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We study general nonlinear models for time series networks of integer
and continuous-valued data. The vector of high-dimensional responses, mea-
sured on the nodes of a known network, is regressed nonlinearly on its lagged
value and on lagged values of the neighboring nodes by employing a smooth
link function. We study stability conditions for such multivariate process and
develop quasi-maximum likelihood inference when the network dimension
is increasing. In addition, we study linearity score tests by treating sepa-
rately the cases of identifiable and nonidentifiable parameters. In the case of
identifiability, the test statistic converges to a chi-square distribution. When
the parameters are not identifiable, we develop a supremum-type test whose
p-values are approximated adequately by employing a feasible bound and
bootstrap methodology. Simulations and data examples support further our
findings.

1. Introduction. The availability of network data recorded over a timespan in several
applications (social networks, GPS data, epidemics, etc.) requires assessing the effect of a
network structure to a multivariate time series process. This problem has attracted consid-
erable attention. Recently, [66] proposed a Network Autoregressive model (NAR), under
Independent Identically Distributed (IID) innovation sequence, where a continuous response
variable is observed for each node of a network. The high-dimensional vector of such re-
sponses is modelled linearly on the past values of the response, measured on the node itself
and the average lagged response of the neighbours connected to the node. Motivated by the
fact that real data networks are usually of large dimension, the authors study least squares in-
ference under two large-sample regimes (a) with increasing time sample size, that is, T → ∞,
and fixed network dimension, say N , and (b) with N → ∞ and TN → ∞, where the tem-
poral size depends on N . In this contribution, we extend this work in various directions by
proposing appropriate inference and testing methodology, which is applicable to continuous
and integer valued data.

1.1. Related works. The NAR model has been the focus of recent research, for example,
logistic network models [63], network quantile model [67], grouped least squares estima-
tion [65], network GARCH models [64] and applications [8]. In addition, [42] consider the
Generalized NAR model, for the continuous case, which incorporates the effect of several
layers of connections between nodes of the network. This study is accompanied by appropri-
ate R software. As pointed out by [66], discrete response variables are frequently encountered
in applications and are strongly related to network data. For example, in the social network
analysis data are counts, for example, number of characters contained in posts of single users,
number of posts shared, etc. Models for count time series have been studied by [6] who in-
troduced linear and log-linear Poisson network autoregression models (PNAR). Such exten-
sions show that the NAR model is a member of the broad class of Generalized Linear Models
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(GLM) [45]; for the count case, the observations are in fact marginally Poisson distributed,
conditionally to their past history. The joint dependence is imposed by employing a copula
construction, as introduced by [30] and is outlined in [7], Section S-1.1. In addition, [6] have
studied thoroughly the two related types of asymptotic inference (a)-(b) discussed above, in
the context of quasi-maximum likelihood inference (QMLE) [41].

1.2. Nonlinear models and testing linearity. Theory related to NAR model relies on the
assumption of linearity. However, there are many real world examples where a nonlinear
model might be more appropriate. For instance, in economics, the theory supports occa-
sionally nonlinear behaviour; see [55], Chapter 2, for several examples. In modelling eco-
nomic/financial time series, it seems natural to allow for the existence of different states, or
regimes (e.g., expansion/crisis), such that dynamics depend upon the specific regime; [68],
Chapter 18. Government agencies, research institutes and central banks may typically employ
nonlinear models [55], p. 16. As far as social network analysis concerned, nonlinear phenom-
ena are frequently observed, for example, “superstars” with huge number of followers having
an exponentially higher impact on other users’ behaviour when compared to the “standard”
user [66]. So from both theoretical and applied point of view, there exists a necessity to de-
velop nonlinear autoregression model theory for the case of network time series. Literature
in univariate nonlinear time series is vast and well developed, in particular for continuous
random variables. The interested reader is referred to [11, 56] and [27] among many others.
For integer-valued data, the literature is more recent, although still flourishing; see [12, 16,
18, 29, 31, 58] and [37]. General results are given by [1, 17, 21, 22, 61] and [9].

Estimation for nonlinear models has been traditionally accompanied by tests who exam-
ine the assumption of linearity. Such tests are routinely used because they provide a sound
framework where evidence of linearity can be examined thoroughly. In addition, they offer
guidance about the specific nonlinear model to be fitted; see [54], Section 3, who suggests
that “The first step of a specification strategy for any type of nonlinear model should therefore
consist of testing linearity”. Furthermore, proper inference is developed especially when the
linear model is nested within a nonlinear model and as such the resulting estimators obtained
after fitting a nonlinear model may be inconsistent; see [55], Section 5.1,5.5. Finally, it is
always important to have additional tools for both practical usefulness and for explanatory
data analysis—detecting latent variables, change point testing, etc. These points motivated
the growth of a large literature on linearity tests, especially for continuous-valued random
variables. A survey of general type results for test statistics whose application depends on
identifiable/nonidentifiable parameters are given by [32] and [40]. Finally, [5] and [38] es-
tablished a general framework for testing linearity when some parameters are nonidentifiable
under the hypothesis of linearity. Nonlinear models for count time series and the associated
testing linearity problem has been studied by [13] who suggest a quasi-score test for (mixed)
Poisson random variables. All the above works are concerned with univariate time series. Re-
lated literature on multivariate observation-driven models for discrete-valued data considers
only linear cases; see [47–49] and [30] among others.

1.3. Main challenges. Existing theory does not cover the case of NAR models, which are
multivariate and their properties depend on both N (size) and T (time). Therefore, asymp-
totically, both indices, N and T , tend to infinity and it is a great challenge to address the
properties of such multivariate processes. Moreover, QMLE inference breaks down when es-
timating network models because N is large. Consequently, nonstandard proofs are required
for establishing stationarity of infinite-dimensional processes and to obtain sound inference
within the double asymptotic regime (b). Note that even a simple weak law does not hold
under regime (b). In particular, quantities related to the inference are of the order O(N). Con-
sider, for example, the sample information matrix, which depends on the network structure
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and diverges with N → ∞. Then the covariance of estimators explodes and proving existence
of limiting Hessian and Fisher matrices is a challenging problem. These issues become more
persistent when testing linearity, especially in the case of nonidentifiable parameters. Then
a double indexed asymptotic theory with infinite-dimensional vectors over a uniform metric
space for the score and related matrices is relevant and asks for development.

1.4. Our contribution. The main results of our contribution are the following: (i) Speci-
fication of a novel general nonlinear network autoregressive model for both continuous and
discrete valued multivariate network observations (Section 2); (ii) Under mild conditions,
stationarity results (Sections 2.2–2.3) and asymptotic theory of QMLE are established, when
both time and network dimensions increases (Section 3). These are new results because non-
linear NAR models have not been treated in the literature; (iii) Development of testing pro-
cedures for examining linearity of the model by employing a quasi-score based test under
both asymptotic regimes (a)–(b); see Section 4. We focus on score tests, as they require fit-
ting NAR models under the null hypothesis. This is a computationally simpler task. Their
asymptotic distribution is (noncentral) chi-square even when the parameters to be tested lie
on the boundary of the parameter space; (iv) Finally, we consider the situation where non-
identifiable parameters, say γ , are present under the null. In such case, the results of Sec-
tions 2–4 are extended. This is done by proving stochastic equi-continuity of the score with
diverging number of nodes and double-indexed convergence of Hessian/information matrices
uniformly over γ . Then, as N → ∞ and TN → ∞, we show that the quasi-score linearity
test asymptotically approximates a (noncentral) chi-square process (Section 5). We discuss
two ways to approximate the p-values of the tests: by the upper bound developed in [15],
and by bootstrap approximation relying on stochastic permutations [38]. The double asymp-
totic convergence of bootstrap p-values to their theoretical counterpart is also established. We
are not aware of other contributions, to the best of our knowledge, attacking the problem of
general asymptotic inference with increasing dimension network time series models for both
count and continuous data. The last sections discuss results of a simulation study (Section 6)
and real data examples (Section 7). All the methodology is implemented in the new released
R package PNAR [10, 57]. The paper concludes with an Appendix, containing the proofs for
Sections 2 and 5. The Supplementary Material [7] contains the proofs for Sections 3 and
4 and additional results for the threshold network autoregressive model, under asymptotic
regime (a).

1.5. Notation. We denote |x|r = (
∑p

j=1|xj |r )1/r the lr -norm of a p × 1 vector x. If

r = ∞, |x|∞ = max1≤j≤p |xj |. Let ‖X‖r = (
∑p

j=1 E(|Xj |r ))1/r the Lr -norm for a random
vector X. For a q × p matrix M = (mij ), i = 1, . . . , q, j = 1, . . . , p, denote the general-
ized matrix norm |||M|||r = max|x|r=1|Mx|r . If r = 1, then |||M|||1 = max1≤j≤p

∑q
i=1 |mij |.

If r = 2, |||M|||2 = ρ1/2(M ′M), where ρ(·) is the spectral radius. If r = ∞, |||M|||∞ =
max1≤i≤q

∑p
j=1 |mij |. If q = p, these norms are matrix norms. Define the entrywise norms

|M|r = (
∑q

i=1
∑p

j=1|mij |r )1/r . If q = p and 1 ≤ r ≤ 2, these are matrix norms. Define

|x|rvec = (|x1|r , . . . , |xp|r )′, ‖X‖r,vec = (E1/r |X1|r , . . . ,E1/r |Xp|r )′, |M|vec = (|mij |)(i,j)

and � a partial order relation on x, y ∈ R
p such that x � y means xi ≤ yi for i = 1, . . . , p.

The same notation holds for random vectors X, Y such that X � Y means Xi ≤ Yi almost
surely (a.s.) for i = 1, . . . , p. Set the compact notation max1≤i<∞ xi = maxi≥1 xi . The nota-
tion Cr denote a constant, which depend on r , where r ∈ N, and C is a generic constant. The
symbol I denotes an identity matrix, 1 (0) a vector of ones (zeros), whose dimension depends
on context. Let ⇒ denote weak convergence with respect to the uniform metric. Finally, the
notation {N,TN } → ∞ will be used as a shorthand for N → ∞ and TN → ∞.
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2. Nonlinear NAR model specification. Consider a network with N nodes (network
size) indexed by i = 1, . . .N . The neighbourhood structure of the network is explicitly de-
scribed by its adjacency matrix A = (aij ) ∈ R

N×N where aij = 1, if there is a directed edge
from i to j (e.g., user i follows j on Twitter, a flight take-off from airport i landing to air-
port j ), and aij = 0 otherwise. Undirected graphs are allowed (A = A′) but self-relationships
are excluded, that is, aii = 0 for any i = 1, . . . ,N . This is a typical and realistic assumption,
for example, social networks; see [60] and [43] among others. The network structure, equiv-
alently the matrix A, is assumed to be nonrandom. A row-normalized adjacency matrix is
defined by W = diag{n1, . . . , nN }−1A where ni = ∑N

j=1 aij is the so-called out-degree, the
total number of edges starting from the node i. Then W satisfies |||W |||∞ = 1 and W1 = 1.
Moreover, define ei the N -dimensional unit vector with 1 in the ith position and 0 everywhere
else, such that w′

i = e′
iW = (wi1 . . . ,wiN) the ith row of the matrix W , with wij = aij /ni .

Define a N -dimensional vector of time series {Yt = (Y1,t . . . Yi,t . . . YN,t )
′, t = 1,2 . . . , T }

which is observed on a given network; that is, a univariate time series is measured for each
node, with rate λi,t . Denote by {λt ≡ E(Yt |Ft−1) = (λ1,t . . . λi,t . . . λN,t )

′, t = 1,2 . . . , T },
the corresponding conditional expectation vector, and denote the history of the process by
Ft = σ(Ys : s ≤ t). Assume that {Yt : t ∈ Z} is integer-valued and consider the following
first-order nonlinear Poisson Network Autoregression (PNAR):

(1) Yt = Nt(λt ), λt = f (Yt−1,W, θ),

where {Nt } is a sequence of IID N -variate copula-Poisson process with intensity 1, counting
the number of events in [0, λ1,t ] × · · · × [0, λN,t ] and f (·) is a deterministic function de-
pending on the past lag values of the count process, the known network structure W and an
m-dimensional parameter vector θ . Examples will be given below. More precisely, the con-
ditional marginal probability distribution of the count variables is Yi,t |Ft−1 ∼ Poisson(λi,t ),
for i = 1, . . . ,N , and the joint distribution is generated by a copula, which depends on a pa-
rameter ρ, say C(·, ρ), and it is imposed on waiting times of a Poisson process specified as
in [6], Section 2.1; see [7], Section S-1.1. Several alternative models resembling multivariate
Poisson distributions have been proposed in the literature; see [28], Section 2, for a discus-
sion about the issues of available multivariate count distributions. A copula-based approach
for the data generating process (henceforth DGP) is used throughout this paper. Results for
higher-order models are derived straightforwardly; see Remark 5.

