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A B S T R A C T

Heavy and light particles are commonly found in many natural phenomena and industrial processes, such
as suspensions of bubbles, dust, and droplets in incompressible turbulent flows. Based on a recent machine
learning approach using a diffusion model that successfully generated single tracer trajectories in three-
dimensional turbulence and passed most statistical benchmarks across time scales, we extend this model
to include heavy and light particles. Given the particle type – tracer, light, or heavy – the model can
generate synthetic, realistic trajectories with correct fat-tail distributions for acceleration, anomalous power
laws, and scale dependent local slope properties. This work paves the way for future exploration of the use
of diffusion models to produce high-quality synthetic datasets for different flow configurations, potentially
allowing interpolation between different setups and adaptation to new conditions.
1. Introduction

The Lagrangian description of turbulence involves tracking the
information acquired by individual particles carried by the flow, and
provides crucial insights into the physics underlying many natural
phenomena and applied processes, such as cloud formation, industrial
mixing, pollutant dispersion and quantum fluids (La Porta et al., 2001;
Falkovich et al., 2002; Yeung, 2002; Post and Abraham, 2002; Shaw,
2003; Toschi and Bodenschatz, 2009; Xia et al., 2013; Bentkamp et al.,
2019; Laussy, 2023). Lagrangian particles can convolve spatial and
temporal information over an extensive range of scales. The time
scale separation in a turbulent flow is given by 𝜏𝐿∕𝜏𝜂 ∝ 𝑅𝜆, where
𝜏𝐿 is the largest energy-injection time scale and 𝜏𝜂 is the smallest
Kolmogorov time scale. The Taylor microscale Reynolds number, 𝑅𝜆,
ranges from a few thousand in the laboratory to tens of thousands
in atmospheric flows and up to millions in the solar wind (Frisch,
1995; Dhruva et al., 1997; Wrench et al., 2024). Another intriguing
feature of Lagrangian turbulence is the strong intermittency of intense
fluctuations associated with small-scale vortical structures (Mordant
and Lévêque, 2004b; Biferale et al., 2005), which can lead, albeit with
low probability, to acceleration events in excess of 50–60 standard
deviations in table-top laboratory flows (Voth et al., 2001; Mordant
et al., 2004a). Compared to tracers, which exactly follow the local flow,
the situation becomes more complicated when the inertial effects of
particles are combined with intermittent turbulent properties, which
are important in facilitating droplet collisions and the formation of
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large droplets in clouds (Falkovich et al., 2002; Kostinski and Shaw,
2005). Inertial particles depart from fluid streamlines, resulting in a
non-uniform spatial distribution, a phenomenon known as preferential
concentration (Toschi and Bodenschatz, 2009). Light particles tend to
accumulate in vortical structures, while heavy particles are expelled
from these regions (Maxey and Riley, 1983; Balkovsky et al., 2001;
Bec, 2003; Chen et al., 2006). Additionally, the response of particles
to turbulent events is influenced by inertial filtering effects: heavy
particles, due to their larger inertia, tend to filter out smaller-scale
vortices and primarily respond to larger-scale structures, while light
particles can more readily follow the small-scale turbulent fluctuations.
Stochastic modeling of Lagrangian tracer properties is exceptionally
challenging due to multi-time dynamics, such as small-scale trapping
within vortices for periods exceeding the local eddy turnover time (Wil-
son and Sawford, 1996; Lamorgese et al., 2007; Minier et al., 2014;
Biferale et al., 2005; Toschi et al., 2005). Typical modeling approaches
involve proposing a random process in time for the velocity to capture
the dynamics at the two spectrum extremes, 𝜏𝐿 and 𝜏𝜂 (Sawford,
1991; Pope, 2011). Recently, these models have been generalized to be
infinitely differentiable with intermittent scaling properties by Viggiano
et al. (2020). Multifractal and/or multiplicative models have been
used to provide a possible analytical framework, and they can repro-
duce some non-trivial features of turbulent statistics (Biferale et al.,
1998; Arneodo et al., 1998; Chevillard et al., 2019; Sinhuber et al.,
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2021; Zamansky, 2022; Lübke et al., 2023). Furthermore, stochastic
models for the generation of heavy and light particles are even more
problematic, having to integrate multi-scale properties and preferential
concentration (Friedrich et al., 2022).

