAX ,R2MAX and ẽ1MAX corresponding to each pair

(
i1(0),�1(0)

)
of the 21×60 points

defining the regular grid which covers Ii× I� = [6.865◦, 34◦]×[0◦, 360◦]. In the following,
we analyze the color-grid plots for a few different values of the parameter ruling the trunca-
tion in the trigonometric degree, namely NS , and in the square root of the action, i.e., NL .
The color-grid plots for the maximal value reached byR1 and ẽ1 are reported in Figs. 12, 13
and 14.

Let us recall that R2MAX is an evaluation of the maximal excursion of the inclination of
υ-And b. For the sake of brevity, its plots are omitted and they are not included in Figs. 12, 13
and 14, because in our numerical explorations the ranges of values experienced by R2MAX

are so narrow that their analysis does not look so significant. Therefore, it is better to focus
on the plots ofR1MAX and ẽ1MAX ; let us recall that both of them refer to the eccentricity of
υ-And b. By comparing Figs. 12, 13 and 14, one can appreciate a well-known phenomenon
concerning the constructive algorithms à laBirkhoff: the greater the number of normalization

123



Secular orbital dynamics of the innermost exoplanet of the… Page 39 of 41    28 

Fig. 14 Same as in Fig. 12, in the case with NS = 6 andNL = 4

steps (i.e., NL − 2), the smaller the domain of applicability (see, e.g., Giorgilli 2003 for the
discussion about the determination of the optimal step).

By comparing Figs. 13 and 14 also with Fig. 10a, we observe that in the cases withNL =
4, 5 our computational procedure is able to reconstruct with a good accuracy the U -shaped
border of the stability domain. Note that the horizontal strip at the bottom of the plots26

corresponds to orbital motions which look stable, since the eccentricity of υ-And b does not
reach large values (with the eventual exception of the narrow green areas that in Fig. 10a are
expected to correspond to resonant regions). This highlights a main difference with the non
relativistic model discussed in Sect. 5, because in that case there is an interval of values of
�1(0) centered about 180◦ for which none of the initial inclinations i1(0) ∈ [6.865◦, 34◦]
corresponds to a stable orbital configuration (see Fig. 5a). The reliability of our simplified
2 DOF Hamiltonian model (which is defined in formula (69) and takes into account also GR
corrections) is enforced also by the fact that it is able to capture also this phenomenon.
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