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Abstract

We present an analytical formulation and implementation of Raman and Raman

Optical Activity (ROA) spectra within a three-layer fully polarizable Quantum Me-

chanical (QM)/ Molecular Mechanics (MM)/Polarizable Continuum Model (PCM) ap-

proach. Polarization effects in the MM layer are modeled by exploiting the Fluctuating

Charges (FQ) method, in which MM solvent atoms are endowed with electric charges

that can be mutually polarized by the solute QM density. Because of its fully po-

larizable atomistic description, QM/FQ/PCM is able to account for specific solvent

effects like those due to hydrogen bonds, providing a physical picture for protic sol-

vents such as water. Applications to aqueous (R)-methyloxirane and (S)-methyllactate

are presented, and results are compared with available experimental data.
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1 Introduction

Multiscale modeling, based both on implicit, explicit, or mixed explicit-implicit approaches

has demonstrated to be a powerful methodology to account for environmental effects on the

calculation of many spectral signals.1–8 In this respect, the most successful approaches fall

within the class of the so-called ‘focused models”, in which the attention is focused on the

properties of a target molecule (the solute in case of solutions), which are modified, but not

determined, by the presence of the surrounding environment (the solvent). Focused models

rely on a partition of the molecular system, in which the various regions are treated at a

different level of accuracy. In general, the target is accurately modeled, by resorting to

Quantum Mechanical (QM) methods, whereas the environment is treated at a lower level,

generally by resorting to classical approaches.

The goal of focused models is to accurately reproduce both the properties of the target and

its interactions with the environment, while the properties of the latter are of secondary

importance and may not computed. Thanks to this paradigm, such models do not signifi-

cantly increase the cost of a QM calculation with respect to the isolated system, which is a

feature that has contributed to their popularity. Among the focused models that have been

proposed to account for environmental effects on spectroscopic and response properties, one

of the most used is the Polarizable Continuum Model (PCM).1 There are, however, cases

when the electrostatic interaction described by a continuum is not enough, such as cases

where hydrogen bonds can form between solute and solvent.9

One way to address this problem is to restore the atomistic detail in the description of the

solvent, which can be modeled classically by means of molecular mechanics (MM),2,10–15 and

QM/MM methods have in fact been used in the past to model Raman and ROA spectra

of molecules in solution.3,5,16–18 Contrary to what happens in PCM, however, in standard

MM force-fields there is no mutual polarization between the solute and the solvent since the

parameters defining the latter are fixed, therefore the solvation interaction does not directly

affect the spectroscopic response. Mutual polarization, however, can be restored by employ-
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ing a polarizable force-field, based on distributed multipoles,19–21 induced dipoles,22–24 Drude

oscillators25 or Fluctuating Charges (FQ),26,27 which is exploited in this study. This model,

and its three-layer extension QM/FQ/PCM where a polarizable continuum surrounds the

system to model bulk solvent properties, have been successfully employed for the calculation

of a variety of molecular properties for systems in aqueous solution,8 including those related

to the study of chiral systems, such as Electronic Circular Dichroism,28 Vibrational Circular

Dichroism,29 and Optical Rotation.9,30,31

Another spectroscopic technique which in the last decades has demonstrated its power for

the investigation of chiral compounds is Raman optical activity (ROA), which was first

genuinely measured by Barron and Buckingham.32–34 ROA can be defined as the difference

in intensity of the Raman scattered radiation for right and left circularly polarized light,

which can be positive or negative depending on the absolute configuration of the sample. As

a mixed electronic-vibrational techniques, a ROA spectrum carries structural information

about a sample, much like VCD, however it is also blessed by the same advantages possessed

by Raman spectroscopy over Infrared (IR) absorption spectroscopy, such as the possibility

of more easily recording spectra of analytes in aqueous solution.

A problem shared by all such techniques, when they are used to assign the absolute config-

uration of a sample, is that the exact correspondence between a positive or negative spec-

troscopic response to each enantiomer is not known, therefore the assignment must rely on

other data, such as the result of quantum chemical calculations, which can provide an unam-

biguous way to interpret the experimental measurements. This is the reason why much effort

has been devoted over the years to the development of accurate and efficient computational

techniques that provide calculated results that are directly comparable to experiment.35

The first numerical ab initio ROA calculations were reported in 1990 by Polavarapu36 using

the static-limit approximation37 and magnetic field independent basis functions. Further de-

velopments of the theoretical approach include the extension to frequency-dependent Density

Functional Theory (DFT) response,38,39 the development of fully analytical third derivative
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methods of the Hartree-Fock wave function,40,41 the use of Gauge Including Atomic Or-

bitals42,43 (GIAO) which ensure the results are independent of the gauge origin.44–47

All such developments were instrumental in making the calculation of ROA spectra available

to both expert theoreticians and experimentalists however, though the ability to perform a

simulation based on some choice of electronic structure theory model or DFT functional

is necessary, it is often not enough to obtain results that can be directly compared to ex-

periment. A major issue that has to be addressed is the fact that most experiments are

performed on samples in the condensed phase, particularly on neat liquids or solutions.

In fact, the presence of a solvent may drastically affect the sign of the measured prop-

erty,9,48–50 therefore it is crucial to employ models that take these effects into account. To

address these issues, we present for the first time a fully analytical implementation of Raman

and ROA intensities calculation for molecules both in the gas phase and in solution by ex-

ploiting the polarizable QM/FQ/PCM model, based on Time-Dependent Density Functional

Theory (TDDFT).

From the theoretical point of view, ROA can be described as a third-order property, in which

three types of perturbations must be considered at the same time, i.e. electric, magnetic, vi-

brational.36,51 While the ROA tensors are usually expressed in a sum-over-state fashion,52 in

the far-from-resonance (FFR) regime, i.e. when the frequency laser radiation that stimulate

the ROA response is far removed from any electronic absorption band of the sample, the

ROA intensity can then be described in terms of geometrical derivatives of the system’s po-

larizability tensors. Therefore, in order to extend the QM/FQ/PCM model to the analytical

calculation of all the necessary third order properties defining such spectra, the FQ and PCM

interaction terms in the Hamiltonian propagate in the derivation of response properties of

arbitrary order, resulting in the presence of additional terms in the response functions. The

formulation which is here presented lays its foundations on the focused model paradigm, i.e.

only the solute vibrations are considered, thus no geometrical derivatives of the energy with

respect to the position of the MM atoms need to be evaluated.
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The paper is organized as follows: after a brief section recalling the basics of the QM/FQ/PCM

approach, the analytical formulation of the polarizability tensors’ derivatives occurring in

ROA is presented for isolated molecules. Next, all the explicit QM/FQ/PCM contributions

are derived. They are followed by the presentation of test applications on aqueous solutions

of (R)-methyloxirane and (S)-methyllactate , for which the computed spectra are also com-

pared with available experimental data. Finally, the main points are summarized and some

future perspectives are proposed.