To generate turbulent data with the correct multiscale statistics
across the full range of dynamics encountered in real turbulent envi-
ronments, data-driven machine learning methods have been employed
due to their powerful expressive capabilities. Generative models, which
learn from the underlying distribution of large amounts of training
data, are particularly suitable for this task (Buzzicotti, 2023). A notable
example is the Generative Adversarial Network (GAN), which has been
shown to effectively capture multiscale turbulent properties in the
Eulerian framework (Buzzicotti et al., 2021; Yu et al., 2022; Li et al.,
2023b,a). Granero-Belinchon (2024) utilized a U-net optimized with
carefully designed loss based on multiscale properties to generate one-
dimensional stochastic fields. Specifically, in our previous work (Li
et al., 2024), we employed a diffusion model (DM) to generate La-
grangian tracers with accurate properties, spanning from large forcing
scales, through the intermittent inertial range, to the coupled regime
between inertial and dissipative scales (Arnéodo et al., 2008).

Given the previous success of DM in generating tracers with correct
statistical properties across time scales, and its surprising ability to
generate high-intensity rare events with realistic statistics, we now
question the generalizability of the model to different particles prop-
erties, i.e. in the case where inertial effects are not negligible. Due to
centrifugal/centripetal effects, it is known that heavy particles tend to
experience smoother viscous fluctuations, while light particles enhance
them (Cencini et al., 2006; Bec et al., 2006; Benzi and Biferale, 2015),
making the problem a very important quantitative benchmark for data-
driven, equations-blind tools. Specifically, here we show that DMs are
able to conditionally generate multiscale Lagrangian trajectories for
inertial (heavy/light) particles and tracers at moderate/high Reynolds
numbers with unprecedented quantitative agreement with the ground-
truth numerical data used for training. This is a step forward towards
building a stochastic multiscale model for inertial particles for different
Stokes numbers 𝑆𝑡 and added mass coefficients 𝛽 (see next section).

2. Materials and methods

2.1. Simulations for Lagrangian particles

To generate a dataset of Lagrangian particles, we first performed di-
rect numerical simulations (DNS) of the incompressible Navier–Stokes
equations following the approach described in (Biferale et al., 2023):
{

𝜕𝑡𝒖 + 𝒖 ⋅ ∇𝒖 = −∇𝑝 + 𝜈𝛥𝒖 + 𝑭
∇ ⋅ 𝒖 = 0.

(1)

Here 𝒖 represents the Eulerian velocity field, 𝜈 the viscosity and 𝑭
the large-scale isotropic forcing. We used a standard pseudo-spectral
approach, fully dealiased with the two-thirds rule, within a cubic peri-
odic domain with a resolution of 10243. The resulting Taylor microscale
Reynolds number was 𝑅𝜆 ≃ 310. Details of the simulation can be found
in Li et al. (2024).

Once a statistically stationary state was reached for the underlying
Eulerian flow, we seeded the flow with particles. The particles were
passively advected, assumed to be sufficiently dilute to neglect colli-
sions and not to react back on the flow. The motion of a small spherical
particle with radius 𝑎 and density 𝜌𝑝 suspended in the fluid with density
𝜌𝑓 and velocity 𝒖 can be approximated as (Maxey and Riley, 1983;
Biferale et al., 2009):

𝑿̇(𝑡) = 𝑽 (𝑡), (2)

𝑽̇ (𝑡) = 𝛽𝐷𝑡𝒖(𝑿(𝑡), 𝑡) + 1 (𝒖(𝑿(𝑡), 𝑡) − 𝑽 (𝑡)) , (3)

𝜏𝑝 𝑝

2 
where, 𝑿(𝑡) and 𝑽 (𝑡) are respectively the particle position and velocity,
= 3𝜌𝑓∕(𝜌𝑓 + 2𝜌𝑝) is the density ratio between the fluid and the

article, 𝜏𝑝 = 𝑎2∕(3𝛽𝜈) is the particle response time, whose ratio with
he Kolmogorov time scale 𝜏𝜂 defines the particle Stokes number, 𝑆𝑡 =
𝜏𝑝∕𝜏𝜂 .

