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Abstract: We prove that a haploid associative algebra in a C∗-tensor category C is
equivalent to a Q-system (a special C∗-Frobenius algebra) in C if and only if it is
rigid. This allows us to prove the unitarity of all the 70 strongly rational holomorphic
vertex operator algebras with central charge c = 24 and non-zero weight-one subspace,
corresponding to entries 1–70 of the so called Schellekens list. Furthermore, using the
recent generalized deep hole construction of these vertex operator algebras, we prove
that they are also strongly local in the sense of Carpi, Kawahigashi, Longo and Weiner
and consequently we obtain some new holomorphic conformal nets associated to the
entries of the list. Finally, we completely classify the simple CFT type vertex operator
superalgebra extensions of the unitary N = 1 and N = 2 super-Virasoro vertex operator
superalgebras with central charge c < 3

2 and c < 3 respectively, relying on the known
classification results for the corresponding superconformal nets.
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1. Introduction

The notion of (associative) algebra over a field, namely a vector space with a bilinear
associative multiplication, is ubiquitous in mathematics. If the underlying category of
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vector spacesVec is replacedwith another tensor categoryC, one can also talk of algebras
(or algebra objects) in C. Namely, an algebra A = (X,m, ι) is a triple where X is an
object in C, and m : X ⊗ X → X and ι : idC → X are morphisms in C playing the role
of multiplication and unit. Here, idC denotes the tensor unit, which is just the base field
F in the case C = Vec, seen as a vector space (and algebra) over itself. The associativity
of A is naturally expressed in terms of the associativity constraints in C. One can also
consider tensor categorical versions of algebras with more structure, such as coalgebras
or Frobenius algebras. In this paper we will pay special attention to haploid algebras
(also called irreducible or connected algebras) in C. An algebra A = (X,m, ι) in C is
haploid if dim Hom(idC, X) = 1.

In relatively recent years the study of algebras in tensor categories has become of
central importance in different areas of mathematics, e.g. in the theory of subfactors,
conformal field theory (CFT), topological field theories and quantum groups, see e.g.
[BKLR15,FS10,Kaw15,HKL15,KO02,Müg10b,NY18].

Motivated by the applications to operator algebras and quantum field theory, which
are often constructed and studied as families of operators on a complex Hilbert space,
we shall restrict ourselves to the case F = C, and we will mainly consider C∗-tensor
categories (also known as unitary tensor categories), see e.g. [BKLR15,LR97,NT13].

If C is aC∗-tensor category, it is useful to consider algebra objects in C with a unitary
structure, such asC∗-Frobenius algebras or Q-systems (special C∗-Frobenius algebras),
see e.g. [BKLR15,Gui22,Lon94,NY18]. For example, Q-systems play an important role
in the theory of subfactors. Namely, a subfactor with finite Jones index is equivalently
well-described by a Q-system in a tensor category of endomorphisms or bimodules of a
factor. Haploid Q-systems (also called irreducible or connected Q-systems) correspond
to irreducible subfactors.

A natural question that arises is the following: can we characterize those algebra
objects in a C∗-tensor category C that are equivalent to Q-systems? Similar questions
have been raised e.g. in [GS12], in [BKLR15, Sect. 3.1] and in [CHJP22]. In this paper,
we give a complete answer to this question in the haploid case. We prove that a haploid
algebra object in a C∗-tensor category is equivalent to a Q-system if and only if it is
rigid in the sense of [KO02], cf. Theorem 3.2. If A is not haploid, the conclusion of
the previous theorem is false. Namely, the algebra A may be rigid but not equivalent to
a Q-system, as we show in Example 3.11. Moreover, the haploid condition alone does
not imply rigidity, as we show in Example 3.12. We also prove that if two normalized
haploid Q-systems are equivalent as algebra objects, then they are unitarily equivalent
(and thus, they also give rise to isomorphic subfactors), cf. Theorem 3.9. The rigidity of
A is equivalent to the existence of a Frobenius structure on A by [FRS02], cf. Remark 3.3.
Hence, our results show that there is a one-to-one correspondence between equivalence
classes of haploid Frobenius algebras in a C∗-tensor category C and unitary equivalence
classes of normalized haploid Q-systems in C. As a consequence, we prove that every
semisimple indecomposablemodule category over a unitary fusion category is equivalent
(as a module category) to a C∗-module category, answering to a question in [Reu19].

Our main motivations come from various applications of the above results to chiral
CFT and related mathematical structures, such as vertex operator algebras (VOAs),
subfactors and conformal nets.

We first briefly describe here an application concerning the general relations between
subfactors and CFT, see e.g. [EK98,Gan06,Kaw15,Kaw19], from the VOA point of
view. Let C be a unitary fusion category and let N be the hyperfinite type III 1 factor.
Then, by [HY00,Pop95], see also [Izu17, Sect. 2] and [HP20, Theorem 3.10], C can be
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realized in an essentially unique way as a full subcategory of End(N ) so that we can
assume that C ⊂ End(N ). Now, let V be a strongly rational VOA so that Rep(V ) is a
modular tensor category [Hua08] and thus it is in particular a braided tensor category.
By [HKL15,KO02] the simple CFT type extensions of V correspond to rigid haploid
commutative algebras in Rep(V ). Hence, if Rep(V ) is tensor equivalent to a unitary
fusion category C ⊂ End(N ) then, by our result, every simple CFT type extension of V
gives rise to a haploid commutative Q-system (also called haploid local Q-system) in C.
Then, it also gives rise to a finite index irreducible subfactor N ⊂ M which is in fact a
braided subfactor in the sense of [BEK99]. In this way one obtains braided subfactors
from VOA extensions.

More direct connections between subfactor theory and CFT come from the theory of
conformal nets, see e.g. [Kaw15,Kaw19,LR95]. IfA is a completely rational conformal
net, then the irreducible (necessarily finite index) local extensions B ⊃ A directly give
braided type III 1 subfactors: B(I ) ⊃ A(I ) for every interval I ⊂ S1 of the circle.
Moreover, such extensions correspond to haploid commutative Q-systems with trivial
twist in the modular tensor category Repf(A) of finite index representations ofA. Now,
if V is a strongly rational VOA with Rep(V ) equivalent to Repf(A) as a modular tensor
category, then, arguing as before, we get a one-to-one correspondence between simple
CFT type VOA extensions of V and local irreducible extensions ofA, cf. Theorem 4.10.
This allows to transfer classification results for VOA extensions to classification results
for conformal net extensions and vice versa. As an example we will give a complete
classification of the simple CFT type vertex operator superalgebras (VOSAs) extensions
of the unitary N = 1 and N = 2 super-Virasoro VOSAswith central charge c < 3/2 and
c < 3 repectively by transferring to the vertex algebra setting the classification results
for superconformal nets in [CKL08,CHKLX15], cf. Theorem 6.2 and Theorem 6.3.

A typical situation where we have that Rep(V ) is equivalent to Repf(A) as a modular
tensor category comes from the general relation between unitary VOAs and conformal
nets introduced and studied in [CKLW18]. In the latter work it was shown that a simple
unitary VOA V satisfying a certain analytic condition called strong locality gives rise to
a conformal net AV in a natural way. Moreover, many examples of unitary VOAs have
been shown to be strongly local. It is conjectured in [CKLW18] that every simple unitary
VOA is strongly local and that every conformal net comes from a strongly local VOA.
Moreover, it has been conjectured that if V is a unitary strongly rational VOA, then
AV is completely rational and Rep(V ) is equivalent to Repf(AV ) as a modular tensor
category, see [Kaw15,Kaw19]. The latter conjectures have been recently proved for a
relevant family of unitary strongly rational VOAs, thanks to an impressive progress on
the representation theory aspects of the correspondence between VOAs and conformal
nets introduced in [CKLW18], see e.g. [Gui20,Ten19a].

Our abstract characterization of haploid Q-systems in C∗-tensor categories and its
consequences on module categories over C∗-tensor categories (see below) are suffi-
ciently strong to consider applications beyond the study of local extensions of chiral
CFTs.Themainpoint is thatwedonot assume thehaploid algebras to be commutative nor
the underlyingC∗-tensor category to be braided. This leaves open the possibility to apply
our results e.g. in the setting of boundary CFT, where non-commutative haploid algebras
appear naturally, see e.g. [BKL15,BKLR15,CKL13,FRS02,FS10,KR09,LR04,LR09].
In this paper we will not further elaborate on these potential applications to boundary
CFT.

We now discuss the application that gave the first motivation to this work as also
emphasized in its title. It concerns the unitarity of VOAs in general and the unitarity of



172 S. Carpi , T. Gaudio, L. Giorgetti, R. Hillier

holomorphic (i.e. with trivial representation theory) VOAs with central charge c = 24
and non-zero weight-one subspace (the Schellekens list [Sch93]). In the VOA setting,
unitarity is a special requirement that turns out to be satisfied in an important but specific
class of models. It has naturally appeared more or less explicitly in VOA theory since its
beginning in variousways, such as the existence of a positive definite invariant Hermitian
form, the existence of a real form with a positive definite invariant bilinear form, and
found various applications besides the correspondence with conformal nets, see e.g.
[CKLW18,DL14,DL15,FLM88,Mas20,Miy04].

The unitarity of a VOA can be proved in various ways. First of all there are direct
methods. A VOA can be shown to be unitary by a direct construction of a positive
definite invariant Hermitian form, see e.g. [CKLW18,CTW22b,DL14,FLM88,Miy04].
In various cases the hardest part is the problem of positivity that can be solved e.g. by
relying on unitarity results for the underlying infinite dimensional Lie algebras [Kac94,
KR87] or non-linear Lie algebras [CTW22b]. These direct methods already produce a
remarkable family of unitary VOAs such as those constructed from affine Lie algebras,
the Virasoro algebra, the W3 algebras, even lattices and the famous Moonshine VOA,
see [CKLW18,CTW22,DL14].

A first indirect method comes from embeddings into unitary VOAs. In the termi-
nology used in [CKLW18] the unitary subalgebras of unitary VOAs are unitary VOAs
[CKLW18, Sect. 5.4]. This gives many other examples of unitary VOAs such as orb-
ifold VOAs and coset VOAs. However, many interesting VOA examples come from
taking extensions rather than from taking subalgebras. Indeed, the already mentioned
holomorphic VOAs with c = 24 are of this type (they are extensions of unitary affine
VOAs) and thus, it is desirable to have some easy-to-handle method to prove unitarity
for extensions of unitary VOAs. One could be tempted to guess that if an extension U
of a unitary VOA V is a unitarizable V -module then it is unitary. Unfortunately, such
a general result is presently not available. Even for Zn-simple current extensions by a
unitary simple current such general unitarity result is known only for the case n = 2
[DL14, Theorem 3.3], see also [Gau21, Corollary 2.7.3] and [CGH].

Remarkable progress in the study of unitarity of VOA extensions has recently been
made in [Gui22]. Let V be a unitary strongly rational VOA and assume that V is strongly
unitary [Gui22], i.e., that every V -module is unitarizable or, in other words, that the C∗-
category Repu(V ) of unitary V -modules is linearly equivalent to the modular tensor
category Rep(V ). In [Gui19I,Gui19II] Gui defined certain non-degenerate Hermitian
forms on the duals of the spaces of the intertwining operators of V and showed that
if these forms are positive definite, then they naturally turn Repu(V ) into a unitary
modular tensor category equivalent to Rep(V ). In particular, Repu(V ) becomes a C∗-
tensor category tensor equivalent to Rep(V ). If V is strongly rational, strongly unitary
and satisfies the above positivity condition it is said to be completely unitary [Gui22].
Many strongly rational unitary VOAs, including rational affine VOAs, lattice VOAs and
unitary rational Virasoro VOAs, have been shown to be completely unitary, see e.g.
[Gui19II,Gui20,Gui21a,Ten19a]. It follows directly from the results in [Gui22] that if
U is a simple CFT type VOA extension of a completely unitary VOA V thenU is unitary
(and in fact completely unitary) if and only if the corresponding commutative haploid
algebra in Repu(V ) is equivalent to aQ-system.Hence, since rigidity of the latter haploid
algebra follows from the simplicity of U [KO02], it follows from our characterization
of haploid Q-systems in C∗-tensor categories that every simple CFT type extension of a
completely unitary VOA is unitary, and in fact completely unitary, cf. Theorem 4.7. In
particular, every simple CFT type extension of a unitary rational affine VOA is unitary.
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As already mentioned, one of our motivations comes from the unitarity problem for
the holomorphic VOAs with c = 24. Holomorphic VOAs play a central role in vertex
algebra theory. The famousMoonshineVOA[FLM88],whichwas one of themotivations
for developing vertex algebra theory [Bor86] and which was crucial in the proof of
the Moonshine conjecture [Bor92], is a holomorphic VOA with c = 24. Moreover,
holomorphicVOAs appear to be deeply relatedwithmodular forms [DM00] andwith the
geometry of moduli spaces of complex curves [Cod20]. They are expected to correspond
to holomorphic conformal nets [KL06,KS14]. The latter play an important role in the
search for a CFT realization of exotic subfactors such as the Haagerup subfactor [EG11,
EG22,Bis16,Bis17].

The central charge c of a holomorphic VOA must be a positive integer multiple
of 8. For c = 8 and c = 16 the holomorphic VOAs were classified in [DM04a] and
turned out to be exactly the lattice VOAs associated to the self-dual even positive definite
lattices of rank 8 and 16, respectively. The classification of holomorphic VOAs V with
c = 24 and weight-one subspace V1 �= {0} began with the seminal work of Schellekens
[Sch93] and has recently been completed thanks to the work of various authors, see
e.g. [EMS20,ELMS21,LS19,MS23]. There are exactly 70 such VOAs corresponding
to entries 1–70 of the Schellekens list [Sch93]. The Moonshine VOA is a holomorphic
VOA with V1 = {0} and corresponds to entry 0 in the list. It has been conjectured in
[FLM88] that the Moonshine VOA is the only holomorphic VOA with c = 24 and
V1 = {0}. A proof of this conjecture would complete the classification by showing that
there are exactly 71 holomorphic VOAs with c = 24 and that they are in one-to-one
correspondence with entries 0–70 in [Sch93].

Let us now com back to the unitarity problem. The Moonshine VOA is known to
be unitary [DL14,CKLW18]. Entry 1 in [Sch93] corresponds to the Leech lattice VOA,
which is also known to be unitary. The remaining entries 2–70 are simple CFT type
extensions of rational affine VOAs, the subVOAs generated by the V1 subspaces, which
are semisimple Lie algebras for these entries. Hence, by our results they are all unitary,
cf. Theorem 5.3. Some of them were already known to be unitary. For example, 24 of
the 71 entries correspond to the lattice VOAs associated to Niemeier lattices. On the
other hand, unitarity was not known in various cases.

Once unitarity is proved, it is natural to ask if these holomorphic VOAs are also
strongly local and generate holomorphic conformal nets. Using the recent generalized
deep hole construction [MS23] of the holomorphic VOAs V with c = 24 and V1 �= {0}
and the results on energy bounds for VOA extensions in [CT23], we are able to prove
strong locality for entries 2–70 in [Sch93] cf. Theorem 5.5 (the strong locality for entries
0–1 was already known). In this way, we get a family of 71 holomorphic conformal
nets with c = 24 and show that the holomorphic conformal nets already constructed
by different methods [KL06,KS14,Xu09,Xu18] are a (proper) subset of this family.
From these holomorphic conformal nets, one can obtain many interesting finite index
subfactors arguing e.g. as in [Xu18, Sect. 4].

A different proof of the unitarity of strongly rational holomorphic VOAs with c=24
and non-zero weight-one subspaces has been found independently by Lam in [Lam23].

This paper is organized as follows. In Sect. 2, we review the necessary notions of
C∗-tensor category theory. In particular, the notion of algebra, Frobenius algebra, C∗-
Frobenius algebra and Q-system. We recall or prove general results to be used in the
subsequent sections. We also recall the definition of A-module, unitary A-module and
local (or dyslectic) A-module, the latter in the case of unitary braided tensor categories.
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Note that we do not necessarily restrict ourselves to rigid, nor semisimple, unitary tensor
categories, but we do assume the tensor unit to be simple.

In Sect. 3, we completely settle the problem of understanding when a (Frobenius)
algebra in a unitary tensor category can be unitarized, namely when it is equivalent to a
Q-system, and we discuss some first applications of this characterization.

In Sect. 4, we give various general chiral CFT applications with some first examples.
In Sect. 5, we consider applications to the holomorphic VOAs/conformal nets with

c = 24 (the Schellekens list).
In Sect. 6, we discuss our classification results for N = 1 superconformal VOSAs

with c < 3/2 in the unitary discrete series and for N = 2 superconformal VOSAs with
c < 3 in the unitary discrete series.

In the appendix, we prove a “unitarization” result for the compact automorphism
groups of unitary VOAs which is needed in our proof of strong locality of holomorphic
VOAs with c = 24. In the course of the proof, we show various properties of the
automorphism groups of unitary VOAs which appear to be of independent interest and
which can be seen as a complement to [CKLW18, Sect. 5.3].

