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Abstract
The widespread adoption of Artificial Intelligence applica-
tions to analyze data generated by Internet of Things sensors
leads to the development of the edge computing paradigm.
Deploying applications at the periphery of the network effec-
tively addresses cost and latency concerns associated with
cloud computing. However, it generates a highly distributed
environment with heterogeneous devices, opening the chal-
lenges of how to select resources and place application com-
ponents. Starting from a state-of-the-art design-time tool, we
present in this paper a novel framework based on Reinforce-
ment Learning, named FIGARO (reinForcement learnInG
mAnagement acRoss the computing cOntinuum). It handles
the runtime adaptation of a computing continuum environ-
ment, dealing with the variability of the incoming load and
service times. To reduce the training time, we exploit the
design-time knowledge, achieving a significant reduction in
the violations of the response time constraint.

CCS Concepts: • Computing methodologies → Artifi-
cial intelligence; Reinforcement learning; • Computer
systems organization→ Distributed architectures.

Keywords: Reinforcement Learning, Computing Continuum,
Artificial Intelligence
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1 Introduction
The cloud computing paradigm is widely adopted [5] and
effectively supports the execution of resource-demanding
Artificial Intelligence (AI) applications by making an ide-
ally unlimited computational and storage power accessible
according to pay-to-go pricing models. The last few years
witnessed an accelerated migration towards mobile com-
puting and Internet of Things [11], motivating the rise of a
new edge computing framework, where high benefits can be
achieved by exploiting resources at the periphery of the net-
work. Edge resources, however, have usually less computing
capacity than cloud ones and easily become a bottleneck in
the computation. Therefore, a computing continuum para-
digm is emerging: latency-sensitive tasks can be distributed
among edge nodes, while computing intensive tasks are of-
floaded to the cloud layers [20, 3]. The Resource Selection
and application Components Placement (RS-CP) problem
in the computing continuum is challenging, since the avail-
able resources are highly heterogeneous. Moreover, offload-
ing decisions have a significant impact on the system costs,
which need to be balanced with security, latency and pri-
vacy constraints. Many literature proposals (e.g., [14, 15])
tackle the RS-CP problem at design time, determining the
minimum-cost solution that satisfies Quality of Service (QoS)
constraints. Despite the good results they achieve, design-
time tools suffer from great limitations: to identify a solution
in a reasonable computing time, they need to follow some
assumptions on, e.g., the input workload of the AI appli-
cations under study, network connectivity, distribution of
components service times. All these characteristics are usu-
ally subject to fluctuations in real systems and can hardly
be controlled or even predicted in practice. Therefore, the
initial, design-time solution needs to be adapted at runtime
to limit the risk of resource saturation or underutilization.
This paper presents FIGARO (reinForcement learnInG

mAnagement acRoss the computing cOntinuum), a runtime
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framework based on Reinforcement Learning (RL) that auto-
matically learns to solve the RS-CP problem under varying
system conditions. RL has recently become popular in ad-
dressing the placement problem in the computing continuum,
as the considered environment is highly dynamic, usually
too complex to be effectively modeled in a closed-form and
involves high-dimensional states [22]. To reduce the training
time required by the RL agent, we designed an initial offline
training period where FIGARO learns from the insights pro-
vided by the design-time tool in [14]. The partially-trained
agent enters then a validation loop where it interacts with
an environment simulator and uses the new experience to
refine its policy in an infinitely-evolving scenario.

The paper is organized as follows: Section 2 describes the
RS-CP problem. Section 3 presents a sample AI workflow.
Section 4 reframes the RS-CP problem to be exploited in
the context of Reinforcement Learning. Section 5 describes
the FIGARO framework, whose experimental validation is
discussed in Section 6. Section 7 briefly overviews the state
of the art. Conclusions are drawn in Section 8.

2 RS-CP Problem
The general goal of the RS-CP problem is to minimize the ex-
ecution costs of the computing continuum resources, while
complying with memory constraints, components-to-resour-
ces compatibility and QoS requirements. Solving it at de-
sign time means choosing the most appropriate resources
at each computational layer in the continuum, and deter-
mining where to execute the AI application components. At
runtime, the design-time solution is considered as a starting
point, and the resources and components deployments are
re-evaluated in the new environment conditions.

Figure 1. Application DAG.

Following the approach described in [14] for the design-
time scenario, we model AI applications as Directed Acyclic
Graphs (DAGs) whose nodes represent the different appli-
cation components (see Figure 1), denoted by the set I. We
assume each component 𝑖 ∈ I to be a Deep Neural Net-
work (DNN) running in a software container, which can,
in principle, be deployed on heterogeneous resources in-
cluding edge devices (denoted by the set JE ), cloud Virtual
Machines (VMs) (denoted by JC) and Function as a Service
(FaaS) instances (JF). Each DAG has a single entry point,
which receives in every time-interval 𝜏 an exogenous input
workload _(𝜏) (expressed in terms of requests per second),
and a single exit point. Each edge is characterized by the
transition probability between application components.

DNNs might be partitioned, so that different groups of lay-
ers are executed in a distributed manner. A given DNN may
be partitioned differently, according to resources capacity
and network settings. Thus, each component is characterised
by a set C𝑖 of candidate deployments, such that 𝑐𝑖𝑠 ∈ C𝑖 is a
set of neural network partitions, i.e., 𝑐𝑖𝑠 = {𝜋𝑖

ℎ
}ℎ∈H𝑖

𝑠
.

