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A B S T R A C T

Function-as-a-Service (FaaS) has emerged as an evolution of traditional Cloud service models,
allowing users to define and execute pieces of codes (i.e., functions) in a serverless manner,
with the provider taking care of most operational issues. With the unending growth of resource
availability in the Edge-to-Cloud Continuum, there is increasing interest in adopting FaaS near
the Edge as well, to better support geo-distributed and pervasive applications. However, as the
existing FaaS frameworks have mostly been designed with Cloud in mind, new architectures
are necessary to cope with the additional challenges of the Continuum, such as higher
heterogeneity, network latencies, limited computing capacity.

In this paper, we present an extended version of Serverledge, a FaaS framework designed to
span Edge and Cloud computing landscapes. Serverledge relies on a decentralized architecture,
where each FaaS node is able to autonomously schedule and execute functions. To take
advantage of the computational capacity of the infrastructure, Serverledge nodes also rely on
horizontal and vertical function offloading mechanisms. In this work we particularly focus on
the design of mechanisms for function offloading and live function migration across nodes.
We implement these mechanisms in Serverledge and evaluate their impact and performance
considering different scenarios and functions.

. Introduction

Serverless computing has enjoyed an ever increasing popularity since its appearance in the last decade and it is expected to
each a projected market value of $36.8 billion by 2028 [1]. Although we still lack a standard definition of serverless, fundamental
nd characterizing aspects have been recently identified in the fact that serverless ‘‘allows to develop, deploy, and run applications
or components thereof) in the cloud without allocating and managing virtualized servers and resources or being concerned about
ther operational aspects’’ [2]. While serverless computing has various faces and interpretations, the most popular and prominent
ncarnation is Function-as-a-Service (FaaS). FaaS originated as an evolution of traditional Cloud service models, and allows users
o deploy units of computation, defined as functions, and execute them in response to events (e.g., HTTP triggers). Importantly,
unctions are executed in a serverless fashion, with the provider taking care of most the operational issues, from provisioning a
virtual) server, installing the required libraries, deploying the software, scaling. Fine-grained pricing models, where users are only
harged for the resources actually used to execute functions, and seamless scalability have further boosted the popularity of FaaS,
ith all the major Cloud providers now embracing this emerging service model in their catalogues (e.g., with services like AWS
ambda, Google Cloud Functions, Azure Functions). Besides them, several open-source FaaS frameworks have appeared, including
pache OpenWhisk, OpenFaaS, Knative, nuclio.
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FaaS emerged as an evolution of traditional Cloud service models like Infrastructure-as-a-Service and Platform-as-a-Service and,
s such, it is not surprising that the adoption of FaaS mostly regards Cloud-based applications and infrastructures. Nonetheless,
esearchers and practitioners have started wondering whether and how FaaS could be successfully adopted out of Cloud data centers,
t the edge of the network and in the emerging Edge-to-Cloud continuum [3–5], to support geographically distributed and pervasive
pplications and services. Indeed, application domains like Industrial Internet-of-Things, smart healthcare, and augmented/virtual
eality, have often strict latency requirements [6], and, hence, cannot tolerate the delays caused by Edge-to-Cloud communication
nd data transfers. In contrast, emerging Edge computing environments represent promising solutions for these applications, enabling
ear-user, low-latency computation. Therefore, it is natural to investigate how emerging computing paradigms for the Cloud can be
eneficial for pervasive and ubiquitous applications as well.

As mentioned, there is a large number of open-source FaaS frameworks available nowadays, representing a promising toolbox
o bring FaaS at the edge of the network. However, looking at the architecture of these frameworks, it is easy to observe that they
re mostly designed to run in Cloud or clustered environments. In particular, key limiting factors towards their seamless adoption
t the Edge include (i) frequent use of centralized schedulers or gateway components, which introduce latency in geo-distributed
ettings, and (ii) memory-demanding function sandboxes, usually based on software containers.

The research community has started to investigate solutions to better support FaaS beyond the Cloud scenario. A few works
e.g., [7–9]) study architectures and algorithms for function placement and load distribution in decentralized FaaS systems,
ut still relying on the existing Cloud-oriented frameworks for actual function execution, possibly incurring in some of the
forementioned issues. Other works have proposed novel frameworks. For instance, some solutions exploit lightweight function
andboxing mechanisms instead of OS-level virtualization (e.g., Faasm [10] and Sledge [11]), to better suit resource-constrained
eployments. However, these solutions either work within single Edge nodes (e.g., [11,12]), or scale over multiple nodes without
onsidering geographical distribution (e.g., [10]).

Our group has recently presented Serverledge [13], an open-source1 FaaS framework that aims to fill the gap between Edge and
Cloud and provides a flexible and extensible framework for FaaS in geographically distributed environments. Serverledge adopts
a decentralized architecture, with nodes organized into Edge zones and Cloud regions based on their location. Every Serverledge
node, being it at the Edge or in the Cloud, is able to schedule and execute invocation requests with minimal or no interaction with
remote nodes, keeping latency as low as possible. To cope with load peaks, Serverledge also supports vertical (i.e., from Edge to
Cloud) and horizontal (i.e., among Edge nodes) computation offloading, allowing nodes to forward invocation requests that cannot
be served locally.

In this paper, we extend Serverledge with additional mechanisms to better support function scheduling and execution, focusing in
particular on function offloading and migration. We study two different mechanisms for function offloading, based, respectively, on
recursive request forwarding and HTTP redirection. We discuss the merits of both the approaches and show that none outperforms
the other in every scenario. We then propose an algorithm to dynamically select the best mechanism to offload incoming requests
at run-time.

Offloading allows Serverledge to transfer the execution of a function from one node to another, as soon as an invocation request is
received (e.g., because the node is overloaded). In this work, we introduce an additional mechanism, namely function live migration,
to allow nodes to transfer the execution of a function to another node after the function has started. For this purpose, we integrate
live container migration in Serverledge, studying a suitable migration protocol both for synchronous and asynchronous function
invocations.

Our key contributions can be summarized as follows:

• We present the design of Serverledge with new features and components introduced with respect to [13], namely, asynchronous
function invocation, the ability of provisioning limited shares of CPU time to functions, the ability of buffering incoming
requests, live function migration, and the use of Podman as an alternative function runtime alongside Docker.

• We present and compare two approaches for function offloading. As none of the mechanisms provides the best performance
in every situation, we devise an algorithm to adaptively choose the most convenient mechanism at run-time.

• We design and implement a live function migration mechanism for Serverledge, that allows us to migrate running function
instances in presence of both synchronous and asynchronous invocations. We demonstrate the functionality of function
migration and its overhead in terms of latency.

We remark that, compared to our previous publication [13], in this work we introduce several new mechanisms, namely
asynchronous function invocation, CPU capping for functions, request buffering, an alternative container runtime for function
isolation (i.e., Podman), offloading based on HTTP redirection and live function migration.

The remainder of the paper is organized as follows. We review related work in Section 2. In Section 3 we present the architecture
of Serverledge and the design of its key components. We focus on the design of offloading mechanisms in Section 4, where we also
introduce our adaptive mechanism selection algorithm. In Section 5 we describe the design and implementation of live function
migration in Serverledge. We present the experimental evaluation in Section 6 and conclude in Section 7.

1 https://github.com/grussorusso/serverledge
2
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Table 1
Comparison of FaaS frameworks. (Dist. = System distribution, C = Cluster-level, G = Geographical; Dec. Sched. = Decentralized
scheduling; Offl. = Function execution offloading, H = Horizontal offloading, V = Vertical offloading, Migr. = Live function
migration; Comp. = Function composition).