2 Theory

2.1 QM/FQ/PCM model

In the FQ model, each MM atom is endowed with a charge that is not fixed, but varies

because it interacts with the electrostatic potential generated by the solute. The fluctuating

charges of the MM layer can thus respond to both the electrostatic potential generated by

the solute and the solvent reaction field, while the solute feels the presence of the FQs and

the solvent through specific terms that appear in the QM Hamiltonian. The solvent reaction

field is consistent with the electrostatic potential generated by both the solute’s electronic

density and the fluctuating charges. For spectroscopic properties, such interaction terms also

propagate to the solute’s response equations.53–55 The three-layer QM/FQ/PCM approach

falls within the family of focused models, where the properties of the classical layers are not

considered crucial, and the modeling of the solvent, from the physics behind mathematical

treatment to the parametrization, are developed in a way that best reproduces its effect

upon the solute. Thus, when calculating a spectrum, the response arises from the quantum-

mechanical solute alone, though the solvent can still significantly affect it through specific

interaction terms that appear in the Hamiltonian.

In figure 1 the three layers are schematically presented. The solute, described using a QM

method, is at the center of a spherical region containing a number of solvent molecules,
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Figure 1. Schematic representation of the QM/FQ/PCM model.

which are described classically and whose atoms carry fluctuating charges that can respond

to the solute’s electrostatic potential. The size of this region, and thus the number of explicit

solvent molecules to be included, is chosen to make sure all specific solute-solvent interactions

are taken into account, and their positions are taken from a classical molecular dynamics

(MD) simulation which samples the solute-solvent configuration space. At the boundary of

the FQ region we find the surface of a polarizable continuum which is used to model bulk

solvent effects and to introduce proper non-periodic boundary conditions. Notice that in

principle a shape other than spherical (e.g. an ellipsoid) could be chosen as boundary for

prolate molecular systems.

The FQ approach29,56 is especially suitable for the evaluation of spectroscopic properties in

a polarizable QM/MM framework because, as shown below, it yields an energy expression

that is easily differentiable allowing the calculation of response properties of high order. The

model is based on a set of parameters representing atomic hardnesses and electronegativities,

whose physical origin can be rigorously defined within the so called ”conceptual DFT”.57,58

Through these parameters, atomic charges can be computed depending on the solute elec-

trostatic potential.26,27 More in detail, the FQ approach describes the polarization effects by

endowing each MM atom with a fluctuating charge, whose value depends on the electrostatic

potential26,27 according to the electronegativity equalization principle57,59 which states that,
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at equilibrium, the instantaneous electronegativity χ of each atom has the same value.57,59

The FQs (q) can be defined as those minimizing the following functional56

F (q, λ) =
∑
α,i

qαiχαi +
1

2

∑
α,i

∑
β,j

qαiJαi,βjqβj +
∑
α

λα(
∑
i

qαi −Qα)

=q†χ +
1

2
q†Jq + λ†q (1)

where q is a vector containing the FQs, and the Greek indices α run over molecules and the

Latin ones i over the atoms of each molecule. λ is a set of Lagrangian multipliers used to

impose charge conservation constraints on each molecule. The charge interaction kernel J is,

in our implementation, the Ohno kernel.60 Atomic units are use throughout. The stationarity

conditions of the functional in eq.1 are defined through the following equation56

Dqλ = −CQ (2)

where CQ collects atomic electronegativities and total charge constraints, whereas charges

and Lagrange multipliers are collected in qλ, and D includes the J matrix and the Lagrangian

blocks.

By following the general philosophy of the so-called ”focused” models, in the QM/FQ/PCM

model, a classical interaction between the FQs and the QM density is considered:53

EQM/MM =

Nq∑
i=1

VQM[ρ](ri)qi (3)

where VQM[ρ](ri) is the electrostatic potential due to the QM density of charge at the i -th

FQ qi placed at ri. If a Self Consistent Field (SCF) description of the QM portion is adopted,

the global QM/MM energy functional reads:53,54,61

E [P,q,λ] = trhP +
1

2
trPG(P) + q†χ +

1

2
q†Jq + λ†q + q†V(P) (4)
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where h and G are the one and two electron contributions to the energy and Fock operator,

and P is the density matrix. The FQs consistent with the QM density are obtained by

solving the following equation

Dqλ = −CQ −V(P) (5)

which includes the coupling term V(P) between the QM and MM moieties.

By exploiting the definition of q in Eq. 5, Eq. 4 can be rewritten as follows by neglecting

the pure FQ contributions:

E = tr hP +
1

2
tr PG(P) + q†V(P)

= tr hP +
1

2
tr PG(P)−V(P)†D−1V(P) (6)

A third layer may be included in the model, by employing a continuum description of the

bulk of the solvent,1 which also allows for an effective and physically suitable way to enforce

nonperiodic boundary conditions (nPBC).56

Let us consider the expression for PCM energy:62,63

EPCM = tr hP +
1

2
tr G(P)− f(ε)

2
φ(P)†S−1φ(P) (7)

In the explicit PCM term, φ is the electrostatic potential of the molecule acting on the

PCM charges, and the matrix S is determined by the shape of the cavity (a simple sphere,

in our case) and depends upon the apparent surface charge discretization while f(ε) is a

function of the solvent dielectric constant. For simplicity here we assume the use of the

conductor-like PCM (CPCM); other PCM models may be used by replacing S with the

proper matrix for the specific flavor of PCM. It is worth to notice the numerical similarity of

this expression with Eq. 6. Though the matrices involved in the FQ and PCM equations have

drastically different physical meanings, the formal analogies in the resulting mathematical
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expressions make it possible to combine the two methods and make it much easier to achieve

a numerically efficient combined implementation.

In a three layer QM/MM/PCM model, such as the one that we are considering here, the

MM and the PCM portions can be coupled via the PCM variational formalism64 and adding

the interaction terms in the energy functional.