2. Preliminaries on Tensor Categories

LetC be aC∗-tensor category [GLR85,DR89,LR97], not necessarily rigid, nor semisim-
ple, but with simple (i.e., irreducible) tensor unit idC . In particular, there is an anti-linear
map

Hom(X,Y ) � S 	→ S∗ ∈ Hom(Y, X)

such that S∗∗ = S for all morphisms S in C. Here Hom(X,Y ) denotes the space of
morphisms X → Y for the objects X,Y ∈ C. The morphism spaces are complex
Banach spaces and their norm satisfies the C∗-identity ‖S∗S‖ = ‖S‖2. Moreover, we
assume that, for all X,Y ∈ C and all S ∈ Hom(X,Y ), S∗S is a positive element in the
unital C∗-algebra Hom(X, X).

Moreover, in order to accommodate for the applications of our main result to con-
formal nets and vertex operator algebras in a more uniform way, and in spite of Mac
Lane’s coherence theorem [Mac98], we do not consider only strict tensor categories.
See [NT13, Definition 2.1.1]. Given X,Y, Z objects in C, we denote by

aX,Y,Z : X ⊗ (Y ⊗ Z) −→ (X ⊗ Y ) ⊗ Z

and
lX : idC ⊗X −→ X, rX : X ⊗ idC −→ X

respectively the associator and the left/right unitors in C, which make the usual pentagon
and triangle diagrams commute and which are assumed to be unitary in the C∗ context.
We refer to [Müg10b,EGNO15,BKLR15,NY18,BCEGP20] for general background.

Recall the following definitions:

Definition 2.1. An object X in C is said to be rigid (or dualizable) if there is an object
X (called conjugate or dual) and a pair of morphisms eX : X ⊗ X → idC (called
evaluation), iX : idC → X ⊗ X (called coevaluation), fulfilling the conjugate equations
(also called rigidity or duality equations):

rX (1X ⊗ eX )a−1
X,X ,X

(iX ⊗ 1X )l−1
X = 1X

lX (eX ⊗ 1X )aX ,X,X (1X ⊗ iX )r−1
X

= 1X
(1)
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where 1X denotes the identity morphism in Hom(X, X). The category C itself is called
rigid if every object X in C is rigid. For a rigid object X in C, denote by d(X) the
intrinsic/C∗-tensor categorical dimension of X . Namely, the positive number d(X) de-
fined by d(X)1idC = eXe∗

X = i∗X iX , where eX and iX are a standard solution of the
conjugate equations (1), see [LR97], cf. [GL19].

Remark 2.2. The equations in (1) are usually taken as a definition of left duals. One
needs another pair of morphisms e′

X : X ⊗ X → idC , i ′X : idC → X ⊗ X , fulfilling two
equations analogous to (1), in order to define right duals. In the C∗, or even *, context,
duals are automatically both left and right when they exist, as one can take e′

X = i∗X and
i ′X = e∗

X .

Definition 2.3. An algebra in C is a triple A = (X,m, ι), where X is an object in
C, m : X ⊗ X → X is a morphism (called multiplication), and ι : idC → X is a
monomorphism (called unit), fulfilling the associativity and the unit property:

m(m ⊗ 1X )aX,X,X = m(1X ⊗ m)

m(ι ⊗ 1X )l−1
X = 1X = m(1X ⊗ ι)r−1

X .

Remark 2.4. We shall consider only associative algebras. Thanks to the * structure on C,
every algebra in C is also a (coassociative) coalgebra with comultiplication m∗ : X →
X ⊗ X and counit ι∗ : X → idC .

Definition 2.5. A C∗-Frobenius algebra in C is an algebra A = (X,m, ι) such that m
and m∗ fulfill the Frobenius relations:

(m ⊗ 1X )aX,X,X (1X ⊗ m∗) = m∗m = (1X ⊗ m)a−1
X,X,X (m∗ ⊗ 1X ).

Remark 2.6. Note that either of the two equalities above implies the other one, by taking
the ∗, as the associator is unitary. Obviously, C∗-Frobenius algebras are special cases
of Frobenius algebras, see [FRS02,FS03,Müg03,Yam04a], where the comultiplication
� : X → X ⊗ X is not required to be equal to m∗.

Recall that the tensor unit idC is simple, namely Hom(idC, idC) ∼= C, i.e., Hom(idC,

idC) = C1idC .

Definition 2.7. An algebra A = (X,m, ι) in C is called normalized if ι∗ι = 1idC
(namely the unit ι is an isometry, hence ιι∗ is a self-adjoint projection in Hom(X, X)).
Furthermore, A is called special (or sometimes also strongly separable) ifmm∗ is a scalar
multiple of 1X , where the scalar is necessarily a positive real number, in Hom(X, X).

Definition 2.8. Twoalgebras A = (X,m, ι) and B = (Y, n, j) inC are called equivalent
if there is an isomorphism S ∈ Hom(X,Y )which intertwines the two algebra structures:

Sm = n(S ⊗ S)

Sι = j.

The algebras A and B are called unitarily equivalent if S is in addition unitary.

Remark 2.9. Note that every algebra A = (X,m, ι) in C is equivalent to a normalized
one. Indeed, ι∗ι = α1idC (as Hom(idC, idC) ∼= C) for some positive real number α and
thus AS := (X,mS, ιS) with S := √

α1X , mS := S−1m(S ⊗ S) and ιS := S−1ι, is a
normalized algebra and S−1 is an equivalence from A to AS .
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Lemma 2.10. Let A = (X,m, ι) be an algebra in C. Then, mm∗ is a strictly positive
element inHom(X, X). If, in addition, A is a C∗-Frobenius algebra, then it is equivalent
to a special C∗-Frobenius algebra.

Proof. The proof of the first statement is [BKLR15, Eq. (3.1.6)] for strict C∗-tensor
categories. Yet, it clearly works for the general case too, we recall it below for the
reader’s convenience. ι∗ι = α1idC for some positive real number α and thus α−1ιι∗ is a
projection in Hom(X, X), i.e., α−1ιι∗ ≤ 1X . It follows that

mm∗ = m(1X ⊗ 1X )m∗

≥ α−1m(1X ⊗ ιι∗)m∗

= α−1m(1X ⊗ ι)r−1
X [m(1X ⊗ ι)r−1

X ]∗
= α−11X

where we have used the unitarity of rX for the second equality and the unit property of
A for the last one. The second statement follows as in the second part of the proof of
[BKLR15, Lemma 3.5] and in the proof of [BKLR15, Corollary 3.6], by the associativity
and the Frobenius property and by taking the non-trivial associator into account. ��

The following and somehow converse statement, originally due to [LR97], holds:

Lemma 2.11. If A is a special algebra in C, then A is C∗-Frobenius.

Proof. The proof can be adapted from the one in the strict case given in [BKLR15,
Lemma 3.7]. ��

The following haploid condition is motivated by the applications to extensions of
chiral conformal field theories (CFTs). It is the abstract description of the irreducibility
or simplicity of an extension (uniqueness of the vacuum), both in the conformal net and
in the vertex operator algebra formalism. Finite index and conformal extensions of chiral
CFTs are necessarily irreducible, hence the haploid case is general for our applications.

Definition 2.12. An algebra A = (X,m, ι) in C is called haploid (or connected, or
sometimes also irreducible) if Hom(idC, X) ∼= C, i.e., Hom(idC, X) = Cι.

In the haploid case, special algebras are the same as C∗-Frobenius algebras, without
the need of passing to equivalent algebras:

Lemma 2.13. A haploid algebra A in C is special if and only if it is C∗-Frobenius.

Proof. The “if”part follows as in the proof of [BKLR15, Lemma 3.3]. ��
If A is haploid, then ι determines a uniquemorphism ε : X → idC such that ει = 1idC .

In particular, if A is in addition normalized, then ε = ι∗. Following [KO02]:

Definition 2.14. A haploid algebra A = (X,m, ι) in C is called rigid if the morphism
eA := εm : X ⊗ X → idC admits a coevaluation i A : idC → X ⊗ X , fulfilling the
conjugate equations (1). In particular, the object X is rigid with conjugate X = X .

Remark 2.15. More generally, if A = (X,m, ι) is a (not necessarily haploid) C∗-
Frobenius algebra in C, then eA := ι∗m : X ⊗ X → idC and i A := m∗ι : idC → X ⊗ X ,
thus eA = i∗A, provide a solution of the conjugate equations (1) for X and X := X .

In the general (not necessarily haploid) case:
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Definition 2.16. We call Q-system in C a special C∗-Frobenius algebra A in C.
Definition 2.17. A Q-system is normalized or haploid, if it is respectively normalized
or haploid as an algebra. A Q-system is standard if eA = ι∗m and i A = m∗ι = e∗

A are
a standard solution of the conjugate equations (1) for X and X = X , see [LR97], cf.
[GL19].

Remark 2.18. If the Q-system is normalized, then it is standard if and only if the scalar
λ in mm∗ = λ1X equals the dimension d(X) of X seen as rigid object in C. Namely,
λ1idC = d(X)1idC = ι∗mm∗ι, if eA = ι∗m = i∗A are standard. If theQ-system is haploid,
then it is automatically standard, see [LR97, Sect. 6], see also [Müg03, Remark 5.6(3)],
[NY18, Theorem 2.9], [Gui22, Proposition 2.20].

In our applications to conformal nets and vertex operator algebras in Sect. 4, but not
in our main result in Sect. 3, the category C is in addition unitarily braided. Let C be a
braided C∗-tensor category. Denote by

bX,Y : X ⊗ Y −→ Y ⊗ X

the braiding in C, which makes the usual hexagonal diagrams commute and which we
will assume to be unitary in the C∗ context. For rigid objects X in C, together with the
dimension d(X) recalled above, denote by ω(X) the canonical unitary twist of X in C.
Namely,

ω(X) := lX (eX ⊗ 1X )aX ,X,X (1X ⊗ bX,X )a−1
X ,X,X

(e∗
X ⊗ 1X )l−1

X : X → X (2)

if eX and iX are standard, see [LR97] and [Müg00].

Remark 2.19. In the special case of unitary fusion categories, which cover the applica-
tions to rational chiral CFTs, every braiding is automatically unitary thanks to [Gal14,
Theorem 3.2]. Moreover, every unitary braided fusion category admits a unique ribbon
structure making it into a unitary pre-modular tensor category, namely the one defined
by the canonical twist ω, see [Gal14, Theorem 3.5].

Remark 2.20. Let C be a unitary fusion category. An object X in C is said to be invertible
(or a simple current in the CFT context) if X ⊗ X and X ⊗ X are isomorphic to idC .
Equivalently, X is invertible if d(X) = 1. If X is invertible, then X and X⊗X are simple.
As a consequence, if C is a unitary pre-modular tensor category, there are complex
numbers α(X) and β(X) such that ω(X) = α(X)1X and bX,X = β(X)1X⊗X . Hence,
from Eq. (2) we find

α(X)1X = β(X)lX (eX ⊗ 1X )aX ,X,X (1X ⊗ 1X⊗X )a−1
X ,X,X

(e∗
X ⊗ 1X )l−1

X

= β(X)d(X)1X = β(X)1X

so that α(X) = β(X) for every invertible object X in C, cf. [Reh90]. If the simple
current X is not isomorphic to idC but X ⊗ X is (equivalently X ∼= X ), then X is called
a Z2-simple current. Zn-simple currents are defined analogously.

Definition 2.21. An algebra A = (X,m, ι) in C is called commutative, with respect to
the given braiding, if the following commutativity condition holds:

mbX,X = m (3)

or equivalently mbopX,X = m, where bopX,X := b−1
X,X is the opposite self-braiding of X .
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We state and sketch the proof of the following fact, which is presumably known to
experts, but which we could not find in the literature:

Proposition 2.22. Let A = (X,m, ι) be a standard Q-system in a braided C∗-tensor
category C. If A is commutative, then it has trivial twist, namely ω(X) = 1X .

Proof. The unitarity of the canonical twist implies that eA(ω(X) ⊗ 1X ) = eAb
−1
X,X , cf.

[LR97, Lemma 4.3]. By choosing eA = ι∗m = i∗A as a standard solution of the conjugate
equations (1) and by the commutativity condition (3), it follows that eA(ω(X) ⊗ 1X ) =
eA. Thus ω(X) = 1X by using the conjugate equations. ��
Remark 2.23. If A is haploid, the conclusion of the previous proposition follows by
realizing the rigid braided C∗-tensor category generated by X as endomorphisms of a
type III factor, see [Yam03,BHP12,GY19], and by considering the irreducible finite
index subfactor associated to X , see [Lon94,Jon83]. Then ω(X) = 1X follows by
[Reh94, Proposition 4], or by [BDG21, Corollary 2.20].

Recall Definition 2.8. We shall need the following observations:

Remark 2.24. The properties of being haploid or rigid or Frobenius, or commutative in
the case of braided categories, are invariant under equivalence of algebras. In contrast, the
properties of being normalized or special or C∗-Frobenius, hence Q-system, or standard
Q-system, are invariant under unitary equivalence of algebras.

Proposition 2.25. Let C andD be two (braided) C∗-tensor categories with simple tensor
unit. Let F : C → D be a (braided) unitary, i.e., *-preserving, tensor equivalence,
with unitary tensorator f2 : F(X) ⊗ F(Y ) → F(X ⊗ Y ), for X,Y objects in C,
and unitor f0 : idD → F(idC), and with inverse G : D → C and unitary tensor
natural transformations G ◦ F ⇒ IC and F ◦ G ⇒ ID. Then, there is a one-to-one
correspondence between equivalence classes of (commutative) algebras in C and in D
given by

A = (X,m, ι) 	→ F(A) := (F(X), F(m) f2, F(ι) f0).

Moreover, the map A 	→ F(A) also gives a one-to-one correspondence between equiv-
alence classes of (commutative) Q-systems in C and in D.

For later use, we recall the definition of module over an algebra in a (C∗-)tensor
category, the definition of unitary module, and of local module.

Definition 2.26. Let C be a tensor categorywith simple tensor unit, and A = (X,m, ι) an
algebra in C. A left A-module in C (the definition of right A-module in C is analogous)
is a pair M = (Y,mY ), where Y is an object in C and mY : X ⊗ Y → Y is a morphism
(called left action), fulfilling the representation and unit properties:

mY (1X ⊗ mY )a−1
X,X,Y = mY (m ⊗ 1Y )

mY (ι ⊗ 1Y )l−1
Y = 1Y .

We denote by ModC(A) the category of left A-modules in C.
Now, let C be a C∗-tensor category with simple tensor unit and A be a Q-system (i.e.,

a special C∗-Frobenius algebra) in C.
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Definition 2.27. A left A-module is called unitary (or special, or also standard) if

(m ⊗ 1Y )aX,X,Y (1X ⊗ m∗
Y ) = m∗

YmY = (1X ⊗ mY )a−1
X,X,Y (m∗ ⊗ 1Y )

or equivalently, see [BKLR15, Lemma 3.23], [NY18, Remark 2.7(iii)], if mYm∗
Y is

a scalar multiple of 1Y in Hom(Y,Y ). In this case, it is the same scalar as mm∗ in
Hom(X, X). We denote by ModuC(A) the full subcategory of unitary left A-modules in
C.
Definition 2.28. LetC be in addition braided, and A = (X,m, ι) in addition commutative
with respect to the given braiding b. A left A-module M = (Y,mY ) in C is called local
(or dyslectic, or also single-valued) if mYbY,XbX,Y = mY . We denote respectively by
Mod0C(A) andModu,0C (A), the full subcategory of local and unitary local left A-modules
in C.

3. From Algebra Objects to Q-Systems

In this section,we show that a haploid algebra in aC∗-tensor category (with simple tensor
unit) is equivalent to a Q-system if and only if it is rigid. Furthermore, we show that the
haploid condition (which is general for the sake of studying finite index extensions of
conformal nets and vertex operator algebras) cannot be removed from the statement.

Recall the following Perron–Frobenius type result. As customary, we call an element
T in a unital C∗-algebra A positive, denoted by T ≥ 0, if it is of the form T = S∗S
for some S ∈ A. We call T strictly positive, denoted by T > 0, if T is positive and
invertible in A. Differently, a real number λ > 0 is called positive, whereas λ ≥ 0 is
called non-negative. Recall also that a linear map 	 : A → A is positive if 	(T ) ≥ 0
for every T ≥ 0. It is called strictly positive if 	(T ) > 0 for every T ≥ 0, T �= 0. For
a finite dimensional C∗-algebra realized on a Hilbert space of dimension n, see [EH78,
Lemma 2.1], we call a positive map 	 irreducible if (idA +	)n−1 is strictly positive,
where idA is the identity map on A.

Proposition 3.1. Let 	 : A → A be an irreducible positive map on a finite dimensional
C∗-algebraA. Then, there exist a strictly positive element T ofA and a positive number
λ such that	(T ) = λT . Furthermore, if	(S) = αS for some non-zero positive element
S in A and some complex number α, then α = λ and S is a scalar multiple of T .