Dist. Dec. Sched. Offl. Migr. Comp. Runtime

Colony [20] G ✓ H+V – ✓ COMPSs [21]
faasm [10] C ✓ H – ✓

funcX [22] G ✗ – – ✓

OpenWhisk C ✗ – – ✓ Container
OpenFaaS C ✗ – – ✓a Container
Sledge [11,23] – – – – ✓

TEMPOS [24] G ✗ – – ✓ Process/WASM-based
tinyFaaS [12] – – – – – Container (static)
Serverledge G ✓ H+V ✓ – Containers

a Through an external project.

. Related work

The interest of researchers in serverless computing and FaaS has enormously grown in the last years, as demonstrated by
everal surveys on the topic (e.g., [14–18]). A recent surge of interest is related to running serverless functions at the edge of
he network [3–5], in particular to handle IoT workloads [16], bringing functions closer to devices and thus reducing latency and
nergy consumption. However, adopting FaaS out of traditional Cloud or clustered environments raises a different set of research
hallenges, mainly because of resource constraints and geographic distribution of Edge nodes [5,19]. In this section, we focus on
roposals that explicitly cope with these challenges. First, we discuss FaaS frameworks for the Edge related to our proposal. Then, we
eview works dealing with function placement and load distribution in Edge–Cloud FaaS systems, focusing on solutions for function
ffloading and migration.

.1. Frameworks

Table 1 compares Serverledge to related systems proposed in the literature for FaaS at the edge of the network, as well as to two
stablished open-source frameworks for the Cloud, namely OpenWhisk and OpenFaaS. The solutions closest to ours are Colony [20]
nd Faasm [10], as they support function execution offloading.

Colony is a framework for parallel FaaS in the Cloud–Edge continuum. The goal of Colony is to let distributed nodes process data
n their embedded compute resources while also offering their computing capacity to the rest of the infrastructure. A distinguishing
eature of Colony with respect to the most popular FaaS frameworks is the ability of transparently converting the logic of complex
ser-given functions into task-based workflows backing on task-based programming models through COMPSs [21]. The generated
orkflows are then executed over the infrastructure, possibly offloading tasks both horizontally and vertically. To the best of our
nowledge, the source code of Colony has not been publicly released.

Faasm is an open-source research prototype that introduced Faaslets, an isolation abstraction for high-performance serverless
computing. Faaslets are implemented using WebAssembly, and isolate the memory of executed functions using software-fault
isolation (SFI), while allowing memory regions to be shared between functions in the same address space. WebAssembly (Wasm)
is a portable, binary instruction format for memory-safe, sandboxed execution and as such has emerged as a promising approach
for supporting serverless at the Edge [25,26]. Relying on Faaslets, Faasm significantly reduces the initialization time and memory
footprint of function sandboxes, compared to container-based approaches. Moreover, thanks to the ability of sharing memory regions,
Faasm supports efficient function chaining and communication. Faasm runs using multiple worker nodes, which can schedule and
offload requests horizontally to other workers. However, Faasm does not explicitly consider geographical distribution of the nodes.

Sledge [11,23] and tinyFaaS [12] are other FaaS frameworks specifically designed for Edge environments, aiming to provide
serverless execution with reduced resource consumption. The key difference between the solutions mentioned above, including
Serverledge, and these two frameworks lies in the fact that Sledge and tinyFaaS target single-node deployment scenarios and,
thus, they lack the ability to exploit Cloud resources. As regards the sandboxing mechanism used for function execution, Sledge
adopts an approach similar to Faasm, exploiting software-fault isolation and WebAssembly-based runtime environments. Sledge has
recently been extended in [23] to orchestrate and schedule the execution of function compositions through QoS-aware policies.
While Serverledge does not currently support function chains or compositions, we plan to introduce similar features in the future.

Similarly to our approach, tinyFaaS relies on traditional Docker containers for isolated function execution. However, to limit the
overhead due to dynamic management of running and idle containers, tinyFaaS uses a ‘‘static’’ pool of containers for each function.
Indeed, a configurable number of containers are spawned upon registration of a new function, without waiting for invocation
requests. Furthermore, tinyFaaS, which only supports JavaScript functions, allows multiple requests to be served concurrently within
the same container, avoiding the additional memory footprint of concurrent container instances.

Designed for scalable and high performance remote function execution, 𝑓uncX [22] is a distributed FaaS framework that
decouples cloud-based management functionality from edge-hosted function execution, supporting multiple runtime environments.
3
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et al. [24] propose a holistic platform, named TEMPOS, to manage serverless functions with differentiated QoS guarantees in the
compute continuum. They exploit various mechanisms for QoS enforcement at system-level, including Linux real-time scheduling,
differentiated MOM priorities, and Time-Sensitive Networking (TSN).

Compared to the research prototypes described above, OpenFaaS and OpenWhisk are feature-rich open-source FaaS frameworks,
hich have been primarily designed for Cloud and clustered computing environments. In particular, the architecture of OpenFaaS
nd OpenWhisk does not suit well geographically distributed environments, as they include centralized scheduling and management
omponents (e.g., the Controller in OpenWhisk, the Gateway in OpenFaaS). Both these frameworks rely on software containers for
solation.

.2. Function scheduling and offloading

Besides novel FaaS implementations, researchers have also been working on strategies for resource allocation and scheduling for
erverless functions in Edge-to-Cloud environments, including approaches to offloading and migration. The problem of scheduling
unction execution across heterogeneous and possibly resource-constrained Edge servers has been considered in a number of works
e.g., [7,27–29]). They investigate optimal function placement with the goal of minimizing the completion time of serverless
pplications under the trade-off between processing time and communication overhead. For example, Deng et al. [28] propose a
roactive algorithm to split the incoming data traffic between Edge nodes. Schedulix [7] comprises a greedy algorithm to determine
oth the order and placement of functions over a hybrid public–private cloud, comprising AWS Lambda and OpenFaaS. Optimization
roblem formulations have been employed for resource provisioning and allocation in Edge and Cloud serverless environments,
.g., [29,30]. NEPTUNE [29] exploits Mixed Integer Programming to place latency-constrained functions on Edge nodes according to
ser locations. NEPTUNE also takes into account the availability of GPUs for accelerated function execution. Model-driven resource
anagement algorithms based on queuing theory have been also proposed, for example in LaSS [31] to determine the placement of

ach function and to auto-scale the allocated resources in response to workload dynamics. In a previous work [32], we also studied
he problem of scheduling invocation requests in a resource-constrained serverless cluster, and integrated well-known scheduling
olicies (i.e., shortest-job-first and priority-based FIFO) in the open-source OpenWhisk framework. Differently from this work, we
id not support geographical distribution, offloading and migration.

Ascigil et al. [30] consider the more general problem of resource allocation for serverless functions running in an Edge–Cloud
nvironment and propose centralized and decentralized optimization approaches. The scenario they consider is similar to the one
argeted in this work, with multiple functions and groups of users. However, they assume that containers for function execution are
tatically provisioned in the infrastructure, rather than being created and terminated dynamically, and thus do not cope with cold
tarts. Instead, we define a system model based on the behavior of the most popular FaaS frameworks, including the issues related
o dynamic container management.