For the numerical integration of Lagrangian particles, we used a
sixth-order B-spline interpolation scheme to obtain the fluid velocity
at the particle positions and a second-order Adams–Bashforth time
marching scheme for time integration (Van Hinsberg et al., 2012).
We tracked 𝑁𝑝 = 327680 trajectories for each type of particle: heavy
(𝛽 = 0.01), tracer (𝛽 = 1) and light (𝛽 = 2.5), over a total time of
𝑇 ≃ 1.3𝜏𝐿 ≃ 200𝜏𝜂 . Both heavy and light particles are integrated with
𝜏𝑝 = 0.02 resulting in a 𝑆𝑡 = 0.87. Lagrangian information was recorded
every 𝑑𝑡𝑠 ≃ 0.1𝜏𝜂 , resulting in each trajectory consisting of 𝐾 = 2000
points (Calascibetta et al., 2023; Li et al., 2024).

2.2. Diffusion models for conditional generation

In this section we introduce the DMs used in this work to gener-
ate Lagrangian trajectories of different particles. The DM framework
consists of two main processes: the forward and the backward process.
The forward process operates as a Markov chain, incrementally adding
Gaussian noise to the training data until the original signal is reduced
to pure noise. In contrast, as shown in Fig. 1, the backward process
starts with pure Gaussian noise and uses a learned neural network to
gradually denoise and generate information, eventually producing real-
istic trajectory samples. In our notation we represent each trajectory as
 = {𝑉𝑖(𝑡𝑘)|𝑡𝑘 ∈ [0, 𝑇 ]; 𝑖 = 𝑥, 𝑦, 𝑧}, where 𝑘 = 1,… , 𝐾 are the discretized
sampling times of each trajectory. The distribution of the ground-
truth trajectories derived from the DNS is denoted by 𝑞(|𝑐), where 𝑐
ndicates the type of particles: tracers, heavy particles or light particles.
he forward diffusion process consists of 𝑁 Markovian noising steps,
tarting from any of the trajectories generated by the DNS, 0 =  .

Each step, 𝑛 = 1,… , 𝑁 , is defined as

𝑞(𝑛|𝑛−1) → 𝑛 ∼  (
√

1 − 𝛽𝑛𝑛−1, 𝛽𝑛𝑰), (4)

hich means that 𝑛 samples from a Gaussian distribution with mean
1 − 𝛽𝑛𝑛−1 and variance 𝛽𝑛𝑰 . We can formally express the forward

process as

𝑞(1∶𝑁 |0) ∶=
𝑁
∏

𝑛=1
𝑞(𝑛|𝑛−1), (5)

here the notation 1∶𝑁 denotes the entire sequence of noisy trajecto-
ies 1,2,… ,𝑁 obtained from a specific 0 taken from the training
et. The variance schedule 𝛽1,… , 𝛽𝑁 is predefined, with a large 𝑁 to
llow a continuous transition to the pure Gaussian state, 𝑁 ∼  (0, 𝑰).
urther details of the variance schedule can be found in Appendix A.

The backward process reverses the above procedure using a neural
etwork to provide 𝑝𝜃(𝑛−1|𝑛, 𝑐) for each step. Here the network uses
he particle type 𝑐 as an additional input to condition the generation on
he specific inertial properties of the trajectories we want to generate.
etails of the network architecture are given in Appendix A. Therefore,

tarting with Gaussian noise drawn from 𝑝(𝑁 ) =  (𝟎, 𝑰), it is possible
o conditionally generate new trajectories based on the desired type of
articles with

𝜃(0∶𝑁 |𝑐) = 𝑝(𝑁 )
𝑁
∏

𝑛=1
𝑝𝜃(𝑛−1|𝑛, 𝑐). (6)

n the continuous diffusion limit, achieved by our choice of variance
chedule and number of diffusion steps, the backward step 𝑝𝜃(𝑛−1|𝑛,
) retains the same Gaussian functional form as the forward step. There-
ore, the neural network is designed to predict the mean 𝜇𝜃(𝑛, 𝑛, 𝑐)
nd standard deviation 𝛴𝜃(𝑛, 𝑛, 𝑐) of the transition probability (Feller,
015; Sohl-Dickstein et al., 2015):
𝜃(𝑛−1|𝑛, 𝑐) → 𝑛−1 ∼  (𝜇𝜃(𝑛, 𝑛, 𝑐), 𝛴𝜃(𝑛, 𝑛, 𝑐)). (7)
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Fig. 1. Illustration of the forward and backward diffusion Markov processes. The forward process (right to left) introduces noise progressively over 𝑁 steps. In contrast, the
backward process (left to right), implemented by a neural network, generates the trajectory step by step starting from pure Gaussian noise.
Fig. 2. Visualization of a typical tracer trajectory generation process at four different backward steps (from left to right). At each step of the generation process, the inset shows
a zoomed view of the region in which a small-scale vortex structure is being generated.
The neural network is trained to minimize an upper bound of the
negative log-likelihood,