Similar to the case of integer-valued time series, we define the nonlinear Network Autore-
gression (NAR) for continuous-valued time series by

(2) Yt = λt + ξt , λt = f (Yt−1,W, θ),

where ξi,t ∼ IID(0, σ 2), for 1 ≤ i ≤ N and 1 ≤ t ≤ T and λt = E(Yt |Ft−1).
Denote by Xi,t = n−1

i

∑N
j=1 aijYj,t the network effect, that is, the average impact of node

i’s connections. Consider the partition of the parameter vector θ = (θ(1)′, θ (2)′)′, where the
vectors θ(1) and θ(2) are of dimension m1 and m2, respectively, such that m1 + m2 = m. For
t = 1 . . . , T , both (1)–(2) have elementwise components

(3) λi,t = fi

(
Xi,t−1, Yi,t−1; θ(1), θ (2)), i = 1, . . . ,N,

where fi(·) is the ith component of the function f (·) depending on the specific model of
interest, which can contain linear and nonlinear effects. In general, θ(1) will denote an m1 ×1
vector associated with linear model parameters, whereas θ(2) will denote the m2 × 1 vector
of nonlinear parameters. Some examples are given below.
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2.1. Examples.

EXAMPLE 1. Consider (2) and the first-order linear NAR(1),

(4) λi,t = β0 + β1Xi,t−1 + β2Yi,t−1,

which is a special case of (3), with θ(1) = (β0, β1, β2)
′. Model (4) was originally introduced

by [66] for the case of continuous random variables Yt , such that Yi,t = λi,t + ξi,t . For each
single node i, model (4) allows the conditional mean of the process to depend on the past of
the variable itself, for the same node i, and the average of the other nodes j = i by which the
focal node i is connected. Implicitly, only the nodes directly connected with the focal node
i can impact on the conditional mean process λi,t . This is reasonable assumption in many
applications; for example, in the social network analysis, if the focal node i does not follow
a node l, so ail = 0, the effect of the activity related to the latter does not affect the former.
The parameter β1 is called network effect, as it measures the average impact of the i’th
node connections. The coefficient β2 is called autoregressive effect because it determines the
impact of the lagged variable Yi,t−1. Model (4) has been extended to the case of count time
series by [6]; it is called the linear PNAR(1) with Yi,t |Ft−1 ∼ Poisson(λi,t ) for i = 1, . . . ,N

and the copula-based DGP, as described earlier.

EXAMPLE 2. A nonlinear deviation of (4), when Yt takes integer values is given by

(5) λi,t = β0

(1 + Xi,t−1)γ
+ β1Xi,t−1 + β2Yi,t−1,

where γ ≥ 0. Clearly, (5) approaches a linear model for small values of γ , and γ = 0 reduces
to the linear model (4). Instead, when γ is larger than zero, (5) introduces a perturbation, de-
viating from the linear model (4). Hence, (5) is a special case of (3), with θ(1) = (β0, β1, β2)

′
and θ(2) = γ . Model (5) introduces a nonlinear drift in the intercept so that the baseline ef-
fect varies over time as a function of the network. If Yi,t counts activities of users in a social
network (likes, reactions, etc.) and the community becomes more active, then the average
magnitude of Xi,t−1 grows, and thus the baseline for each node i varies. When Yt ∈ R

N , the
following model

(6) λi,t = β0

(1 + |Xi,t−1|)γ + β1Xi,t−1 + β2Yi,t−1,

is analogous to (5) but for continuous-valued time series. To the best of our knowledge, we
are not aware of any stability or inferential results for models (5)–(6) when {N,TN } → ∞.
When N = 1 and T → ∞, such nonlinear models have been studied by by [31, 34] among
others.

EXAMPLE 3. Another example of (3) is given by the smooth transition version of the
NAR model, say STNAR(1),

(7) λi,t = β0 + (
β1 + α exp

(−γX2
i,t−1

))
Xi,t−1 + β2Yi,t−1,

where γ ≥ 0; see [53] for an introduction to STAR models. This models introduces a smooth
regime switching behaviour of the network effect making it possible to vary smoothly from
β1 to β1 + α, as γ varies from large to small values. When α = 0 in (7), the linear NAR
model (4) is obtained. Moreover, (7) is a special case of (3), with θ(1) = (β0, β1, β2)

′ and
θ(2) = (α, γ )′. In the case of univariate count time series, see [29, 31] for more.
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EXAMPLE 4. Define the threshold NAR model ([44]), say TNAR(1), by

(8) λi,t = β0 + β1Xi,t−1 + β2Yi,t−1 + (α0 + α1Xi,t−1 + α2Yi,t−1)I (Xi,t−1 ≤ γ ),

where I (·) is the indicator function and γ is the threshold parameter. When α0 = α1 = α2 =
0, model (8) reduces to the linear model (4). In this case, θ(1) = (β0, β1, β2)

′ and θ(2) =
(α0, α1, α2, γ )′ show that (8) is a special case of (3). In the case of univariate count time
series, see [13, 21, 58, 61] for more.

Nonlinear functions, such as (7)–(8), provide examples of switching models accounting
for regime specific dynamics of the observed process. The switching mechanism depends
on the network effect. For example, consider A as the network matrix connecting regional
districts, which share at least a border. Let Yi,t denote the numbers of reported cases for some
disease in each of these districts. Then, for each district i, the historical average of neighbours
(Xi,t−1) determines a switching effect, say from exponentially expanding pandemic to dying
out pandemic (and vice versa). Note that for (7), the network effect is regime-dependent
but this can be modified suitably as in (8). In conclusion, the dichotomy between STNAR
and TNAR models is that the former accounts for smooth transitions while the latter models
sudden changes; see [55] for more on nonlinear modelling of time series.

2.2. Stability conditions for fixed network size. Set f (·,W, θ) = f (·).
THEOREM 2.1. Consider model (1), with fixed N . Define G = μ1W + μ2I , where μ1,

μ2 are nonnegative constants such that ρ(G) < 1 and assume that for y, y∗ ∈N
N ,

(9)
∣∣f (y) − f

(
y∗)∣∣

vec � G
∣∣y − y∗∣∣

vec.

Then the process {Yt , t ∈ Z} is stationary, ergodic and E|Yt |aa < ∞ for any a ≥ 1.

The parallel result for continuous variables is also established.

THEOREM 2.2. Consider model (2), with fixed N . Define G = |μ1|W + |μ2|I , where
μ1, μ2 are real constants such that ρ(G) < 1 and the contraction condition (9) holds. Then
the process {Yt , t ∈ Z} is stationary ergodic with E|Yt |1 < ∞. Moreover, if E|ξt |aa < ∞ for
some a ≥ 8, then E|Yt |aa < ∞.

The proof of Theorems 2.1–2.2 is given in Appendix A.1. Theorem 2.1 extends [6],
Prop. 1, which was established for the linear PNAR model (4). Theorem 2.2 similarly ex-
tends [66], Theorem 1. In particular, existence of some moments for {ξt : t ∈ Z} guarantees
the conclusions of Theorem 2.2. Such assumption is not necessary in the linear case consid-
ered by [66] (see their equation (2.1) because of the assumed normality.

For each i = 1 . . . ,N , the contraction condition (9) follows by assuming that for xi, x
∗
i ∈

R+ and yi, y
∗
i ∈ N,

(10)
∣∣fi(xi, yi) − fi

(
x∗
i , y∗

i

)∣∣ ≤ μ1
∣∣xi − x∗

i

∣∣ + μ2
∣∣yi − y∗

i

∣∣,
because the left-hand side of (10) is bounded by μ1|∑N

j=1 wij (yj − y∗
j )| + μ2|yi − y∗

i | ≤
(μ1w

′
i + μ2e

′
i )|y − y∗|vec, where μ1w

′
i + μ2e

′
i = e′

iG is the ith row of the matrix G. Con-
dition (10) is verified elementwise. When the nonlinear functions fi(·) cannot be expressed
in a vector form, for example, f = (f1, . . . , fN)′, verification of (10) is helpful; see (5)–(7).
Moreover, the condition ρ(G) < 1 of Theorem 2.1 is implied by (10) when μ1 + μ2 < 1,
because ρ(G) ≤ |||G|||∞ ≤ μ1|||W |||∞ + μ2 ≤ μ1 + μ2, since |||W |||∞ = 1, by construction.

Theorem 2.2 follows again by (10) but with |μs |, for s = 1,2 and assuming that |μ1| +
|μ2| < 1. Some illustrative examples are given below.

EXAMPLE 1 (continued). For model (4), λt = β01 + GYt−1, with G = β1W + β2I . In
this case, the sharp condition ρ(G) < 1 is easily verifiable, and under (9), it implies the
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results of Theorem 2.1. However, the assumptions of the theorem are also satisfied by the
set of sufficient conditions (10) with μ1 = β1, μ2 = β2 and β1 + β2 < 1, for integer-valued
processes. For the continuous-valued case, a similar argument shows that |β1| + |β2| < 1.

EXAMPLE 2 (continued). Consider model (5). By the mean value theorem (MVT),

∣∣f (xi, yi) − f
(
x∗
i , y∗

i

)∣∣ ≤ max
xi∈R+

∣∣∣∣∂f (xi, yi)

∂xi

∣∣∣∣∣∣xi − x∗
i

∣∣ + max
yi∈N

∣∣∣∣∂f (xi, yi)

∂yi

∣∣∣∣∣∣yi − y∗
i

∣∣
≤ β∗

1
∣∣xi − x∗

i

∣∣ + β2
∣∣yi − y∗

i

∣∣,
where β∗

1 = max{β1, β0γ − β1}. Theorem 2.1 holds with G = β∗
1 W + β2I and β∗

1 +
β2 < 1. Similar to model (5), by considering all the possible combinations of signs of x,
β0 and β1 in model (6), we have |∂f (xi, yi)/∂xi | = |β1 − β0γ /(1 + xi)

γ+1xi/|xi || ≤ β̄1 ≡
max{|β1|, |β0γ − β1|, |β1 − β0γ |}. Theorem 2.2 holds with G = β̄1W + |β2|I and β̄1 +
|β2| < 1.

EXAMPLE 3 (continued). In the integer-valued case, Theorem 2.1 applies to model
(7) with G = (β1 + α)W + β2I and β1 + α + β2 < 1, which coincides with the station-
arity condition developed for the standard STAR model [53]. By considering all the pos-
sible combinations of signs for β1 and α, it is not difficult to show that Theorem 2.2 is
verified, for model (7), under the similar sufficient condition β�

1 + |β2| < 1, where β�
1 =

max{|β1|, |β1 + α|}.

EXAMPLE 4 (continued). The threshold model (8) does not satisfy the contraction con-
ditions (9)–(10). For the case of count data and N fixed, we develop a different proof to show
that {Yt } is stationary and ergodic provided that it has a positive conditional probability mass
function and |||G|||1 < 1, where G = (β1 + α1)W + (β2 + α2)I . Analogous result holds also
for continuous data; see [7], Section S-4.

2.3. Stability conditions for increasing network size. In this section, following the works
by [66] and [6], we investigate the stability conditions of the process {Yt ∈ EN }, with E =
R or E = N, respectively, when the network size diverges (N → ∞). We use a working
definition of stationarity for increasing dimensional processes following [66], Definition 1;
see [7], Section S-1.2.

THEOREM 2.3. Consider model (1) and N → ∞. Define G = μ1W + μ2I , where μ1,
μ2 ≥ 0 are constants such that μ1 + μ2 < 1 and the contraction condition (9) holds, with
maxi≥1 fi(0,0) < ∞. Then there exists a unique strictly stationary solution {Yt ∈ N

N, t ∈ Z}
to the nonlinear PNAR model, with maxi≥1 E|Yi,t |a ≤ Ca < ∞, for any a ≥ 1.