Some works focus on exploiting function offloading, where a FaaS node, after receiving an invocation request, decides to forward
he request to another node instead of serving it. As mentioned, we distinguish between vertical offloading, where requests are
ffloaded to nodes at higher levels of the infrastructure (e.g., from Edge to Cloud), and horizontal offloading, where requests are
ffloaded to nodes at the same infrastructure level (e.g., within the same Edge zone).

As explained above, few FaaS frameworks (e.g., Colony and Serverledge) have built-in support for both horizontal and vertical
ffloading. Conversely, popular open-source frameworks for the Cloud (e.g., OpenWhisk, OpenFaaS) have no native support for
ffloading, but researchers have proposed federated systems on top of them with offloading abilities. For example, horizontal
ffloading is exploited in DFaaS [8], which relies on an overlay network to federate a set of OpenFaaS nodes at the Edge. By
eans of horizontal offloading, DFaaS manages to balance load among the federated nodes. A similar scenario is studied by
icconetti et al. [9], who propose an Internet Protocol-inspired algorithm to offload invocation requests within a network of FaaS
odes, and in P2PFaaS [33], a framework for load balancing and scheduling in a peer-to-peer FaaS system.

A few works exploit vertical offloading, usually to forward requests from the edge of the network towards the Cloud. For instance,
as et al. [34] consider the problem of scheduling the execution of serverless pipelines either at the Edge or in the Cloud. The
roposed policy allows users to specify latency and cost requirements and determines where to execute the task based on prediction
odels of the task duration. Deep reinforcement learning (DRL) is used in [35], focusing on a scenario where functions can be

ffloaded from IoT devices to Edge nodes. They use DRL to minimize the long-term system latency cost, a metric computed in terms
of function response time and deadline. A game-theoretic approach is presented in [36], which considers the interaction between
self-interested wireless devices that can reserve communication and computing resources for latency-sensitive applications, and a
FaaS Edge operator that allocates resources for function execution. The authors consider both the case of perfect and imperfect
information. Vertical offloading is also exploited in AuctionWhisk [37], an auction-inspired approach integrated in OpenWhisk,
which targets a FaaS system running in a Fog computing scenario. The proposed approach relies on auctions where users bid on
resources, while FaaS nodes decide locally which functions to execute and which to offload towards the Cloud in order to maximize
revenue.

UnFaaSener [38] considers a different offload scenario. Instead of simply offloading requests from a FaaS node to another,
UnFaaSener studies how to offload function execution from a serverless platform (e.g., Google Cloud Functions) to a traditional VM,
to take advantage of underutilized servers in the user’s infrastructure.

The problems of decentralized task scheduling and offloading have been widely studied beyond the specific FaaS application
domain, e.g., in Tasklets [39,40], a task-based distributed computing framework. For a comprehensive discussion of task offloading
4
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Fig. 1. Serverledge overview.

2.3. Live function migration

To the best of our knowledge, none of the existing FaaS frameworks currently offers live function migration as a built-in feature.
Nonetheless, researchers have started to investigates approaches to function migration. Kahrula et al. [43] consider a container
checkpointing mechanism, similar to our solution, that can be used both for fault tolerance and migration. Their work specifically
targets serverless functions for IoT at the Edge.

Soltani et al. [44] consider function migration to address a limitation of Cloud-based FaaS offerings, which usually limit the
maximum execution time of functions. Therefore, they propose a solution that migrates functions close to the execution timeout to
a different Cloud provider. However, their solution is not integrated in a general-purpose FaaS framework.

Pelle et al. [45] propose a network-assisted solution to migrate serverless applications at the edge of the network. However,
differently from our approach, they do not migrate single function instances during execution, but rather provision the same function
to multiple infrastructure nodes and quickly switch between them at run-time.

3. Design of Serverledge

Serverledge is a decentralized FaaS platform, designed for Edge–Cloud computing environments. According to the FaaS paradigm,
Serverledge allows users to define functions through high-level programming languages and automatically allocates resources for
their execution upon invocation. Following the approach adopted by most existing FaaS platforms, including OpenWhisk and
OpenFaaS, we execute functions within software containers, which are spawned as needed and initialized with the code and libraries
required by each function.

Fig. 1 illustrates the high-level architecture of a Serverledge installation, which. consists of one or more nodes, deployed either
in Cloud data centers or at the edge of the network, and a global registry. The latter provides the distributed nodes with the required
data about the system, including membership information about each deployed node. Within the registry, nodes are organized into
different cloud regions (e.g., data centers) and edge zones based on their location.2 Cloud regions typically represent geo-distributed
data centers, while Edge zones may be associated with, e.g., single towns or cities. Each region (especially Cloud regions) may also
comprise a load balancer to distribute incoming requests to the nodes deployed in the region. Note that, while the global registry
represents a single logical entity in the architecture, it may be associated with multiple replicas for scalability and fault tolerance.

The core idea underpinning the design of Serverledge is that there are no single or privileged entry points for function invocation.
Indeed, users can send invocation requests to any node (e.g., one in their proximity). Compared to popular FaaS platforms designed
for the Cloud, scheduling functionalities are not centralized, and, thus, every node is able to schedule the execution of incoming
requests. This is particularly important for Edge-generated requests, which are not forced to reach a centralized gateway in the
Cloud for scheduling.

Serverledge adopts a per-request container scaling behavior, where new containers are only spawned when needed. In particular,
when an invocation request enters the system, if enough resources (i.e., CPU and memory) are available, a new container is spawned

2 Since we do not currently target mobile devices, we assume the location of each node (at the granularity of Cloud region/Edge zone) to be statically
configured at deployment time.
5
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Fig. 2. Architecture of a Serverledge node.

and initialized to execute the function. When this happens, the request has to wait for the container to be fully initialized before
being served and it is said to experience a ‘‘cold start’’. Following a common approach to reduce cold start frequency, containers
are not immediately destroyed after function completion and are kept in a warm pool until a fixed timeout expires (e.g., 10-15 min
in Cloud-based FaaS offerings). If one or more warm containers are available, these can be re-used to serve new requests for the
same function avoiding a cold start.

Due to the limited resource capacity of Edge nodes, it is likely that a single node (and perhaps a whole Edge zone) cannot sustain
the incoming load. Therefore, Serverledge allows nodes to offload invocation requests to other nodes, when needed. In particular,
we support both vertical and horizontal offloading. The former refers to execution requests being forwarded from Edge to Cloud
nodes, whereas the latter indicates request offloading among Edge nodes. According to the node organization described above and
in the aim of keeping latencies under control, we assume that each Edge zone is associated with a single Cloud region for offloading.
Similarly, horizontal offloading is enabled by default only within a single Edge zone.

Furthermore, nodes can also reduce their current load by migrating a function instance that is already being executed. We will
provide more information about function live migration in Section 5.

A Serverledge node comprises a few key components, as depicted in Fig. 2: API server, Scheduler, Local Registry, and Container
Pool. By interacting with each other and possibly with the Global Registry and other nodes, these components support the execution
and scheduling functionalities we have introduced in the previous section. In the following, we will describe the design of each
component and the interactions between different components.

3.1. API server

Each node provides a set of key functionalities through an HTTP API, served by the API server component. The API is meant
to be primarily used by client applications (e.g., to create and invoke their own serverless functions), but it is also accessible to
other Serverledge nodes (e.g., for offloading, as illustrated in the following). In particular, each node supports the following key
operations:

• /create: to register a new serverless function in the system, providing its source code and the required information for its
execution (e.g., the amount of memory to reserve for its container instances). The information is stored in the Global Registry
and, thus, the new function is available at every Serverledge node.