Proof. See [EH78, Theorems 2.3 and 2.4]. ��
Theorem 3.2. Let C be aC∗-tensor category (with simple tensor unit) and A = (X,m, ι)

be a haploid algebra in C. Then, A is rigid if and only if A is equivalent to a Q-
system in C. More specifically, A is rigid if and only if A is equivalent to a Q-system
AS := (X, S−1m(S⊗S), S−1ι) in C for a strictly positive isomorphism S ∈ Hom(X, X).
Moreover, AS can always be taken to be normalized, in which case A is normalized if
and only if S−1ι = ι. In either case, the equivalent Q-system AS is also standard.

To render the proof of Theorem 3.2 more transparent, we recall and use a second
multiplication operation on the finite dimensional C∗-algebra Hom(X, X), given by the
algebra (and coalgebra) structure on X . Let T, S ∈ Hom(X, X). The convolution of T
and S (sometimes also called coproduct, or horizontal 2-box multiplication) is defined
by

T ∗ S := m(T ⊗ S)m∗ ∈ Hom(X, X). (4)
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The terminology comes from subfactor/planar algebra theory [Jon99,BJ00], and from
the subfactor theoretical Fourier transform [Ocn88], see also [NW95,Bis97,BKLR15,
JLW16,JJLRW20,BDG22a].

The convolution is clearly bilinear. By the associativity (and coassociativity) of A
and by the naturality of the associator, the convolution is associative, i.e., (T ∗ S) ∗ R =
T ∗ (S ∗ R) for all T, S, R ∈ Hom(X, X). Simarly, thanks to the unit property of A and
to the naturality of the unitors, it has an identity element given by ιι∗ ∈ Hom(X, X),
i.e., ιι∗ ∗ T = T = T ∗ ιι∗ for all T ∈ Hom(X, X). Moreover, it is *-preserving
by the unitarity of the associator and of the unitors, i.e., (T ∗ S)∗ = T ∗ ∗ S∗ for all
T, S ∈ Hom(X, X).

Proof of Theorem 3.2. To prove the first claim, assume that A = (X,m, ι) is haploid
and rigid and consider the finite dimensional C∗-algebra A := Hom(X, X). Thanks to
Lemma 2.13, it is sufficient to deform A into an equivalent (by Remark 2.24, necessarily
haploid) algebra satisfying specialness. More specifically, we shall keep X fixed and
deform m and ι. Namely, we want to find an invertible element S ∈ A such that mS :=
S−1m(S ⊗ S) satisfies

mS(mS)
∗ = S−1m(SS∗ ⊗ SS∗)m∗(S−1)∗ = γ 1X (5)

for some γ ∈ C, which is necessarily positive. Let T := SS∗ and recall the notation
from (4). Then, finding S as in (5) is equivalent to finding a strictly positive element
T ∈ A such that

T ∗ T = γ T (6)

for some positive real number γ .
To this end, define a linear map 	 : A → A by setting

	(T ) := T ∗ 1X ∀T ∈ A . (7)

We first show that 	 is an irreducible positive map. By the finite dimensionality of A,
entailed by rigidity and by [LR97, Lemma 3.2], we have that A = ⊕N

i=0 Ai for some
N ∈ Z>0, whereAi ∼= Matni (C) for some ni ∈ Z>0, for every i ∈ I := {0, . . . , N }, see
e.g. [Dav96, Sect. III.1]. For each i ∈ I , call Ei ∈ Ai the respective central projection, so
that Ai = EiAEi . Then, note that 1X = ∑N

i=0 Ei , and we can suppose that A0 = CE0
with E0 = βιι∗ for some positive real number β thanks to the haploid condition. As a
consequence, by the convention right above Definition 2.14, the rigidity of A is realized
with ε = βι∗. Moreover, we can write any T ∈ A as a sum T = ∑N

i=0 Ti with Ti ∈ Ai .
Hence

	(T ) =
N∑

i, j=0

	i j (Tj )

where 	i j : A j → Ai is defined by 	i j (·) := Ei	 �A j (·)Ei .
As an intermediate step, we prove that 	2 is a strictly positive linear map. Note that

	 is a positive linear map by definition and thus each 	i j is too. For each j ∈ I , let
Tj ∈ A j be any non-zero positive element, then we have that

	0 j (Tj ) = E0(Tj ∗ 1X )E0 = ιεm(Tj ⊗ 1X )m∗ιε = 0

if and only if (note that εm(Tj ⊗ 1X )m∗ι ∈ Hom(idC, idC) ∼= C and ιε = βιι∗ = E0)

εm(Tj ⊗ 1X )m∗ι = εm(
√
Tj ⊗ 1X )[ι∗m(

√
Tj ⊗ 1X )]∗ = 0.
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The latter equation (recall that ε = βι∗ with β > 0) is equivalent to εm(
√
Tj ⊗1X ) = 0,

which is not possible in our setting thanks to the rigidity of A. Indeed, suppose by
contradiction that this is not the case. Rigidity means that eA = εm is part of a solution
eA, i A of the conjugate equations (1) for X and X = X . Thus, eA(

√
Tj ⊗ 1X ) = 0

implies that

0 = lX (eA ⊗ 1X )aX,X,X [√Tj ⊗ (1X ⊗ 1X )](1X ⊗ i A)r−1
X

= lX (eA ⊗ 1X )aX,X,X (
√
Tj ⊗ i A)r−1

X

= lX (eA ⊗ 1X )aX,X,X (1X ⊗ i A)r−1
X rX (

√
Tj ⊗ 1idC )r−1

X

= rX (
√
Tj ⊗ 1idC )r−1

X

which is only possible if Tj = 0. Therefore, it must be 	0 j (Tj ) ≥ 0 and 	0 j (Tj ) �= 0
for each non-zero positive element Tj ∈ A j . Moreover, 	0 j (Tj ) = α j E0 for some
positive real number α j because A0 is one-dimensional thanks to the haploid condition.
Therefore, we conclude that

(	2)i j (Tj ) =
N∑

k=0

	ik(	k j (Tj ))

≥ 	i0(	0 j (Tj ))

= α j	i0(E0)

= α j Ei (E0 ∗ 1X )Ei

= α jβEi (ιι
∗ ∗ 1X )Ei

= α jβEi1X Ei

= α jβEi ∀i, j ∈ I

where we have used the positivity of 	i j : A j → Ai for all i, j ∈ I and the properties
of the convolution. Now, if T = ∑N

i=0 Ti is positive and non-zero in A, then each Ti is
positive, and at least one of them, say Tj , is non-zero. Then,

	2(T ) =
N∑

i,k=0

(	2)ik(Tk)

≥
N∑

i=0

(	2)i j (Tj )

≥
N∑

i=0

α jβEi

= α jβ1X

which implies that 	2 : A → A is a strictly positive map.
We now prove that the positive map 	 is irreducible. As the dimension of the Hilbert

space on which A is realized is at least n = 2 (unless X ∼= idC in which case the
statement of the theorem is trivial), then (idA +	)n−1(T ) > 0 for T positive and non-
zero as above. Indeed, if n ≥ 3 then (idA +	)n−1(T ) ≥ 	2(T ) > 0. If n = 2, then
A = A0 ⊕ A1 with A1 ∼= C as well, namely A1 = CE1. In this case, it is enough to
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check that (idA +	)(T ) > 0 on the two projections E0 and E1. If T = E0, observe that
	(E0) = β(ιι∗ ∗ 1X ) = β1X , where β > 0, hence E0 + 	(E0) > 0. If T = E1, then
(idA +	)(E1) = δ0E0 + (1 + δ1)E1 for some real numbers δ0, δ1 ≥ 0, which is strictly
positive unless δ0 = 0. But, if δ0 = 0, then 	(E1) = δ1E1, which is a contradiction as
it would imply that 	2(E1) = (δ1)

2E1, which is not strictly positive. Summing up, we
have shown that 	 is an irreducible positive map.

By Proposition 3.1, there exists a unique (in the strong sense specified in the proposi-
tion) strictly positive eigenvector T ∈ A with positive eigenvalue λ for 	, namely such
that 	(T ) = T ∗ 1X = λT . But also T ∗ T ∈ A is an eigenvector with the same eigen-
value, indeed 	(T ∗ T ) = (T ∗ T ) ∗ 1X = T ∗ (T ∗ 1X ) = λ(T ∗ T ). Moreover, T ∗ T
is positive by the definition of the convolution and non-zero. Indeed, T ∗ T = 0 would
imply m(

√
T ⊗ √

T ) = 0, which is not possible as it would contradict the unit property
of A. By the uniqueness part of Proposition 3.1, we conclude that T ∗ T = γ T , for
some positive real number γ . In other words, the pair (T, γ ) is a solution of (6) and thus
(S := √

T , γ ) is a solution of (5). In conclusion, the deformed triple AS := (X,mS, ιS)

with mS := S−1m(S ⊗ S) and ιS := S−1ι, where S happens to be strictly positive
in A and not only invertible, satisfies specialness and thus it is the desired Q-system
equivalent to A = (X,m, ι).

Conversely, suppose that the haploid algebra A = (X,m, ι) is equivalent to a Q-
system. This means that there exists a deformed triple by the same formulae as above
AS = (Y,mS, ιS), for an invertible S ∈ Hom(X,Y ), which satisfies the C∗-Frobenius
property, or equivalently specialness by Lemma 2.13, thanks to the haploid assumption.
We have already observed in Remark 2.15 that a C∗-Frobenius algebra is rigid, and in
Remark 2.24 that rigidity is preserved under equivalence. Thus, A is necessarily rigid.

For the second claim, note that any algebra is equivalent to a normalized one by
Remark 2.9. Suppose that A = (X,m, ι) is haploid and rigid. Then, the Q-system
AS = (X,mS, ιS) just constructed, can be considered to be normalized, by substituting
the positive isomorphism S ∈ Hom(X, X) with an appropriate positive multiple, still
denoted by S. By the haploid condition and by the strict positivity of S, ιS = αι for a
positive real number α. If A is also normalized, then

1idC = ι∗SιS = α2ι∗ι = α21idC

and thus α = 1, i.e., ιS = ι. Conversely, if ιS = ι, then A is obviously normalized.
Finally, if A is just haploid and rigid, then the standardness of AS follows from the

fact that any haploid Q-system in a C∗-tensor category is standard, see Remark 2.18.
Thus, the proof of the theorem is complete. ��

We continue with some remarks and consequences:

Remark 3.3. It follows by [FRS02, Lemma 3.7], cf. [FS08, Proposition 8] (not necessar-
ily in theC∗ context) that an algebra A = (X,m, ι) admits aFrobenius algebra structure
if and only if it is rigid. The Frobenius algebra structure (namely the comultiplication
solving the Frobenius relations) is uniquely determined by the counit, there denoted
by ε. In the C∗ context, Theorem 3.2 can be rephrased as follows. If A is haploid and
rigid, and we set ε := ι∗, then A can be deformed to an equivalent algebra AS (still
haploid and rigid) where the unique solution (the Frobenius algebra structure) is given
by the comultiplication � := m∗. In particular, the solution is a C∗-Frobenius algebra
structure.

Remark 3.4. Under the mild assumption that the object X is rigid as an object in C,
it follows by [Yam04b, Lemma 3.6] that the rigidity of A as an algebra is actually
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equivalent (not only implies, as we observed and used in the proof of Theorem 3.2) to
the faithfulness of the state ι∗	(·)ι : A → Hom(idC, idC) ∼= C on the finite dimensional
C∗-algebra A = Hom(X, X), where 	 : A → A is as in (7).

Theorem 3.2 provides an answer to the following natural questions on the unitariz-
ability of categorical structures (algebras, modules) in the C∗-tensor category context:

Remark 3.5. The idea of deforming a (not necessarily haploid) algebra A in C, to a
special algebra is present at the end of [BKLR15, Sect. 3.1], where an iterative method is
proposed. Assuming the haploid property, the proof of Theorem 3.2 provides a solution
of T ∗ T = γ T , see (6), for some positive real number γ , where T is strictly positive
in A = Hom(X, X). Namely, T fulfills the desired “regularity condition”mentioned in
[BKLR15, Page 20].

Remark 3.6. In [CHJP22, Question 3.7], it is asked whether every arbitrary Frobenius
algebra in a unitary tensor category (a semisimple rigid C∗-tensor category with simple
unit in the terminology of [CHJP22, Definition 2.11]) is equivalent to a Q-system. By
Remark 3.3, rigidity for an algebra (not necessarily haploid) is equivalent to the existence
of a Frobenius algebra structure. Hence, assuming the haploid property, Theorem 3.2
provides a positive answer to [CHJP22, Question 3.7]. Below, we show that the answer
becomes negative if the haploid assumption is dropped, see Example 3.11.

Remark 3.7. By [Ost03, Theorem 3.1 and Proposition 3.1], every semisimple indecom-
posable (right) module categoryM over a fusion category C (a semisimple rigid tensor
category with simple tensor unit and finitelymany equivalence classes of simple objects)
is equivalent to ModC(A) for some rigid haploid algebra A in C. Hence, our Theorem
3.2 gives a positive answer to [Reu19, Question 12], namely whether every semisimple
module category over a unitary fusion category is equivalent to a C∗-module category,
in the case ofM indecomposable.

We summarize this latter discussion in:

Corollary 3.8. LetM be a semisimple indecomposable module category over a unitary
fusion category C. Then, M is equivalent to ModC(A) for some haploid Q-system A
in C. Consequently, every (direct sum of) semisimple indecomposable module category
M over a unitary fusion category C is unitarizable (uniquely up to unitary module
equivalence).

Proof. An equivalence of algebras in C entails an equivalence of the respective module
categories. Thus, the first claim follows from [Ost03, Theorem 3.1 and Proposition 3.1]
and from Theorem 3.2. For the second claim, it is enough to observe that modules over
special algebras (in particular over haploidQ-systems) are equivalent to unitarymodules,
see [BKLR15, Lemma 3.22], and the latter form a unitary (in fact, C∗) category, see
[GY23, Sects. 2.2 and 2.3] and [NY16, Remark 6.2]. ��

By the techniques used in the proof of Theorem 3.2, we can prove the following:

Theorem 3.9. Let C be a C∗-tensor category (with simple tensor unit). Then, any equiv-
alence between normalized haploid (hence standard) Q-systems in C is necessarily uni-
tary. Furthermore, there is a one-to-one correspondence between:

(i) equivalence classes of rigid haploid algebras in C;
(ii) unitary equivalence classes of normalized haploid (hence standard) Q-systems in C.
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Proof. Let A = (X,m, ι) and B = (Y, n, j) be two normalized haploid Q-systems. Let
S ∈ Hom(X,Y ) be an isomorphism (not necessarily unitary) realizing the equivalence
between A and B as algebras, see Definition 2.8. Recall the convolution ∗ introduced for
the proof of Theorem3.2. Set T := S−1(S−1)∗ and note that T ∗T = m(T⊗T )m∗ = λT
for some positive real number λ by the specialness of the Q-system B.

Now, define a linear map 	′ : Hom(X, X) → Hom(X, X) by 	′(R) := 1X ∗ R
for all R ∈ Hom(X, X). Proceeding as in the proof of Theorem 3.2, it is easy to see
that the rigidity of A implies that (	′)2 is a strictly positive map. Define also the linear
map � : Hom(X, X) → Hom(X, X) by �(R) := T ∗ R for all R ∈ Hom(X, X).
As T = S−1(S−1)∗ is strictly positive, we have that T ≥ δ1X for some positive real
number δ and thus �(R) ≥ δ	′(R) for all positive R ∈ Hom(X, X). It follows that
�2(R) ≥ δ2(	′)2(R) for all positive R ∈ Hom(X, X), and thus �2 is strictly positive
because (	′)2 is. Again, proceeding as in the proof of Theorem 3.2, we can use that
�2 is strictly positive to prove that � is an irreducible positive map. By definition, �

has T as a strictly positive eigenvector with positive eigenvalue λ. By Proposition 3.1,
any other non-zero and positive eigenvector of � must be a positive multiple of T . Let
	 : Hom(X, X) → Hom(X, X) be the irreducible positive linear map defined in the
proof of Theorem 3.2 as 	(R) := R ∗ 1X for all R ∈ Hom(X, X). Then,

�(	(T )) = T ∗ 	(T ) = T ∗ (T ∗ 1X ) = (T ∗ T ) ∗ 1X = λT ∗ 1X = λ	(T ).

Hence, 	(T ) is a non-zero positive eigenvector of � with eigenvalue λ and thus there
exists a positive real number α such that 	(T ) = αT . Again by Proposition 3.1 applied
to 	, observing that 1X is a strictly positive eigenvector of 	 by the specialness of the
Q-system A, we conclude that S−1(S−1)∗ = T = β1X for some positive real number
β. Using the polar decomposition of (S−1)∗, we get that (S−1)∗ = U

√
T = U

√
β1X =√

βU for some unitary U ∈ Hom(X,Y ). Then, S = (
√

β)−1U . By the normalization
condition, 1idC = j∗ j = ι∗S∗Sι = β−1ι∗U∗U ι = β−11idC . Then, β = 1 and S = U is
a unitary equivalence between the normalized haploid Q-systems A and B. Finally, the
one-to-one correspondence follows from Theorem 3.2 and from the first claim. ��
Remark 3.10. In [NY18, after Theorem2.9], the authors affirm that any isomorphism, see
[NY18, Definition 2.4], between irreducible (i.e., haploid, see [NY18, Remark 2.7(i)])
Q-systems is unitary up to a scalar factor. Nevertheless, their definition of isomorphism
betweenC∗-Frobenius algebras is stronger than the definition of equivalence for algebras
considered here, see Definition 2.8.