E [P,q,λ,σ] = trhP +
1

2
trPG(P) + q†χ +

1

2
q†Jq + λ†q + q†V(P)

+
1

2f(ε)
σ†Sσ + σ†φ(P) + σ†Ωq (8)

where V and φ are vectors and denote the QM solute’s electrostatic potential calculated

at the FQ atoms and at the PCM discretization points, respectively. Notice that electronic

quantities such as P, h, and G are square matrices whose dimension depends on the number

of basis functions, but FQ quantities like q and J have dimensions that depend on the

number of FQ atoms, whereas PCM quantities are also vectors and matrices whose dimension

depends on the number of discretization points on the ”molecular” surface. Finally, S and

Ω represent the Coulomb interaction of the PCM charges (σ) with themselves and with

the FQs, respectively. The scaling factor f(ε) = ε−1
ε

is used to adjust the results of the

conductor-like model (used in this work) to dielectrics. Thus, PCM and FQ charges are

solved together with the QM density in the SCF procedure, by exploiting the following

linear system:

 D Ω†

Ω S/f(ε)


 qλ

σ

 = −

 C

0

−
 V(P)

φ(P)

 (9)
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2.2 The ROA scattering intensity

The far from resonance (FFR) ROA scattering cross-section for a vibrational transition from

a state i to a state j can be written as some combination of three tensors:65,66

αab =
∑
k 6=j,i

(
〈j|µa |k〉 〈k|µb |i〉

ωki − ω
+
〈j|µb |k〉 〈k|µa |i〉

ωkj + ω

)
G′ab =

∑
k 6=j,i

(
〈j|µa |k〉 〈k|mb |i〉

ωki − ω
+
〈j|mb |k〉 〈k|µa |i〉

ωkj + ω

)
Aabc =

∑
k 6=j,i

(
〈j|µa |k〉 〈k|Θbc |i〉

ωki − ω
+
〈j|Θbc |k〉 〈k|µa |i〉

ωkj + ω

) (10)

Where the summations run over all vibronic states, µ, m, and Θ are the electric dipole,

magnetic dipole, and electric quadrupole operators, respectively, ωki denotes the angular

frequency difference between states k and i, ω is the laser angular frequency, and the states i

and j belong to the same electronic level, while the index j runs over all excited vibrational

and electronic states. Since the laser frequency typically falls within the visible range or

above, the pure vibrational part of the tensors can be neglected, and only the electronic

part is computed.67 If the ground-state potential energy surface (PES) is treated by means

of the harmonic approximation, then these tensors can be rewritten as a combination of

normal-mode derivatives of the electronic polarizabilities. By relying on TDDFT as the

chosen electronic structure method, the calculation of the spectrum’s fundamental bands

requires the calculation of geometrical derivatives of the three electronic tensors above. In

the following section the theory will be reviewed and the explicit environment contributions

to the response functions derivatives will be given.

2.3 Analytical Evaluation of the polarizability derivatives

We now present a detailed description of the implementation for the analytical calculation,

based on DFT response theory, of the electronic part of the tensors in equation 10 for an

isolated molecule. The presentation of the isolated molecule case precedes the discussion
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of solvated systems, treated with the QM/FQ/PCM model, and is necessary to understand

which terms in the equations are affected by specific contributions. In the following discus-

sion, an apex is used to denote a derivative, with labels α, β denoting generic field derivatives

of field-dependent quantities, x denoting a geometrical derivative, while e, m, and q are used

to denote electric field, magnetic field, and electric-quadrupole derivatives, respectively. In

terms of the density matrix, the electronic polarizability can be expressed as:

α(ω) = tr hαPβ(ω) (11)

Where h denotes the one-electron Hamiltonian and P is the density matrix. For the polar-

izability proper α, both perturbations are electric, but the indices are kept general because

these equations apply for other perturbations as well, provided the basis functions do not

depend on the perturbation. Taking its derivative with respect to a geometrical perturbation

we get:

αx(ω) = tr hαxPβ(ω) + tr hαPβx(ω) (12)

The second derivative of the density matrix appears, which can in principle be obtained

through a second-order Coupled-Perturbed Hartree-Fock or Kohn-Sham (CPHF/CPKS) pro-

cedure, given here for the occupied (o) and virtual (v) block.

(εo − εv + ω)Pβx
ov (ω)−G(Pβx

ov (ω)) = Bβx
ov (13)

where, Bβx is68

Bβx =hβx + Gx(Pβ(ω)) + G(Pβx
oo,vv(ω)) +

[
Fx,Pβ(ω)

]
+
[
Fβ(ω),Px

]
+ Fβ(ω)PSx − SxPFβ(ω) + FPβ(ω)Sx − SxPβ(ω)F + ω{Sx,Pβ(ω)} (14)
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F is the Fock operator, S is the overlap matrix and G is the two-electron part of the Fock

operator, the braces indicate the anticommutator and

Pβx
oo,vv(ω) = −

({
Pβ(ω),Px

}
oo

+
{
Pβ(ω),Sx

}
oo

)
+
{
Pβ(ω),Px

}
vv

(15)

In this context, the expression in eq. 12 can be separated into contributions from occupied

(o) and virtual (v) orbital pairs:

αx(ω) = tr hαxPβ(ω) + tr hαPβx
ov,vo(ω) + tr hαPβx

oo,vv(ω) (16)

Since Pβx
ov is multiplied by a first order term (hα), the equation can be recast by using

the interchange relation, that replaces this term with quantities determined by first order

CPHF/CPKS.68–70 Thus, the equation now reads:

αx(ω) = tr hαxPβ(ω) + tr PαBβx
ov + tr hαPβx

oo,vv(ω) (17)

By further using the following relation:

tr hαPβx
oo,vv(ω) + tr Pα(ω)G(Pβx

oo,vv(ω)) = tr hαPβx
oo,vv(ω) + tr Pβx

oo,vv(ω)G(Pα(ω))

= tr Fα(ω)Pβx
oo,vv(ω) (18)

the expression for the frequency-dependent polarizability derivative becomes:

αx(ω) = tr hαxPβ(ω) + tr Pα(ω)hβx + tr Pα(ω)Gx(Pβ(ω))+

+ tr
{

Pα(ω)
([

Fx,Pβ(ω)
]

+
[
Fβ(ω),Px

]
+ Fβ(ω)PSx − SxPFβ(ω)+

+ FPβ(ω)Sx − SxPβ(ω)F + ω{Sx,Pβ(ω)}
)}

+ tr Fα(ω)Pβx
oo,vv(ω) (19)

where only density matrix first derivatives are required.
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Now we move on to the derivation of the two other tensors for a Fock-like Hamiltonian. For

the A tensor the derivation is essentially the same, replacing α with the quadrupole field q

and β with the electric field, e.