• /invoke: to invoke an existing function, possibly specifying one or more input parameters and QoS requirements for the
submitted request (e.g., QoS class, maximum response time).

• /list: to get a list of the registered functions. The information is retrieved from the Global Registry and possibly cached
locally.

• /delete: to de-register an existing function. The operation is applied to the Global Registry, causing the function to be
deleted system-wise.

• /status: to obtain information about a node, including, e.g., the amount of available computational resources and the current
state of its container pool.

• /async: to obtain the result of an asynchronous function invocation (see details in Section 3.5).

3.2. Registry

As mentioned above, Serverledge uses a registry to store information about the nodes in the system and the registered functions,
including their code. At system-level, the Global Registry keeps this information and makes it available to the nodes as needed. As
6
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such, updates to the existing functions (e.g., creation of a new function) must be communicated to the Global Registry, in order to
make them visible to the whole system. In addition to accessing the Global Registry, each node is equipped with a Local Registry,
which has a twofold role. First of all, it acts as a local cache for information retrieved from the Global Registry. By doing so, it
provides local components (e.g., the scheduler) with low-latency access to most the data they use, avoiding unnecessary reads from
the Global Registry. A time-to-live is associated with each cache entry to guarantee that information is periodically refreshed from
the Global Registry.

Besides caching, the Local Registry is responsible for storing information that we aim to collect and manage on the node, without
propagating it at global level. Specifically, each node deployed at the Edge runs periodic monitoring tasks to gather information
about its neighbor nodes, located within the same Edge zone (e.g., the same town). In particular, these nodes run the well-known
Vivaldi [46] algorithm to build and update a virtual coordinate space, which allows nodes to estimate the network distance among
each other. The Vivaldi algorithm requires nodes to periodically exchange their own virtual coordinates. We exploit such message
exchange to spread additional information about each node, including the current amount of available resources (i.e., CPU and
memory) and a synthetic snapshot of the container pool in terms of existing warm containers. Such monitoring allows nodes to
identify non-overloaded close neighbors, in terms of network distance, which can be regarded as ideal candidates for computation
offloading, when needed.

3.3. Function scheduling

When a function invocation request is received, the node retrieves the necessary information about the function (i.e., required
runtime environment, memory and CPU demand) from the Local Registry, which – in turn – will interact with the Global Registry
if the required data have not been cached. Then, the request is passed to the Scheduler component, which decides whether, where
and how the request is served. The Scheduler is also supported by two submodules, Offloader and Migration Manager, which are
responsible, respectively, for managing offloaded requests and migrated function instances.

As illustrated in Fig. 3, the Scheduler has the following options for every incoming request:

• executing the function locally;
• pushing the request to a local queue, for future execution;
• offloading the function to another node, either in the Edge zone or in the Cloud;
• discarding the request and returning it to the client.

The algorithm used to make such a decision for every incoming request represents the scheduling policy in use. Serverledge provides
an easy-to-extend interface enabling the definition of custom policies (e.g., to differentiate multiple classes of users) and is not bound
to a specific algorithm.

Focusing on local execution, the scheduling process boils down to identifying a suitable container for function execution, either
retrieving it from the pool of warm containers or creating a new one. If a new container is needed, we create it from a suitable
base image depending on the runtime environment required by the function and specified at creation time (e.g., functions written
in Python require the Python interpreter). Once the container is started, we finalize the initialization by copying the source code
package of the function into the container. The invocation request has to wait for the whole initialization procedure before the
actual execution starts (i.e., the well-known cold start issue).

As mentioned, besides local execution within a warm/cold container, the Scheduler can make other decisions for incoming
requests, including adding to the queue, offloading and discarding. Compared to the work presented in [13], we introduced the
ability of buffering incoming requests in a local queue. The queue provides the Scheduler with an additional freedom degree. By
leveraging the queue, the Scheduler can cope with overloading periods either offloading requests or buffering them. Clearly, local
buffering introduces additional delay for the request, but it can be useful for specific classes of users (e.g., users who can tolerate
higher response times, but do not want their requests to be dropped) or at times when network conditions make offloading less
attractive.

3.4. Container management

As explained, and following the approach adopted by most the existing FaaS implementations, we rely on containers to isolate
the execution of different functions and different instances of the same function, as they all share the same computing resources
provided by the node. The node relies on a Container Pool component to manage and track all the containers allocated in the node.

The creation of new containers – as explained above – is triggered by the Scheduler when a request must be executed. New
containers are created according to the specifications of the function they will execute. Besides the base image to use, key function
attributes used in this phase are the memory and CPU demand of the function. These attributes determine the maximum amount
of memory and the quota of CPU time to reserve for the container. These resource limits have a twofold role. On the one hand,
they allow the Scheduler to determine whether a new container can be spawned at any time, based on the amount of computing
resources consumed by the existing ones. On the other hand, by properly sizing the CPU allocation of the containers, Serverledge has
an additional mechanism to differentiate users and functions in the system, similarly to what is done by commercial FaaS platforms,
which apply different prices depending on resource allocation.

After executing a function, containers are not terminated and are instead moved to the pool of warm containers for future re-use.
Containers remain in the warm pool until any of two events occurs and, specifically: (i) the container has been idle for a period
7
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Fig. 3. Illustration of function scheduling. If local execution is not possible (either in a warm or newly created container), the Scheduler can drop the request,
offload it to a remote node or push it to a local queue for future execution.

longer than a threshold 𝑇 𝑒𝑥𝑝𝑖𝑟𝑒𝑑 (whose default value is 10 min), or (ii) we need to create a container for a different function and
must reclaim memory from the warm pool to do so.

Regarding the software toolbox used to create and manage software containers in Serverledge, we support both Docker3 and
Podman,4 allowing users to select the solution to use before starting Serverledge. Compared to Docker, Podman offers some
advantages, mostly related to its daemonless design.

3.5. Function execution

Synchronous invocation is the default behavior in Serverledge and the one assumed in Fig. 3. When a function is invoked, the
invoking client remains connected to Serverledge waiting for the invocation result to be returned.

Asynchronous function invocation allows clients to invoke functions without being blocked while they are executed. Serverledge
takes care of function execution and the client retrieves the execution result (if available) at its convenience. Specifically, when a
client sends an asynchronous invocation request, Serverledge immediately replies with an invocation ID, a unique identifier of the
request. The ID is sent to the client and the connection is closed. Within Serverledge, the request is then forwarded to the Scheduler
and executed, with no difference compared to synchronous invocations. However, when the function is executed, instead of sending
the results back to the client, they are saved in the Global Registry (and cached in the Local Registry). Later, the client will use the
/async command to specify the invocation ID and poll for the execution result. The client might also contact a different node to
retrieve the result, as it is stored in the Global Registry.

Function execution happens within containers, where the source code of the function has been previously copied. Actually, the
container does not directly run the source code of the function when started. Instead, it runs a simple HTTP server, named Executor
server, whose goal is basically wrapping the execution of the function code. The Executor is kept in execution all the time the
container is active, either executing a function or warm, and listens for HTTP requests from the Serverledge node (i.e., it does not
listen for connections from outside the node).

When the Scheduler has to start the execution of a function, after obtaining a container from the Container Pool (either warm
or newly created), it sends an /invoke request to the Executor server in the container, transmitting the invocation parameters
specified by the client too. The Executor will send back the execution results produced by the function as an HTTP response.