Now, we provide a counterexample to the statement of Theorem 3.2, if the haploid
condition is removed (Example 3.11).We also show that the haploid property alone does
not imply rigidity (Example 3.12).

Example 3.11. Let C := Hilb be the (trivial) rigid semisimple C∗-tensor category of
finite dimensional complex Hilbert spaces, with tensor unit idC = C. We shall find a
non-haploid Frobenius algebra in C, which is not equivalent to a Q-system.

Let X be the two-dimensional Hilbert space generated by the 2 × 2 matrices I :=(
1 0
0 1

)

and N :=
(
0 1
0 0

)

. The multiplication morphism m : X ⊗ X → X is defined

by the ordinary matrix multiplication (aI + bN )(cI + dN ) = acI + (ad + bc)N for
a, b, c, d ∈ C. The unit morphism ι : C → X is defined by a 	→ aI for a ∈ C. This
algebra in C is not haploid, as Hom(C, X) ∼= C

2, where we recall that the morphisms
in Hilb are just the linear maps. Then ε(aI + bN ) := a + b defines a linear functional
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ε : X → C such that the composition εm : X⊗X → C is a non-degenerate pairing, i.e.,
the functional ε is a Frobenius form. Recall that rigidity is equivalent to the existence of
a Frobenius structure by [FRS02, Lemma 3.7], see Remark 3.3. However, (X,m, ι) is
not equivalent to a C∗-Frobenius algebra (hence nor to a special one), because X is not
a C∗-algebra (it is generated by I and by a nilpotent N ) with respect to any involution,
see [NY18, Lemma 2.2].

Example 3.12. Let C := Rep(Z2) be the (symmetric) rigid semisimple C∗-tensor cat-
egory of finite dimensional unitary representations of Z2 = Z/2Z, with tensor unit
idC = C. We shall find a haploid algebra in C which is not rigid, i.e., not Frobenius.

Let X be the two-dimensional Hilbert space generated by I and N as in the previous
example, with the inner product (aI + bN |cI + dN ) := Tr((aI + bN )∗(cI + dN )) =
2ac + bd, where Tr is the ordinary non-normalized trace. Endow X with the unitary Z2-

action given by −1 · (aI + bN ) := S(aI + bN )S−1 = aI − bN , where S :=
(
1 0
0−1

)

.

Hence X is an object in C. Now, (X,m, ι) is an algebra in C with the same operations
defined before. But it is haploid in this case, as the linear map b 	→ bN does not
intertwine the Z2-actions on C and X . The adjoint of the unit morphism ι∗ : X → C is
given by ι∗(aI + bN ) = 2a. The haploid algebra (X,m, ι) does not admit a Frobenius
structure with counit ι∗, as the composition ι∗m : X ⊗ X → C is degenerate. Indeed,
N 2 = 0 and N I = N is sent to ι∗(N ) = 0, while N is not zero.

4. General Applications to Chiral CFT

In this section, we apply the tools just developed to obtain general results in the theory
of vertex operator (super)algebras and (graded-local) conformal nets. In Sects. 5 and 6,
we draw consequences for various notable chiral conformal field theory (chiral CFT)
models.

In the following exposition, we assume that the reader is familiar with the two ax-
iomatic frameworks and with the relations between them. Nevertheless, for the less
expert readers, we give the necessary references here below and across the various sec-
tions whenever appropriate, and then we recall standard notations.

General References. The theory of vertex operator algebras (VOAs) can be found
e.g. in [Kac01,FLM88,LL04,FHL93]. The last two are also a classical introduction
to the theory of VOA modules and, just the last one, to the theory of intertwining
operators.VOAmodules and intertwining operators are the building blocks of the braided
tensor category theory of VOA representations, which was developed in the series of
papers [HL95I,HL95II,HL95III,Hua95,Hua08]. See [HKL15, Sect. 2] for a brief review.
[Kac01] and [Li96] include the theory of vertex operator superalgebras (VOSAs),
which will be necessary in some of our applications.

Regarding the unitary theory for VOAs, we refer the reader to [DL14] and to
[CKLW18, Chapter 5]; whereas we refer to [AL17a] for the unitary theory of VOSAs,
see also [CGH] and [Gau21, Chapter 2]. Turning back to the representation theory for
VOAs, the unitary modular tensor structure for VOA representations was established in
[Gui19I,Gui19II].

For the theory of (local) conformal nets see e.g. [CKLW18, pp. 1–2 and Sect. 3.3].
Instead, graded-local conformal nets, see [CKL08], are the operator algebraic coun-
terpart of VOSAs.
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The correspondence between VOAs and conformal nets is established in [CKLW18].
Moreover, [Gui21a] and [Gui20] study the relation between the respective representation
theories for VOAs and conformal nets.

The (locally normal) representations of an irreducible conformal net A form a
braided C∗-tensor category with simple tensor unit, often denoted by Rep(A), see
[FRS89,FRS92], based on DHR superselection theory [DHR71,DHR74,Haa96]. An
equivalent approach throughConnes’ fusion is discussed e.g. in [Was95,Was98], see also
[Gui21a, Sect. 6] and [Gui21b]. Finite index representations, see e.g. [GL96, Sect. 2.1]
and [Car04, Sect. 2.2], determine a full subcategory of Rep(A), sometimes denoted by
Repf(A). We will often deal with irreducible conformal nets that are completely ratio-
nal, see [KLM01, Definition 8]. By [LX04, Theorem 4.9] and [MTW18, Theorem 5.4],
a conformal net is completely rational if and only if it has finitely many inequivalent irre-
ducible representations and all of them have finite index or, equivalently, if and only if it
has finiteμ-index, see [LX04, Theorem 5.3]. If a conformal netA is completely rational
then every representation in Rep(A) is a (possibly infinite) direct sum of irreducible ones
and the objects in Repf(A) are exactly the finite direct sums of irreducibles in Rep(A).
Moreover, Repf(A) is a unitary modular tensor category, see [KLM01, Corollary 37 and
Corollary 39].

Recall that every graded-local conformal net A has a grading unitary, i.e., a unitary
self-adjoint automorphism of the defining vacuum Hilbert space of A. The eigenspaces
of the operator induced by the adjoint action, of eigenvalues 1 and −1 are calledA0, the
even part, and A1, the odd part, of A respectively. In the same way, a VOSA V has a
parity automorphism, i.e., a VOSA automorphism of order two, such that V = V0 ⊕V1,
where V0 and V1 are the eigenspaces of eigenvalues 1 and −1 respectively. They are
called the even and the odd part of V respectively. Then, a VOA is simply a VOSA with
trivial parity automorphism, i.e., V1 = {0}.

A VOSA V is said to be simple if the only ideals are {0} and V itself, which corre-
sponds to V being irreducible as V -module. Instead, a VOSA V is said to be of CFT
type if V0 = C and Vn = {0} for all negative n. Note that the latter condition is actu-
ally automatic for VOAs with just V0 = C, see [CKLW18, Remark 4.5]. Furthermore,
simplicity and the CFT type condition are equivalent for unitary VOSAs, see [CKLW18,
Proposition 5.3] and [Ten19b, Proposition 2.14], cf. also [CGH] and [Gau21, Proposi-
tion 2.3.6]. Recall that a VOA V is said to be self-dual (or self-contragredient) if, as V -
module, it is isomorphic to its contragredient module. This is equivalent to the existence
of a non-degenerate invariant bilinear form on V , see e.g. [CKLW18, Sect. 4.3]. Conse-
quently, any self-dual VOA of CFT type is simple by [CKLW18, Proposition 4.6(iv)].
Moreover, any unitary VOA is self-dual by definition, see e.g. [CKLW18, Sect. 5.1].

Definition 4.1. A VOA V is said to be regular if every weak V -module is a direct sum
of irreducible (ordinary) V -modules. V is said to be strongly rational (or sometimes
strongly regular) if, in addition, it is of CFT type and self-dual.

It is well known that regularity implies rationality and C2-cofiniteness. On the other
hand, the two latter properties together imply regularity under the assumption of CFT
type. In particular, rationality implies that there are only finitely many irreducible admis-
sible V -modules and every admissible V -module is actually ordinary. See [ABD04] and
references therein for definitions and results. Note that a strongly rational VOA is also
simple, rational and C2-cofinite. Lastly, if V is strongly rational, then the V -modules
form a modular tensor category Rep(V ), see [Hua08] and references therein.
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Definition 4.2. A regular VOA V of CFT type is said to be completely unitary if it is
unitary, if every V -module is unitarizable (in this case, V is said to be strongly unitary)
and if the invariant sesquilinear form� on the categorical tensor product of V -modules,
as defined in [Gui19II, Sect. 6.2], see also [Gui22, Definition 1.7], is positive definite.

Remark 4.3. Let V be as in Definition 4.2. Note that V is always strongly rational. By
strong unitarity, theC∗-category Repu(V ) of unitary V -modules, see [Gui19I, Sect. 2.4],
is linearly equivalent to Rep(V ). Moreover, the invariant sesquilinear form � turns
Repu(V ) into a unitarymodular tensor category by [Gui19II, Theorem 7.9]. In particular,
the forgetful functor from Repu(V ) to Rep(V ) is an equivalence of modular tensor
categories.

Remark 4.4. The unitary structure of a simple unitary VOA is unique up to unitary
isomorphism. Furthermore, the unitary structure is really unique, that is not just up to
isomorphism, if every automorphism of the VOA is unitary, see the discussion just after
[CKLW18, Proposition 5.19].

The following is a result of independent interest, which will be needed in some of
the applications in Sect. 4.1.

Proposition 4.5. Let V be a simple unitary VOA and M be an irreducible unitary (or-
dinary) V -module. Then the conformal Hamiltonian LM

0 of the module M has only
non-negative eigenvalues. Moreover, if there exists a non-zero vector v ∈ M of confor-
mal weight dv = 0, then M has a VOA structure, which makes it a VOA isomorphic to
V . Hence, in the latter case, the module M is equivalent to the adjoint V -module V .

Proof. For any a ∈ V , let Y M (a, z) = ∑
n∈Z aM(n)z

−n−1 denote any vertex operator on
the V -module M . Let  and ν be the vacuum and the conformal vector of V . Moreover,
we use the symbol (·|·)M for the scalar product making M into a unitary V -module.

The endomorphisms LM
n , n ∈ Z defined by Y M (ν, z) = ∑

n∈Z LM
n z−n−2 give a

representation of the Virasoro algebra on M with central charge c (the cental charge of
V ). This representation is unitary because M is a unitary V -module and consequently
the eigenvalues of LM

0 are non-negative real numbers, see [KR87], cf. also [Gui19I,
Proposition 1.7].

Let us now assume that LM
0 v = 0 for some non-zero v ∈ M . Then LM

1 v = 0 because
LM
0 LM

1 v = −LM
1 v. Thus, we have also that LM−1v = 0 as

(LM−1v|LM−1v)M = (v|LM
1 LM−1v)M = (v|2LM

0 v)M = 0.

Now, let φ : V → M be the linear map defined by φ(a) = aM(−1)v. By [LL04, Propo-
sition 4.2.1] and [DK06, Theorem 1.5] φ is an injective map. By the existence theorem
[Kac01, Theorem4.5]M have aVOA structurewith vacuumvectorM := v, conformal
vector νM := νM

(−1)v and state-field correspondence m 	→ Ỹ (m, z), m ∈ M satisfying

Ỹ (φ(a), z) = Y M (a, z), for all a ∈ V . It follows that

φ(a(n)b) = (a(n)b)
M
(−1)v = aM(n)φ(b)

for all a, b ∈ V and all n ∈ Z. In particular, φ(V ) is a non-zero V-submodule of M and
hence, by the irreducibility of M , φ(V ) = M , i.e. φ is also surjective. Moreover, φ is a
VOA isomorphism. ��
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4.1. Applications to VOAs and conformal nets. The next important result, see Theorem
4.7, is a first application of Theorem 3.2 and of Theorem 3.9 to the VOA theory. We first
recall the definition of a (simple CFT type) VOA extension, see e.g. [HKL15]. For the
related definition of vertex subalgebra, see e.g. [Kac01, Sect. 4.3]. For unitary (vertex)
subalgebras, see [CKLW18, Sect. 5.4] and also [CGH19].

Definition 4.6. A simple VOAU of CFT type is called a simple CFT type VOA exten-
sion of a simple VOA V of CFT type if the latter, namely V , is a vertex subalgebra ofU
with the same conformal vector. Moreover, U is said in addition to be a simple unitary
CFT type VOA extension of V if both VOAs are unitary and if the unitary structure of
U restricts to the one of V , i.e., V is a unitary subalgebra of U .

Theorem 4.7. Let V be a regular completely unitary VOA of CFT type and U be a
simple CFT type VOA extension of V . Then, U is automatically unitary as simple CFT-
type VOA extension of V , and it is also a completely unitary VOA. Furthermore, if
φ : U1 → U2 is a VOA isomorphism between simple unitary CFT-type VOA extensions
of V , which restricts to the identity map on V , then φ is unitary and U1 and U2 are
unitarily isomorphic. In particular, the unitary structure on U extending the given one
on V is unique (not just up to unitary isomorphism, see Remark 4.4).

Proof. Throughout the proof, we use YU and Y M for the state-field correspondences of
the VOA U and of a U -module M respectively.

Note that, since V is strongly unitary, U is a preunitary VOA extension of V in the
sense of [Gui22, Sect. 2.1], i.e., it has a scalar product whose restriction to V is the one
realizing the unitary structure of V . Furthermore, we can obviously associate to U a
V -module (W,YW ) such that W = U as C-vector spaces and YW (a, z) = YU (a, z)
for all a ∈ V . Therefore, U determines a normalized haploid commutative algebra
A = (W, μ, ι) in Repu(V ) with trivial twist, where μ ∈ Hom(W ⊗ W,W ) is the map
associated to YW and ι ∈ Hom(V,W ) is the obvious inclusion map of V into W , see
[HKL15, Theorem 3.2] for details and Remark 4.3, cf. also [Gui22, Proposition 2.1].
Note also that U is irreducible as U -module by simplicity. Therefore, A is rigid by
[KO02, Lemma 1.20, cf. Theorem 5.2], cf. also [HKL15, Theorem 3.6 and Remark 3.7].

Now, A satisfies all the hypotheses of Theorem 3.2 and thus there exists a strictly
positive isomorphism S ∈ Hom(W,W ) such that AS = (W, μS, ι) is a normalized
haploid Q-system in Repu(V ) equivalent to A, where μS := S−1μ(S ⊗ S). Note that
AS is also commutative by Remark 2.24 and has the same twist of A which is trivial,
cf. Proposition 2.22. Therefore, AS determines a unitary CFT type VOA extension
US such that US = U as C-vector spaces thanks to [HKL15, Theorem 3.2], cf. also
[HKL15, Theorem 3.6] and [KO02, Theorem 5.2], together with [Gui19I, Proposition
1.7], Proposition 4.5 and [Gui22, Theorem 2.21]. We remark that the unitary structure
on US restricts to the one of V , as A and AS share the same ι. (Note that US is also
completely unitary by [Gui22, Theorem 3.30].)

By [Gui22,Eq. (1.2)], see also [Gui19I, Sect. 2.4] and references therein, the definition
of μS and the fact that Sι = ι imply that S is an actual VOA isomorphism fromUS toU .
As a consequence,U has a unitary structure induced by the one ofUS through S, making
it a simple unitary VOA extension of V . Then, the complete unitarity ofU follows from
[Gui22, Theorem 3.30], so proving the first claim.

The second claim follows fromTheorem3.9 and the discussion here above.Moreover,
let (·|·) and {·|·} be two unitary invariant scalar products on U , which restricts to the
given one on V . The identity map from (U, (·|·)) to (U, {·|·}) is a VOA automorphism,
which restricts to the identity map from (V, (·|·)) to (V, {·|·}) (which is also obviously
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unitary). Then, the former identity map is unitary and thus (·|·) and {·|·} are the same,
that is the unitary structure on U extending the given one on V is unique. ��
Corollary 4.8. Let V be a regular completely unitary VOA of CFT type. Let Ũ and U
be two simple CFT type extensions of V such that V ⊂ Ũ ⊂ U. Then, there exists a
unitary structure on U making V and Ũ unitary subalgebras.

Proof. It is sufficient to applyTheorem4.7 toV ⊂ Ũ first, and then to Ũ ⊂ U , reminding
that as an effect of the first application, Ũ turns out to be regular and completely unitary.

��
Referring e.g. to [CKLW18, Sect. 3.4], see also [Car04,CGH19,BDG22b,Lon03], for

the definition and properties of covariant subnets, as done before for VOA extensions
in Definition 4.6, we recall the following (cf. e.g. [Car04,KL04]):

Definition 4.9. An irreducible conformal net extension of an irreducible conformal
netA is an irreducible conformal net B, containingA as covariant subnet and such that
the Virasoro subnet of B coincides with the Virasoro subnet of A.