E𝑞(0|𝑐)[− log(𝑝𝜃(0|𝑐))]. (8)

A detailed derivation of the loss function can be found in Appendix B.
In Fig. 2 we illustrate an example of a tracer trajectory that is being
gradually generated along the backward process. We can see that
the backward diffusion starts to reconstruct the large-scale features
of the particular trajectory in the early steps, up to the generation
of the small-scale intense fluctuations and the smooth regions in the
final steps. This sequence is primarily determined by the methodology.
In the forward process, noise is progressively added, first disrupting
small-scale correlations and then progressively affecting larger-scale
correlations. In essence, information is removed scale by scale, from
small to large scales. The backward process, trained to reverse the
forward process, reconstructs the signal from large to small scales.

In this work we have considered two different types of DM, specif-
ically we call DM-1c the diffusion model that is trained to generate
a single velocity component along the particle trajectory, while we
will call DM-3c the model that is trained to generate the three par-
ticle velocity components simultaneously. Both models use the same
network architecture, except for the very first layer, which is adapted
to the different number of channels. From the generation of the latter,
it is possible to reconstruct the three-dimensional structure of the
Lagrangian trajectory by time integration of the particle velocity.

3. Results

As a first result, in Fig. 3 we visually compare three-dimensional
(3D) trajectories obtained from DNS with those generated by DM-3c
for the three particle types considered in this work, heavy, tracer,
and light. This first result is useful to show qualitatively that DM can
reproduce the complex topological-vortical structures expected in the
3 
real trajectories with different inertia. From this figure, we can see that
light particles, in both the DNS and DM examples, experience intense
acceleration events (red-colored regions) much more frequently than
the tracers, while heavy particles have a much smoother dynamic,
reflecting DM’s ability to correctly model the particle nature of be-
ing trapped in or escaping vortex filaments. Fig. 4 shows the three
velocity components as a function of time for typical trajectories of
different particles obtained from DNS and DM-3c. This comparison
further demonstrates the consistency between DNS and DM for particles
with different properties. The increasingly obvious and intense vortex-
trapping events from heavy to tracer to light particles reflect their
sampling of different regions of the turbulent field and the effects of
inertial filtering, as particles with different inertia respond differently
to turbulent structures.

In order to have a first comparison over the whole generated and
the training dataset, in Fig. 5 we show the probability density function
(PDF) of a generic component of the acceleration along the particle
trajectories. The instantaneous particle acceleration is calculated as
𝑎𝑖(𝑡) = lim𝜏→0 𝛿𝜏𝑉𝑖∕𝜏, approximated with a time resolution of 0.1𝜏𝜂 .
We can see that there is for all cases a very close agreement between
the ground-truth DNS distributions and those from DMs over the whole
range of fluctuations, and up to the extreme fluctuations, 60−70 times
the standard deviation, observed for tracers and light particles. For a
more quantitative comparison, we now study the statistical properties
of high-order two-point time correlations by introducing the so-called
Lagrangian structure functions, defined as

𝑆(𝑝)
𝜏 = ⟨[𝑉𝑖(𝑡 + 𝜏) − 𝑉𝑖(𝑡)]𝑝⟩, (9)

where on the l.h.s. we have removed the dependency on the component
𝑖 = 𝑥, 𝑦, 𝑧 assuming isotropy. Fig. 6 (top row) shows the Lagrangian
structure functions of order 𝑝 = 2, 4, 6 for the DNS training data,
the data set generated by DM-1c, which generates individual velocity
components, and DM-3c, which generates all three velocity components
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Fig. 3. Examples of 3D trajectories generated from DNS and DM-3c from left to right respectively for heavy, tracers, and light particles. The colors are proportional to the local
acceleration experienced by the particles along the trajectories, in particular, red indicates intense acceleration and blue indicates low acceleration regions. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Examples of different velocity components 𝑖 = 𝑥, 𝑦, 𝑧 normalized by the standard deviation 𝜎 as a function of time for trajectories from DNS (top) and DM-3c (bottom).
(a)(d) heavy particles, (b)(e) tracers, (c)(f) light particles.
simultaneously. In the bottom row of the same figure, we show a
comparison of the generalized flatness,