Function invocation can be either synchronous or asynchronous.

4. Function offloading

Offloading the execution of functions allows nodes to cope with high load periods by moving a share of their own workload to
peers. Besides node congestion, offloading may be useful in general to optimize the provided service level, e.g., letting particular
requests be served remotely on specialized hardware for higher performance.

Serverledge supports both vertical (i.e., from the Edge to the Cloud) and horizontal (i.e., within an Edge zone) offloading. On the
one hand, vertical offloading typically allows nodes to significantly increase their accessible computing capacity, as Cloud regions
likely offer more and/or more powerful nodes. On the contrary, horizontal offloading involves single nodes in the neighborhood,
which do not necessarily offer better performance than the original targeted node. On the other hand, the network delay between
Edge and Cloud may impose non-negligible overhead on offloaded requests, especially if their computation demand is limited. In
this regard, horizontal offloading is attractive, as target nodes are selected based on proximity metrics and can be reached with
reduced delays.

3 https://www.docker.com/
4 https://podman.io/
8
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Fig. 4. Overview of the offloading mechanisms in Serverledge.

As explained above, the decision of offloading an incoming request is made by the Scheduler component, based, e.g., on the
current resource utilization of the node. While horizontal and vertical offloading appear as distinct levers to the Scheduler, which
should carefully pick one or the other depending on the circumstances, the offloading mechanisms are not significantly different
from a system design perspective. When the Scheduler makes an offloading decision for a request, a remote node for offloading is
also selected relying on information in the Local Registry, which includes information on the neighbor Edge nodes and the available
Cloud regions (if any).

In this section, we describe two different mechanisms for function offloading that we integrated in Serverledge. The first one
relies on the idea of request forwarding, whereas the second exploits HTTP redirection. After presenting the two mechanisms, we
will introduce an algorithm to dynamically select the best mechanism to use at run-time. Hereafter, we will use the expression
‘‘local node’’ to refer to the first node receiving the request from the client; and the expression ‘‘remote node’’ to indicate the node
to which the request is offloaded.

4.1. Offloading via forwarding

A simple approach to function offloading consists of forwarding the incoming request to the remote node and is illustrated in
Fig. 4(a). In this scenario, the local node acts as a reverse proxy, receiving the request from the client, and issuing a new invocation
request to the API of the remote node. The local node keeps the connection with the client open and waits for the computation
result traveling back from the remote node. When the execution result is ready, the local node sends it back to the invoking client
as soon as possible.

In principle, offloaded requests incur the same scheduling process on the remote node, although we may distinguish them from
regular, client-generated ones. For instance, a default constraint we integrated in Serverledge is that offloaded requests cannot be
further offloaded by the remote node. Although our design would support such recursive offloading, a longer forwarding chain may
easily undermine the ability of the Scheduler to estimate and control incurred latency.

An important advantage of this approach is that offloading is completely transparent with respect to the client, which does
not observe anything different compared to normal execution (except, possibly, for additional latency). As such, the request might
also be offloaded to a Serverledge node that is not directly exposed to and reachable by external clients. A key drawback of this
approach is the fact that the local node has to keep the connections to the clients open, even though their invocation requests have
been offloaded, incurring some additional overhead.

4.2. Redirect-based offloading

We consider an alternative offloading mechanism with the aim of limiting the involvement of the local node in the handling
of offloaded requests as much as possible. Specifically, we exploit the redirection mechanisms provided by the HTTP protocol, as
illustrated in Fig. 4(b). When the Scheduler decides to offload a request to another node, the local node immediately replies to the
client with a 307 - Temporary Redirect HTTP response, using the Location header to indicate the remote node to contact for
a new invocation request. The client, as soon as it receives the response, sends a new invocation request to the remote node. The
new request will be viewed and scheduled by the remote node regardless of the offloading process.

This approach relieves the local node that is offloading a request from maintaining an active connection with the client. Moreover,
redirecting the client to the remote node can be beneficial in terms of response time if the remote node is closer to the client than
9
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to the local node (e.g., a closer Edge node). However, this approach also has some drawbacks, mostly related to the involvement
of the client in the offloading process. Indeed, Serverledge has no guarantees of offloaded requests being actually transmitted to
the chosen remote nodes, following a redirection, and, in general, the offloading process is not transparent with respect to clients.
Moreover, compared to the forwarding approach, the redirection may result in higher response times when offloading a request
to a node that is distant from the client (e.g., the Cloud), since it includes a full round-trip time (RTT) between the client and the
remote node.

4.3. Adaptive mechanism selection

As discussed above, both the offloading mechanisms have advantages and disadvantages, not only in terms of performance, but
lso in terms of client transparency. As such, none can be regarded as the best mechanism to use. Therefore, we aim to devise an
lgorithm to automatically select the most suitable mechanism to use at run-time in Serverledge.

We focus on performance aspects, with the aim of optimizing the response time observed by the client. In this regard, the network
elay is the key factor impacting the response time of offloaded requests, as the two proposed mechanisms cause requests to follow
ifferent paths. The idea underpinning our adaptive mechanism selection is to monitor the network delay at run time and use the
ffloading mechanism that takes the shortest path (in terms of latency).

Let 𝑅𝑇𝑇 (𝑎, 𝑏) denote the measured network round-trip time between nodes 𝑎 and 𝑏 and let 𝐶, 𝐿 and 𝑅 denote, respectively, the
client node, the local node (that is, the original target of the invocation request) and the remote node. Let also 𝑅𝐹 and 𝑅𝑅 denote
the expected response time of a request offloaded, respectively, using forwarding or redirection. We readily have:

𝑅𝐹 > 𝑅𝑇𝑇 (𝐶,𝐿) + 𝑅𝑇𝑇 (𝐿,𝑅) (1)

𝑅𝑅 > 𝑅𝑇𝑇 (𝐶,𝐿) + 𝑅𝑇𝑇 (𝐶,𝑅) (2)

According to the expressions above, when offloading a request, we use the following rules to select the offloading mechanism to
use:

• if 𝑅𝑇𝑇 (𝐶,𝑅) > 𝑅𝑇𝑇 (𝐿,𝑅), we use request forwarding;
• if 𝑅𝑇𝑇 (𝐶,𝑅) ≤ 𝑅𝑇𝑇 (𝐿,𝑅), we use redirect-based offloading;
• if we cannot currently estimate the RTT based on monitoring information, we opt for a default mechanism (i.e., forwarding

for requests offloaded to the Cloud, and redirection for requests offloaded to the Edge).

The proposed adaptive algorithm is very easy to implement and adds minimal overhead to request scheduling. However, it
requires information about network delay. Serverledge nodes use Vivaldi algorithm to estimate network distance to neighboring
Edge nodes and we exploit this feature in case of Edge offloading. For Cloud offloading, we let nodes periodically measure the
network delay through ICMP ping messages.

Unfortunately, our approach also requires information about network delay measurements of the client. For this reason, we
extend the CLI-based default client of Serverledge to collect this information during operation. To make measurements available to
the node making offloading decisions, we include them in the invocation request message. Clearly, we cannot be sure that all the
clients will provide the required information and, thus, the adaptive mechanism selection will be only enabled when possible.