A(ω) = tr hqPe(ω) (20)

Ax(ω) = tr hqxPe(ω) + tr Pq(ω)hex + tr Pq(ω)Gx(Pe(ω))+

+ tr
{

Pq(ω) ([Fx,Pe(ω)] + [Fe(ω),Px] + Fe(ω)PSx − SxPFe(ω)+

+ FPe(ω)Sx − SxPe(ω)F + ω{Sx,Pe(ω)})
}

+ tr Fq(ω)Pex
oo,vv(ω) (21)

In the case of the G′ tensor it is necessary to employ GIAOs to ensure gauge-origin invariance

in the results. In the QM framework, these tensors are thus obtained as:41,71

G′(ω) = tr F(m)Pe(ω) + tr SmWe(ω) + ω tr S̄mPe(ω) (22)

where m is the magnetic field,

F(m) = hm + Gm(P) (23)

and We, the derivative of the energy weighted density matrix:

We(ω) = Pe(ω)FP + PFe(ω)P + PFPe(ω) (24)

and Sm and S̄m are defined as:

Sm = 〈ψµ|ψν〉m (25)

S̄m = 〈ψµ|ψmν 〉 (26)

ψmγµ = − i

2c
(Rµ × r)mγ ψµ (27)

The derivative of a magnetic field-dependent basis functions42 with respect to the magnetic

field appears in the last equation, in which Rµ is the position vector of the basis function
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ψµ, r is the electronic coordinate and γ is a component of the magnetic field m.

Taking the derivative of eq. 22 with respect to a geometrical perturbation and applying the

interchange relation and using

F(mx) = hmx + Gmx(P) + Gm(Px) (28)

tr Pe(ω)Gm(Px) = tr PxGm(Pe(ω)) (29)

leads to the following expression for G′x:

G′x(ω) = tr hmxPe(ω) + tr Pe(ω)Gmx(P) + tr PxGm(Pe(ω)) + tr Pm(ω)hex + tr Pm(ω)Gx(Pe(ω))+

+ tr
{

Pm(ω) ([Fx,Pe(ω)] + [Fe(ω),Px] + Fe(ω)PSx − SxPFe(ω)

+ FPe(ω)Sx − SxPe(ω)F + ω{Sx,Pe(ω)})
}

+ tr Fm(ω)Pex
oo,vv(ω)

− tr We(ω)Smx − tr Sm
{

Pe(ω)FxP + PFxPe(ω) + PxFe(ω)P + PFe(ω)Px

+ Pe(ω)FPx + PxFPe(ω) + Pex
oo,vv(ω)FP + PFPex

oo,vv(ω)
}

+ ω tr S̄mPex
oo,vv(ω)

+ ω tr S̄mxPe(ω) (30)

where the additional terms arise from the second and third term in Eq. 22.

The above expressions are general for open and closed shell systems and, remarkably, only

require the solution of the first order CPHF/CPKS. These are, however, only applicable to

isolated systems, since they lack any explicit terms that would appear when the molecule

is embedded in a polarizable environment such as in the QM/FQ/PCM scheme. Note that,

similar expressions for the derivatives of α(ω) and A(ω) with respect to nuclear coordinates

have been presented by Champagne and coworkers for the Hartree-Fock Hamiltonian.67,72

Expressions for the derivative of G′(ω) with respect to nuclear coordinates using magnetic

field-independent functions40 and GIAOs41 haven also been proposed, but only focusing on
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molecules in the gas phase.

2.4 QM/FQ/PCM Contributions

As presented in the previous section, response functions for the ROA tensors are derived

in the Molecular Orbital (MO) basis. In a QM/FQ/PCM calculation the MO themselves

are different because of the presence of the solvent and therefore carry the effect of the

environment, providing an indirect solvation effect upon all molecular quantities. There

are, however, additional explicit terms that must be added to the equations. These FQ

and PCM terms originate from the differentiation of the QM/FQ/PCM energy expression,

and they can always be written in terms of derivatives of the potential and charges. One-

electron contributions do not pose a problem and can be thought as being included in

the terms containing the one-electron Hamiltonian h in the preceding section. The two-

electron contributions, however, give rise to the additional explicit terms. Notice that the

following expressions for the FQ contributions are written by explicitly specifying the sum

over the atomic basis functions for the sake of clarity. For instance, the FQ contribution to(
tr Pe(ω)GxPe′(ω)

)
in eq. 19 is given by:

∑
µν

[
q†(Pe′(ω′))Vx

µνP
e
µν(ω)

]
+
∑
µν

[
q†(Pe(ω))Vx

µνP
e′

µν(ω
′)
]

(31)

The PCM contribution can be formulated in a similar way. When considering a dynamical

field, such as the ones used in Raman and ROA spectroscopy which are usually lasers with

wavelength in the visible range, the solvent’s response is described by its optical dielectric

constant (i.e. the square of the refractive index), rather than the static one, which is used to

generate the matrix for the ground-state calculation.

Thus, in terms of PCM charges σ, the contribution to electric dipole – electric dipole polar-
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izability derivatives is:

∑
µν

[
σ†(Pe′(ω′))φx

µνP
e
µν(ω)

]
+
∑
µν

[
σ†(Pe(ω))φx

µνP
e′

µν(ω
′)
]

(32)

In standard PCM calculations, there is also another contribution due to the derivative of the

PCM matrix with respect to x, because as the solute atoms move so does the cavity, which is

usually defined in terms of spheres centered on the atoms. In the case considered here these

terms do not appear because in the QM/FQ/PCM the PCM layer originates from a fixed

spherical cavity which does not move with the solute atoms. Next we will follow the same

derivation to evaluate QM/FQ/PCM contributions to the other tensors. By comparing eq.