THEOREM 2.4. Consider model (2) and N → ∞. Define G = |μ1|W +|μ2|I , where μ1,
μ2 are real constants such that |μ1| + |μ2| < 1 and the contraction condition (9) holds, with
maxi≥1|fi(0,0)| < ∞. Then there exists a unique strictly stationary solution {Yt ∈ R

N, t ∈
Z} to the nonlinear NAR model. In addition, if maxi≥1 E|ξi,t |a ≤ Cξ,a < ∞ for some a ≥ 8,
then maxi≥1 E|Yi,t |a ≤ Ca < ∞.

Theorems 2.3–2.4 (whose proof is given in Appendices A.2 and A.3) extend the increasing
network-type results of [6], Theorem 1, and [66], Theorem 2, to nonlinear versions of the
PNAR and NAR models, respectively. For models (4)–(8), maxi≥1|fi(0,0)| = β0. Moreover,
the contraction condition (10), with μ1 + μ2 < 1 (|μ1| + |μ2| < 1), fulfils the conditions of
Theorem 2.3 (Theorem 2.4), that is, we obtain identical sufficient conditions, which guarantee
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stationarity with fixed and diverging N . We emphasize again that (8) does not satisfy (9)–
(10). This fact makes difficult to show stationarity, when N increases. More importantly, all
stability results do not depend on the network structure, as specified by the matrix W , and on
the data generating process describing the joint dependence.

3. Quasi-maximum likelihood inference. Consider model (3). Estimation for the un-
known parameter vector θ is developed by means of QMLE. Define the quasi-log-likelihood
function for θ by

(11) lNT (θ) =
T∑

t=1

N∑
i=1

li,t (θ),

where li,t (θ) is the log-likelihood contribution of a single network node whose form depends
on the type of data (discrete or continuous). Observe that (11) is not necessarily the true
log-likelihood. The QMLE is denoted by θ̂ and maximizes (11). It is obtained by solving the
system of equations SNT (θ) = 0, where

(12) SNT (θ) = ∂lNT (θ)

∂θ
=

T∑
t=1

sNt (θ)

is the quasi-score function. Moreover, define the following matrices:

(13) HNT (θ) = −∂2lNT (θ)

∂θ∂θ ′ , BNT (θ) =
T∑

t=1

E
(
sNt (θ)s′

Nt (θ)|Ft−1
)
,

as the sample Hessian matrix and the conditional information matrix, respectively. Hence-
forth, we drop the dependence on θ when a quantity is evaluated at the true value θ0.

3.1. Inference for PNAR models. Consider model (1). In this case, the QMLE estimator,
θ̂ , maximizes

(14) lNT (θ) =
T∑

t=1

N∑
i=1

(
Yi,t logλi,t (θ) − λi,t (θ)

)
,

which is the log-likelihood obtained if all time series were contemporaneously indepen-
dent. This simplifies computations allowing to establish consistency and asymptotic normal-
ity of the resulting estimator. It is worth noting that the joint copula structure, say C(·, ρ),
with set of parameters ρ, do not enter into the maximization problem of the working log-
likelihood (14). However, this does not imply that inference does not take into account de-
pendence among observations. The corresponding score function is given by

(15) SNT (θ) =
T∑

t=1

N∑
i=1

(
Yi,t

λi,t (θ)
− 1

)
∂λi,t (θ)

∂θ
=

T∑
t=1

sNt (θ).

Define ∂λt (θ)/∂θ ′ the N × m matrix of derivatives, Dt(θ) the N × N diagonal matrix with
elements equal to λi,t (θ), for i = 1, . . . ,N and ξt (θ) = Yt − λt (θ) is a Martingale Difference
Sequence (MDS) at θ = θ0. Then the empirical Hessian and conditional information matrices
are given, respectively, by

HNT (θ) =
T∑

t=1

N∑
i=1

Yi,t

λ2
i,t (θ)

∂λi,t (θ)

∂θ

∂λi,t (θ)

∂θ ′ −
T∑

t=1

N∑
i=1

(
Yi,t

λi,t (θ)
− 1

)
∂2λi,t (θ)

∂θ∂θ ′ ,(16)

BNT (θ) =
T∑

t=1

∂λ′
t (θ)

∂θ
D−1

t (θ)�t(θ)D−1
t (θ)

∂λt (θ)

∂θ ′ ,(17)
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where �t(θ) = E(ξt (θ)ξ ′
t (θ)|Ft−1) is the conditional covariance matrix evaluated at θ . We

impose the following standard assumptions:

A The parameter space  is compact and the true value θ0 belongs to its interior.
B For i = 1, . . . ,N , the function fi(·) is three times differentiable with respect to θ and

satisfies, for xi, x
∗
i ∈ R+ and yi, y

∗
i ∈ N,∣∣∣∣∂fi(xi, yi, θ)

∂θg

− ∂fi(x
∗
i , y∗

i , θ)

∂θg

∣∣∣∣ ≤ c1g

∣∣xi − x∗
i

∣∣ + c2g

∣∣yi − y∗
i

∣∣, g = 1, . . . ,m,

∣∣∣∣∂
2fi(xi, yi, θ)

∂θg∂θl

− ∂2fi(x
∗
i , y∗

i , θ)

∂θg∂θl

∣∣∣∣ ≤ c1gl

∣∣xi − x∗
i

∣∣ + c2gl

∣∣yi − y∗
i

∣∣, g, l = 1, . . . ,m,

∣∣∣∣∂
3fi(xi, yi, θ)

∂θg∂θl∂θs

− ∂3fi(x
∗
i , y∗

i , θ)

∂θg∂θl∂θs

∣∣∣∣ ≤ c1gls

∣∣xi − x∗
i

∣∣ + c2gls

∣∣yi − y∗
i

∣∣, g, l, s = 1, . . . ,m.

Furthermore, ∀g, l, s, maxi≥1|∂fi(0,0, θ)/∂θg| < ∞, maxi≥1|∂2fi(0,0, θ)/∂θg∂θl| < ∞,
maxi≥1|∂3fi(0,0, θ)/∂θg∂θl∂θs | < ∞ and

∑
g(c1g + c2g) < ∞,

∑
g,l(c1gl + c2gl) < ∞,∑

g,l,s(c1gls + c2gls) < ∞. In addition, the components of ∂fi/∂θ are linearly independent.
C For i = 1, . . . ,N , fi(xi, yi, θ) ≥ C > 0, where C is a generic constant.

Such regularity conditions have been employed in the literature to guarantee consistency
and asymptotic normality of the QMLE in the context of nonlinear time series models; see
[52], Chapter 3, among others. We now give additional assumptions employed for developing
inference when {N,TN } → ∞ and the necessary network properties. Define

HN(θ) = E
(

∂λ′
t (θ)

∂θ
D−1

t (θ)
∂λt (θ)

∂θ ′
)
,(18)

BN(θ) = E
(

∂λ′
t (θ)

∂θ
D−1

t (θ)�t(θ)D−1
t (θ)

∂λt (θ)

∂θ ′
)
,(19)

as, respectively, (minus) the expected Hessian matrix and the information matrix. Consider
the following assumptions.

H1 The process {ξt ,Ft : N ∈ N, t ∈ Z} is α-mixing with mixing coefficients {α(J )}.
H2 Define the standardized random process Ẏt = D

−1/2
t (Yt − λt ). There exists a nonneg-

ative, nonincreasing sequence {ϕh}h=1,...,∞ such that
∑∞

h=1 hϕh = � < ∞, and for
i < j < k < l, a.s.∣∣Cov(Ẏi,t , Ẏj,t Ẏk,t Ẏl,t |Ft−1)

∣∣ ≤ ϕj−i ,
∣∣Cov(Ẏi,t Ẏj,t Ẏk,t , Ẏl,t |Ft−1)

∣∣ ≤ ϕl−k,∣∣Cov(Ẏi,t Ẏj,t , Ẏk,t Ẏl,t |Ft−1)
∣∣ ≤ ϕk−j ,

∣∣Cov(Ẏi,t , Ẏj,t |Ft−1)
∣∣ ≤ ϕj−i .

H3 For model (1) with network W , the following limits exist, at θ = θ0:

H3.1 limN→∞ N−1HN = H , with H a m × m positive definite matrix.
H3.2 limN→∞ N−1BN = B .
H3.3 The third derivative of the quasi-log-likelihood (14) is bounded by functions

mi,t , which satisfy limN→∞ N−1 ∑N
i=1 E(mi,t ) = M , where M is a finite constant.

Assumption H1 is useful for studying processes with dependent errors [23]. When N is
fixed, a combination of Theorems 1–2 in [24] and Remark 2.1 in [25] shows that the process
{ξt : t ∈ Z} is α-mixing, with exponentially decaying coefficients, provided that |||G|||1 < 1.
Analogous conclusion follow by [30], Propositions 3.1–3.4. Condition H2 represents a con-
temporaneous weak dependence assumption. Indeed, even in the simple case of the indepen-
dence model, i.e. λi,t = β0, for all i = 1, . . . ,N , the reader can easily verify that, without any
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further constraints, N−1BN = O(N), so the limiting variance of the QMLE diverges. Note
that H2 does not guarantee finiteness of the Hessian and information matrices, as N → ∞.
Such requirement is imposed by Assumption H3. Obviously, such properties depend on the
structure of W and on the functional form of f (·) in (1); without the knowledge of these
components it cannot be simplified any further. We present a detailed example involving the
nonlinear PNAR model (5) in Section 3.2 to offer further insight about H3. Proofs for all the
following results are given in the Supplementary Material [7], Section S-2.

LEMMA 3.1. Consider model (1) with SNT , HNT and BNT defined as in (15), (16) and
(17), respectively. Let θ ∈  ⊂ R

m+. Suppose the conditions of Theorem 2.3, Assumption B–C
and H1–H3 hold. Then, as {N,TN } → ∞:

1. (NTN)−1HNTN

p−→ H ,

2. (NTN)−1BNTN

p−→ B ,

3. (NTN)− 1
2 SNTN

d−→ N(0,B),

4. maxg,l,s supθ∈O(θ0)
| 1
NTN

∑TN

t=1
∑N

i=1
∂3li,t (θ)

∂θg∂θl∂θs
| ≤ MNTN

p−→ M ,

where MNTN
:= (NTN)−1 ∑TN

t=1
∑N

i=1 mi,t and O(θ0) = {θ : |θ − θ0|2 < δ} is a neighbour-
hood of θ0.

THEOREM 3.2. For model (1), suppose that Assumption A and conditions of Lemma 3.1
hold. Then there exists a fixed open neighbourhood O(θ0) = {θ : |θ − θ0|2 < δ} of θ0 such
that with probability tending to 1, as {N,TN } → ∞, the equation SNTN

(θ) = 0 has a unique

solution, denoted by θ̂ , such that θ̂
p−→ θ0 and

√
NTN(θ̂ − θ0)

d−→ N(0,H−1BH−1).

Theorem 3.2 follows by Lemma 3.1 as proved by [6], Section S-3.3. In addition, it extends
the results of [6], Theorem 3, to nonlinear Poisson NAR models. The novelty of Theorem 3.2
is that both N and T tend to infinity as opposed to the standard case (when N is fixed).
Additional conditions guarantee strong consistency of the estimators, that is, we have the
following.

THEOREM 3.3. If TN = λN , for some λ > 0 and Assumption H1 is such that the mix-
ing coefficients satisfy α(J )1−1/r = O(J−3−ε), for some r > 2 and some ε > 0, then as

{N,TN } → ∞, all the convergences “
p−→” in Lemma 3.1 are replaced by “

a.s.−−→” and Theo-
rem 3.2 holds with θ̂

a.s.−−→ θ0.

For instance, exponential decay of the mixing coefficients α(J ) satisfies the assumption for
any r and ε. Theorem 3.3 is a new result to the best of our knowledge as strong laws of large
numbers for generally dependent double-indexed processes are scarce in the literature (for
an exception, see [19]); see the discussion in [2], Comment 6 and [3], p. 256. It is pointed
out again that the proof of Theorem 3.2 does not depend on the specification of the data
generating process for the joint dependence of {Yt }.