5. Live function migration

Function execution offloading allows incoming requests to be forwarded/redirected to a different Serverledge node before being
served. There might be situations where a node has already started executing a function and would like to offload the remaining
part of the computation to another node. For instance, this might happen if the node starts executing a function that is expected
to complete within a few milliseconds and instead it happens to be a long-running task; or the node might have accepted a large
number of low-priority requests and suddenly receives a high-priority invocation, for which resources must be reclaimed. In these
situations, the ability of migrating the function instances to other nodes allows the node to free up some resources to be better
re-allocated.

It is worth observing that the process described above could still be regarded as an example of computational offloading, applied
to a portion of the function. However, we prefer to indicate it with a different expression (i.e., live function migration) because the
mechanism is profoundly different with respect to the offloading ones introduced above. The key difference regards the entity that
is moved across nodes. While in the offloading scenario described in the previous section we can simply move a request message,
in this case we need to migrate a whole function instance during execution. Therefore, to preserve the state of the computation, we
need to migrate the live container where the function is being executed.

Similarly to virtual machine live migration, the process of migrating a container consists of the following key steps: the container
is paused on the source node; a snapshot of the container memory and execution state is created; the snapshot is transferred to the
destination node; the container is restored from the snapshot in the destination node. Moving the snapshot of a container is clearly
much more expensive in terms of time compared to forwarding a request message, as we will also demonstrate in the experiments.

Mechanisms for live container migration have been proposed in recent years (e.g., CRIU), providing the essential technology on
10
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a system like Serverledge. First, most the existing techniques do not preserve active network connections. While this issue might
be negligible for some applications (e.g., stateless web services, which can simply restart listening for new requests), in our context
we can lose the ability of communicating with the running function instance from the host. Moreover, migrating functions poses
new challenges related to the interaction with the invoking client. Specifically, we must ensure that the client eventually receives
the execution results, regardless of whether the function has been migrated or not. Therefore, we need to design specific migration
protocols.

In the remainder of this section, we describe how live function migration is integrated in Serverledge, both for synchronous and
synchronous function invocations.

.1. Migration of asynchronous requests

We first consider the case where a function has been invoked asynchronously and has to be migrated, as it is simpler to perform.
he migration process can be triggered by the Scheduler for any running function. We do not currently consider the case where the
igration of a function instance is requested by a client, although the mechanism we present could be adopted in that scenario as
ell.

As soon as the migration process starts, the Migration Manager notifies the container that it will be migrated soon. For this
urpose, we extend the Executor server that runs within every container, adding a /prepareMigration command. The Migration

Manager uses this command to send an HTTP request to the Executor, where the IP address of the migration destination node is
specified. The Executor stores this information that will be necessary later. Then, the container is paused, and a snapshot of the
container memory and execution state is created. At this point, the Migration Manager sends a /migrate request to the remote
node, attaching the snapshot of the container and the ID of the asynchronous request. When receiving this migration request, the
node is also informed about the synchronous/asynchronous nature of the invocation.

Upon receiving the snapshot, the remote node restores the container and resumes its execution. As soon as the function code
terminates, the Executor server within the container will try to communicate the computation result back to the Serverledge node.
However, following the migration, the connection between the (initial) Serverledge node and the Executor server will be lost, and
the attempt of the Executor of communicating the results will fail. We intercept this failure and retrieve the IP address received
in the /prepareMigration to directly send the execution results to the new Serverledge node. Finally, the node will store the
execution results in the Registry, as usually done for all asynchronous invocations. The client will be able to poll for the results
through any Serverledge node. The protocol described above is illustrated in Fig. 5.

5.2. Migration of synchronous requests

The process of migrating synchronous requests is similar to the one presented above for asynchronous requests, but it requires
a few modifications in the end. Indeed, in synchronous invocation requests, the client remains connected to the node, waiting for
the execution results. Therefore, we need a way to ensure that, as soon as the execution of the function completes on the remote
node, we send back the results to the invoking client, which is still connected to the initial node. For this purpose, when dealing
with synchronous requests, we make the /migrate request sent by the initial node to the destination one a synchronous one as
well. This means that the migration source node remains connected to the remote one waiting for the execution results. When the
migrated request is completed and the remote node collects its execution results, it communicates them to the migration source
node. The initial node will be able to reply to the invoking client with the results, terminating the invocation request. The resulting
protocol is illustrated in Fig. 6.

5.3. Live container migration

The migration protocol presented above relies on the ability of migrating live containers via checkpointing. For this purpose, we
rely on CRIU5 (Checkpoint/Restore In Userspace), a software library to freeze running containers and checkpoint their state to disk
in Linux. We exploit the integration of CRIU and Podman to migrate Podman containers hosting functions. To do so, it suffices for
the Migration Manager to execute a single shell command to create a checkpoint and a single command to restore it. The created
checkpoint contains a dump of the container memory and all the relevant information for its migration. The checkpoint does not
contain the content of the container disk that can be retrieved from the image used to start the container. As such, it is required
that the same image used to start the container in the first node is also available in the destination node. Since Serverledge base
images are stored in a public repository, this does not represents an issue for us.

6. Evaluation

In this section, we present a set of experiments aimed at evaluating the performance of Serverledge, focusing on the novel
contributions related to offloading and migration of this work. The section is organized as follows. We first describe the experimental
setup. Then, we give an overview of the comparison of Serverledge against state-of-the-art FaaS frameworks, presented in [13]. Then,
we focus on the evaluation of the novel mechanisms presented in this work, namely offloading mechanisms, live function migration,
CPU capping, and request queueing.

5 https://criu.org/Main_Page
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.1. Experimental setup

For the experiments, we exploit virtual machines running in a bare metal server as well as AWS EC2 virtual machines. Except for
xperiments dealing with specific configurations, to mimic an Edge–Cloud scenario, we deploy Edge and Cloud nodes in different
WS regions, i.e., respectively, eu-central-1 in Germany and eu-west-1 in Ireland. To further differentiate Edge and Cloud

nodes, we consider different types of EC2 instances for them. Edge nodes run in c4.large instances with 2 vCPUs and 3.75 GB
of memory, whilst Cloud nodes run in c4.xlarge instances, with 4 vCPUs and 7.5 GB of memory. A c4.2xlarge instance is
used as a client and located in the same region of Edge nodes. Unless differently specified, for the Global Registry of Serverledge,
we deploy a single instance of etcd in one of the Cloud nodes.

We use Locust, a Python-based load testing tool, for load generation. Locust allows us to emulate the behavior of 𝑁𝑈 users
concurrently issuing requests to Serverledge, with configurable think times or maximum rates.

We use the following functions in the experiments:

• Sieve: implementation of the Sieve of Eratosthenes, which computes the list of primes up to a given bound (i.e., 10,000 in
the experiments). Implemented in JavaScript by the authors of [12].

• Fibonacci (Fib, for short): recursive computation of the 𝑛th element of the Fibonacci sequence. Implemented in Python and
Go.

• ML-training: a long-running Python function that trains a neural network.
• Sleep: a simple Python function that sleeps for a fixed amount of time before returning.

We set the warm container expiration timeout to 600 s. The Local Registry monitoring interval is set to 30 s, and its cache
time-to-live set to 60 s.

6.2. Comparison against alternative frameworks

We consider three state-of-the-art platforms, namely OpenWhisk, Faasm and tinyFaaS, which have been introduced in Section 2,
to compare Serverledge performance. For this comparison, we deploy each framework to a single Edge node, using an additional
12
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Fig. 6. Migration of synchronous requests.

node used for load generation. As regards OpenWhisk, which is usually deployed in Cloud-based clusters through Kubernetes, we rely
on its ‘‘lean’’ deployment mode for Edge scenarios.6 Both tinyFaaS and Faasm are deployed using Docker containers, following the
official instructions. For this experiment, we also deploy the etcd-based Global Registry in the Edge node, to have a fair comparison
with the other systems, deployed in a single node.