Indeed,wewant to relate simpleCFT typeVOAextensions and irreducible conformal
net extensions by means of the fact that both are determined by Q-systems in their
respective unitary modular tensor categories of representations, see [HKL15,Gui22,
LR95] respectively. To this end, we have to look at the core of the correspondence
between unitary VOAs and conformal nets, referring to [CKLW18] for details. One
crucial point is that it is possible to associate to a simple unitary VOA V a unique up to
isomorphism irreducible conformal net AV on the Hilbert space completion HV of the
vector spaceV ,with respect to its scalar product, provided that certain analytic conditions
on the vertex operators are satisfied. A VOA satisfying such analytic conditions is said
to be strongly local, see [CKLW18, Definition 6.7].

As a further consequence of Theorem 4.7 and Theorem 3.2, or better Theorem 3.9,
we obtain the following:

Theorem 4.10. Let V be a regular completely unitary VOA of CFT type. Suppose that
V is strongly local and that the associated irreducible conformal net AV is completely
rational. If Repu(V ) is equivalent to Repf(AV ) as a unitary modular tensor category,
then there is a one-to-one correspondence between the following:

(i) isomorphism classes of simple CFT type VOA extensions of V ;
(ii) (necessarily unitary) equivalence classes of normalized haploid (hence standard)

commutative Q-systems in Repu(V ) ∼= Repf(AV );
(iii) isomorphism classes of irreducible conformal net extensions of AV .

Furthermore, let U be a simple CFT type VOA extension of V andAU
V be the correspond-

ing irreducible conformal net extension of AV . Then, U is a simple unitary CFT type
VOA extension of V , it is completely unitary, and Repu(U ) is equivalent to Repf(AU

V )

as a unitary modular tensor category.

Proof. The proof of the first part goes as follows. On the one hand, [HKL15, Theorem
3.2], [KO02, Lemma 1.20, cf. Theorem 5.2], cf. also [HKL15, Theorem 3.6 and Re-
mark 3.7], together with Remark 4.3, [Gui19I, Proposition 1.7] and Proposition 4.5, cf.
also [Gui22, Proposition 2.1], say that isomorphism classes of simple CFT type VOA
extensions of V are in one-to-one correspondence with equivalence classes of rigid hap-
loid commutative algebras in Repu(V ) with trivial twist. By Theorem 3.9 and Remark
2.24, the latter are in one-to-one correspondence with unitary equivalence classes of
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normalized haploid (hence standard) commutative Q-systems (with trivial twist, which
is actually automatic by [Gui22, Theorem 3.25] or Proposition 2.22) in Repu(V ). On the
other hand, isomorphism classes of irreducible extensions ofAV correspond bijectively
to unitary equivalence classes of normalized haploid (hence standard) commutative Q-
systems in Repf(AV ) (with trivial twist by the conformal spin and statistics theorem
[GL96] or by Proposition 2.22), see [LR95, Theorem 4.9] and [Lon03, Lemma 15], see
also [BKLR15, Sect. 5.2.1]. Therefore, the desired one-to-one correspondence is ob-
tained from the equivalence between Repu(V ) and Repf(AV ) as unitary modular tensor
categories, see Proposition 2.25 and Theorem 3.9.

By Theorem 4.7,U is a simple unitary CFT type VOA extension of V , which is also
completely unitary. Then, the final part of the theorem follows from the fact that Repu(U )

and Repf(AU
V ) are both equivalent toModu,0C (A), respectively by [Gui22, Theorem 3.30]

and by [BKL15, Proposition 6.4], cf. also [Müg10a, Theorem 3.1], [Bis16, Proposition
5.1] and [Gui21b, Main Theorem C]. Recall that Modu,0C (A) (Definition 2.28) is the
category of abstract unitary local (left) modules in C := Repu(V ) ∼= Repf(AV ), over
the haploid Q-system A, which describes the extensions V ⊂ U and AV ⊂ AU

V . Note

that Modu,0C (A) is denoted by Mod0(A) in [BKL15] and by Repu(A) in [Gui22]. ��
We shall apply Theorem 4.7 and Theorem 4.10 to tensor products and regular cosets

of some well-known VOAs listed in Table 1. Indeed, it is known that these VOAs meet
the desired hypotheses, mostly thanks to the results in [Gui21a] and [Gui20].

Before going further, it is useful to recall that for any strongly local regular com-
pletely unitary VOA V of CFT type (and thus also simple), a fully faithful *-functor
F : Repu(V ) → Rep(AV ) can be defined, assuming the strong integrability of V -
modules, see [CWX] or [Gui19II, Eq. (4.4)]. It is realized associating to every V -module
M , a representation ofAV on theHilbert space completionHM ofM in a naturalway, see
[CWX] and [Gui19II, Theorem 4.3]. Cf. [Gui20] and references therein for a discussion
of strong integrability in a more general setting and for further details.

Corollary 4.11. Let V be a tensor product of the following VOAs: unitary Virasoro VOAs
with c < 1; unitary affine VOAs associated to simple Lie algebras; discrete series W-
algebras of type ADE; unitary parafermion VOAs; lattice VOAs. Let U be any simple
CFT type VOA extension of V . Then, U is a simple unitary CFT type VOA extension of
V , which is also completely unitary. Moreover,AV is completely rational and the strong
integrability *-functor F : Repu(V ) → Repf(AV ) is an equivalence of unitary modular
tensor categories.F realises a one-to-one correspondence between (isomorphism classes
of) simpleCFT typeVOAextensionsU of V and irreducible conformal net extensionsAU

V
of AV on the Hilbert space completion HU of U. Furthermore, Repu(U ) is equivalent
to Repf(AU

V ) as a unitary modular tensor category.

Proof. If V is a tensor product of VOAs in the above list, then it is of CFT type,
regular and completely unitary, see Table 1. Then, U is indeed a simple unitary CFT
type VOA extension of V , which is also completely unitary, thanks to Theorem 4.7.
Note that V is also strongly local, see Table 1. Moreover,AV is completely rational and
F : Repu(V ) → Repf(AV ) is an equivalence of unitary modular tensor categories by
[Gui21a, Theorem 5.1] and [Gui20, Theorem I]. Therefore, the last part follows from
Theorem 4.10. ��

In [Hen17], Henriques constructed VOAs VGk associated to any pair (G, k) with G
a compact connected Lie group and k ∈ H4

+ (BG,Z). These VOAs where obtained as
simple current extensions by finite abelian groups of tensor product of unitary affine
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Table 1. Properties of well-known classes of VOAs

VOAs Definition Regularity Unitarity Complete Unitarity Strong Locality

Unitary
Virasoro VOAs

with c < 1

[LL04, Sect. 6.1]
cf. also:
[Kac01, Ex. 4.10]

[DLM97, Thm. 3.13] [DL14, Thm. 4.2] [Gui19II, Thm. 8.1] [CKLW18, Ex. 8.4]

Positive integer
level simple affine
VOAs associated to
simple Lie algebras

[LL04, Sect. 6.2]
cf. also:
[Kac01, Sects. 5.6-5.7]

[DLM97, Thm. 3.7] [DL14, Thm. 4.7]

[Gui20, Thm. 2.7.3]
cf. also:
[Gui19II, Thm. 8.4]
[Gui19a, Thm. 6.1]
[Ten19a, Thm. 5.5]

[CKLW18, Ex. 8.7]

Positive definite
even lattice

VOAs

[LL04, Sect. 6.4]
cf. also:
[Kac01, Sect. 5.5]
[FLM88, Thm. 8.10.2]

[DLM97, Thm. 3.16] [DL14, Thm. 4.12] [Gui21a, Thm. 5.8]
[Gui21a, Thm. 5.8]
cf. also:
[CKLW18, Ex. 8.8]

Discrete series
W -algebras

of ADE type

[ACL19, Thm. 12.1]
cf. also:
[KRW03]

[Ara15a, Thm. 5.21]
[Ara15b, Main Thm.]

[ACL19, Thm. 12.1]
+

[DL14, Cor. 2.8]

[Gui20, Thm. 2.7.3]
cf. also:
[Ten19a, Thm. 5.5]

[ACL19, Thm. 12.1]
+

[CKLW18, Prop. 7.8]

Positive integer
level

Parafermion VOAs
[DW11] [ALY14, Thm. 10.5]

[DR17, Thm. 5.1]

[DW11, Prop. 4.1]
+

[DL14, Cor. 2.8]
[Gui20, Thm. 2.7.6]

[DW11, Prop. 4.1]
+

[CKLW18, Prop. 7.8]

Tensor product
of VOAs

[FHL93, Sect. 2.5]
[Kac01, Sect. 4.3] [DLM97, Thm. 3.3] [DL14, Prop. 2.9] [Gui22, Prop. 3.31] [CKLW18, Cor. 8.2]

(Regular) cosets [Kac01, Rem 4.6b(I)] (Assumed) [DL14, Cor. 2.8]

[Gui20, Thm. 2.6.6]
+

[Gui20, Thm. 2.4.1]
(Sufficient conditions)

[CKLW18, Prop. 7.8]

Table 1 gives the bibliographical references for the well-known classes of VOAs listed in the first column
concerning the properties listed in the first row. Actually, the last two rows give references for two general
constructions, i.e., tensor products and cosets, which can be performed within VOAs. In particular, for the
coset construction, the regularity is assumed, but note that it is only used to derive the property of complete
unitarity in [Gui20, Theorem 2.6.6] under some other sufficient conditions. In some cases, more than one
reference is given after the text string “cf. also:”. The symbol “+” means that the property “X” for the VOA
“Y” is obtained by a combined action of two results. For example, the strong locality for Parafermion VOAs
is obtained considering the fact that these models can be constructed as coset VOAs from VOAs whose strong
locality is already known

VOAs associated to simple Lie algebras and lattice VOAs. Hence, from Corollary 4.11
we get the following:

Corollary 4.12. The WZW VOA VGk is unitary for every compact connected Lie group
G and every k ∈ H4

+ (BG,Z).

In [AL17b], Ai and Lin classified the simple CFT type VOA extensions of the simple
affine VOAs L(sl3, k) associated to sl3 at positive integer level k. Up to isomorphism,
these extensions are given by: L(sl3, k) for any positive integer k, a Z3-simple current
extension of L(sl3, k) for all k ≡ 0 (mod3), the conformal inclusions L(sl3, 5) ⊂
L(sl6, 1), L(sl3, 9) ⊂ L(E6, 1) and L(sl3, 21) ⊂ L(E8, 1). From Corollary 4.11 we
get the following:

Corollary 4.13. The irreducible extensions of the loop group conformal nets AL(sl3,k)
are given by: AL(sl3,k) for any positive integer k, a Z3-simple current extension of
AL(sl3,k) for all k ≡ 0 (mod 3), the conformal inclusions AL(sl3,5) ⊂ AL(sl6,1),AL(sl3,9) ⊂ AL(E6,1) and AL(sl3,21) ⊂ AL(E8,1).

By [DGH98, Definition 2.1 and Lemma 2.2], a framed VOA with c = n
2 with

n ∈ Z>0, is a simple CFT type VOA extension of a tensor product of n copies of
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the Virasoro VOA with central charge 1
2 . Similarly, a framed conformal net [KL06,

Definition 4.1] with c = n
2 is an irreducible conformal net extension of a tensor product

of n copies of theVirasoro conformal netwith central charge 1
2 . Consequently, for framed

VOAs and framed conformal nets, Corollary 4.11 implies the following:

Corollary 4.14. Let n ∈ Z>0. Then, there is a one-to-one correspondence between
framed VOAs V with central charge c = n

2 and framed conformal netsA with the same
central charge c. Furthermore, V is completely unitary, A is completely rational, and
Repu(V ) is equivalent to Repf(A) as a unitary modular tensor category.

Note that the discrete series W -algebras, as well as the parafermion VOAs, can be
obtained through a regular coset construction of affine and lattice VOAs, see Table 1.
Therefore, for these models, the results stated in Corollary 4.11 are just an application
of the following more general statement:

Corollary 4.15. Let V andU be tensor products of the following VOAs: unitary Virasoro
VOAs with c < 1; unitary affine VOAs associated to simple Lie algebras; discrete series
W-algebras of type ADE; unitary parafermion VOAs; lattice VOAs. Suppose that V is
a unitary subalgebra of U and that the coset VOA V c of V in U is regular. Let Ũ be
any simple CFT type VOA extension of V c. Then, Ũ is a simple unitary CFT type VOA
extension of V c, which is also completely unitary. Moreover, the coset net Ac

V (which
is equal to AV c by [CKLW18, Proposition 7.8]) is completely rational and the strong
integrability *-functor F : Repu(V c) → Repf(Ac

V ) is an equivalence of unitary mod-
ular tensor categories. F realises a one-to-one correspondence between (isomorphism
classes of) simple CFT type VOA extensions Ũ of V c and irreducible conformal net ex-
tensions AŨ

V c of Ac
V on the Hilbert space completion HŨ of Ũ . Furthermore, Repu(Ũ )

is equivalent to Repf(AŨ
V c ) as a unitary modular tensor category.

Proof. The coset VOA V c is of CFT type and completely unitary by [Gui20, Theorem
I], see also the last row of Table 1. Then, Ũ is indeed a simple unitary CFT type VOA
extension of V c, which is also completely unitary, thanks to Theorem 4.7. Note that V ,
U and V c are also strongly local, see Table 1. Furthermore, AV c = Ac

V is completely
rational and F : Repu(V c) → Repf(Ac

V ) is an equivalence of unitary modular tensor
categories by [Gui20, Theorem I]. Then, the last part follows from Theorem 4.10. ��

4.2. Applications to VOSAs and graded-local conformal nets. Now, we draw some
consequences of Theorem 4.7 and Theorem 4.10 in the VOSA context.

The definition of vertex subalgebra in the VOSA setting does essentially not differ
from the one in the VOA one, see e.g. [Kac01, Sect. 4.3]. For the definition of unitary
(vertex) subalgebra, see e.g. [CGH] and [Gau21, Sect. 2.6]. In this paper, we will only
consider VOSAs with correct statistics, cf. [CKL19]. Hence, we always assume that the
1
2Z-grading of a VOSA V = V0 ⊕ V1 satisfies

V0 =
⊕

n∈Z
Vn and V1 =

⊕

n∈Z+ 1
2

Vn .

Hence, V0 is a VOA while V1 is a V0-module with twist ei2πL0 �V1= −1V1 .

Definition 4.16. A simple VOSA U of CFT type is called a simple CFT type VOSA
extension of a simpleVOSA V of CFT type if the latter, namely V , is a vertex subalgebra
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of U with the same conformal vector. Moreover, U is said in addition to be a simple
unitary CFT type VOSA extension of V if both VOSAs are unitary and if the unitary
structure of U restricts to the one of V , i.e., V is a unitary subalgebra of U .

Remark 4.17. It is well-known that if V is a simple VOSA, then its even part V0 is a
simple VOA. Indeed, if I is an ideal of V0, then the linear span V · I of {a(n)b | a ∈
V, b ∈ I , n ∈ Z} is an ideal of V , see e.g. [LL04, Proposition 4.5.6] and [Li94, Lemma
6.1.1], cf. [Gau21, Lemma 2.7.1]. For a similar reason, the odd part V1 is an irreducible
V0-module. Note also that, if V is a VOSA of CFT type, then V0 is of CFT type too.

From Theorem 4.7, in the VOSA context, we get:

Corollary 4.18. Let V be a regular completely unitary VOA of CFT type and U be a
simple CFT type VOSA extension of V . Then, U is a simple unitary CFT type VOSA
extension of V .

Proof. The even part U0 of U is a simple CFT type VOA extension of V , whereas the
odd partU1 is an irreducibleU0-module, see Remark 4.17. Then,U0 is a simple unitary
CFT type VOA extension of V which is also completely unitary by Theorem 4.7. Thus,
U1 is a unitaryU0-module. In conclusion, the unitarity ofU , as a simple CFT typeVOSA
extension of V , follows by a (kind of) “super” version of [DL14, Theorem 3.3] as given
in [CGH], see [Gau21, Corollary 2.7.3]. ��

We now recall the notion of graded-local conformal net extension, cf. [CKL08,
CHKLX15,CHL15]. For the related notion of covariant subnet of a graded-local confor-
mal net we refer the reader to [CKL08,CHKLX15,CHL15], see also [CGH] and [Gau21,
Sect. 1.3].

Definition 4.19. An irreducible graded-local conformal net extension of an irre-
ducible graded-local conformal net A is an irreducible graded-local conformal net B,
containing A as covariant subnet and such that the Virasoro subnet of B coincides with
the Virasoro subnet of A.

Remark 4.20. Let A0 and B0 be the even (or Bose) subnets of A and B respectively.
Assume that A is a covariant subnet of B. Then A0 is a covariant subnet of B0 and
B is an irreducible graded-local conformal net extension of A if and only if B0 is an
irreducible conformal net extension of A0.

From Theorem 4.10, in the VOSA context, we get the following Theorem 4.21. In
order to prove it, recall the definition of a Z2-simple current in a (C∗-)tensor category C
(also called self-dual simple current), i.e., an invertible object J in C not isomorphic to
idC and such that J ∼= J , cf. Remark 2.20.