3.2. A detailed example. We give a detailed discussion for proving Theorem 3.2 for
the nonlinear PNAR model (5) case. Let �ξ = E|ξt ξ

′
t |vec and λmax(X) the largest abso-

lute eigenvalue of an arbitrary symmetric matrix X. Consider the vector form of model (5):
λt = β0Ct−1 + GYt−1, where G = β1W + β2I and Ct−1 = (1 + Xt−1)

−γ . Under the
conditions of Theorem 2.3, and by using a infinite backward substitution argument on
Yt−1 we can rewrite the model as Yt = μ∞

t−1 + Ỹt , where μ∞
t−1 = β0

∑∞
j=0 GjCt−1−j
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and Ỹt = ∑∞
j=0 Gjξt−j . The proof of such representation is given in the Supplemen-

tary Material [7], Section S-2.3. Define the following quantities: Lt−1 = log(1 + Xt−1),
Et−1 = Ct−1 � Lt−1, Ft−1 = log2(1 + Xt−1) � Ct−1, Jt−1 = log3(1 + Xt−1) � Ct−1,
where � is the Hadamard product [51], Section 11.7; I1,t−1 = Ct−1, I2,t−1 = Wμ∞

t−1,

I3,t−1 = μ∞
t−1, �t = �

1/2
t D−1

t , �(0) = E[�t(Yt−1 − μ∞
t−1)(Yt−1 − μ∞

t−1)
′�′

t ] and �(0) =
E[�tW(Yt−1 − μ∞

t−1)(Yt−1 − μ∞
t−1)

′W ′�′
t ], �1,t−1 = I1,t−1, �2,t−1 = Xt−1, �3,t−1 = Yt−1,

�4,t−1 = Et−1; moreover, let (j∗, l∗, k∗) = arg maxj,l,k|N−1 ∑N
i=1 ∂3li,t (θ)/∂θj ∂θl∂θk|,

�jlk = N−1 ∑N
i=1 E(�i,j,t−1�i,l,t−1�i,k,t−1/λi,t ), �F,k = N−1E(F ′

t−1D
−1
t �k,t−1) and set

�J = N−1E(J ′
t−1D

−1
t |ξt |vec), for j, l, k = 1, . . . ,4. Consider the following assumptions.

Q1 Let W be a sequence of matrices with nonstochastic entries indexed by N .

Q1.1 Consider W as a transition probability matrix of a Markov chain, whose state
space is defined as the set of all the nodes in the network (i.e., {1, . . . ,N}). The Markov
chain is assumed to be irreducible and aperiodic. Further, define π = (π1, . . . , πN)′ ∈ R

N

as the stationary distribution of the Markov chain, where π ≥ 0,
∑N

i=1 πi = 1 and π =
W ′π . Furthermore, assume that λmax(�ξ )

∑N
i=1 π2

i → 0 as N → ∞.
Q1.2 Define W ∗ = W + W ′ and assume λmax(W

∗) = O(logN) and λmax(�ξ ) =
O((logN)δ), for some δ ≥ 1.

Q2 Assume that the following limits exist: lBkj = limN→∞ N−1E(I ′
k,t−1�

′
t�tIj,t−1),

for k, j = 1, . . . ,4, uB
1 = limN→∞ N−1 tr[�(0)], uB

2 = limN→∞ N−1 tr[W�(0)],
uB

3 = limN→∞ N−1 tr[�(0)], vB
k4 = limN→∞ N−1E(�′

k,t−1�
′
t�tEt−1), d∗ =

limN→∞ �j∗,l∗,k∗ . If at least two indices among (j∗, l∗, k∗) equal 4, d∗
F = limN→∞ �F,s∗ ,

where s∗ = j∗, l∗, k∗. Moreover, if all three (j∗, l∗, k∗) equal 4, d∗
J = limN→∞ �J .

THEOREM 3.4. Consider (5) and suppose the conditions of Theorem 2.3, Assump-
tions A–C, H1–H2 and Q1–Q2 hold. Then the conclusions of Theorem 3.2 hold true for
model (5), with corresponding limiting matrices:

H =

⎛
⎜⎜⎜⎝

lH11 lH12 lH13 −β0v
H
14

lH22 + uH
1 lH23 + uH

2 −β0v
H
24

lH33 + uH
3 −β0v

H
34

β2
0vH

44

⎞
⎟⎟⎟⎠ ,

B =

⎛
⎜⎜⎜⎝

lB11 lB12 lB13 −β0v
B
14

lB22 + uB
1 lB23 + uB

2 −β0v
B
24

lB33 + uB
3 −β0v

B
34

β2
0vB

44

⎞
⎟⎟⎟⎠ ,

(20)

where the elements of the Hessian matrix are obtained by the elements of the information
matrix with �t = Dt .

REMARK 1. Clearly, the network structure influences the results of Theorem 3.4. Indeed,
Assumption Q1 requires a well-behaved underlying network: (i) there should exist a non-zero
probability to connect each pair of nodes; this allows the network to converge to its stationary
distribution, that is, limN→∞ WN = 1π ′; (ii) The growth of the network should be such that
certain regularity properties hold. For instance, the covariances of the errors do not diverge
fast, as N → ∞. The proof in [7], Section S-2.3, shows that the leading terms of Hessian
and information matrices depend on the error component ξt−j and the pseudo covariance
matrix �ξ and are asymptotically negligible (compare also with [6], Lemma S-1). In this way,
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the remaining terms appearing in Assumption Q2 show existence of the limiting Hessian
matrix H and (together with Assumption H2) of the limiting information B . Without any
assumptions for the network, the structure of matrices H and B is unknown and conditions
of finiteness of the limiting matrices could not be specified explicitly.

3.3. Inference for NAR models. In this case, define θ̂ , as the maximizer of the least
squares criterion

(21) lNT (θ) = −
T∑

t=1

(
Yt − λt (θ)

)′(
Yt − λt (θ)

)
.

It follows that

(22) SNT (θ) =
T∑

t=1

∂λ′
t (θ)

∂θ

(
Yt − λt (θ)

) =
T∑

t=1

sNt (θ).

The empirical Hessian and information matrices are respectively

HNT (θ) =
T∑

t=1

N∑
i=1

∂λi,t (θ)

∂θ

∂λi,t (θ)

∂θ ′ −
T∑

t=1

N∑
i=1

(
Yi,t − λi,t (θ)

)∂2λi,t (θ)

∂θ∂θ ′ ,(23)

BNT (θ) =
T∑

t=1

∂λ′
t (θ)

∂θ
�t(θ)

∂λt (θ)

∂θ ′ ,(24)

where notation is as in Section 3.1. In addition,

HN(θ) = E
(

∂λ′
t (θ)

∂θ

∂λt (θ)

∂θ ′
)
,(25)

BN = E
(

∂λ′
t (θ)

∂θ
ξt (θ)ξ ′

t (θ)
∂λt (θ)

∂θ ′
)
,(26)

and the latter equals σ 2HN , when θ = θ0, because ξt an is IID(0, σ 2) process. For the same
reasons Assumption H1–H2 hold trivially. Assumption H3 is modified as the following:

H3′ For model (2) with network W , the following limits exist, at θ = θ0:

H3′.1 limN→∞ N−1HN = H , with H a m × m positive definite matrix.
H3′.2 The third derivative of the quasi-log-likelihood (21) is bounded by functions

mi,t , which satisfy limN→∞ N−1 ∑N
i=1 E(mi,t ) = M , where M is a finite constant.

THEOREM 3.5. Consider model (2) with SNT , HNT and BNT defined as in (22), (23)
and (24), respectively. Let θ ∈  ⊂ R

m. Suppose that the conditions of Theorem 2.4, As-
sumptions A–B and H3′ hold. Then there exists a fixed open neighbourhood O(θ0) = {θ :
|θ − θ0|2 < δ} of θ0 such that with probability tending to 1 as {N,TN } → ∞, the equation

SNTN
(θ) = 0 has a unique solution, denoted by θ̂ , such that θ̂

p−→ θ0 and
√

NTN(θ̂ − θ0)
d−→

N(0,B−1), where B = σ 2H and H is defined as in (20), with �t = Dt = I .

The proof is omitted since it is analogous to the proof of Theorem 3.2. Theorem 3.5 gener-
alises the results of [66], Theorem 3, to nonlinear NAR models, and it can be proved to entail
results analogous to Proposition 3.4, by considering [66], Assumption C2, instead of Q1,
and Q2 holding, with Dt = �t = I and �jlk = 0, for j, k, l = 1, . . . ,4; see [66], Theorem 3,
for a detailed proof concerning the case of model (4). A result similar to Theorem 3.3 for
model (2) is also established by setting TN = λN .
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REMARK 2. Reiterating the discussion following Theorems 2.3–2.4 and noting that As-
sumption B does not hold for (8), the double asymptotic based inference derived in this
section and the associated testing theory (see Section 5) do not hold for threshold models
when N is increasing. However, the Supplementary Material ([7], Section S-4) provides all
these results for the threshold model if N is fixed.

REMARK 3. The asymptotic theory of this section applies for parameter values satisfying
the conditions of Theorems 2.3–2.4. In practical applications, the QMLE is obtained using
constrained optimization where the constraints satisfy such conditions. In the integer-valued
case, additional constraints should be introduced so that the mean process is positive.

4. Hypothesis testing on network autoregressive models. With the same notation as
in Sections 2 and 3, recall (3) and consider the following testing problems:

(27) H0 : θ(2) = θ
(2)
0 vs. H1 : θ(2) = θ

(2)
0 , componentwise,

against the Pitman’s local alternatives

(28) H0 : θ(2) = θ
(2)
0 vs. H1 : θ(2) = θ

(2)
0 + δ2√

NT
, δ2 ∈ R

m2 .

To develop a test statistic for testing (27)–(28), we employ a quasi-score test based on
(11). An appealing property of the score test is that it is computed under the null, which is
computationally simpler. Moreover, the asymptotic distribution of the test is not affected
when θ(2) belongs to the boundary of the parameter space. Define θ̃ = (θ̃ (1)′, θ̃ (2)′)′ the
constrained quasi-likelihood estimator of θ = (θ(1)′, θ (2)′)′, under the null hypothesis, and
SNT (θ) = (S

(1)′
NT (θ), S

(2)′
NT (θ))′ denote the corresponding partition of the quasi-score function.

Because we study a quasi-score test, we correct the test statistic to obtain thoroughly its
limiting distribution; see [33], among others. Accordingly, the test statistic is given by [7],
Section S-3,

(29) LMNT = S
(2)′
NT (θ̃)�−1

NT (θ̃)S
(2)
NT (θ̃).

Here, (NT )−1�NT (θ̃) is a suitable estimator for the covariance matrix defined as � =
Var[(NT )−1/2S

(2)
NT (θ̃)], where

(30) � = B22 − H21H
−1
11 B12 − B21H

−1
11 H12 + H21H

−1
11 B11H

−1
11 H12,

with Bgl,Hgl, g, l = 1,2 with dimension mg × ml , are blocks of the matrices H , B such that

H =
(
H11 H12
H21 H22

)
, B =

(
B11 B12
B21 B22

)
.

If (11) is the true likelihood, then LMNT reduces to the standard score test with B ≡ H and
� = B22 − B21B

−1
11 B12 =: �B .

REMARK 4. Following [6], the estimator �NT (θ̃) of (29) is computed as the sample
counterpart of (30), obtained by replacing the partitioned matrices H and B , respectively, by
HNT (θ̃) and BNT (θ̃), where HNT (θ) is defined in (13) and BNT (θ) is the sample information
matrix.

A′ The parameter space  is compact. Define the partition of the parameter space (1)

such that θ(1) ∈ (1) and the true value θ
(1)
0 belongs to its interior.
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THEOREM 4.1. Suppose that model (3) admits a stationary solution, for N → ∞. Con-
sider lNT , SNT , HNT and BNT defined by (11), (12) and (13), respectively. Assume that,
under H0, A′ is satisfied such that, as {N,TN } → ∞, Lemma 3.1 and Theorem 3.2 holds.
Recall the testing problem (27). Then, as {N,TN } → ∞, the quasi-score test statistic (29)
converges to a chi-square random variable,

LMNTN

d−→ χ2
m2

,

under H0. Moreover, under the alternative (28), (29) converges to a noncentral chi-square
random variable,

LMNTN

d−→ χ2
m2

(
δ′

2�̃δ2
)
,

where �̃ = �̃H �̃−1�̃H and �H := H22 −H21H
−1
11 H12; �̃ and �̃H are sample counterparts

of � and �H , respectively, evaluated at θ̃ .