To assess the maximum throughput sustained by each platform, we let 𝑁𝑈 = 20 parallel users generate as many requests they
an (i.e., with no think time between consecutive requests)7. All the platforms execute the Sieve function. Unfortunately, we were
ot able to run Faasm at high throughput, with the system keeping an excessive number of open files and crashing.8 Therefore, we
erform the comparison against Faasm using a different, reduced workload, which is presented later in this section.

.2.1. Results with OpenWhisk and tinyFaaS
The results of this comparison are reported in Table 2. Fig. 7 shows the throughput over time, while Fig. 8 compares response

ime distributions (with whiskers from the 5th to the 95th percentile). We first note that OpenWhisk, which is not designed for
esource-limited deployments, shows poor performance in the considered scenario, with an average throughput equal to 55.5 req/s.
imilarly, OpenWhisk has the worst performance in terms of response time, with the median response time being 290 ms, compared
o 21 ms achieved by Serverledge.

The platform showing the best performance is tinyFaaS, whose measured throughput is 1358 req/s and median response time
qual to 12 ms. Serverledge processes 805 req/s with a median response time equal to 21 ms. While not exciting, these results were
xpected. Indeed, tinyFaaS adopts a simplified container management approach that significantly reduces the overheads associated
ith function execution. Specifically, it statically allocates a pool of containers for each function when the system is started, with
ach container allowed to serve multiple requests concurrently. By doing so, tinyFaaS avoids cold starts and the overheads due to

6 https://medium.com/openwhisk/lean-openwhisk-open-source-faas-for-edge-computing-fb823c6bbb9b
7 We verified that the workload saturates system capacity by doubling the number of users without observing evident throughput increases.
8 The issue we encountered is likely the same reported here: https://github.com/faasm/faasm/issues/504. The issue is ‘‘open’’ at the time of writing.
13
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Table 2
Comparison of Serverledge, tinyFaaS and OpenWhisk.

Thr. (req/s) Response time (ms)

Avg Min Max P25 P50 P75 P90 P95 P99

OpenWhisk 55.47 322.25 43.20 4801.10 250 290 340 430 510 740
tinyFaaS 1357.84 13.06 1.89 240.04 7 12 17 24 29 39
Serverledge 805.06 22.03 2.39 3049.65 16 21 28 34 39 50
Serverledge (with offloading) 1827.28 10.17 2.44 1466.29 7 9 12 15 18 24

OpenWhisk (reduced workload) 53.56 332.58 30.64 4765.79 260 290 360 450 520 810
tinyFaaS (reduced workload) 89.44 3.42 1.88 209.37 3 3 4 5 6 7
Serverledge (reduced workload) 89.38 3.73 2.56 1767.85 3 3 4 4 5 8

Fig. 7. Throughput of OpenWhisk, tinyFaaS and Serverledge running in a single node. tinyFaaS has the highest throughput among them, but Serverledge can
exploit additional nodes to offload and serve more requests.

Fig. 8. Response time comparison of (a) tinyFaaS and Serverledge (with and without offloading), and (b) OpenWhisk and Serverledge.

ontainer management. This is evident looking at the maximum response time achieved using tinyFaaS (i.e., 240 ms) compared to
hat measured in Serverledge (i.e., 3,049 ms, which corresponds to a cold start). While the design of tinyFaaS appears optimal, it
ay hardily scale in a more general scenario, as pre-spawning containers for every existing function, regardless of its invocation
atterns, would likely require more memory than provided by the node.

Furthermore, tinyFaaS is not able to scale its execution across multiple nodes. To demonstrate the different direction pursued
y Serverledge, we also consider the case where an additional node is available in the same region to offload requests. By doing so,
e are able to process more than 1800 req/s, reducing also the median response time to 9 ms.

As a final comparison, we consider what happens under a reduced workload, with each user issuing requests at a maximum rate
f 5 req/s. OpenWhisk has the worst results even in this case, completing about 54 req/s. Serverledge and tinyFaaS shows almost
dentical throughput, with minimal differences in the response time distribution (see, Table 2).
14
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Fig. 9. Response time of Faasm and Serverledge running the Fib function with different inputs.

Table 3
Comparison of Serverledge and Faasm.

Thr. (req/s) Response time (ms)

Avg Min Max P25 P50 P75 P90 P95 P99

Faasm - Fib(20) 14.51 4.67 1.93 219.70 3 4 5 6 7 12
Serverledge - Fib(20) Python impl. 14.49 8.60 5.68 1146.65 7 7 10 11 11 13
Serverledge - Fib(20) Go impl. 14.50 3.76 2.46 480.40 3 3 4 5 5 7

Faasm - Fib(25) 14.51 5.14 2.69 223.00 4 5 6 7 8 13
Serverledge - Fib(25) Python impl. 14.49 63.22 29.92 1325.18 31 65 92 94 96 120
Serverledge - Fib(25) Go impl. 14.50 4.04 2.60 476.92 4 4 4 4 5 7

6.2.2. Results with Faasm
Because of the aforementioned issue affecting Faasm, we consider a reduced throughput scenario to compare Serverledge and

aasm, where we focus on response time evaluation. Specifically, we consider 𝑁𝑈 = 5 users, issuing no more than 5 req/s. We
se the Fib function for the experiments, considering the cases where it is invoked with argument 𝑛 = 20 and, then, 𝑛 = 25. As

regards Faasm, we rely on the recursive Fibonacci implementation comprised in the official repository. The latter consists of C++
code, compiled to WebAssembly for execution. Since we are not able to run an identical function implementation, we implement
the same algorithm both in Python and Go for execution in Serverledge.

The results of these experiments are reported in Table 3, with Fig. 9 showing the measured response time. Clearly, as the rate
of incoming requests is low, both Faasm and Serverledge can sustain the incoming load. Looking at the response time, we note that
Faasm serves 99% of the requests in no more than 13 ms, with both the considered inputs. Serverledge with the Python runtime
has worse performance, especially when computing 𝙵𝚒𝚋(𝟸𝟻), with a median response time equal to 31 ms. The response time of
Serverledge is dramatically reduced when running the compiled Go implementation of the function. In this case, Serverledge shows
response times comparable to those measured with Faasm, and even better on average.

We remark that the benefits of Faasm are still evident looking at the maximum response time in Table 3. Indeed, exploiting
lightweight function runtimes, cold starts in Faasm have reduced impact on response time compared to Serverledge. We also plan
to consider alternatives to Docker containers for function execution as future work.

6.3. Offloading mechanisms

For this experiment, we consider two infrastructure configurations, indicated as Scenario A and Scenario B, in which we impose
different network delay configurations between VMs hosting the Serverlegde nodes and the workload generator, as illustrated in
Fig. 10. The client sends invocation requests to the Serverledge node indicated as ‘‘Node 1’’, which offloads them to ‘‘Node 2’’ using
one of the available mechanisms (i.e., forwarding, redirection). We first evaluate the offloading mechanisms in the two different
scenarios in distinct experiments. Then, we consider a 10-minute experiment where the infrastructure configurations transitions
from Scenario A to Scenario B after 5 min.