21 and eq.19, it is evident that the two expressions are analogous. Therefore, the QM/FQ

contributions to
(
tr Pα(ω)GxPβ(ω)

)
for Ax can be expressed in the following way:

Ax(ω)QM/FQ =
∑
µν

[
q†(Pe(ω))Vx

µνP
q
µν

]
+
∑
µν

[
q†(Pq)Vx

µνP
e
µν(ω)

]
(33)

The above formula is obtained by substituting e with q in Eq. 31. If an outer PCM layer is

present (a fixed spherical cavity is considered, as explained above) an additional contribution

appears. In particular, eq. 32 is to be modified in order to depend on the quadrupole field,

so that it reads:

Ax(ω)QM/PCM =
∑
µν

[
σ†(Pe(ω))φx

µνP
q
µν

]
+
∑
µν

[
σ†(Pq)φx

µνP
e
µν(ω)

]
(34)

Let us move on to G′x. By looking at eq. 30, we see that similar contributions to the

ones already introduced for the two other tensors have to be considered. In particular, the

contribution of the FQs to tr Pe(ω)Gx
(
Pm(ω)

)
becomes:

∑
µν

[
q†(Pm)Vx

µνP
e
µν(ω)

]
+
∑
µν

[
q†(Pe(ω))Vx

µνP
m
µν

]
(35)
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The previous equation is obtained by substituting e′ with m in Eq. 31. If an outer PCM

layer is present, eq. 32 must be modified in order to depend on the magnetic field:

∑
µν

[
σ†(Pm)φx

µνP
e
µν(ω)

]
+
∑
µν

[
σ†(Pe(ω))φx

µνP
m
µν

]
(36)

Two additional terms appear due to the presence of the magnetic field within the GIAO

formalism. By resorting once again to the similarity between the FQ and PCM formalisms,

the first contribution to the tr PxGm(Pe(ω)) term reads:

tr PxGm(Pe(ω))QM/FQ =
∑
µν

[
q†(Vm(Pe(ω)))P x

µνVµν

]
(37)

and, if an outer PCM layer is present, another term has to be included, which reads

tr PxGm(Pe(ω))QM/PCM =
∑
µν

[
σ†(φm(Pe(ω)))P x

µνφµν

]
(38)

In addition to the terms in eqs.37 and 38, a further contribution has to be computed for the

tr Pe(ω)Gmx(P) term, having the following expression:

tr Pe(ω)Gmx(P)QM/FQ =
∑
µν

[
q†Vm,x

µν P
e
µν(ω) + qx†Vm

µνP
e
µν(ω)

]
(39)

with the corresponding PCM contribution as:

tr Pe(ω)Gmx(P)QM/PCM =
∑
µν

[
σ†φm,x

µν P
e
µν(ω) + σx†φm

µνP
e
µν(ω)

]
(40)

We refer the reader to the Appendix for further details on the equations and implementation.

After evaluating all the tensor derivatives, the spectroscopic intensities can then be easily

assembled once the electronic Hessian has been diagonalized to generate the normal modes

of vibration.
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We note that in the derivation above only the solute vibrations are considered, thus no

geometrical derivatives of the energy with respect to the position of the MM atoms are eval-

uated. This choice is consistent with the so-called Partial Hessian Vibrational Approach73

(PHVA), which was already exploited by some of us for the formulation of analytical second

derivatives with respect to nuclear coordinates.74 Also, it is worth spending a few words

on the similarities between the QM/FQ Hamiltonian and the QM/PCM one. The QM/FQ

model, as it has been thought by the authors of the first implementation, has the same

mathematical foundations as the PCM: both models are purely electrostatic and both are

characterized by point charges that interact classically with the QM portion. Therefore, the

close similarity between the final expressions of polarizability derivatives must not surprise

the reader.

3 Computational details

A QM/FQ/PCM calculation involves a number of steps, which are here outlined:

1. Definition of the system: the solute is embedded within a sufficiently large number of

solvent molecules, chosen so that both the dynamics and the subsequent QM calcula-

tions can capture all the relevant solute-solvent interactions.

2. Classical MD simulation and sampling: In order to sample the phase space of the

system, classical MD simulations are performed. Such simulations are run long enough

to sample a sufficiently large portion of the phase-space and such that the simulation

parameters correctly reproduce all possible system configurations and their relative

energy (and thus population). From the MD simulations a number of snapshots are

extracted to be used later in the QM/FQ/PCM calculations.

3. Definition of the different regions of the three-layer scheme and their boundaries: for

each snapshot extracted from the dynamics, a sphere centered on the solute is cut,
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retaining all solvent molecules within the sphere and discarding the rest. The radius

of this region is chosen to simulate all specific solute-solvent interactions, while bulk

solvent properties are modeled by covering the sphere in a polarizable continuum whose

interaction with the solute is modeled by the PCM.

4. Running the QM/FQ/PCM calculations on the snapshots: once all the snapshots have

been obtained, and the system has been partitioned into the different layers and their

boundaries defined, the calculation of Raman/ROA is performed. The geometry of the

solute in each snapshot is optimized, holding fixed the position and the geometries of

all the solvent molecules.

5. Analysis of the result: the results obtained for each snapshot are extracted and pooled

to produce the final spectrum.

More computational details about each of these steps that have been used in the calcula-

tions presented in this work are as follows. Molecular geometries were optimized at the

B3LYP/aug-cc-pVDZ level, including solvent effects using C-PCM62,63 and default cavity

parameters used to represent the aqueous environment. The molecular dynamics simula-

tions were carried out as detailed in previous works9 using GROMACS.75 A total of 2000

snapshots were extracted from the last 20 ns of the MD simulation (one snapshot every

10 ps), but only 200 snapshots were used to generate the spectra following an analysis

on the convergence behavior of the spectra with respect to snapshot number (vide infra).