Theorem 4.1 extends the results of [13] for the case of multivariate discrete and continuous
network autoregressive models with infinite-dimensional data. In addition, it implies that even
though θ(2) belongs to the boundary of the parameter space, the asymptotic χ2 distribution
remains unaffected. Instead, the asymptotic distribution of the Wald and likelihood ratio tests
depends on the null hypothesis and do not converge to χ2 distributed when N is fixed; see
[33], Section 8.3.2 and [1]. We illustrate some applications of Theorem 4.1 to the network
models (1)–(2) but we emphasize that its conclusion applies to more general settings.

PROPOSITION 4.2. Assume Yt follows (1) and the process λt is defined as in (3). Con-
sider the test H0 : θ(2) = θ

(2)
0 versus H1 : θ(2) = θ

(2)
0 . Then, under H0, A′ and the conditions

of Lemma 3.1, Theorem 4.1 is true.

Proposition 4.2 follows by Lemma 3.1, Theorems 2.3 and 4.1.

4.1. A detailed example (Continued). For model (5), the linearity test (27) is equivalent
to testing H0 : γ = 0 versus H1 : γ > 0. Convergence for all necessary asymptotic quantities
is required only under the null. Recall the notation of Section 3.2. Then, under H0, Ct−1 = 1,
the decomposition of the count process simplifies to Yt = μ + ∑∞

j=0 Gjξt−j , since μt−1 =
μ = β0/(1−β1 −β2)

−1. This entails that �1,t−1 = 1, �4,t−1 = Lt−1, Ft−1 = log2(1+Xt−1)

and Jt−1 = log2(1 + Xt−1). Moreover, set � = E(�′
t�t ), �(0) = E[�t(Yt−1 − μ)(Yt−1 −

μ)′�′
t ] and �(0) = E[�tW(Yt−1 − μ)(Yt−1 − μ)′W ′�′

t ]. So, condition Q2 simplifies as
follows:

Q2′ Assume that the following limits exist: f1 = limN→∞ N−1(1′�1), f2 =
limN→∞ N−1 tr[�(0)], f3 = limN→∞ N−1 tr[W�(0)], f4 = limN→∞ N−1 tr[�(0)], v̇B

k4 =
limN→∞ N−1E(�′

k,t−1�
′
t�tLt−1), d∗ = limN→∞ �j∗,l∗,k∗ . If at least two indices among

(j∗, l∗, k∗) equal 4, d∗
F = limN→∞ �F,s∗ , where s∗ = j∗, l∗, k∗. Moreover, if all three in-

dices (j∗, l∗, k∗) equal 4, d∗
J = limN→∞ �J .

In this case, the limiting Hessian and information matrices in (20) are equal to the respective
matrices obtained by the linear model fitting [6], equation (22), plus the addition of the fourth
row and column whose elements are given by (−β0)

νv̇B
k4, for k = 1, . . . ,4 and ν = 2, when

k = 4 and ν = 1, otherwise.

PROPOSITION 4.3. Assume Yt follows (1) and the process λt is defined as in (5). Suppose
the conditions of Theorem 2.3, Assumptions A′, B–C, H1–H2 and Q1–Q2′ hold. Consider the
test H0 : γ = 0 versus H1 : γ > 0. Then Theorem 4.1 holds true.
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Denoting the constrained QMLE by θ̃ = (θ̃ (1),0)′, where θ̃ (1) is the QMLE of the lin-
ear model (4), the partial quasi-score (29) is given by S

(2)
NT (θ̃) = ∑T

t=1
∑N

i=1(Yi,t /λi,t (θ̃ ) −
1)∂λi,t (θ̃ )/∂γ , with ∂λi,t (θ̃ )/∂γ = −β̃0 log(1 + Xi,t−1), where β̃0 is the QMLE of the in-
tercept β0 in the linear model (4). Furthermore, the covariance estimator �NT (θ̃) for the test
statistic (29) is defined as in Remark 4. Note that in Proposition 4.3, the nonlinear perturba-
tion is due to the network structure. Moreover, since the asymptotic distribution of the score
test (29) depends on the convergence of sample Hessian and information matrices to (20),
the approximation to the chi-square distribution depends by the convergence of the network
according to the regularity properties given by Q1–Q2′ (see Remark 1). The analogous result
and conclusions are obtained for (2), by using Theorems 2.4, 3.5 and 4.1 and, therefore, it is
omitted. Consider the following condition:

Q2′′ For Yt defined as in (2) and λt following (6), Assumption Q2′ holds, with Dt = �t =
I and �jlk = 0, for j, k, l = 1, . . . ,4.

PROPOSITION 4.4. Assume Yt follows (2) and the process λt is defined as in (6). Suppose
the conditions of Theorem 2.4, Assumptions A′–B, H1–H2, [66], Assumption C2, and Q2′′
hold. Consider the test H0 : γ = 0 versus H1 : γ > 0. Then Theorem 4.1 holds true.

5. Testing under nonidentifiable parameters. We develop testing theory when the pa-
rameters are not identifiable under the linearity hypothesis. A case in point is model (7), with
θ(1) = (β0, β1, β2)

′ and θ(2) = (α, γ )′. Then testing H0 : α = 0, makes γ nonidentifiable but
the score partition (15)—and consequently the test statistic—still depends on the value of
γ . Hence, the theory of Section 4 does not apply any more. Similar remarks hold for the
threshold parameter γ of model (8), when testing H0 : α0 = α1 = α2 = 0. Assigning a fixed
arbitrary value for γ resolves such issues but this approach might lack power as the test is
sensitive to the choice of γ , especially when γ is far from its true value. It is well known
(see [55], Section 5.1,5.5) that testing linearity is an important issue because nonidentifi-
able parameters have tremendous impact on properties of estimators. Usually a sup-type test,
say gNT = supγ∈� LMNT (γ ), is employed in applications, where � = [γL, γU ] is a compact
domain for γ ; for example, [15, 32] and [13], paragraph 3.2.

Define Z a random variable, and suppose that the function g(·) : � → R is continuous
with respect to the uniform metric, monotonic for each γ , and such that, as Z → ∞, then
g(Z) → ∞ in a subset of � with a nonzero probability P. For the standard asymptotics,
that is, T → ∞, such functions have been employed in applications. Examples include
gT = g(LMT ) [38] and [5] who considered g(LMT ) = ∫

� LMT (γ )dP(γ ) and g(LMT ) =
log(

∫
� exp(1/2LMT (γ ))dP(γ )). We extend this theory to the case of both T ,N → ∞.

5.1. Specification. In this section, we use a more convenient notation. Accordingly, con-
sider the nonlinear PNAR model defined in (1) as

(31) Yt = Nt

(
λt (γ )

)
, λt (γ ) = Z1t (W)β + h(Yt−1,W,γ )α,

where β is a k1 × 1 vector of identifiable parameters associated with the linear compo-
nent of the model, α is a k2 × 1 vector of identifiable nonlinear parameters and γ denote
nuisance parameters. We set θ = (φ′, γ ′)′, φ = (β ′, α′)′. With this notation, the dimen-
sion of θ is m = k + m∗, where m∗ is the dimension of γ and k = k1 + k2. In addition,
Z1t (W) = (1,WYt−1, Yt−1) is a N × k1 matrix associated to the linear part of the network
autoregressive model (for the order 1 model k1 = 3), and h(Yt−1,W,γ ) is a N × k2 ma-
trix describing the nonlinear part of the model. Set Z1t = Z1t (W), ht (γ ) ≡ h(Yt−1,W,γ )

and ht (γ ) = (h1
t (γ ) . . . hb

t (γ ) . . . h
k2
t (γ )), where each column indicates a nonlinear regres-

sor hb
t (γ ), for b = 1, . . . , k2, being a N × 1 vector whose elements are hb

i,t (γ ), where
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i = 1, . . . ,N . Then the conditional expectation of (31) is λt (γ ) = Zt(γ )φ where Zt(γ ) =
(Z1t , ht (γ )) is the N × k matrix of regressors. Analogously, for continuous-valued time se-
ries and ξt ∼ IID(0, σ 2), equation (2) becomes

(32) Yt = λt (γ ) + ξt , λt (γ ) = Z1t (W)β + h(Yt−1,W,γ )α.

Many nonlinear models are included in this general frameworks provided by (31)–(32);
for example, the STNAR model (7), where k2 = 1 and hi,t (γ ) = exp(−γX2

i,t−1)Xi,t−1, for
i = 1, . . . ,N , and the TNAR model (8), where k2 = 3 and h1

i,t (γ ) = I (Xi,t−1 ≤ γ ), h2
i,t (γ ) =

Xi,t−1I (Xi,t−1 ≤ γ ) and h3
i,t (γ ) = Yi,t−1I (Xi,t−1 ≤ γ ); see [38], p. 414.

5.2. Testing linearity. For models (31)–(32), consider testing linearity in the presence of
a non identifiable parameters γ ,

(33) H0 : α = 0, vs. H1 : α = 0, elementwise.

Consider first the case of count time series, that is, equation (31). In this case, the
score (15), Hessian (16) and the sample information matrix (17), for the quasi-log-
likelihood (14) are SNT (γ ) = ∑T

t=1 sNt (γ ), HNT (γ1, γ2) = ∑T
t=1

∑N
i=1 Yi,t Z̄i,t (γ1)Z̄

′
i,t (γ2)

and BNT (γ1, γ2) = ∑T
t=1 E[st (γ1)s

′
t (γ2)|Ft−1], where sNt (γ ) = Z′

t (γ )D−1
t (γ )(Yt −Zt(γ )φ)

and Z̄i,t (γ ) = Zi,t (γ )/λi,t (γ ). The theoretical counterpart of such quantities are then de-
noted by HN(γ1, γ2) = ∑N

i=1 E(Yi,t Z̄i,t (γ1)Z̄
′
i,t (γ2)), H(γ1, γ2) = limN→∞ N−1HN(γ1, γ2)

and BN(γ1, γ2) = E(st (γ1)s
′
t (γ2)), B(γ1, γ2) = limN→∞ N−1BN(γ1, γ2). Following the dis-

cussion of Section 4, the quasi-score function is partitioned again in two components:
the part concerning linear parameters and the component associated with the nonlinear
part of the model. We denote this by SNT (γ ) = (S

(1)′
NT ,S

(2)′
NT (γ ))′. Moreover, consider

S(γ ) = (S(1)′, S(2)′(γ ))′ a mean zero Gaussian process with covariance kernel B(γ1, γ2).
Define the matrix �(γ1, γ2) as in (30), with partitioned matrices Bgl , Hgl , for g, l = 1,2, of
dimension kg ×kl , being blocks of the matrices B(γ1, γ2), H(γ1, γ2), with obvious rearrange-
ment of the notation. Then S(2)(γ ) is a Gaussian process with covariance kernel �(γ1, γ2).
Define φ̃ = (β̃ ′,0′)′ the constrained estimator under the null hypothesis and use the tilde no-
tation for all quantities, which correspond to constrained QMLE. Then, for testing (33), we
consider the test statistic

(34) LMNT (γ ) = S̃
(2)′
NT (γ )�̃−1

NT (γ, γ )S̃
(2)
NT (γ ),

where, according to Remark 4, �̃NT (γ, γ ) is the estimator of �(γ, γ ), obtained by substitut-
ing H(γ,γ ), B(γ, γ ) with H̃NT (γ, γ ), B̃NT (γ, γ ), respectively.

Define Z1,i,t = (1,Xi,t−1, Yi,t−1)
′ and ηNt = N−1/2 ∑N

i=1 Yi,t (Z
′
1,i,tZ1,i,t − 1) + X1,i,t +

Y1,i,t . An extra condition is required.

B′ Assumption B holds with all constants not depending on γ ∈ �, where � is compact,
and ‖ηNt‖q < ∞, for some q > max{1 + δ,m∗}, with 0 < δ < 1.