Fig. 11 compares the behavior of the offloading mechanisms in the two infrastructure scenarios defined above. As expected,
network delays have a significant impact on the resulting response times perceived by the client. Indeed, in Scenario A, forwarding is
the most convenient offloading mechanism, resulting in about 25% response time reduction compared to redirection. Conversely, in
Scenario B, redirection achieves the best performance, with 30% lower response times compared to forwarding. These results confirm
that no single mechanism has the best performance in general and one of them should be selected depending on the infrastructure
conditions.

Fig. 12 shows the response times measured in the experiments where the infrastructure is dynamically reconfigured from
Scenario A to Scenario B at execution time. We consider the two offloading mechanisms and the adaptive configuration where
the algorithm we presented in Section 4 is used to select the best mechanism at run time. Using the redirect-based offloading,
15

Serverledge performs overall better compared to forwarding, with the median response time around, respectively, 110 and 220 ms.
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Fig. 10. Infrastructure configurations used for offloading evaluation.

Fig. 11. Response time with different offloading mechanisms and infrastructure configurations.

Fig. 12. Response time with different offloading mechanisms in an experiment where the infrastructure is reconfigured at run time (i.e., from Scenario A to
Scenario B).

The adaptive mechanism selection significantly outperforms the static solutions, with a median response time lower than 50 ms.
This is not surprising, as the adaptive selection manages to always pick a mechanism that performs well depending on the current
network delays.
16
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Fig. 13. Response time breakdown for migrated functions.

.4. Function migration

To evaluate live function migration, we consider 3 functions having different resource demands, namely Fibonacci, ML-training
nd Sleep, and configure a Serverledge cluster composed of 2 nodes. The first node receives requests from the client, whereas the
econd one is available as a migration target. We configure the first node to periodically migrate all the executed functions every
00 ms, with the aim of evaluating the overhead caused by migration.

Fig. 13 reports the response time of the three considered functions when migrated. We observe that migration introduces a
ignificant overhead on function response time, up to 680%. The migration overhead clearly does not depend on the total execution
ime of the function and, hence, is particularly significant for Sleep and Fibonacci, which have shorter duration compared to the
ong-running ML-training. We also measured the size of the container checkpoint archive generated during migration for the three
unctions. The checkpoint is about 40 MB large for Sleep, 50 MB for Fibonacci and 250 MB for ML-training, explaining the longer
uration of checkpoint creation and restore for ML-training. We also noted that a significant part of the checkpoint transfer time
s spent in serialization and de-serialization of the archive. We will consider different implementations in future work to possibly
educe this overhead.

.5. CPU capping and request queueing

In this experiment we demonstrate the new mechanisms we introduced for CPU allocation and request scheduling. We consider
he functions Sieve and Fibonacci introduced above and a single Serverledge node. We let a varying number of users generates
equests to the node with a think time of 0.3 s. We compare the case (i) where Serverledge has no buffer for the incoming requests
nd necessarily discards them if there are not enough resources to serve them, and (ii) where the scheduler can push requests to a
ueue. Furthermore, we consider three CPU allocation settings, where each function instance receives up to 25%, 50% and 100%
f a CPU core.

Figs. 14 and 15 report throughput and response time measured in these experiments, respectively, for the function Sieve and
ibonacci. As regards throughput, we observe that enabling the queue avoids request dropping as expected and leads to higher
hroughput values. The throughput difference is particularly evident without CPU capping, where the scheduler can accept a lower
umber of concurrent function instances. Conversely, response times are clearly worsened by the presence of the queue, as incoming
equests may be forced to wait in the buffer before being served. Response times without the queue are almost constant regardless
f the number of users without CPU capping. Instead, when allocating fractions of the CPU time, a larger number of concurrent
nstances must be scheduled, thus leading to overhead and higher response times with a large number of users.

.6. Larger deployments

We conclude the evaluation by considering larger deployments. As explained above, the design of Serverledge aims for
ecentralization and loose coupling to increase scalability. In particular, nodes are designed with the ability of scheduling and serving
equests with minimal or no interaction among them. Scheduling decisions involving multiple nodes (e.g., choosing offloading or
igration target nodes) can be restricted to a small number of remote peers based on network proximity, thanks to neighborhood
onitoring.

We run experiments to demonstrate the behavior of Serverledge in various infrastructure configurations, where we deploy an
ncreasing number of Edge and Cloud nodes. We start with a single Edge node, and reach a maximum of 17 Serverledge nodes
17

i.e., 12 Edge nodes, a load balancer and 4 Cloud nodes). We again rely on distinct AWS regions to deploy Edge and Cloud nodes
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Fig. 14. Throughput and response time of the Sieve function with and without scheduling queue and CPU capping.

Fig. 15. Throughput and response time of the Fibonacci function with and without scheduling queue and CPU capping.

(see, Section 6.1). A single load balancing instance is deployed in the Cloud region to dispatch incoming requests to Cloud nodes,
using a simple round-robin policy. Similarly, a single Etcd server is deployed in the Cloud to act as the Global Registry. We generate
about 400 invocation requests per second for the Sieve function towards every deployed Edge node, and, thus, scale the generated
workload along with the infrastructure. We disable request queueing in these experiments (i.e., requests are either served locally,
offloaded, or dropped).

The results of these experiments are shown in Fig. 16. We can observe that system throughput scales well with the increasing
workload resource availability, growing from 240 req/s to 4,600 req/s. As already noted, offloading is fundamental for Edge nodes
to sustain incoming arrival rates. Indeed, when Cloud is not available, Serverledge manages to successfully serve no more than 62%
of the incoming invocations. Conversely, when at least one Cloud node is available for offloading, the system completes more than
99.5% of the incoming requests. Looking at response times (right side of Fig. 16), we observe that, when only the Edge is used,
Serverledge returns a response within less than 10 ms for all requests. When Cloud offloading is enabled, as expected, response
times become noticeably higher because of network latency between Edge and Cloud in our scenario. Besides this, we note that
18

response times remain almost unchanged with the increasing infrastructure scale.



Pervasive and Mobile Computing 100 (2024) 101915G. Russo Russo et al.

r

D

t

D

A

P
1
a

Fig. 16. Throughput and response time with an increasing number of Serverledge nodes.

7. Conclusion

We presented Serverledge, a FaaS platform that blends together decentralized control, to suit geographically distributed
infrastructures, and the ability to offload computation to exploit Cloud resource richness. Compared to the previous version of
Serverledge described in [13], we introduced new mechanisms for function offloading, live migration, CPU capping and request
queueing that enrich the toolbox available to schedule and execute serverless functions. Our evaluation shows that Serverledge
outperforms existing platforms designed for clustered environments and has competitive performance compared to state-of-the-art
frameworks designed for the Edge, while also supporting computation offloading. We demonstrated that different function offloading
mechanisms should be used depending on the infrastructure conditions, especially in terms of network delay, and proposed an
algorithm to dynamically select the mechanism to use at run-time.

The proposed system still has some limitations, that we aim to overcome in future work. Serverledge currently supports the
execution of single functions. Therefore, complex workflows involving multiple functions must be orchestrated by the client.
Similarly, the system has no built-in support for stateful functions and, hence, any state information must be stored in external
data stores. Moreover, Serverledge does not currently include user authentication and authorization mechanisms, which would be
necessary to restrict function modification and invocation to specific classes of users.

For future work, besides overcoming the aforementioned limitations, we will consider the integration of lighter function
sandboxing techniques, following the approach adopted, e.g., by [10,11], to reduce initialization times and cold start impact.
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