𝐹 (𝑝)
𝜏 = 𝑆(𝑝)

𝜏 ∕[𝑆(2)
𝜏 ]𝑝∕2, (10)

up to 𝑝 = 8 obtained for the same datasets discussed above. Given
the sensitivity to the rare fluctuations in the data of such high-order
observables and their extension over more than two decades of dy-
namical scales, it is remarkable how accurately the DM reproduces the
correct ground truth statistics while distinguishing the different particle
phenomena. We note that for 𝜏 < 𝜏𝜂 , DM-1c slightly outperforms DM-
3c, likely due to the additional challenge of DM-3c in accounting for
correlations between velocity components.

Finally, we discuss the most rigorous multiscale statistical test:
comparing the scale-by-scale exponents obtained from the logarith-
mic derivatives of the structure functions in extended self-similarity
(ESS) (Arnéodo et al., 2008), namely computed as

𝜁 (𝑝, 𝜏) =
𝑑 log𝑆(𝑝)

𝜏

𝑑 log𝑆(2)
𝜏

. (11)

To our knowledge, DM is the first method to successfully generate syn-
thetic 3D Lagrangian tracer trajectories that reproduce this observable
across all time scales (Li et al., 2024). In Fig. 7 we show the ESS
local exponent for 𝑝 = 4, again comparing DNS, DM-1c and DM-3c for
the three particle types. These results allow us to conclude that DMs
4 
can correctly capture the multiscale properties of the structure-function
scaling exponents even in the presence of different inertial properties.
In particular, we can see how the model is able to correctly reproduce
the different vortex trapping dynamics, which is strongly enhanced for
light particles and depleted for heavy ones compared to the tracers,
which is reflected in the intensification of the intermittency level and
the depth of the viscous bottleneck around the range 𝜏 ∼ 𝜏𝜂 while
decreasing the particle inertia, from heavy to tracer to light.

4. Conclusions

We have generalized a data-driven diffusion model, originally suc-
cessful in generating single-particle tracers, to accommodate particle
with different inertia: tracers, heavy and light particles. By incorpo-
rating data from different particle inertia, the model has adapted to
new conditions while maintaining its effectiveness. It reproduces most
statistical benchmarks across time scales, including the fat-tail distri-
bution for acceleration, the anomalous power law, and the increased
intermittency around the dissipative scale for tracers and light particles.
Note that the original model showed a strong ability to generate unseen
extreme events (Li et al., 2024); future work will involve collecting
more statistics to check for similar capabilities in the current model.

In future research, the generalizability of the DM model can be
further tested by including a more diverse set of data configurations
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Fig. 5. Standardized PDFs of one generic component of the acceleration, 𝑎𝑖, for ground-truth DNS data (black line) and synthetically generated data from DM-1c (blue line with
ircles) and DM-3c (orange line with triangles) for (a) heavy particles, (b) tracers, and (c) light particles. The statistics for DMs are based on the same amount of data as those
or DNS. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Log–log plots comparing Lagrangian structure functions, 𝑆(𝑝)
𝜏 for 𝑝 = 2, 4, 6, and generalized flatness, 𝐹 (𝑝)

𝜏 for 𝑝 = 4, 6, 8, between DNS and DMs for different particle types:
(a)(d) heavy particles, (b)(e) tracers, and (c)(f) light particles. The color scheme and symbols are organized as in Fig. 5. The error bars indicate the range of values obtained for
each measure by dividing the dataset used for the statistics into ten different independent batches per velocity component. This resulted in 10 batches for DM-1c and 30 batches
for DNS and DM-3c.
Fig. 7. Comparison of 4th-order logarithmic local slope 𝜁 (4, 𝜏) between the ground-truth DNS and DMs on a lin–log scale for (a) heavy particles, (b) tracers, and (c) light particles.
The dotted horizontal lines represent the non-intermittent dimensional scaling, 𝑆 (4)