Assumption B′ is similar to assumption B for the particular case we consider. An extra
moment assumption is required to guarantee stochastic equi-continuity of the score. It can be
easily shown that a sufficient condition for obtaining ‖ηNt‖q < ∞ would be, for example,

the weak dependence condition |E(Y r
i,tY

r
j,t |Ft−1)| ≤ φj−i , such that

∑∞
h=1 φ

1/r
h < ∞, where

r = q/2, if q is even, and r = (q + 1)/2, if q is odd. For instance, in the STNAR model (7),
m∗ = 1, q = 2 and r = 1, so the condition simplifies to a special case of Assumption H2.
From B′, Assumption C holds trivially for (31), because a.s. λi,t (γ ) ≥ β0 + h′

i (0, γ )α =
C > 0, for i = 1, . . . ,N . Define δ2 ∈ R

k2+ and J2 = (Ok2×k1, Ik2), where Is is a s × s identity
matrix and Oa×b is a a × b matrix of zeros.
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THEOREM 5.1. Assume Yt is integer-valued, following (31) and suppose the conditions
of Theorem 2.3, Assumption A′–B′ and H1–H3 hold. Consider the test H0 : α = 0 versus H1 :
α > 0, componentwise. Then, under H0, as {N,TN } → ∞, SNTN

(γ ) ⇒ S(γ ), LMNTN
(γ ) ⇒

LM(γ ) and gNTN
⇒ g = g(LM(γ )) where

LM(γ ) = S(2)′(γ )�−1(γ, γ )S(2)(γ ).

Moreover, the same result holds under local alternatives H1 : α = (NTN)−1/2δ2, with S(2)(γ )

having mean J2H
−1(γ, γ )J ′

2δ2.

Theorem 5.1 (the proof is given in Appendix A.4) extends [38], Theorem 1, in three di-
rections: (i) develops testing for NAR models; (ii) proves convergence to asymptotic pro-
cess, where both time and network dimension diverge together; (iii) the results hold for both
continuous-valued data (see below) and integer-valued multivariate random variables. In line
with Section 4.1, for each single model encompassed in (31) one can substitute H3 with
network conditions Q1 and suitable limits existence as in Q2′. An analogous result holds
for continuous-valued time series, as in (32). Its proof is omitted. Consider st (γ ) = Z′

t (γ )ξt

and HT (γ1, γ2) = ∑T
t=1

∑N
i=1 Zi,t (γ1)Z

′
i,t (γ2). In this case, no additional weak dependence

assumption is required since the error sequence is independent.

B′′ Assumption B holds with all constants not depending on γ ∈ �, where � is compact.

THEOREM 5.2. Assume Yt is continuous-valued, following (32) and suppose the condi-
tions of Theorem 2.4, Assumptions A′–B′′ and H3′ hold. Consider the test H0 : α = 0 versus
H1 : α = 0, componentwise. Then the results of Theorem 5.1 hold true.

REMARK 5. The results of this paper extend straightforwardly to the case of model order
p > 1, that is, λt = f (Yt−1, . . . , Yt−p,W, θ). Indeed, the proof of stability conditions of The-
orems 2.1–2.2 are based on the fact that the process {Yt : t ∈ Z} is a first-order Markov chain.
All proofs adapt directly to a Markov chain of generic order p, by suitable adjustment of the
contraction property (9). A similar remark holds for asymptotic properties of the QMLE and
Theorems 3.2–5.2 by a suitable extension.

5.3. Computations of p-values. The null distribution of the process g(·) cannot be tabu-
lated in general, apart from special cases; see [4]. To overcome this obstacle, we consider two
different approaches. Consider the sup-type test, g = supγ∈�(LM(γ )). By Theorems 5.1–5.2,
under H0, LM(γ ) is a chi-square process with k2 degrees of freedom. If the nuisance param-
eter γ is scalar, [15] proves that the p-value of the sup-test is approximately bounded by

(35) P

[
sup

γ∈�F

(
LM(γ )

) ≥ M

]
≤ P

(
χ2

k2
≥ M

) + V M
1
2 (k2−1) exp(−M

2 )2− k2
2

�(k2
2 )

,

where M is the maximum of the test statistic LMNT (γ ), with γ ∈ �F and �F = (γL, γ1, . . . ,

γl, γU ) is a grid of values for �. The quantity V is the approximated total variation, defined
by

V =
∣∣∣∣LM

1
2
NT (γ1) − LM

1
2
NT (γL)

∣∣∣∣ + · · · +
∣∣∣∣LM

1
2
NT (γU) − LM

1
2
NT (γl)

∣∣∣∣.
Such method is attractive because of its simplicity and its computational speed. This last
point is of great importance in network models, especially when the dimension N is large.
However, the method suffers from three main drawbacks. First, (35) leads to a conservative
test, because usually the p-values are smaller than their bound. Second, the results of [15]
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hold only for scalar nuisance parameters. Though this observation applies to several models
discussed so far, like the STNAR model (7), more complex models may require inclusion of
more than one nuisance parameter. Finally, (35) cannot be applied to the TNAR model (8),
because LM(γ ), under the null hypothesis, has to be differentiable [15], p. 36, [38], Section 4.
Following [38], we develop a bootstrap method based on stochastic permutations.

Define F(·), the distribution function of the process g with pNT = 1 − F(gNT ). From
Theorem 5.1 and the Continuous Mapping Theorem (CMT), pNT ⇒ p, where p = 1 −
F(g) and p ∼ U(0,1), under the null. Hence, the test rejects H0 if pNT ≤ aH0 , where
aH0 is the asymptotic size of the test. Define {νt : t = 1, . . . , T } ∼ IIDN(0,1), such that
S̃ν

NT (γ ) = ∑T
t=1 s̃ν

Nt (γ ), with s̃ν
Nt (γ ) = s̃Nt (γ )νt , is the version of the estimated score per-

turbed by a Gaussian noise. Similarly, the perturbed score test is defined by LMν
NT =

S̃
ν(2)′
NT (γ )�̃−1

NT (γ, γ )S̃
ν(2)
NT (γ ) and g̃NT = g(LMν

NT ). Finally, p̃NT = 1 − F̃NT (gNT ) is the
approximation of p-values obtained by stochastic permutations, where F̃NT (·) denotes the
distribution function of g̃NT , conditional to the available sample. The following result shows
that such a bootstrap approximation provides adequate approximation to the null distribution.

THEOREM 5.3. Assume the conditions of Theorems 3.3, 5.1 hold. Then p̃NTN
−pNTN

=
op(1) and p̃NTN

⇒ p. Moreover, under H0, p̃NTN

d−→ U(0,1).

The proof of this theorem is given in Appendix A.5. An analogous result is obtained
for continuous-valued network models and it is omitted. Although p̃NT is close to pNT

asymptotically, the conditional distribution F̃NT (·) is not observed. We can approximate
this by Monte Carlo simulations following (i)–(iv) of [38], p. 419. A Gaussian sequence
{νt,j : t = 1, . . . , T } ∼ IIDN(0,1) is generated, and at each iteration compute the quantities

S̃
νj

NT (γ ), LM
νj

NT (γ ) and g̃
j
NT = g(LM

νj

NT (γ )), for j = 1, . . . , J . Hence, an approximation of

the p-values is obtained by p̃J
NT = J−1 ∑J

j=1 I (g̃
j
NT ≥ gNT ). The Glivenko–Cantelli theo-

rem implies that p̃J
NT

p−→ p̃NT , as J → ∞, and choosing J large enough allows to make p̃J
NT

arbitrary close to p̃NT .
The proposed bootstrap methodology provides a direct approximation of the p-values in-

stead of an approximate bound, given by (35). Furthermore, it is suitable even when testing
linearity in the presence of more than one nuisance parameter. As a final remark, the stochas-
tic permutation bootstrap method has been preferred instead of parametric bootstrap as it
requires only the generation of standard univariate normal sequences at each step. This con-
siderably reduces the computational burden of generating a N × 1 vector of observations at
each step of the procedure. This is especially relevant in the case of count data, since the
simulation of copula can be time consuming.

REMARK 6. Following up on Remark 2, note that the previous results do not apply
to TNAR model (8), if N → ∞. The stochastic equi-continuity and uniform convergence
assumptions require ht (γ ) to be continuous with respect to γ , which is not satisfied for (8).
For instance, when trying to establish stochastic equi-continuity of the score, it can be proved
that for (8), the Lipschitz property (36) can be obtained in expectation but with magnitude
λ = 1/(2q). However, to establish the result of Theorem 5.1 we need λ > m∗/q [39], p. 357.
This can happen only when m∗ < 1/2 but for the TNAR model m∗ = 1, so the condition is
not satisfied. [7], Section S-4, provides properties, estimation and testing for TNAR models
when N is fixed.

6. Simulations. We provide two different cases for the network generating mechanism
to verify empirically the above results. Additional results are reported in [7], Section S-5.
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TABLE 1
Empirical size and power of the test statistics (29) for testing H0 : γ = 0 versus H1 : γ > 0, in model (6), with

S = 1000 simulations, for various values of N and T . Data are continuous-valued and generated from the
linear model (4)

Size Power (γ = 0.5) Power (γ = 1)

Model K N T 10% 5% 1% 10% 5% 1% 10% 5% 1%

SBM 2 4 500 0.093 0.043 0.009 1.000 1.000 0.999 1.000 1.000 1.000
500 10 0.019 0.004 0.000 0.158 0.063 0.002 0.164 0.067 0.001
200 300 0.110 0.044 0.006 0.495 0.337 0.125 0.994 0.990 0.933
500 300 0.101 0.048 0.009 0.716 0.583 0.288 1.000 1.000 0.995
500 400 0.105 0.050 0.006 0.751 0.619 0.311 1.000 1.000 0.999

SBM 5 10 500 0.119 0.062 0.015 1.000 1.000 1.000 1.000 1.000 1.000
200 300 0.091 0.051 0.006 0.667 0.542 0.268 1.000 1.000 1.000
500 300 0.098 0.047 0.006 0.847 0.748 0.448 1.000 1.000 1.000
500 400 0.086 0.039 0.006 0.885 0.807 0.541 1.000 1.000 1.000

ER - 30 500 0.066 0.029 0.004 0.272 0.156 0.048 0.888 0.802 0.565
500 30 0.026 0.005 0.000 0.392 0.235 0.044 0.935 0.847 0.523
200 300 0.085 0.031 0.004 0.411 0.272 0.080 0.974 0.949 0.798
500 300 0.082 0.042 0.004 0.649 0.476 0.192 0.999 0.998 0.974
500 400 0.089 0.051 0.008 0.666 0.519 0.206 1.000 1.000 0.992

EXAMPLE N-1 (Stochastic Block Model (SBM)). First, consider the stochastic block
model; see [59] and [46] among others. A block label (k = 1, . . . ,K) is assigned for each
node with equal probability and K is the total number of blocks. Then set P(aij = 1) = N−0.3

if i and j belong to the same block, and P(aij = 1) = N−1 otherwise. Practically, the model
assumes that nodes within the same block are more likely to be connected with respect to
nodes from different blocks. We assume K ∈ {2,5}.

EXAMPLE N-2 (Erdős–Rényi (ER) model). Introduced by [26] and [35], this graph
model is simple. The network is constructed by connecting N nodes randomly. Each edge
is included in the graph with probability p, independently from every other edge. In this
example, we set p = P(aij = 1) = N−0.3.