For each snapshot a sphere centered at the solute’s geometric center was cut. A cutting

radius of 12 Å was used, surrounded by a 1.5 Å larger radius for the PCM spherical cav-

ity. The partial geometry optimization of each snapshot was performed keeping the water

molecules fixed. Finally, all spectra were calculated within a QM/FQ/PCM framework

using the B3LYP functional with the aug-cc-pVDZ basis set for the solute, the SPC FQ

parameters26 and the C-PCM to account for the aqueous environment. Non-polarizable

QM/MM calculations were performed using the TIP3P parametrization for water.76 ROA
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measurements may be realized through a multitude of experimental configurations, related

to the angle between the incident and scattered radiations, as well as their respective polar-

izations.66 In the following, for (R)-methyloxirane, Raman spectra refer to 90◦ scattering,

while ROA spectra are in the back-scattered scattered-circularly-polarized radiation config-

uration. For (S)-methyllactate, Raman spectra refer to 180◦ scattering, while ROA spectra

are in the back-scattered scattered-circularly-polarized radiation configuration. To convo-

lute the peaks, Lorentzian functions were used, with full width at half maximum (FWHM)

of 4 cm−1.77 All the QM calculations were performed by using a development version of

Gaussian package.78

4 Results

4.1 Raman and ROA of (R)-methyloxirane

We consider first (R)-methyloxirane (moxy), a very small chiral system whose spectroscopic

properties have been studied extensively in the past. We used this system to validate

our implementation by comparing results of a frequency-dependent ROA calculation evalu-

ated using both a fully analytical method, and by computing numerical derivatives of the

frequency-dependent mixed polarizability tensors. Table 1 reports the results of both cal-

culations. Results are reported in units of AA4/amu and they need to be multiplied by K

before being plotted, where K is in cgs units:

K =
1

90

(ωs

c

)4E2

R2
(41)

In the expression above, ωs is the angular frequency of the scattered radiation, R is the dis-

tance from the sample to the detector, and E is the magnitude of the incident electric field at

the molecular origin.77 As can be seen from the table, the difference between the results from

the two derivative methods are minimal, with the highest difference being 0.0030. Though
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the numerical results appear very stable, being able to perform the calculation analytically is

particularly advantageous for QM/FQ/PCM calculations because the reduction in the com-

putational cost applies to all snapshots, and can add up to a very significant computational

saving, particularly for large systems or for a large number of snapshots. We also performed

the same analysis on Raman intensities, which presented even smaller difference between

numerical and analytical results (see Supporting Information).

Table 1. Comparison between analytical and numerical ROA intensities (units
of K, see Eq. 41) computed for an incident wavelength of 532 nm.

Modes Analytical Numerical Differences
218.7130 4.8940 4.8940 0.0000
377.2240 15.2020 15.2020 0.0000
422.0177 4.3240 4.3240 0.0000
756.3885 -124.0190 -124.0190 0.0000
841.6365 137.5610 137.5600 0.0010
905.5113 118.7660 118.7660 0.0000
965.0963 -19.0860 -19.0860 0.0000

1041.3528 -95.7300 -95.7300 0.0000
1122.1619 39.4840 39.4840 0.0000
1153.3137 -54.6160 -54.6160 0.0000
1174.0052 39.9070 39.9070 0.0000
1184.4206 59.2400 59.2400 0.0000
1290.2361 -46.4500 -46.4500 0.0000
1384.5402 -13.8670 -13.8670 0.0000
1430.0974 95.7010 95.7010 0.0000
1460.7858 76.3990 76.3990 0.0000
1474.8403 -231.3600 -231.3600 0.0000
1520.4632 55.5550 55.5550 0.0000
3044.7759 144.5140 144.5140 0.0000
3116.0928 -877.8090 -877.8100 0.0010
3118.3139 1066.2760 1066.2750 0.0010
3141.7886 -28.4640 -28.4670 0.0030
3174.3436 341.5490 341.5490 0.0000
3217.8385 -642.9800 -642.9810 0.0010

It has been shown in previous studies that in order to accurately simulate a chiral property

such as optical rotation (OR) of this system, a very large number of snapshots (≥ 2000) was

necessary to achieve convergence.9 However, Raman and ROA intensities are not expected

to require the same large number of snapshots to achieve convergence, as they are related to
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intrinsically local molecular properties, while OR is a global electronic property of the system.

This fact is particularly relevant because ROA intensities are related to the geometrical

derivatives of the very same tensors that generate optical activity, thus the process of taking

the derivative with respect to atomic positions localizes the effect induced by the solvent. In

practice, our tests indicate that for moxy 200 snapshots are enough to achieve convergence

in ROA calculations (data shown in the Supporting Information), 10% of those required for

OR. It is thus evident from the results that the derivatives of the Raman and ROA tensors

with respect to the normal modes are rather flat. The low number of snapshots required

may also be due to the structural rigidity of methyloxirane, whose vibrational modes are not

significantly altered by the presence of the solvent. A more flexible solute, however, might

experience significant changes in its vibrational modes when in the presence of the solvent,

therefore our considerations on methyloxirane cannot be a priori extended to the general case

and convergence with respect to the number of snapshots should in general be considered

on a case-by-case basis. The question of convergence in the spectra is closely related to

the dispersion of the computed property across the phase space sampled during the MD

simulation. In figures 2.1 and 2.2 the unconvoluted results are presented as stick spectra

for the first 200 snapshots of the simulation. The dispersion of the peaks is not particularly

high, and for the ROA intensities there are only few cases where different snapshots would

give bands of opposite sign with respect to the average.

Finally, we can compare the computed results with available Raman79 and ROA80 experi-

mental data (figures 3.1 and 3.2, respectively). Both the experimental spectra refer to neat

liquid moxy, not the aqueous solution, therefore some differences with the computed results

are expected. To the best of our knowledge there are no available spectra for the molecule

in water. In figure 3.1 the QM/FQ/PCM Raman spectrum is compared to experiment79

and to a spectrum computed using a non-polarizable QM/MM method where the solvent

charges are fixed. The QM/FQ/PCM and the QM/MM results are very close, particularly in

terms of intensities. The most evident differences are in the position of the bands, hence the
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Figure 2. Unconvoluted QM/FQ/PCM Raman and ROA spectra of moxy, where
the intensity from each of the 200 snapshots is plotted individually.
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Figure 3. Convoluted QM/FQ/PCM Raman and ROA spectra of moxy, where
each of the peaks from figure 2 is convoluted with a Lorentzian function of full-
width-at-half-maximum of 4 cm−1.
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vibrational frequencies, which are slightly red-shifted in the case of a polarizable force-field.

This brings the computed spectrum in closer agreement to experiment, although it should be

mentioned that our results rely on the harmonic approximation, and anharmonicity effects

would be expected to further red-shift the results. Both methods reproduce experimental

findings quite accurately despite the fact that, as already mentioned above, the experimental

spectrum was measured on the neat liquid. Our calculation would suggest that the presence

of water would not significantly alter the vibrational properties of this molecule. Similar

conclusions can be reached for the ROA spectra, shown in figure 3.2. In this case the effect

of polarization does not change the spectrum in a significant way and both methods are able

to reproduce the experimental spectrum. One noticeable difference is the high intensity of

the negative band at 1475 cm−1 which is quenched in the experimental spectrum. A possi-

ble explanation is an error in the calculation of the frequency for the positive band around

1520 cm−1, which is also quenched in the experimental spectrum. If these two bands were to

overlap more, then the positive and negative contributions would cancel out. A larger band

width would achieve a similar effect. Note that in the Raman spectrum, the positive band

appears as an isolated peak in the computed spectrum whereas there is only one wide band

in the experimental spectrum.