Theorem 4.21. Let V be a regular completely unitary VOA of CFT type. Suppose that
V is strongly local and that the associated irreducible conformal net AV is completely
rational. If Repu(V ) is equivalent to Repf(AV ) as a unitary modular tensor category,
then there is a one-to-one correspondence between the following:

(i) isomorphism classes of simple CFT type VOSA extensions of V ;
(ii) isomorphism classes of irreducible graded-local conformal net extensions of AV .

Proof. Let U be a simple CFT type VOSA extension of V . The even part U0 of U
is simple as CFT type VOA extension of V , whereas U1 is an irreducible U0-module,
see Remark 4.17. By Theorem 4.7, U0 is a simple unitary CFT type VOA extension
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of V , which is also completely unitary so that U1 is a unitary U0−module. Moreover,

there exists an irreducible conformal netAU0
V , extendingAV and such that Repu(U0) is

equivalent to Repf(AU0
V ) as a unitary modular tensor category. Now, the odd part U1 of

U is a Z2-simple current J in Repu(U0), see e.g. [CKLR19, Theorem 3.1 and Remark
A.2] with twist ω(J ) = −1J because we are assuming the correct statistics for U .

By the equivalence of Repu(U0) and Rep
f(AU0

V ), J determines aZ2-simple current J̃

in Repf(AU0
V )with twist ω( J̃ ) = −1 J̃ , and hence an irreducible graded-local conformal

net extension ofAU0
V , see e.g. [CKL08,CHKLX15]. This shows that any simpleCFT type

VOSA extension of V gives rise to an irreducible graded-local conformal net extension
of AV .

Conversely, by Theorem4.10, the even part of any irreducible graded-local conformal

net extension of AV is of the form AU0
V for some simple CFT type VOA extension

U0 of V . Accordingly, any irreducible graded-local conformal net extension of AV

comes from a Z2-simple current J̃ in Repf(AU0
V ), with twist ω( J̃ ) = −1 J̃ , see again

[CKL08,CHKLX15]. By the equivalence of Repu(U0) and Rep
f(AU0

V ), J̃ determines a
Z2-simple current J in Repu(U0) with twist ω( J̃ ) = −1 J̃ . Thus, the braiding satisfies
bJ,J = −1J⊗J by Remark 2.20, since Repu(U0) is a unitary modular tensor category.
Then, U := U0 ⊕ J admits a unique structure of simple VOSA compatible with its
U0-module structure, see [CKL19, Theorem 3.9] and [DM04b, Proposition 5.3] and U
is CFT type because J is unitary and hence non-negatively graded. ��

Following Theorem 4.21, for a simple CFT type VOSA extension U of the VOA V ,
we denote by AU

V the corresponding irreducible graded-local conformal net extension
of AV . We present our main result in the VOSA context:

Theorem 4.22. Let V be a simple VOSA of CFT type and A be an irreducible graded-
local conformal net. Assume that V0 is completely unitary and strongly local, and that
A0 is completely rational. Assume also thatAV0 is isomorphic toA0 and that Rep

u(V0)

and Repf(A0) are equivalent as unitary modular tensor categories. Suppose that the
equivalence class of the Z2-simple current defining V in Repu(V0) is mapped into the
equivalence class of the one definingA in Repf(A0) by the modular tensor equivalence
between Repu(V0) and Repf(A0) (see the proof of Theorem 4.21). Then, every simple
CFT type VOSA extension U of V0 extends also V if and only if the corresponding
irreducible graded-local conformal net extensionAU

V0
ofAV0

∼= A0 extendsA. In other
words, there is a one-to-one correspondence between (isomorphism classes of) simple
CFT type VOSA extensions of V and irreducible graded-local conformal net extensions
of A.

The proof of Theorem 4.22 makes use of the following two propositions.
For the first one, consider a simple VOSA V of CFT type and a simple CFT type

VOSA extension U of V0. Note that V0 and U0 are simple and of CFT type, whereas
V1 and U1 are an irreducible V0-module and U0-module respectively, see Remark 4.17.
Suppose further that: V0 is regular and self-dual (then, it is strongly rational); non-zero
vectors of the irreducible V0-modules have non-negative real conformal weights; V0
is the only irreducible V0-module with a non-zero vector of conformal weight zero.
(Note that these two last conditions are satisfies if V0 is strongly unitary by [Gui19I,
Proposition 1.7] and Proposition 4.5.) From [HKL15, Theorem3.6], cf. [KO02, Theorem
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5.2], Rep(U0) is equivalent to Mod0C(B0) (Definition 2.28) as a modular tensor category,
where C := Rep(V0) and B0 is the haploid commutative algebra in C with trivial twist,
realizing the extension V0 ⊂ U0. By [KO02, Lemma 1.20], B0 is also rigid. Denote by
A1 the Z2-simple current in C which uniquely determines V , as explained in the proof
of Theorem 4.21. It corresponds to the V0-module V1. Similarly, B1 is the Z2-simple
current in Rep(U0)

∼= Mod0C(B0) giving U . With an abuse of notation, we identify B0
with its corresponding object and we write m : B0 ⊗ B0 → B0 for its multiplication
as algebra in C. Accordingly, define the object (B0 ⊗ A1,mB0⊗A1

) in ModC(B0) by
mB0⊗A1

:= (m ⊗ 1A1
)aB0,B0,A1

. Then:

Proposition 4.23. Let V be a simple VOSA of CFT type with V1 �= {0}. Assume that: V0
is strongly rational; non-zero vectors of the irreducible V0-modules have non-negative
real conformal weights; V0 is the only irreducible V0-module with a non-zero vector of
conformal weight zero. Then, U is a simple CFT type VOSA extension of V if and only
if B0 ⊗ A1 is a (local) left B0-module equivalent to B1.

Proof. Suppose that U is a simple CFT type extension of V . By [KO02, Theorem
1.6 point 2.], cf. [CKM21, Lemma 2.61], we have that HomModC(B0)(B0 ⊗ A1, B1) is
naturally isomorphic to HomC(A1, B1). On the one hand, as A1 is invertible, B0 ⊗ A1
is an irreducible B0-module. On the other hand, as U extends V , A1 is a V0-submodule
of B1 and thus HomC(A1, B1) is non-zero. Therefore, HomModC(B0)(B0 ⊗ A1, B1) is
non-zero too. Thus, B0 ⊗ A1 and B1 must be equivalent left B0-modules. In particular,
B0 ⊗ A1 is local as B1 is.

Vice versa, suppose that B0 ⊗ A1 and B1 are equivalent (local) left B0-modules.
Then, they are equivalent as V0-module too. As A1 is a V0-submodule of B0 ⊗ A1, it is
a V0-submodule of B1 and thus of U . 1 Now, consider the V0-submodule of U given by
the direct sum V0 ⊕ A1. Our goal is to prove that V0 ⊕ A1 is a simple vertex subalgebra
of U .

To this end, let a, b ∈ V0 and c, d ∈ A1 and consider their modes a(n), b(m), c(h), d(k)
for arbitrary n,m, h, k ∈ Z, given by the state-field correspondence of U . a(n)b ∈ V0
as V0 is a vertex subalgebra of U . a(n)c ∈ A1 as A1 is a V0-submodule of U . By the
skew-symmetry [Kac01, Sect. 4.2] for U , it is easy to check that c(k)a ∈ A1. Then, it
remains to prove that c(k)d ∈ V0. For any pair of subsets C and D of U we denote by
C · D the vector subspace of U linearly spanned by vectors c(k)d for arbitrary c ∈ C ,
d ∈ A1 and k ∈ Z. Using the Borcherds commutator formula [Kac01, Sect. 4.8] for U ,
we can prove that A1 · A1 is a V0-module. Recall that A1 is a proper V0-submodule of
B1 and B1 ⊗ B1 = B0 as B0-modules and thus as V0-modules too. Then, A1 · A1 is
a proper V0-submodule of B0. Now, let L be any irreducible V0-submodule of A1 · A1
different from V0. Since U is of CFT type, L must be inequivalent to V0. If YU is
the state-field correspondence for U , then YU (·, z)|A1

is an intertwining operator for

V0-modules of type
(A1·A1
A1 A1

)
(obviously restricting the charge space to A1). Consider a

projection EL fromU onto L commuting with the V0 action onU . Then, ELYU (·, z)|A1

is an intertwining operator for V0-modules of type
( L
A1 A1

)
(still restricting the charge

space to A1). Then, ELY (·, z)|A1
must be zero as A1 is a Z2-simple current in C. It

follows that L = EL A1 · A1 = {0} and thus A1 · A1 ⊂ V0. This implies that V0 ⊕ A1 is
a vertex subalgebra of U . It remains to prove that this subalgebra is simple.

1 With an abuse of notation, we denote V0 and U , seen as V0-modules, still with their respective VOSA
symbols, leaving their interpretation as VOSAs or as V0-modules to the context.
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To this end we first prove that A1 · A1 �= {0} so that A1 · A1 = V0 because A1 · A1 is
an ideal of the simple VOA V0. Assume by contradiction that A1 · A1 = {0}. It follows
that Y (a, z)Y (b, w)c = 0 for all a ∈ U and all b, c ∈ A1. Hence, for any a ∈ U and
any b, c ∈ A1, there is a positive integer N such that (z − w)NY (b, z)Y (a, w)c = 0.
Now, if d is in the restricted dual U ′ of U then 〈d,Y (b, z)Y (a, w)c〉 converges to a
rational function R(z, w) in the domain |z| > |w|, see e.g. [FHL93, Proposition 3.2.1]
and [Kac01, Remark 4.9a]. Since (z − w)N R(z, w) = 0 for |z| > |w| we must have
R(z, w) = 0 and thus 〈d,Y (b, z)Y (a, w)c〉 = 0. Since d ∈ U ′ was arbitrary we can
conclude that Y (b, z)Y (a, w)c = 0. Now, U0 · A1 is a non-zero U0-submodule of U
by [LL04, Proposition 4.5.6] and thus it must coincide with U1 because U is a simple
VOSA. It follows that A1 ·U1 = {0} and henceU1 · A1 = {0} by skew-symmetry. Hence,
by the Borcherds commutator formula we find that U1 · U1 = U1 · (

U0 · A1

) = {0} so
that U ·U1 = U1 in contradiction with the simplicity of U . Therefore, A1 · A1 = V0.

Now, let I be a non-zero VOSA ideal of V0 ⊕ A1. Then, I is a non-zero V0-
submodule of V0 ⊕ A1 and hence V0 ⊂ I or A1 ⊂ I . If V0 ⊂ I , then also A1 ⊂ I
so that I = V0 ⊕ A1. If A1 ⊂ I , then V0 = A1 · A1 ⊂ I and again I = V0 ⊕ A1.
Hence, V0 ⊕ A1 is a simple VOSA.

To sum up, we have proved that V0 ⊕ A1 is a Z2-simple current extension of V0,
giving a simple vertex subalgebra of U . It is well known that the VOSA structure of a
simple current extension is unique, up to isomorphism, cf. [DM04b, Proposition 5.3].
Therefore, V0 ⊕ A1 must be isomorphic to V , concluding the proof. ��

For the second proposition, we proceed similarly to the first one. Let A be an irre-
ducible graded-local conformal net and B be an irreducible graded-local conformal net
extension of A0. Suppose that A0 is completely rational and that it is a proper subnet
of A. By [BKL15, Proposition 6.4], cf. also [Müg10a, Theorem 3.1], [Bis16, Proposi-
tion 5.1] and [Gui21b, Main Theorem C], Repf(B0) is equivalent to Modu,0C (B0) as a
unitary modular tensor category, where C := Repf(A0) and B0 is the normalized hap-
loid commutative Q-system in C (with trivial twist by [GL96] or by Proposition 2.22),
realizing the extension A0 ⊂ B0. Call A1 the Z2-simple current in C which uniquely
determinesA, as explained in the proof of Theorem 4.21. Similarly, B1 is the Z2-simple
current in Repf(B0)

∼= Modu,0C (B0) giving U . Also in this case, identify, with an abuse
of notation, B0 with its corresponding object and say m : B0 ⊗ B0 → B0 for its multi-
plication as algebra in C. Similarly, define the object (B0 ⊗ A1,mB0⊗A1

) in ModuC(B0)

by mB0⊗A1
:= (m ⊗ 1A1

)aB0,B0,A1
. Therefore:

Proposition 4.24. LetA be an irreducible graded-local conformal net and assume that
A0 is completely rational. Then,B is an irreducible graded-local conformal net extension
of A if and only if B0 ⊗ A1 is a (necessarily local) left B0-module equivalent to B1.

Proof. It is not difficult to see that B extends A if and only if B1 is isomorphic to the
α-inductionαA1

of A1, for the definition and properties ofα-induction see [BE98,LR95].
Now, αA1

is an automorphism (possibly solitonic) of the net B0 by [BE98, Theorem
3.21], and thus it is an irreducible endomorphism. Similarly, B0 ⊗ A1 is invertible and
hence irreducible in ModuC(B0) by [CKM21, Theorem 2.59].

If B0 ⊗ A1 is a left B0-module equivalent to B1, then we can identify B0 ⊗ A1 with a
DHR automorphism of the net B0 by [BKL15, Proposition 6.4]. Then, it follows by the
ασ -reciprocity in [BE98, Theorem 3.21] that αA1

and B0 ⊗ A1 are locally equivalent
endomorphisms of B0. Thus, they are globally equivalent by strong additivity. It follows
that αA1

is a DHR automorphism of B0 equivalent to B1 and hence B is an irreducible
graded-local conformal net extension of A.
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Conversely, if B is an irreducible graded-local conformal net extension of A then
αA1

is a DHR automorphism of B0 equivalent to B1. Now, αA1
restricts to a DHR

representation of A0 equivalent to B0 ⊗ A1, cf. [LR95, Proposition 3.9]. It follows that
the twist ω(B0 ⊗ A1) is equal to −1B0 ⊗ 1A1

= ω(B0)⊗ω(A1). As a consequence, the
monodromy MB0,A1

:= bA1,B0bB0,A1
is equal to 1B0⊗A1

. Thus, B0 ⊗ A1 is local and
using again the ασ -reciprocity in [BE98, Theorem 3.21], we find that B0 ⊗ A1 is a left
B0-module equivalent to B1. ��
Proof of Theorem 4.22. By Theorem 4.21 and its proof, there is a one-to-one correspon-
dence between simple CFT type VOSA extensions of V0 and irreducible graded-local
conformal net extensions ofAV0

∼= A0. Moreover, ifU is such an extension of V0, then

U0 is completely unitary by Theorem 4.10 and Repu(U0)
∼= Modu,0C (B0)

∼= Repf(AU0

0
)

are equivalences of unitary modular tensor categories, where B0 is the normalized hap-
loid commutative Q-system (with trivial twist by [GL96] or by Proposition 2.22) in

C := Repu(V0)
∼= Repf(A0), giving the extensions V0 ⊂ U0 and A0 ⊂ AU0

0
. Note that,

without loss of consistency, we can consider every Z2-simple current in Rep(U0) as an
object in Repu(U0), see Remark 4.3. Then, the statement of the theorem follows from
Propositions 4.23 and 4.24. ��

5. Unitarity and Strong Locality of the Schellekens List

We start with two central definitions, see Sect. 4 for the general setting.

Definition 5.1. Astrongly rational holomorphicVOA is a strongly rationalVOA,which
has itself as unique irreducible module.

Similarly, we have:

Definition 5.2. A holomorphic conformal net is a completely rational conformal net,
which has itself as unique irreducible representation, or equivalently [KL06, Definition
2.6], which has μ-index equal to 1.

Over the recent years, it was proved that any strongly rational holomorphic VOA
with central charge c = 24 is completely determined by the Lie algebra structure on its
weight-one subspace if the latter is non-trivial. More precisely, every strongly rational
holomorphic VOAU with central charge c = 24 andwithU1 �= {0} is a simple CFT type
VOA extension of its affine vertex subalgebra VU1 . Moreover, the Lie algebraU1 must be
in the list of complex Lie algebras in Schellekens’ work [Sch93] on holomorphic c = 24
CFTs, see [DM04a,EMS20,ELMS21]. This list [Sch93, Table 1] counts 71 entries in
total. To entry 0 is associated theMoonshine VOA, see e.g. [FLM88], which has indeed
trivial weight-one subspace. Although the uniqueness of the Moonshine VOA is still a
very important open problem, the existence and uniqueness of the other 70 VOAs was
proved in a series of papers, based on a case-by-case analysis, see e.g. [LS19] (and
[LS20]) for a review, and through uniform approaches slightly later, see [Höh17] and
[Lam19,MS23,MS21,HM20,CLM22,BLS22], cf. also [LM22].