Consider testing H0 : γ = 0 versus H1 : γ > 0 for models (5) and (6). Under H0, the model
reduces to (4). For the continuous-valued case, we test linearity of the NAR against the non-
linear version in (6). The random errors ξi,t are simulated from N(0,1). For the data generat-
ing process of the vector Yt , the initial value Y0 is randomly simulated according to its station-
ary distribution [66], Proposition 1, which is Gaussian with mean μ = β0(1 − β1 − β2)

−11
and covariance matrix vec[Var(Yt )] = (IN2 −G⊗G)−1vec(I ), where vec(.) denotes the vec
operator and ⊗ denotes the Kronecker product. We set θ(1) = (β0, β1, β2)

′ = (1.5,0.4,0.5)′.
This procedure is replicated S = 1000 times. Then θ̃ (1) is computed for each replication.
By Proposition 4.4, the quasi-score statistic (29) is evaluated and compared with the critical
values of a χ2

1 distribution. Results of this simulation study are reported in Table 1. The em-
pirical size of the test does not exceed the nominal significance level in all cases considered.
When N is small and T is large enough, the power of the test statistics tends to 1. In the
case of small temporal size T and large network dimension N , the approximation suffers.
This is expected and is explained by (i) the double asymptotic results of Section 4 hold when
TN → ∞ as N → ∞; see the proof of Lemma 3.1; (ii) the temporal dependence induced
by the error term requires a sufficiently large T for successful model identification; (iii) the
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quasi-likelihood might not approximate the true likelihood (see also [6], Section 4.1). When
both N , T are large enough, the test approximates adequately its asymptotic distribution. As
expected, when γ = 1, the test statistic’s power improves, because γ is far from 0. Improved
performance of the test statistic is observed when either K = 5 or when the Erdős–Rényi
model is employed. Histograms and Q-Q plots of the simulated score test against the χ2

1 dis-
tribution are plotted in [7], Figure S-2. For all the network models, the histogram is positively
skewed and approximates satisfactory the χ2

1 distribution. The Q-Q plots lie into the confi-
dence bands quite satisfactorily and the empirical mean and variance of the simulated score
tests are close to 1 and 2, respectively. Further simulations results for the integer-valued case
can be found in [7], Section S-5, together with simulation results related to the nonidentifiable
case.

7. Empirical example. We discuss an example of the testing methods for integer data.
For an example concerning continuous data, see [7], Section S-5.3. The data set consists
of monthly number of burglaries on the south side of Chicago from 2010–2015, that is,
T = 72 and N = 552 census block groups of Chicago; see [14], https://github.com/nick3703/
Chicago-Data. To predict the future number of burglaries, the ordinary Vector Autoregressive
(VAR) model can be applied but we should take into account that data are counts and dimen-
sionality issues because the number of VAR parameters is large compared to the sample size.
A simple method, like fitting AR(1) models separately to each individual census blocks, is
applicable but still requires 2N parameters to be fitted. More crucially, the relationship across
different time series is not taken into account. To overcome such issues, we appeal to geo-
graphic network information between blocks to fit a PNAR model, which takes into account
dependence among count valued data. An undirected network structure is defined by geo-
graphical proximity: two blocks are connected if they share at least a border. The density
of this network is 1.74%. The median number of connections is 5. The QMLE is employed
for fitting linear PNAR model (4). The results are summarized in Table 2. The magnitude of
the network effect β1 shows that an increasing number of burglaries in a block can lead to a
growth in the same type of crime committed in a neighbourhood area. The effect of the lagged
variable has a upwards impact on the number of burglaries as well. We evaluate the out-of-
sample forecasting performance of the linear PNAR(1) model versus a baseline AR(1) model
fitted separately to each individual census block. We evaluate the one-step ahead forecast by

TABLE 2
QMLE estimates of the linear model (4) for Chicago burglary counts. Standard
errors in brackets. Linearity is tested against the nonlinear model (5), with χ2

1
asymptotic test (29); against the STNAR model (7), with p-values computed

by (DV) Davies bound (35), bootstrap p-values of the sup-type test and
versus the TNAR model (8)

Models β0 β1 β2

(4) 0.455 0.322 0.284
SE (0.022) (0.013) (0.008)

Models Chi-sq. DV Bootstrap

(5) 8.999 - -
(7) - 0.038 0.515
(8) - - 0.498

https://github.com/nick3703/Chicago-Data
https://github.com/nick3703/Chicago-Data
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computing its Root Mean Square Error (RMSE). The RMSE for the PNAR model is 0.038.
This is considerably smaller than the RMSE obtained by the AR(1) models (which is 0.167).
In conclusion, the PNAR model gives significant accuracy improvement of the one-step pre-
diction and at the same time achieves parsimony. We apply now the proposed linearity tests.
A quasi-score linearity test is computed according to (29), by using the asymptotic chi-square
test, for the nonlinear model (5), testing H0 : γ = 0 versus H1 : γ > 0. We also test linearity
against the presence of smooth transition effects, as in (7), with H0 : α = 0 versus H1 : α > 0.
A grid of 100 equi-distant values in an interval of values �F = [γL, γU ] is selected for the
nuisance parameter γ , where the extremes are defined as in [57], p. 9. According to the results
of Theorem 5.1, the p-values are computed with the Davies bound approximation (35) for the
test sup LMT = supγ∈�F

LMT (γ ) as well as through the bootstrap approximation procedure.
The number of bootstrap replications is J = 299. Finally, a linearity test against threshold
effects, as in (8), is also performed, which leads to the test H0 : α0 = α1 = α2 = 0 versus
H1 : αl > 0, for some l = 0,1,2. A feasible range values for the nonidentifiable threshold
parameter has been considered as in [57], p. 11. From Table 2, the linearity test against (5)
is rejected at standard levels. This gives an intuition for possible nonlinear drifts in the inter-
cept. Davies bound gives evidence in favour of STNAR effects at the 5% level. Conversely,
bootstrap sup-tests reject nonlinearity coming from both smooth (7) and abrupt transition (8)
models. We conclude that there is no clear evidence of the regime switching effect.

APPENDIX

A.1. Proof of Theorem 2.1. Consider the N × 1 Markov chain Yt = F(Yt−1,Nt) where
{Nt, t ∈ Z} defined in (1) is a sequence of IID N -dimensional count processes such that Ni,t ,
for i = 1 . . . ,N , are Poisson processes with intensity 1. F(·) is a measurable function such
that F(y,Nt) = (Nt [f (y)]) and f (·) is defined in (1) for y ∈ N

N . By (9), f (y) � C + Gy,
where C = f (0), we have

E
∣∣F(y,N1)

∣∣
1 = 1′f (y) ≤ 1′[C + Gy] < ∞

since the expectation of the Poisson process is EN1(λ) = λ. Moreover, for y, y∗ ∈ N
N ,

E
∣∣F(y,N1) − F

(
y∗,N1

)∣∣
vec � G

∣∣y − y∗∣∣
vec

as E|N1(λ1)−N1(λ2)|vec = |λ1 −λ2|vec. Note that ρ(G) < 1, Therefore, by [20], Theorem 1,
{Yt , t ∈ Z} is a stationary and ergodic process with E|Yt |1 < ∞. Now set δ > 0 such that
ρ(Gδ) < 1, if Gδ = (1 + δ)G. From [20], Lemma 2, we have that∥∥Nt

[
f (y)

]∥∥
a,vec � (1 + δ)

∣∣f (y)
∣∣
vec + b1 � Cδb + Gδ|y|vec

by recalling that |f (y)|vec � C +G|y|vec and ρ(Gδ) < 1, where b > 0 and Cδb = (1+ δ)C +
b. Then, by [20], Theorem 1, we get E|Yt |aa < ∞, ∀a ≥ 1. Theorem 2.2 follows analogously.

A.2. Proof of Theorem 2.3. For any arbitrary N , E(Yt ) = E(λt ) = E[f (Yt−1)] � c1 +
GE(Yt−1), by (9), where maxi≥1 fi(0,0) = c > 0. Define μ = c(1 − μ1 − μ2)

−1. Note that
ρ(G) ≤ |||G|||∞ ≤ μ1|||W |||∞ + μ2 ≤ μ1 + μ2. This is so because |||W |||∞ = 1, by construc-
tion. Since μ1 + μ2 < 1, we have |||G|||∞ < 1 and by [51], 19.16(a), (I − G)−1 exists. More-
over, (I − G)−11 = (1 − μ1 − μ2)

−11, implying that E(Yt ) � μ1 and maxi≥1 E(Yi,t ) ≤ μ.
It holds that ξt = Yt − λt , E|ξi,t | ≤ 2E(Yi,t ) ≤ 2μ < ∞. Furthermore, by using backward
substitution and (9), we have Yt � μ1 + ∑∞

j=0 Gjξt−j = ∑∞
j=0 Gj(c1 + ξt−j ).

From the definition in [7], Section S-1.2, we have that W = {ω ∈ R
∞ : ω∞ = ∑|ωi | < ∞},

where ω = (ωi ∈ R : 1 ≤ i ≤ ∞)′ ∈ R
∞. For each ω ∈ W , let ωN = (ω1, . . . ,ωN)′ ∈ R

N be
its truncated N -dimensional version. For any ω ∈ W , E|c1 + ξt |vec � (c + 2μ)1 = C1 < ∞,
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Gj 1 = (μ1 + μ2)
j 1 and E|ω′

NYt | ≤ E(|ωN |′vec
∑∞

j=0 Gj(c1 + ξt−j )) ≤ Cω∞
∑∞

j=0(μ1 +
μ2)

j = C∗, since μ1 + μ2 < 1, which implies that Yω
t = limN→∞ ω′

NYt < ∞ with prob-
ability 1. Moreover, Yω

t is strictly stationary and, therefore, {Yt } is strictly stationary, fol-
lowing [7], Section S-1.2. To verify the uniqueness of the solution, take another stationary
solution Y ∗

t to the PNAR model. Then E|ω′
NYt − ω′

NY ∗
t | ≤ |ωN |′vecE|Nt(λt ) − Nt(λ

∗
t )|vec ≤

|ωN |′vecGE|Yt−1 − Y ∗
t−1|vec = 0, by infinite backward substitution, for any N and weight ω.

So, Yω
t = Y

∗,ω
t with probability one. In addition, μ1w

′
i + μ2e

′
i = e′

iG and condition (9) is
equivalent to require, for i = 1, . . . ,N , a.s.∣∣λi,t − λ∗

i,t

∣∣ = e′
i

∣∣f (Yt−1) − f
(
Y ∗

t−1
)∣∣

vec ≤ (
μ1w

′
i + μ2e

′
i

)∣∣Yt−1 − Y ∗
t−1

∣∣
vec

= μ1

N∑
j=1

wij

∣∣Yj,t−1 − Y ∗
j,t−1

∣∣ + μ2
∣∣Yi,t−1 − Y ∗

i,t−1
∣∣

which leads a.s. to λi,t = fi(Xi,t−1, Yi,t−1) ≤ c + μ1Xi,t−1 + μ2Yi,t−1. Then, when N is
increasing, [6], Proposition 2, applies directly by a recursion argument [6], Section S-1.1,
and all moments of the process {Yt } are uniformly bounded.

A.3. Proof of Theorem 2.4. Similar to A.1, by assuming that maxi≥1 E|ξi,t |a ≤ Cξ,a <

∞, the first ath moments of Yt are uniformly bounded. By (9), |Yt |vec � ∑∞
j=0 Gj(c1 +

|ξt−j |vec), where c = maxi≥1|fi(0,0)|. Analogously to A.2, since Gj 1 = (|μ1|+ |μ2|)j 1 and
|μ1| + |μ2| < 1, {Yt } defined as in (2), is strictly stationary, following [66], Definition 1. The
uniqueness of the solution follows by |Yt − Y ∗

t |vec = |λt − λ∗
t |vec and the infinite backward

substitution argument.

A.4. Proof of Theorem 5.1. First, we show the weak convergence of (NT )−1/2SNT (γ )

to a Gaussian process with kernel B(γ1, γ2). For all nonnull η ∈ R
k , consider the triangu-

lar array s∗
Nt (γ ) = η′(N−1/2 ∑N

i=1 si,t (γ )). By Assumption B′, � is compact, and by the
continuity of the score s∗

Nt(γ ) is compact. Note that s∗
Nt(γ ) is a martingale difference ar-

ray. So, by the results of Lemma 3.1, the multivariate pointwise central limit theorem and

(NTN)−1BNTN
(γ1, γ2)

p−→ B(γ1, γ2) establish the finite-dimensional convergence. It remains
to show the stochastic equi-continuity, that is, ([39], Theorem 2),

(36)
∣∣s∗

Nt(γ ) − s∗
Nt

(
γ ∗)∣∣ ≤ δNt

∣∣γ − γ ∗∣∣λ
1,

a.s. with ‖δNt‖q < ∞ and ‖s∗
Nt (γ )‖q < ∞, where q ≥ 2 and λ such that q > m∗/λ.