4.2 (S)-Methyl-lactate

In this section we investigate the Raman and ROA spectra of (S)-methyl-lactate (MLac),

which exists in three distinct conformations, depicted in figure 4 along with their QM/PCM

Boltzmann populations, which include harmonic thermal vibrational contributions. The first

conformer is by far the most stable and therefore abundant thanks to the intra-molecular

hydrogen bond, with the other two conformers adding up only to a 21% population. The

conformational space sampled by the classical simulation can be dramatically different thanks

to the effect of the solvent. In particular, the intramolecular hydrogen bond may not be

energetically favored compared to the intermolecular one that can form between MLac and
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water. We therefore analyzed the conformational distribution from the classical dynamics in

terms of two dihedral angles, defined in figure 5. The plot in figure 6 reports the distribution

of the dihedral values for the 200 snapshots as well as the three QM/PCM conformations.

It can be seen that most of the classical points accumulate around a structure that is not

present among the three QM/PCM ones, that is similar to the first and most stable conformer

in terms of the first dihedral angle, but where the OH group is oriented toward the solvent.

The OH group is in fact very mobile, as can be observed from the figure, and it does not

seem to form an intramolecular hydrogen bond as in the first QM/PCM conformation (the

red point at the center of the plot in figure 6). The second QM/PCM conformation is the

leftmost red dot in the plot, and there are only a few points close to it, whereas the third,

and least populated, conformation is not sampled at all by the classical dynamics. These

conformational changes can be expected to strongly affect the spectrum.

(4.1). 79% (4.2). 14% (4.3). 7%

Figure 4. MLac conformers. QM/PCM Boltzmann populations are also re-
ported.

Figure 7 reports the experimental81 as well as the calculated Raman spectrum with the

QM/FQ/PCM method. Unfortunately we were unable to find experimental Raman and

ROA spectra performed on aqueous solutions, therefore we resort to comparing computed

results with experiments carried on neat liquids, as in the case of methyloxirane. Compared

to experiment, the predicted QM/FQ/PCM spectrum is very similar, with most features of

the spectrum correctly reproduced. The experimental intensities are, for some peaks in the
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Figure 5. Definition of the two dihedral angles used in the conformational
analysis. The first (Dihderal 1) angle is defined by atoms O1-C2-C3-O4, the
second (Dihedral 2) by atoms C2-C3-O4-H5.

Figure 6. Conformational distribution of MLac from the classical dynamics.
Blue crosses represent snapshots, red circles represent the three QM/PCM struc-
tures. The two dihedral angles are defined in figure 5.
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lower-energy region of the spectrum, very high. This is the case for instance, for the mode

at 850 cm−1, which corresponds to a highly diffuse concerted bending of the whole molecule,

the mode at 980 cm−1, which is mainly a CH3-O stretching, and the one at 1100 cm−1which

is another bending motion. Our model is again able to reproduce such features of the experi-

mental spectrum, except for the mode at 980 cm−1which is much lower in our computations.

Figure 7. Raman spectrum of MLac, 488nm radiation. (top, blue) Calculated
QM/FQ/PCM spectrum. (bottom, red) Experimental81 spectrum.
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Figure 8 reports a comparison of the calculated QM/PCM and QM/FQ/PCM and experi-

mental82 ROA spectra. These data refer to a 532 nm incident wavelength and backscattered

circularly polarized radiation. The QM/FQ/PCM performs much better than QM/PCM in

the comparison. Overall, the QM/PCM and QM/FQ/PCM produce similar spectra in terms

of the sign of the band (with few exceptions discussed below), and band positions are also

very similar. The QM/FQ/PCM results, however, appear more dispersed for some bands,

for example in the case of the negative band at 650 cm−1 where the QM/FQ/PCM method

produces a much wider negative band compared to the sharp negative peak predicted by the
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Figure 8. ROA spectra of MLac, 532 nm incident wavelength and backscattered
circularly polarized radiation. (Continuous blue) Calculated QM/FQ/PCM spec-
trum. (Continuous black) QM/PCM spectrum. (Dashed red) Experimental82

spectrum.
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Figure 9. Difference between the ROA intensity for the CO stretching mode
of MLac, computed with and without fluctuating polarization effects, for each
snapshot. The horizontal red line represents the average QM/FQ/PCM intensity.
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QM/PCM calculation. Note that this is not simply a consequence of a different bandwidth

chosen for the convolution for either spectrum because other bands, such as the strongly pos-

itive band at 900 cm−1 and the weakly positive band 400 cm−1, are instead almost identical

for the two methods. The differences discussed for the aforementioned band and for others,

are due to the ability of the FQ/PCM method to better sample the system’s phase space

and more accurately reproduce the solute-solvent interaction. The most evident differences

appear in the region between 1000 and 1600 cm−1. At 1140 cm−1 both the QM/FQ/PCM

method and the experimental data present a weakly positive signal, whereas QM/PCM

predicts a weakly negative band, corresponding to the C-OH stretching vibration. Other

improvements brought by the QM/FQ/PCM method can be observed in the two strongest

bands of the QM/PCM spectrum, a positive signal at 1300 cm−1 and a negative signal at

1450 cm−1. The relative intensities of these bands are not as strong in the experimental

spectrum, and the QM/FQ/PCM method brings significant improvements in the modeling
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of these bands. One major difference between the QM/PCM and QM/FQ/PCM models is

that the latter is based on a classical dynamics to sample the configuration space of the sys-

tem, however once the snapshots have been obtained the subsequent QM calculation could

in principle employ a non-polarizable force field for the solvent. The consequences of ne-

glecting polarization effects can be noticed in figure 9, where for each snapshot we report

the difference between the ROA intensities of the CO stretching band computed with and

without FQ polarization. Notice that to compute ROA intensities without polarization the

geometry of the target molecule in each snapshot has been reoptimized because polarization

effects also modify the molecular force field. The choice of the CO stretching mode was made

because its energy is well separated from all the other modes, therefore it is easy to identify

in the results without inspecting the normal modes of each snapshot separately by hand,

given the fact that the vibrational energies themselves change. The red line in the graph

represents the averaged QM/FQ/PCM value. It can be seen that the difference between the

two models is huge in relative terms, and does not seem to have a recognizable trend as the

sign can be either positive or negative depending on the specific snapshot.