𝜏 ∝ [𝑆 (2)
𝜏 ]2. The color scheme and symbols are organized as in Fig. 5, while the statistics and the

error bars are derived in the same way as in Fig. 6.
in the training process. This will allow us to evaluate the interpolation
and extrapolation capabilities of the model to unseen values of physical
parameters during training, such as density ratios, Stokes numbers,
and Reynolds numbers, to fully explore the potential of the model.
Advanced network architectures, such as transformers (Vaswani et al.,
2017), could be used to replace the current U-net to better handle
the scaling capability required for larger and more diverse datasets.
Our ultimate goal is to provide high-quality, high-volume synthetic
5 
datasets for downstream applications such as inertial particle classi-
fication and data inpainting (Friedrich et al., 2020; Li et al., 2023c;
Zheng et al., 2024). Inertial particle classification involves determining
the particle type based on observed trajectories, including properties
such as density ratio and Stokes number. Data inpainting refers to
the interpolation or reconstruction of complete data from partially ob-
served data. By generating these synthetic datasets, we aim to avoid the
impractical computational or experimental effort required to generate

real Lagrangian trajectories.
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erate new trajectories is available at https://github.com/SmartTURB/
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ppendix A. DM architecture and noise schedule

We use a U-net architecture (Ronneberger et al., 2015) as the
ackbone of the DM, consisting of two main parts: a downsampling
tack and an upsampling stack, connected by skip connections as shown
n Fig. A.8. The upsampling stack mirrors the downsampling stack,
reating a symmetrical structure, with each stack performing four
teps of downsampling or upsampling, respectively. This results in five
tages from highest to lowest resolution (2000 to 125, each with a
ownsampling/upsampling rate of 2). The three residual blocks in these
tages are configured with channels [𝐶,𝐶, 2𝐶, 3𝐶, 4𝐶], with 𝐶 set to
28. Multi-head attention (Vaswani et al., 2017) with four heads is
mplemented after each residual block in the 250 and 125 resolution
tages. The intermediate module connecting the encoder and decoder
tacks consists of two residual blocks of 4𝐶 channels, sandwiching a

four-head attention. The diffusion step 𝑛 is specified to the network
using transformer sinusoidal position embedding and the particle type

is specified using class embedding.

6 
We adopted the optimal noise schedule from previous research to
generate Lagrangian tracers with a total of 𝑁 = 800 diffusion steps (Li
et al., 2024):

𝛼̄𝑛 =
− tanh (7𝑛∕𝑁 − 6) + tanh 1

− tanh (−6) + tanh 1
. (A.1)

The variance can be obtained as 𝛽𝑛 = 1− 𝛼̄𝑛∕𝛼̄𝑛−1, which is clipped to be
no greater than 0.999 to avoid singularities at the end of the forward
diffusion.

The AdamW optimizer (Loshchilov and Hutter, 2017) was used to
train the model with a learning rate of 10−4 over 2.5 × 105 iterations
for DM-1c, and 4.0 × 105 iterations for DM-3c. The DMs were trained
with a batch size of 256 on four NVIDIA A100 GPUs for approximately
25 h (DM-1c) and 40 h (DM-3c). An exponential moving average (EMA)
strategy with a decay rate of 0.999 was applied to the model parameters
to sample new trajectories.

Appendix B. Derivation of the training loss function

We introduce an important property of the forward process: it
allows closed-form sampling of 𝑛 at each diffusion step 𝑛 (Weng,
021):

(𝑛|0) → 𝑛 ∼  (
√

𝛼̄𝑛0, (1 − 𝛼̄𝑛)𝑰), (B.1)

where we define 𝛼𝑛 ∶= 1 − 𝛽𝑛 and 𝛼̄𝑛 ∶= 𝛱𝑛
𝑖=1𝛼𝑖. In particular, given

ny initial trajectory 0, its state after 𝑛 diffusion steps can be sampled
irectly as

𝑛 =
√

𝛼̄𝑛0 +
√

1 − 𝛼̄𝑛𝜖, (B.2)

where 𝜖 ∼  (𝟎, 𝑰).
We use the variational bound to optimize the negative log-likelihood

in Eq. (8):

𝐿 ∶= E𝑞(0)E𝑞(1∶𝑁 |0)

[

− log
𝑝𝜃((0∶𝑁))
𝑞(1∶𝑁 |0)

]

≥ E𝑞(0)[− log(𝑝𝜃(0))]. (B.3)

rom this point on, we omit the condition on particle type 𝑐 for the
ake of simplicity. This objective can be expressed as the sum of the
ullback–Leibler (KL) divergences, denoted as 𝐷KL(⋅ ∥ ⋅), together
ith an additional entropy term (Sohl-Dickstein et al., 2015; Ho et al.,
020):

= E𝑞(0)