By [6], Section S-6, and Assumption H1–H3, ‖s∗
Nt (γ )‖4 < ∞. For q > 4, a similar result

can be obtained following the arguments of [62], Remark 2.3, by requiring higher-order
covariances in Assumption H2. To prove (36), we recall the following uniform bounds.
By Assumption B′, for i = 1, . . . ,N , |∂fi(xi, yi, θ)/∂αb| = hb

i,t (γ ) ≤ cb + c1bxi + c2byi

for b = 1, . . . , k2 and l = 1, . . . ,m∗, where cb = hb
i (0, γ ) ∀γ ∈ �. Let C,C0,C1,C2 > 0

be generic constants varying from place to place, which do not depend on γ . Then a.s.
|hi,t (γ )|1 ≤ C0 + C1Xi,t−1 + C2Yi,t−1. Similar bounds hold for λi,t (γ ) and |Zi,t (γ )|1. By
Theorem 2.3, all the moments of the Poisson process Yt exist as well as those associated to
the error ξt (γ ) = Yt −λt (γ ). This fact and the multinomial theorem imply that every moment
of all the previously defined random variables is uniformly bounded. Define hi,t (0, γ ) = c,
∀γ ∈ � and h∗

i,t (γ ) = hi,t (γ )−hi,t (0, γ ). For i = 1, . . . ,N and MVT |hi,t (γ )−hi,t (γ
∗)|1 =

|h∗
i,t (γ ) − h∗

i,t (γ
∗)|1 = |∂h∗

i,t (γ̃ )/∂γ |1|γ − γ ∗|1 ≤ Ai,t−1|γ − γ ∗|1 a.s. where Ai,t−1 =
C1Xi,t−1 + C2Yi,t−1, γ̃l are intermediate points between γl and γ ∗

l , for l = 1, . . . ,m∗ and
the last inequality holds by Assumption B′ since ∂h∗

i,t (γ̃ )/∂γ = ∂2fi(xi, yi, θ)/∂α∂γ −
∂2fi(0,0, θ)/∂α∂γ . For all γ, γ ∗ ∈ �, standard algebra and previous bounds show that
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a.s. |s∗
Nt (γ ) − s∗

Nt (γ
∗)| ≤ δNt |γ − γ ∗|1 where δNt = C/

√
N

∑N
i=1 Ai,t−1(1 + C0Yi,t +

C1Yi,tXi,t−1 + C2Yi,tYi,t−1) proving (36) with λ = 1. By Assumption B′ ‖δNt‖q < ∞ since

δNt ≤ CηNt , then (NTN)−1/2SNTN
(γ ) = T

−1/2
N

∑TN

t=1 N−1/2sNt (γ ) is stochastically equi-
continuous and as {N,TN } → ∞, (NTN)−1/2SNTN

(γ ) ⇒ S(γ ).
We now prove uniform convergence of �̃NT (γ1, γ2) by showing stochastic equi-continuity

for Hessian and information matrices. For all η ∈ R
k , η = 0, consider the triangular

array bNt (γ1, γ2) = η′(N−1BNt(γ1, γ2))η where BNt(γ1, γ2) is the single summand of
BNT (γ1, γ2). Define ρijt (γ1, γ2) = E[ξi,t (γ1)ξj,t (γ2)|Ft−1]/

√
λi,t (γ1)λj,t (γ2) the condi-

tional correlation. Then a.s.∣∣bNt (γ1, γ2) − bNt

(
γ ∗

1 , γ ∗
2

)∣∣
≤ η′

(
1

N

N∑
i,j=1

Zi,t (γ1)ρij t (γ1, γ2)Z
′
j,t (γ2)√

λi,t (γ1)
√

λj,t (γ2)
− Zi,t (γ

∗
1 )ρij t (γ

∗
1 , γ ∗

2 )Z′
j,t (γ

∗
2 )√

λi,t (γ
∗
1 )

√
λj,t (γ

∗
2 )

)
η

≤ C

5∑
r=1

Dr,

and the inequality follows since for a matrix M , η′Mη ≤ |ηη′|1|M|1 and by λi,t (γ ) ≥ C

∀γ ∈ �. The elements Dr are obtained by consecutive addition and subtraction. We focus
on one element (say D1), and the other terms are treated analogously. Some tedious algebra
shows that a.s.∣∣ρijt (γ1, γ2) − ρijt

(
γ ∗

1 , γ ∗
2

)∣∣
≤

∣∣∣λ 1
2
i,t (γ1) − λ

1
2
i,t

(
γ ∗

1
)∣∣∣∣∣∣ρijt

(
γ ∗

1 , γ ∗
2

)∣∣∣λ 1
2
j,t (γ2) +

∣∣∣λ 1
2
j,t (γ2) − λ

1
2
j,t

(
γ ∗

2
)∣∣∣∣∣∣ρijt

(
γ ∗

1 , γ ∗
2

)∣∣∣λ 1
2
i,t

(
γ ∗

1
)

≤ C1
∣∣λi,t (γ1) − λi,t

(
γ ∗

1
)∣∣ϕj−iA

∗
j,t−1 + C2

∣∣λj,t (γ2) − λj,t

(
γ ∗

2
)∣∣ϕj−iA

∗
i,t−1

≤ C∗
1ϕj−i Ãij,t−1

∣∣γ1 − γ ∗
1

∣∣
1 + C∗

2ϕj−i Ãj i,t−1
∣∣γ2 − γ ∗

2
∣∣
1,

where A∗
i,t−1 = Ai,t−1 + C0 and Ãij,t−1 = Ai,t−1A

∗
j,t−1. The first inequality follows by

addition and subtraction. The second inequality is a consequence of Assumption H2 and
|√x − √

y| = |x − y|/(√x + √
y); the third is due to Lipschitz continuity of hi,t (γ ). Set

πijt (γ, γ ∗) = |
√

λi,t (γ
∗
1 )λj,t (γ

∗
2 )Zi,t (γ1)Z

′
j,t (γ2)|1 ≤ πijt a.s. with the inequality coming

from previous uniform bounds where πijt is a linear combination of Xi,t−1 and Yi,t−1 not
depending on γ . Then

D1 = 1

N

N∑
i,j=1

∣∣ρijt (γ1, γ2) − ρijt

(
γ ∗

1 , γ ∗
2

)∣∣πijt

(
γ, γ ∗)

≤ C∗
1

N

N∑
i,j=1

ϕj−i Ãij,t−1πijt

∣∣γ1 − γ ∗
1

∣∣
1 + C∗

2

N

N∑
i,j=1

ϕj−i Ãj i,t−1πijt

∣∣γ2 − γ ∗
2

∣∣
1.

This shows that |bNt (γ1, γ2) − bNt (γ
∗
1 , γ ∗

2 )| ≤ b∗
1,Nt |γ1 − γ ∗

1 |1 + b∗
2,Nt |γ2 − γ ∗

2 |1 a.s. with
b∗
s,Nt defined by obvious notation, not depending on γ and such that E(b∗

s,Nt ) < ∞, for
s = {1,2}. Rewriting in matrix form, we have b∗

s,Nt = η′(N−1B∗
s,Nt (γ1, γ2))η. According

to [3], Lemma 1, this is a sufficient condition for the information matrix to be stochastic
equi-continuous and by [3], Theorem 1, (NTN)−1BNTN

(γ1, γ2)
p−→ B(γ1, γ2) uniformly over

γ1, γ2 ∈ �, as {N,TN } → ∞. An analogous result for the Hessian follows by MVT with re-
spect to γ1, γ2 and the uniform boundedness of the third derivative (Lemma 3.1). By standard
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Taylor expansion arguments, and CMT, (NTN)−1�̃NTN
(γ1, γ2)

p−→ �(γ1, γ2) uniformly over
γ1, γ2 ∈ �. Following analogous steps of [7], Section S-3.1, for the identifiable parameters φ,
[7], equation (S-2), leads to

(37)
S̃

(2)
NTN

(γ )√
NTN

.= P(γ, γ )
SNTN

(γ )√
NTN

⇒ P(γ, γ )S(γ ) := S(2)(γ ) ≡ N
(
0,�(γ, γ )

)
,

with P(γ, γ ) = [−J2H(γ,γ )J ′
1(J1H(γ,γ )J ′

1)
−1, Ik2], �(γ, γ ) = P(γ, γ )B(γ, γ )P (γ, γ )′.

Finally, the CMT shows that LMNTN
(γ ) ⇒ LM(γ ) and gNTN

⇒ g. A similar conclusion is
obtained for the local alternatives α = (NT )−1/2δ2, where δ2 ∈ R

k2 , by [7], equation (S-4),
with S(2)(γ ) ≡ N(J2H

−1(γ, γ )J ′
2δ2,�(γ, γ )) in (37). This completes the proof.

A.5. Proof of Theorem 5.3. Following the results of Section A.4, the information ma-
trix BNt(γ1, γ2) is Lipschitz for γ1, γ2 with constants B∗

1,Nt , B∗
2,Nt having finite absolute

moments. Moreover, by [7], Section S-2.2, BNTN
(γ1, γ2)

a.s.−−→ B(γ1, γ2) ∀γ1, γ2 ∈ �. Define
B∗

s,NT = T −1 ∑T
t=1 B∗

s,Nt , for s = {1,2}. Following the same arguments of [7], Section S-2.1,

S-2.2, it can be proved that B∗
s,NTN

−B∗
s,N

a.s.−−→ 0 where B∗
s,N = E(B∗

s,Nt ). Assumptions H1–

H3 imply that B∗
s = limN→∞ B∗

N is finite. Then B∗
s,NTN

a.s.−−→ B∗
s . This is a sufficient condi-

tion for BNT to be strongly stochastically equi-continuous [3], Lemma 1, and together with
pointwise almost sure convergence, [3], Theorem 2, shows that BNTN

(γ1, γ2)
a.s.−−→ B(γ1, γ2)

uniformly over γ1, γ2.
Consider ω ∈ �, where � denotes a set of samples. We operate conditionally on the

sample ω, so randomness is through the IID standard normal process νt . Set Sν
NT (γ ) =∑T

t=1 sν
Nt (γ ), with sν

Nt (γ ) = sNt (γ )νt . Then S̃ν
NT (γ ) = Sν

NT (γ ) + S̄NT (γ ), S̄NT (γ ) =∑T
t=1(s̃

ν
Nt (γ ) − sν

Nt (γ )) = ∑T
t=1

∑N
i=1(s̃

ν
i,t (γ ) − sν

i,t (γ )), and a.s.

S̄NT (γ ) =
T∑

t=1

N∑
i=1

(
Zi,t (γ )ξ̃i,t νt

λ̃i,t

− Zi,t (γ )ξi,t (γ )νt

λi,t (γ )

)

=
T∑

t=1

N∑
i=1

Zi,t (γ )

(
λi,t (γ )ξ̃i,t − λ̃i,t ξi,t (γ )

λ̃i,tλi,t (γ )

)
νt

≤ β−2
0

T∑
t=1

N∑
i=1

Zi,t (γ )Z′
i,t (γ )(φ − φ̃)Yi,t νt .

Set Gν
NT (γ ) := β−2

0
∑T

t=1
∑N

i=1 Yi,tZi,t (γ )Z′
i,t (γ )νt , so

sup
γ∈�

∣∣∣∣ S̄NT (γ )√
NT

∣∣∣∣
1
≤ sup

γ∈�

∣∣∣∣
∣∣∣∣
∣∣∣∣G

ν
NT (γ )

NT

∣∣∣∣
∣∣∣∣
∣∣∣∣
1

∣∣√NT (φ̃ − φ)
∣∣
1.

By Section A.4, st (γ ) is L2 integrable. Then, from the assumptions of Theorems 3.3, 5.1
and Pollard’s central limit theorem for triangular empirical processes [50], Theorem 10.6,
the arguments in [38], pp. 426–427, prove that (NTN)−1/2Sν

NTN
(γ ) ⇒p S(γ ), where ⇒p

denotes the weak convergence in probability, as defined in [36]. Furthermore, we have
(NTN)−1Gν

NTN
(γ )

a.s.−−→ Ok×k . Then (NTN)−1/2S̄NTN
(γ ) ⇒p 0, (NTN)−1/2S̃ν

NTN
(γ ) ⇒p

S(γ ), LMν
NTN

(γ ) ⇒p LM(γ ), g̃NTN
⇒p g, F̃NTN

(x)
p−→ F(x), uniformly over x and p̃NTN

=
1 − F̃NTN

(gNTN
) = 1 − F(gNTN

) + op(1) = pNTN
+ op(1).
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