5 Conclusions and Perspectives

We have presented the first formulation and analytical implementation of FFR Raman

and ROA spectra of molecular systems in solution using the fully polarizable multi-layer

quantum-classical QM/FQ/PCM model, where the QM portion is modeled via TDDFT,

and the MM region is described by using the FQ model, with an additional outer PCM layer

used to account for bulk solvent effects. The interaction between the solute and both the

discrete and the continuum solvent results in additional terms in the QM Hamiltonian that

depend on the QM density, and must therefore be determined self-consistently. Solute-solvent

interaction terms also appear at all orders of the system’s response functions, resulting in

additional terms in the evaluation of the response functions and derivatives. In the case
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of ROA, additional terms must be considered to ensure gauge-origin independence of the

results.

The application of the model to selected systems in aqueous solution shows that in cases

where there is a direct solute-solvent interaction that cannot be modeled solely using a

continuum model, the QM/FQ/PCM results can be significantly different from those ob-

tained using a standard QM/PCM method, and the agreement with experimental data also

improves. The method’s reliance on a molecular dynamics to sample the phase space of

the system means the computed results are obtained as an average over a large number of

snapshots. Assuming the dynamics has adequately sampled all relevant solute geometries,

our results show that convergence is achieved rapidly, i.e. Raman and ROA spectra are not

significantly affected by the solvent’s distribution around the solute, though the FQ model

may still be necessary to treat specific effects such as those arising from hydrogen bonds

established between solute and solvent. This is in contrast to previous studies on different

properties such as Optical Rotation, which is closely related to ROA through the mixed

electric-magnetic polarizability tensor. Though ROA is a higher-order property, because

of the local nature of molecular vibrations the effect of the solvent is not as drastic. The

method presented in this contribution represents a step forward in the modeling of spectro-

scopic properties of solvated systems, although in order to expand its applicability, accurate

parametrizations for other types of solvents is required. In addition, while polar solvents may

usually be modeled using electrostatic interactions only, apolar environments such as those

generated by solvents like tetrachloromethane or benzene may require an accurate model-

ing of non-electrostatic repulsion and dispersion effects as well in order to provide reliable

results. Such developments could greatly expand the applicability of the present method,

towards both more diverse solvents as well as more complex environments, and will be the

subject of future research.
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7 Appendix

In this Appendix we expand on the matrial presented in Section 2.4 in order to evaluate

Raman/ROA tensors in the QM/FQ/PCM approach.

• QM/FQ/PCM contributions to tr Pα(ω)GxPβ(ω), whose expressions are

for αx(ω):

∑
µν

[
q†(Pe′(ω′))Vx

µνP
e
µν(ω)

]
+
∑
µν

[
q†(Pe(ω))Vx

µνP
e′

µν(ω
′)
]

+

+
∑
µν

[
σ†(Pe′(ω′))φx

µνP
e
µν(ω)

]
+
∑
µν

[
σ†(Pe(ω))φx

µνP
e′

µν(ω
′)
]

for Ax(ω):

∑
µν

[
q†(Pe(ω))Vx

µνP
q
µν

]
+
∑
µν

[
q†(Pq)Vx

µνP
e
µν(ω)

]
+

+
∑
µν

[
σ†(Pe(ω))φx

µνP
q
µν

]
+
∑
µν

[
σ†(Pq)φx

µνP
e
µν(ω)

]
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for G′x(ω):

∑
µν

[
q†(Pm)Vx

µνP
e
µν(ω)

]
+
∑
µν

[
q†(Pe(ω))Vx

µνP
m
µν

]
+
∑
µν

[
σ†(Pm)φx

µνP
e
µν(ω)

]
+
∑
µν

[
σ†(Pe(ω))φx

µνP
m
µν

]
The similarities in the expressions above can be exploited in the implementatio of

the code required to evalute each term. In particular, the main steps involved are as

follows:

1. Compute the density matrix derivative with respect to the external fields (electric,

magnetic, or electric quadrupole).

2. Use these derivatives to construct the electronic potential V(Pi), where i indicates

the electric, magnetic or quadrupole fields.

3. Evaluate the new set of FQ and PCM charges, by solving Eq. 9.

4. Contract the potential derivatives Vx(Pi) with the new set of charges.

5. Sum up the QM/FQ contribution and the QM/PCM one.

• QM/FQ/PCM contributions to tr PxGm(Pe(ω)), only applying to G′x:

∑
µν

[
q†(Vm(Pe(ω)))P x

µνVµν

]
+
∑
µν

[
σ†(φm(Pe(ω)))P x

µνφµν

]
The evaluation of this term requires the following steps:

1. Compute the density matrix derivative with respect to the external electric field.

2. Construct the electronic potential V(Pe) and then its derivative with respect to

the magnetic field.

3. Evaluate the new set of FQ and PCM charges by solving Eq. 9.

4. Contract the new set of charges with PxV.
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5. Sum up the QM/FQ and QM/PCM contributions.

• QM/FQ/PCM contributions to tr Pe(ω)Gmx(P), only applying to G′x:

∑
µν

[
q†Vm,x

µν P
e
µν(ω) + q†(VmPe(ω))Vx

µνPµν

]
+

∑
µν

[
σ†φm,x

µν P
e
µν(ω) + σ†(φmPe(ω))φx

µνPµν

]
The evaluation of this term requires the following steps:

1. Compute the density matrix derivative with respect to the external electric field.

2. Compute the potential derivative once with respect to magnetic field (for the

second term in the two sums) and once with respect to nuclear coordinates (for

the first term).

3. Contract the set of charges (q and qx) with the other terms.

4. Sum up the QM/FQ and QM/PCM contributions.

8 Supporting Information

The Supporting Information is available free of charge on http://pubs.acs.org

Analytical/numerical intensities comparison for methyloxirane in water at incident wave-

length of 532 nm.

Raman and ROA spectra of methyloxirane as a function of number of shapshots in the

QM/FQ/PCM method.
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