[

𝐷KL(𝑝(𝑁 |0) ∥ 𝑝𝜃(𝑁 ))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐿𝑁

+
𝑁
∑

𝑛>1
𝐷KL(𝑝(𝑛−1|𝑛,0) ∥ 𝑝𝜃(𝑛−1|𝑛))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐿𝑛−1

− log 𝑝𝜃(0|1)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

𝐿0

]

. (B.4)

he first term, 𝐿𝑁 , is ignored during training because it contains
o learnable parameters, since 𝑝𝜃(𝑁 ) is a Gaussian distribution. The
econd part of the terms, 𝐿𝑛−1, represents the KL divergence between
𝜃(𝑛−1|𝑛) and the posteriors of the forward process conditioned on
0, which are tractable using Bayes’ theorem (Weng, 2021):

(𝑛−1|𝑛,0) → 𝑛−1 ∼  (𝜇̃(𝑛,0), 𝛽𝑛𝑰), (B.5)

here

̃𝑛(𝑛,0) ∶=

√

𝛼̄𝑛−1𝛽𝑛
1 − 𝛼̄𝑛

0 +

√

𝛼𝑛(1 − 𝛼̄𝑛−1)
1 − 𝛼̄𝑛

𝑛 (B.6)

and

𝛽𝑛 ∶=
1 − 𝛼̄𝑛−1
1 − 𝛼̄𝑛

𝛽𝑛. (B.7)

he KL divergence between the two Gaussians in Eqs. (7) and (B.5) can
e expressed as

𝑛−1 = E𝑞(0)

[

1
2
‖𝜇̃𝑛(𝑛,0) − 𝜇𝜃(𝑛, 𝑛)‖2

]

, (B.8)

2𝜎𝑛

http://smart-turb.roma2.infn.it
http://smart-turb.roma2.infn.it
http://smart-turb.roma2.infn.it
https://github.com/SmartTURB/diffusion-lagr
https://github.com/SmartTURB/diffusion-lagr
https://github.com/SmartTURB/diffusion-lagr
http://smart-turb.roma2.infn.it
https://github.com/SmartTURB/diffusion-lagr
https://github.com/SmartTURB/diffusion-lagr
https://github.com/SmartTURB/diffusion-lagr
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Fig. A.8. The U-net architecture that takes a noisy trajectory of a given particle inertia as input at step 𝑛 and predicts a denoised trajectory at step 𝑛 − 1.
iven the constant variance 𝛴𝜃 = 𝜎2𝑛𝑰 , where 𝜎2𝑛 can be either 𝛽𝑛 or 𝛽𝑛
s discussed in Ho et al. (2020) and we use the former in this work. It
an be shown that the term 𝐿0 takes the same form as in Eq. (B.8) due
o the Gaussian form of 𝑝𝜃(0|1) in Eq. (7).

We aim to train 𝜇𝜃(𝑛, 𝑛) to predict 𝜇̃(𝑛,0), which is given by

𝜇̃(𝑛,0) =
1

√

𝛼𝑛

(

𝑛 −
𝛽𝑛

√

1 − 𝛼̄𝑛
𝜖

)

, (B.9)

by substituting Eq. (B.2) into Eq. (B.6). Therefore, given that 𝑛 is
vailable as input to the model, we can reparameterize to make the
etwork predict the Gaussian noise term 𝜖, and the predicted mean is

𝜃(𝑛, 𝑛) =
1

√

𝛼𝑛

(

𝑛 −
𝛽𝑛

√

1 − 𝛼̄𝑛
𝜖𝜃(𝑛, 𝑛)

)

, (B.10)

where 𝜖𝜃 is the predicted cumulative noise at step 𝑛. This reparameter-
ization transforms Eq. (B.8) into

𝐿𝑛−1 = E𝑞(0), 𝜖

[

𝛽2𝑛
2𝜎2𝑛𝛼𝑛(1 − 𝛼̄𝑛)

‖𝜖 − 𝜖𝜃
(

𝑛(0, 𝜖), 𝑛
)

‖

2

]

. (B.11)

We further ignore the weighting term and optimize a simplified version
of the variational bound:

𝐿simple = E𝑛, 𝑞(0), 𝜖
[

‖𝜖 − 𝜖𝜃
(

𝑛(0, 𝜖), 𝑛
)

‖

2] , (B.12)

where 𝑛 is sampled uniformly from 1 to 𝑁 . In practice, this method
improves the sample quality and simplifies the implementation (Ho
et al., 2020).
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