Regarding the unitarity of these 71 VOAs, it is already known for the 24 of them
arising from the corresponding Niemeier lattices, see e.g. [CS99] for these lattices, see
[Möl16, Figure 6.1] for the corresponding entries in the list, see the third row of Table 1
for lattice VOAs. The Leech lattice � and the corresponding Leech lattice VOA V�

are among them. Furthermore, the unitarity of the Moonshine VOA was established in
[DL14, Theorem 4.15] and in [CKLW18, Example 5.10].
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In the first result here below (Theorem 5.3), we apply what has been developed in
Sect. 4 to give a uniform proof of the unitarity of the 69 VOAs from the Schellekens
list, excluding the Leech lattice VOA and the Moonshine VOA, but including all the
previously missing cases. For each of these 69 entries, we show the existence of a
holomorphic conformal net with central charge c = 24, as an extension of the affine
conformal net associated with the corresponding strongly local unitary affine VOA, see
the second row of Table 1. We point out that some of these conformal nets are new, see
Remark 5.7 and Remark 5.8 for details. We also prove a uniqueness result for all of
them. A similar uniqueness result holds for the Leech lattice conformal net, which will
be treated separately for expository reasons (Theorem 5.4), just after the following:

Theorem 5.3. Every strongly rational holomorphic VOA U with central charge c = 24
and weight-one subspace U1 being a semisimple Lie algebra is unitary. Let VU1 be the
affine vertex subalgebra of U generated by U1 and let AVU1

be the irreducible confor-
mal net associated to VU1 . Then, there exists a holomorphic irreducible conformal net
extensionAU

VU1
ofAVU1

such that the conformal Hamiltonian L0 ofAU
VU1

on the vacuum

Hilbert space HU satisfies dim(Ker(L0 − 1HU )) = dim(U1). If B is a holomorphic
irreducible conformal net extension of AVU1

acting on a Hilbert space HB such that

dim(Ker(L0 − 1HB )) = dim(U1), then B is isomorphic to AU
VU1

.

Proof. Recall from the discussion just preceding the statement of this theorem, that
the strongly rational holomorphic VOAs U with central charge c = 24 and with U1
being a semisimple Lie algebra are completely classified and there exist exactly 69 such
VOAs with corresponding weight-one subspaces as listed by Schellekens in [Sch93,
Table 1]. Note also that the affine vertex subalgebra VU1 generated by U1 is the tensor
product of simple unitary affine VOAs, see e.g. [Kac01, Remark 5.7c]. Consequently,U
is (completely) unitary with VU1 as unitary subalgebra by Corollary 4.11. Moreover, for
every suchVOAU there exists an irreducible conformal netAU

VU1
extendingAVU1

, acting

on theHilbert space completionHU ofU and such that dim(Ker(L0−1HU )) = dim(U1).
We also have thatAVU1

is completely rational and Repu(U ) is equivalent to Repf(AU
VU1

)

as a unitary modular tensor category, so that AU
VU1

is holomorphic.

Concerning the uniqueness statement, letB be a holomorphic conformal net extension
ofAVU1

, acting on a Hilbert spaceHB and satisfying dim(Ker(L0 −1HB )) = dim(U1).
Let UB be the finite energy subspace ofHB, namely the linear span of the eigenvectors
of the conformal Hamiltonian L0 of the net B. Note that UB is dense on HB Then,
through the *-functor F of strong integrability, UB is a VU1 -module, which integrates
to a representation of AVU1

on HB. Then, the normalized haploid (hence standard)

commutative Q-system associated to B in Repf(AVU1
) gives rise to a structure of sim-

ple unitary VOA on UB by Corollary 4.11. Moreover, UB is also holomorphic by the
fact that Repu(UB) ∼= Repf(AUB

VU1
) ∼= Repf(B) by Corollary 4.11. The Lie algebra

(UB)1 = Ker(L0 − 1HB ) contains a subalgebra isomorphic toU1. Since by assumption
dim ((UB)1) = dim (U1), then (UB)1 and U1 are isomorphic semisimple Lie algebras.
Therefore, UB must be isomorphic to U by the classification result. It follows that B is
isomorphic to AU

VU1
. ��

We now discuss the Leech lattice case. Indeed, for entry 1 of [Sch93, Table 1], i.e., the
24-dimensional abelian Lie algebra, there exists a unique up to isomorphism strongly
rational holomorphic VOA with c = 24, whose weight-one subspace is abelian and
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24-dimensional. This is the Leech lattice VOA V�, arising from the Leech lattice �.
Clearly, (V�)1 generates a vertex subalgebra isomorphic to the tensor product of 24
copies of the Heisenberg VOA M(1), see e.g. [Kac01, Sect. 3.5]. Recall that M(1) is
unitary, see [DL14, Sect. 4.3], and strongly local, see [CKLW18, Example 8.6], and so
is the 24-times tensor product with itself M(1)⊗24, see the penultimate row of Table 1.
The irreducible conformal net associated to M(1) is the well-known free Bose chiral
field net AU(1), see e.g. [BMT88, Sect. 1B]. Recall also that lattice VOAs are strongly
local, see the third row of Table 1, and thus V� is too. Therefore, there already exists a
Leech lattice holomorphic conformal net AV� , coinciding with the one constructed in
[DX06, Sect. 3], see [Gui20, Theorem 2.7.11], for which the following holds:

Theorem 5.4. Let V� be the Leech lattice VOA and AV� be the associated irreducible
conformal net. If B is a holomorphic conformal net extension of A⊗24

U(1), such that the
conformal Hamiltonian L0 ofB on the vacuumHilbert spaceHB satisfies dim(Ker(L0−
1HB )) = 24, then B is isomorphic to AV� . Furthermore, Aut(AV�) = Aut(·|·)(V�).

Proof. Note that every conformal net extension of A⊗24
U(1) is an even 24-dimensional

lattice conformal net by [Sta95], cf. the beginningof [KL06, Sect. 2] and [Bis12, Sect. 3.4,
p. 838]. Then, we can suppose that B is isomorphic to the conformal net AL for some
even 24-dimensional lattice L . Thanks to [DX06, Proposition 3.15], B is holomorphic if
and only if L is unimodular. Moreover, the fact that dim(Ker(L0 − 1HB )) = 24 implies
that L has no roots. Yet, it is known, see e.g. [CS99], that the Leech lattice is the unique
even unimodular 24-dimensional lattice with no roots and thus B must be isomorphic to
AV� . Finally, Aut(AV�) = Aut(·|·)(V�) by [CKLW18, Theorem 6.9]. ��

Theorem 5.4 poses the natural question (often hard to settle) on whether the 69
VOAs appearing in Theorem 5.3 are strongly local too. Recall that the Moonshine VOA
is known to be strongly local by [CKLW18, Theorem 8.15]. It turns out that all of them
are indeed strongly local, as we show in the following:

Theorem 5.5. Every strongly rational holomorphic VOA U with central charge c = 24
andU1 �= {0} is strongly local. IfU1 is a semisimple Lie algebra, thenAU

VU1
is isomorphic

to AU and Aut(AU ) = Aut(·|·)(U ).

Proof. Recall that ifU is theLeech latticeVOAV�, then it is strongly local.Accordingly,
we can assume thatU1 is a semisimple Lie algebra. We split the proof into several steps.
We are going to use the theory developed in [CKLW18] throughout, and thus we refer
to it for notation and details.

First step: we are going to find a set of generators for U and to fix a suitable unitary
structure on it. By [MS23, Sect. 6.3], see in particular [MS23, Theorem 6.6] and its proof,
there exists a generalized deep hole g ∈ Aut(V�), see [MS23, Sect. 6.2], such that U
is isomorphic to the orbifold construction V orb(g)

� , see [MS23, Sect. 3.3] and references
therein. In particular, g is of finite order and there exists an automorphism h ∈ Aut(U )

of the same order as g, such that V� is isomorphic to the inverse (or reverse) orbifold
construction U orb(h). Let G and H be the cyclic groups of order n generated by g and
h respectively. Consider the VOA inclusions UH ⊂ Ũ ⊆ U , where Ũ is generated by
the fixed point subalgebra UH and by VU1 . By [DM97, Theorem 1], cf. also [HMT99,

Theorem 1], Ũ = U 〈hk 〉 for some k ∈ Z≥0, which either is 0 or divides n. Here, 〈hk〉
denotes the subroup of H generated by hk . On the one hand, (U 〈hk 〉)1 = U1 asU1 ⊂ Ũ .
On the other hand, the order of the restriction of h as automorphism of U1 equals n,
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cf. the last paragraph of [MS21, Sect. 3.2]. Then, it must be k = n and thus Ũ = U .
By Theorem 5.3, U is unitary. By Proposition A.5, there exists a unitary structure on
U making UH be a unitary subalgebra of U and h be a unitary automorphism. From
now on, we keep fixed such unitary structure. Note also that any PCT operator θ on U
preserves the conformal vector and thus the L0 grading too. Therefore, VU1 is a unitary
subalgebra of U for any unitary structure we choose on U by [CKLW18, Proposition
5.23].

Second step:we are going to prove thatU is energy-bounded and thatUH is strongly
local. For the energy boundedness of U , note that U is a simple unitary CFT type VOA
extension of the affine VOA VU1 and thatU1 is a semisimple Lie algebra. Then, the result
follows directly from [CT23, Theorem 4.8] (in the ADE cases one could also use [Gui20,
Theorem 4.7]). Now, note that the fixed points subalgebras VG

� andUH are isomorphic.
Therefore, by Proposition A.5 applied to V� withG and by [CKLW18, Proposition 7.6],
VG

� is strongly local and thus UH is strongly local too as a consequence of [CKLW18,
Theorem 6.8]. As a consequence, we have two different nets of von Neumann algebras
associated to UH . On the one hand, we can consider the net BUH on HU generated by
the energy-bounded smeared vertex operators of UH as unitary subalgebra of U as in
[CKLW18, Eq. (114)]. On the other hand, we can construct the irreducible conformal
net AUH onHUH by strong locality.

As a preparation for the coming step, considerHUH as a subspace ofHU and denote
by E the corresponding orthogonal projection. Let J be the set of proper intervals of
the circle S1. Clearly, E ∈ BUH (I )′ for all I ∈ J .

Third step: we are going to prove that EBUH (I )E = AUH (I ) for all I ∈ J ,
which implies that {EBUH (I )E | I ∈ J } determines an irreducible conformal net
on HUH by the locality of AUH . Consider a smeared vertex operator Y (a, f ) affili-
ated to BUH (I ), where a ∈ UH and supp f ⊂ I for some fixed I ∈ J . It is easy
to see that EY (a, f )E = Ŷ (a, f ), where the ·̂ is used for smeared vertex opera-
tors affiliated to AUH (I ). Consider the polar decomposition of Y (a, f ) as operator
on BUH (I ), i.e., Y (a, f ) = V (a, f )T (a, f ) with T (a, f ) := |Y (a, f )|. Similarly,
Ŷ (a, f ) = V̂ (a, f )T̂ (a, f ). As E commutes with Y (a, f ), it commutes also with
V (a, f ) and T (a, f ). Then, we have that Ŷ (a, f ) = (EV (a, f )E)(ET (a, f )E) and
thus V̂ (a, f ) = EV (a, f )E and T̂ (a, f ) = ET (a, f )E . In conclusion,

BUH (I ) = {V (a, f ), V (a, f )∗, eiT (a, f ) | a ∈ UH , supp f ⊂ I }′′

and thus:

AUH (I ) = {EV (a, f )E, EV (a, f )∗E, EeiT (a, f )E | a ∈ UH , supp f ⊂ I }′′
= EBUH (I )E .

By the arbitrariness of I ∈ J , we have that EBUH (I )E = AUH (I ) for all I ∈ J .
Fourth step: we are going to prove that BUH (I ) ⊂ BUH (I ′)′ for all I ∈ J , i.e.,

the locality for BUH . Let I ∈ J . By Möbius covariance, it is enough to prove that
if I1, I2 ∈ J are such that I1 ⊂ I and I2 ⊂ I ′, then BUH (I1) ⊂ BUH (I2)′. Fix
such I1, I2 ∈ J and let A1 ∈ BUH (I1) and A2 ∈ BUH (I2). Let us denote by M the
subspace of U defined by M := U ∩ Ker([A1, A2]). From the third step, we have that
E Ai E ∈ AUH (Ii ) for all i ∈ {1, 2} and thus [A1, A2]b = 0 for all b ∈ UH . Thus,
UH ⊂ M .

Now, let J1 and J2 be two disjoint intervals and let f, g ∈ C∞(S1) be such that
supp f ⊂ J1 and suppg ⊂ J2. If a ∈ U1 isHermitian, i.e., θ(a) = −a, then the smeared
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vertex operator Y (a, f ) is self-adjoint, whenever f is real, because it satisfies the linear
energy bounds, see the proof of [CKLW18, Proposition 6.3] with [CKLW18, Eq. (113)]
and [Nel72, Proposition 2]. Moreover, Y (a, f ) strongly commutes with every Y (b, g)
whenever b ∈ U by [CTW22, Lemma3.6]. Let J ∈ J be disjoint from I1 and I2 and pick
f ∈ C∞(S1) such that its support is contained in J . Therefore, Y (a, f ) commutes with
elements ofBUH (I1) and of BUH (I2), so that [A1, A2]Y (a, f )b = Y (a, f )[A1, A2]b =
0 for all b ∈ M . Hence, [A1, A2]Y (a, f )b = 0 for all b ∈ M and all a ∈ U1 because
any a ∈ U1 is a linear combination of two Hermitian vectors in U1.

Now, let c ∈ U and let Kc be the closed subspace generated by vectors of type
Y (a, f )c with a ∈ U1 and f ∈ C∞(S1) such that supp f is in J . By a Reeh-Schlieder
argument as in the proof of [CKLW18, Theorem 8.1], cf. also Step 2 in the proof of
[Gau21, Theorem 5.2.1], we can prove that Kc contains vectors of type Y (a, f )c with
a ∈ U1 and f ∈ C∞(S1) (without any restriction on the support of f ). This implies that
a(n)c ∈ Kc for all a ∈ U1 and all n ∈ Z. Consequently, a(n)b ∈ M for all a ∈ U1, all
b ∈ M and all n ∈ Z. By the fact thatU1 generates the affine vertex subalgebra VU1 and
by the Borcherds formula, see [Kac01, Sect. 4.8], it follows that M is a VU1 -submodule
ofU containingUH , so that M contains VU1 ·UH , the linear span of vectors of the form
a(n)b with a ∈ VU1 , b ∈ UH and n ∈ Z. Using the skew-symmetry [Kac01, Sect. 4.2], it
is not difficult to check that b(n)a ∈ VU1 ·UH for all b ∈ UH , all n ∈ Z and all a ∈ VU1 .
This implies that UH · VU1 ⊂ M .

Now, we come back to the orbifold construction of U from V�. By [MS21, Sect. 4,
p. 11],U is constructed as a direct sum of irreducibleUH -modules, i.e.,U = V orb(g)

� =
⊕n−1

i=0 V (i,0)
� , whereUH = V (0,0)

� and every V (i,0)
� is a simple current forUH . Moreover,

h acts on every V (i,0)
� by a scalar χi ∈ C and χi �= χ j for i �= j .

The VOA automorphisms ofU leaveU1, and hence VU1 , globally invariant. It follows
that the action of H onU restricts to an action on VU1 . The latter action is faithful because
the order of h �U1 equals the order of h, see again the last paragraph of [MS21, Sect. 3.2].
By [DM97, Theorem 2], V (i,0)

� ∩ VU1 �= {0} for all i and thus V (i,0)
� ⊂ UH · VU1 fo all i

so thatU ⊂ UH · VU1 ⊂ M . It follows that [A1, A2] = 0, proving the locality for BUH .
Fifth step: we are ready to move to the conclusion of the proof. By the fourth step

together with [CKLW18, Theorem 8.1] and [CTW22, Lemma 3.6], Ũ is strongly local.
Therefore,U is strongly local as we have proved that Ũ = U in the first step. Finally, by
the uniqueness result of Theorem 5.3, AU

VU1
is isomorphic to AU and thus Aut(AU ) =

Aut(·|·)(U ) by [CKLW18, Theorem 6.9]. ��
Remark 5.6. If V is a holomorphic VOA with c = 24 and V1 �= {0} then Aut(V ) is
described in [BLS22]. Hence, by Theorem 5.5 and Theorem A.4, the isomorphism
class of Aut(AV ) can be described by any maximal compact subgroup of Aut(V ).

We end this section with two remarks on the relation between the holomorphic con-
formal nets given by Theorem 5.3 and the various constructions of some of them present
in the literature. The main point is that the strong locality proved in Theorem 5.5 gives
a uniform way to construct these models.

Remark 5.7. In [LS15], see in particular [LS15, Remark 1.2] for the corresponding en-
tries in the Schellekens list, the holomorphic framed VOAs with central charge c = 24
were classified. There exist exactly 56 of such VOAs up to isomorphism. One of them
is the Moonshine VOA [FLM88], see also [DGH98] and [Miy04]. By tensor categor-
ical methods, corresponding holomorphic framed conformal nets with c = 24 were
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constructed in [KL06] and in [KS14]. Actually, they must correspond to the holomor-
phic framed conformal nets, arising from the strong locality of the holomorphic framed
VOAs with c = 24, given by Theorem 5.5 and [CKLW18, Theorem 8.15]. Indeed, by
Corollary 4.14 and [LS15], there are exactly 56 isomorphism classes of framed holo-
morphic conformal nets with c = 24. By Theorem 5.5 and [CKLW18, Theorem 8.15],
each framed holomorphic VOAwith c = 24 V is strongly local. By Theorem 5.3, Theo-
rem 5.5, [CKLW18, Theorem 8.15] and [KL06, Theorem 3.6], eachAV is a holomorphic
conformal net with c = 24 which is framed by [CKLW18, Theorem 7.5]. Moreover, it
follows from [CKLW18, Theorem 9.2] that if V andW are simple strongly local unitary
VOAs then V and W are isomorphic if and only if AV and AW are isomorphic. Hence,
if B is a framed holomorphic conformal net with c = 24 then B is isomorphic to AV
for some framed holomorphic VOA V with c = 24. Note that Corollary 4.14 also gives
back the construction of the Moonshine conformal net given in [KL06].

Remark 5.8. Other models were constructed by the technique of mirror extension in
[Xu09, Sect. 3.2] (cf. [LL20] for a parallel VOA application of mirror extension). There,
the author gives three holomorphic irreducible conformal net extensions of affine con-
formal nets, corresponding to entries 18, 27 and 40 of the Schellekens list, see [Xu09,
Theorem 3.3]. By the uniqueness part of Theorem 5.3, these models must be isomor-
phic to the ones obtained using strong locality by Theorem 5.5. In particular, note that
nos. 27 and 40 are framed models. Moreover, in [Xu18, Sect. 4], the author gives three
holomorphic conformal net extensions of the conformal nets associated to the affine
VOAs corresponding to entries 9, 11 and 20 of the Schellekens list. By the uniqueness
part of Theorem 5.3, these three models must be isomorphic to the ones obtained via
strong locality by Theorem 5.5. Actually, one could probably use the construction in
[Xu18, Sect. 4] together with the generalized deep hole construction of strongly ratio-
nal holomorphic VOAs with c = 24 and non-zero weight-one subspace to obtain all
the conformal nets obtained through Theorem 5.5, by a conformal net analogue of the
orbifold construction from the Leech lattice conformal net constructed in [DX06] and
in [KL06].

6. Classification of Superconformal VOSAs

In this section, we discuss the classification of N = 0, N = 1 and N = 2 superconfor-
mal VOSAs, by transferring the already known classification in the superconformal net
setting, using the tools developed in Sect. 4.

First, we give an alternative proof of an already known classification result for N = 0
superconformal VOAs, see [DL15, Sect. 4] and [Gui22, Corollary 2.22], namely the
classification of simple CFT type extensions of the unitary Virasoro VOAs with central
charge c < 1, see the first row of Table 1.

Theorem 6.1. Every simple CFT type VOA extension U of a unitary Virasoro VOA with
central charge c < 1 is unitary. Furthermore, these VOA extensions are in one-to-one
correspondence with the irreducible conformal nets of the same central charge c, which
are completely classified in [KL04, Sect.5].

Proof. The claim follows directly from Corollary 4.11. ��
In a similar way, we have two classification results [CKL08, Sect. 7] and [CHKLX15,

Sect. 6] for the N = 1 and N = 2 superconformal nets respectively. By definition, see
e.g. [Kac01, Sect. 5.9], the N = 1 and N = 2 superconformal VOSAs are extensions of
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the N = 1 and N = 2 super-Virasoro VOSAs respectively and we will consider the
case where the corresponding super-Virasoro subalgebra are unitary with c < 3/2 and
c < 3 respectively (the unitary discrete series). Then, the crucial point is that the even
part of these super-Virasoro VOSAs can be realized as regular cosets of certain VOAs
in Table 1. Thanks to this, we are allowed to apply Corollary 4.15 and get the desired
classifications via Theorem 4.22.

Theorem 6.2. Every simple CFT type VOSA extension U of a unitary super-Virasoro
VOA with central charge c < 3

2 is a unitary VOSA. Furthermore, these N = 1 supercon-
formal VOSAs are in one-to-one correspondence with the irreducible superconformal
nets of the same central charge c, which are completely classified in [CKL08, Sect.7].

Proof. Fix n ∈ Z>0 such that the central charge c equals cn < 3
2 as in [GKO98]. Let

V0 be the even part of the N = 1 super-Virasoro VOSA V := V cn (NS) with central
charge cn . Note that V0 is simple and of CFT type as V is, see Remark 4.17. It follows
from [GKO98, Sects. 3 and 4], cf. [CKL08, pp. 1103–1104], that V0 can be realized as
the coset VOA of the VOA inclusion V n+2(sl(2,C)) ⊂ V n(sl(2,C)) ⊗ V 2(sl(2,C)).
Moreover, V0 is regular, see [CFL20, Theorem 6.2 and Theorem 6.3]. It is also strongly
local, see the last row of Table 1, and completely unitary by [Gui20, Theorem I]. Hence,
U has a unitary VOSA structure by Corollary 4.18.

Now, consider the N = 1 super-Virasoro net A := SVircn with central charge cn ,
as constructed in [CKL08, Sect. 6.3]. It is not difficult to check thatA0 is isomorphic to
AV0 . By Corollary 4.15, A0 is completely rational and the strong integrability functor
F : Repu(V0) → Repf(A0) is an equivalence of unitary modular tensor categories.
Moreover,Fmaps the equivalence class of theZ2-simple current defining V in Repu(V0)
into the equivalence class of the one defining A in Repf(A0). Then, the result follows
from Theorem 4.22. ��

In a similar fashion, we have:

Theorem 6.3. Every simple CFT type VOSA extension U of a unitary N = 2 super-
Virasoro VOSA with central charge c < 3 is a unitary VOSA. Furthermore, these N = 2
superconformal VOSAs are in one-to-one correspondence with the irreducible supercon-
formal nets of the same central charge c, which are completely classified in [CHKLX15,
Sect.6].

Proof. Fix n ∈ Z>0 such that the central charge c equals cn < 3 as in [CHKLX15].
Let V0 be the even part of the N = 2 super-Virasoro VOSA V := V cn (N2) with
central charge cn . Note that V0 is simple and of CFT type as V is, see Remark 4.17.
By [CHKLX15, Sect. 5], cf. also [CL19, Corollary 8.8], V can be realized as the coset
VOSA of the VOSA inclusion VL2(n+2) ⊂ V n(sl(2,C)) ⊗ F ⊗ F , where F is the real
free fermion VOSA, see e.g. [Kac01, Sect. 3.6 and Proposition 4.10(b)]. Therefore, V0
is equal to the coset VOA of the VOA inclusion VL2(n+2) ⊂ V n(sl(2,C))⊗ VL4 , see also
[CHKLX15, p. 1312] and [CKM21, Sect. 4.4.2]. (Note that the even part of F ⊗ F is the
even rank-one lattice VOA VL4 .) Furthermore, V is regular by [Ada04, Theorem 7.2],
cf. the discussion after [CL19, Corollary 8.8]. It follows that V0 is regular too, see the
claim in [DNR21, Sect. 4, p. 7789] based on [Miy15] and [CM18]. It is also strongly
local, see the last row of Table 1, and completely unitary by [Gui20, Theorem I]. Hence,
U has a unitary VOSA structure by Corollary 4.18.

Now, consider the N = 2 super-Virasoro net A := SVir2cn with central charge cn ,
as constructed in [CHKLX15, Sect. 3]. It is not difficult to check that A0 is isomorphic
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toAV0 . By Corollary 4.15,A0 is completely rational and the strong integrability functor
F : Repu(V0) → Repf(A0) is an equivalence of unitary modular tensor categories.
Moreover,Fmaps the equivalence class of theZ2-simple current defining V in Repu(V0)
into the equivalence class of the one defining A in Repf(A0). Then, the result follows
from Theorem 4.22. ��
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Appendix A. On the Automorphism Groups of Unitary VOAs

Let V = ⊕
n∈Z Vn be a VOA and let Aut(V ) be its automorphism group. If g ∈ Aut(V ),

then for any n ∈ Z, gVn ⊂ Vn and the restriction g �Vn belongs to GL(Vn). The map
g 	→ (

g �Vn
)
n∈Z gives an isomorphism of Aut(V ) onto a closed subgroup of the direct

product
∏

n∈Z GL(Vn) and this makes Aut(V ) into a metrizable topological group, cf.
[CKLW18, Sect. 4.3].

It is well-known that if V is finitely generated, then Aut(V ) is a finite dimensional
Lie group. This can be seen as follows. If V is finitely generated, there is a N ∈ Z≥0 such
that V is generated by the finite dimensional vector space V≤N := ⊕

n∈Z, n≤N Vn and
the map g 	→ g �V≤N is a topological isomorphism of Aut(V ) onto a closed subgroup of
GL(V≤N ). It follows that if V is finitely generated thenAut(V ) is a finite dimensional Lie
group.Actually, if V is finitely generated, the image of the restrictionmap g 	→ g �V≤N is
Zariski closed inGL(V≤N ) and henceAut(V ) is isomorphic to a complex linear algebraic
group, cf. [DG02, Theorem 2.4]. As a consequence, if Aut(V )0 denotes the connected
component of the identity in Aut(V ), then the quotient group Aut(V )/Aut(V )0 is finite,
cf. [DG02, Sect. 1].Note that every strongly rationalVOA isfinitely generated by [GN03]
or by [DZ08].

http://creativecommons.org/licenses/by/4.0/
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As usual, if V is a VOA and H is a subgroup of Aut(V ), we will denote by V H the
fixed point subalgebra of V , namely V H = {a ∈ V | ∀g (g ∈ H ⇒ ga = a)}.

From now on, V will denote a simple unitary VOA with invariant normalized scalar
product (·|·) and PCT operator θ , see [CKLW18, Chapter 5]. The unitary automorphism
group Aut(·|·)(V ) ⊂ Aut(V ) is defined by

Aut(·|·)(V ) := {g ∈ Aut(V ) | ∀a(a ∈ V ⇒ (ga|ga) = (a|a))}.
It is a compact subgroup of Aut(V ), see [CKLW18, Sect. 5.3].

We say that g ∈ Aut(V ) is strictlypositive if (a|ga) > 0 for alla ∈ V \{0} anddenote
by Aut+(V ) the set of strictly positive elements of Aut(V ). We have that 1V ∈ Aut+(V )

and we say that Aut+(V ) is trivial if Aut+(V ) = {1V }. If g ∈ Aut+(V ) and α ∈ C, then
gα is a well defined element of Aut(V ) and the mapC � α 	→ gα = eα log g ∈ Aut(V ) is
a continuous group homomorphism, cf. [CKLW18, Sect. 5.3]. It is not difficult to show
that, for any α ∈ C, the map Aut+(V ) � g 	→ gα ∈ Aut(V ) is continuous. Moreover,
gt ∈ Aut+(V ) for all t ∈ R. It follows that Aut+(V ) is a path connected subset of
Aut(V ) containing 1V and hence Aut+(V ) ⊂ Aut(V )0. Note that Aut+(V ) is not in
general a subgroup of Aut(V ). However, g−1 ∈ Aut+(V ) for all g ∈ Aut+(V ) and, if

g and h are commuting elements of Aut+(V ) then gh = h
1
2 gh

1
2 ∈ Aut+(V ). It follows

that if Aut(V )0 is abelian, then Aut+(V ) is an abelian closed and connected subgroup of
Aut(V ). It is clear that if Aut(V )0 is trivial, then Aut+(V ) is also trivial. The converse
is also true as a consequence of [CKLW18, Theorem 5.21].

For g ∈ Aut(V ) we set g∗ = θg−1θ ∈ Aut(V ). Then, (a|gb) = (g∗a|b) for all
a, b ∈ V . In particular, g∗g ∈ Aut+(V ) for all g ∈ Aut(V ) and an automorphism
g ∈ Aut(V ) is unitary, i.e. it belongs to Aut(·|·)(V ), if and only if g∗ = g−1. The next
proposition shows that the elements of Aut(V ) admit a polar decomposition.

Proposition A.1. Let V be a simple unitary VOA and let g ∈ Aut(V ). Then, there is a
unique |g| ∈ Aut+(V ) and a unique u ∈ Aut(·|·)(V ) such that g = u|g|.
Proof. Set |g| := (g∗g) 1

2 and u := g|g|−1. Then, it is straightforward to see that
|g| ∈ Aut+(V ) and u ∈ Aut(·|·)(V ). In order to prove the uniqueness part let us assume
that g = vh with v a unitary automorphism and h a strictly positive automorphism.

Then, g∗g = hv∗vh = h2 so that h = (g∗g) 1
2 = |g| and hence v = gh−1 = u. ��

We have the following consequence:

Proposition A.2. Let V bea simple unitaryVOAand let q : Aut(V ) → Aut(V )/Aut(V )0
be the quotient map. Then q �Aut(·|·)(V ): Aut(·|·)(V ) → Aut(V )/Aut(V )0 is a surjective
group homomorphism. In particularAut(V ) is almost connected, i.e.Aut(V )/Aut(V )0
is compact.Moreover, ifAut(V ) is a finite dimensional Lie group, thenAut(V )/Aut(V )0
is a finite group and the map q �Aut(·|·)(V ): Aut(·|·)(V ) → Aut(V )/Aut(V )0 factors
through an isomorphism of Aut(·|·)(V )/Aut(·|·)(V )0 onto Aut(V )/Aut(V )0.

Proof. Let g ∈ Aut(V ). By Proposition A.1 g = u|g| with |g| ∈ Aut+(V ) and u ∈
Aut(·|·)(V ). Hence, sinceAut+(V ) ⊂ Aut(V )0, q(g) = q(u) ∈ q(Aut(·|·)(V )) and hence
q �Aut(·|·)(V ) is surjective. Now, assume that Aut(V ) is a finite dimensional Lie group.
Then, Aut(V )0 is a path connected open subgroup of Aut(V ). Hence, Aut(V )/Aut(V )0,
being discrete and compact must be finite. Moreover, since Aut(·|·)(V )0 ⊂ Aut(V )0, the
map q �Aut(·|·)(V ): Aut(·|·)(V ) → Aut(V )/Aut(V )0 factors through an homomorphism
of Aut(·|·)(V )/Aut(·|·)(V )0 onto Aut(V )/Aut(V )0. In order to prove that the latter ho-
momorphism is injective we have to show that Aut(V )0 ∩ Aut(·|·)(V ) ⊂ Aut(·|·)(V )0.
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Let u ∈ Aut(V )0 ∩ Aut(·|·)(V ). Since Aut(V )0 is path connected, there is a contin-
uous path [0, 1] � t 	→ g(t) ∈ Aut(V ) with g(0) = 1V and g(1) = u. Then,
[0, 1] � t 	→ u(t) := g(t)|g(t)|−1 ∈ Aut(·|·)(V ) is a continuous path with u(0) = 1V
and u(1) = u. Hence, u ∈ Aut(·|·)(V )0. ��
Proposition A.3. Let V be a simple unitary VOA. Then, VAut(·|·)(V ) = VAut(V ).

Proof. Clearly VAut(V ) ⊂ VAut(·|·)(V ). Now, let a ∈ VAut(·|·)(V ) and let g = u|g| be any
element of Aut(V ). Since |g|i t is unitary for all t ∈ R, we have |g|i t a = a for all t ∈ R.
By taking the derivative at t = 0 of the latter equality we get log |g| a = 0 and hence
|g|a = elog |g|a = a, so ga = ua = a and a ∈ VAut(V ). ��
Theorem A.4. Let V be a simple unitary VOA and assume that Aut(V ) is a finite di-
mensional Lie group. Then, Aut(·|·)(V ) is a maximal compact subgroup of Aut(V ).

Proof. Let G be a compact subrgoup of Aut(V ) containing Aut(·|·)(V ). Then, by Propo-
sition A.3, VG = VAut(·|·)(V ). Moreover, G is a compact Lie group being a compact
subgroup of the finite dimensional Lie group Aut(V ). Hence, G = Aut(·|·)(V ) by the
Galois correspondence in [DM99, Theorem 3]. ��
Proposition A.5. Let V be a simple unitary VOA and assume Aut(V ) is a finite dimen-
sional Lie group. Then, if G is a compact subgroup of Aut(V ), then there exists an
invariant normalized scalar product {·|·} on V such that G ⊂ Aut{·|·}(V ), namely the
automorphisms in G are unitary with respect to {·|·}.
Proof. By Theorem A.4 Aut(·|·)(V ) is a maximal compact subgroup of Aut(V ). More-
over, Aut(V )/Aut(V )0 is finite, cf. Proposition A.2. Hence, by [Str06, Theorem 32.5],
see also [Hoc65, XV Theorem 3.1] and [HT94, Sect. 1], G is contained in some max-
imal subgroup of Aut(V ) which must be conjugate to Aut(·|·)(V ). As a consequence,
there is an element h ∈ Aut(V ) such that hGh−1 ⊂ Aut(·|·)(V ). Let {·|·} be defined
by {a|b} := (ha|hb) for all a, b ∈ V . Then, {·|·} is a normalized invariant scalar prod-
uct on V with PCT operator θ̃ := h−1θh. If g ∈ G then hgh−1 ∈ Aut(·|·)(V ) so that
{ga|gb} = (hga|hgb) = (ha|hb) = {a|b} for all a, b ∈ V and hence g ∈ Aut{·|·}(V ). ��
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