QoS requirements might be imposed on the response times
R of single components (local constraints) or on paths in-
cluding multiple components (global constraints). For com-
ponents deployed on edge devices or cloud VMs, these re-
sponse timeswere computed at design time exploitingM/M/1
queues, i.e., relying on the assumption that inter-arrival and
service times follow an exponential distribution. As we will
discuss later, this assumption is relaxed at runtime, and we
will rely on a simulator that allows to consider heterogenous
service times distributions. Furthermore, executing consecu-
tive components or partitions on different resources requires
to transfer data among the selected devices. Communica-
tions are enabled by different network domains, exploiting
heterogeneous technologies in terms of access delays and
available bandwidth (e.g., WiFi, 5G).
Edge devices and cloud VMs are characterised by hourly

costs that account for resources and energy consumption.
FaaS costs are expressed in GB per second and are related to
the memory configuration of the corresponding instances.
These costs are denoted by 𝐶𝐸 , 𝐶𝐶 and 𝐶𝐹 , respectively.

The problem of finding a component placement that min-
imizes the total execution costs while satisfying hardware,
network and QoS constraints can be formulated as a Mixed
Integer Non-Linear Program (MINLP) with the following
objective function (see [14]):

min𝐶𝐸 +𝐶𝐶 +𝐶𝐹 . (1)
Solving this problem at runtime means switching on/off

the appropriate edge resources, scaling in/out the cloud VMs
instances, identifying a deployment for each component, al-
locating the partitions on the chosen devices and checking
the compatibility with memory constraints and QoS require-
ments. The choice of the DNN deployment for each compo-
nent is managed through the binary vector Z, whose element
𝑧𝑖𝑠 is 1 if 𝑐𝑖𝑠 is selected for component 𝑖 ∈ I. Similarly, the
component-to-resource assignments are described through
the matrix Ŷ. Each element 𝑦𝑖

ℎ 𝑗
is equal to the number of

instances of resource 𝑗 ∈ J assigned to partition 𝜋𝑖
ℎ
.

To effectively tackle the RS-CP problem at runtime, dy-
namically adapting to varying environment conditions, we
reformulated this MINLP as a Markov Decision Process and
address it by developing a Reinforcement Learning-based
approach, as described in Sections 4 and 5.

3 Sample Use-Case Application
Consider the sample AI inference application illustrated in
Figure 2. Initially proposed in [12], it consists of a simple
workflow including two components designed to monitor



FIGARO: reinForcement learnInG mAnagement acRoss the computing cOntinuum UCC ’23, December 4–7, 2023, Taormina (Messina), Italy

Figure 2. Sample AI workflow with partitionable components and
multiple candidate computational layers.

videos produced by surveillance cameras in various city ar-
eas and determining which ones are characterized by the
highest percentage of people not wearing face-masks. In
particular, blur-faces splits the input video in a sequence
of frames, processes each image to detect faces and blurs
the corresponding areas to guarantee privacy preservation.
On the other hand, mask-detector works on the anonymized
images to identify and classify each face according to the
presence of face masks. Both components include an object-
detection task performed through a DNN that can be differ-
ently partitioned. In the example of Figure 2, for instance,
we assume that both blur-faces and mask-detector can be
considered either as unique, non-partitioned components
or as sequences of two partitions, denoted as 𝜋1

1 and 𝜋
1
2 for

blur-faces, and as 𝜋2
1 and 𝜋

2
2 for mask-detector, respectively.

Furthermore, we identify the set of candidate resources that
can be considered to execute each component (or component
partition). In particular, the whole blur-faces component, as
well as its first partition, can be executed on a single VM
type, denoted by 𝑉𝑀1 and hosted on a private Edge cluster.
Similarly, 𝜋1

2 can be deployed on a single Cloud VM type,
denoted by 𝑉𝑀2. More alternatives are instead available for
the second component, since: (i) the whole mask-detector
can be executed only on a VM type 𝑉𝑀3 in the Cloud, but
(ii) partition 𝜋2

1 can be deployed either on 𝑉𝑀4 or on an
AWS Lambda function configuration denoted as 𝐹𝑎𝑎𝑆3, and
(iii) 𝜋2

2 can be executed on two candidate function configura-
tions (𝐹𝑎𝑎𝑆1 or 𝐹𝑎𝑎𝑆2, respectively), characterized by, e.g.,
different memory settings.
Finally, we represent in Figure 2 the design-time solu-

tion through red arrows connecting the selected compo-
nent/partitions and the resource they are deployed onto.

4 Reinforcement Learning Problem
RL algorithms are characterised by the presence of an agent
that, in each time-window 𝜏 , learns how to map the cur-
rent state 𝑠 (𝜏) into an action 𝑎(𝜏) that maximizes a numeric
reward signal 𝑟 (𝜏). In our problem, since the main goal is
to minimize the system operational cost, we substitute this
reward with a cost 𝑐 (𝜏) defined so that 𝑐 (𝜏) = −𝑟 (𝜏). The
learning process is guided by the interaction with the envi-
ronment, which reacts to each agent action by transitioning

from the state 𝑠 (𝜏) to 𝑠′ = 𝑠 (𝜏 ′), where 𝜏 ′ denotes the next
time window. The cost associated to each state-action pair
depends on this transition, i.e., 𝑐 = 𝑐 (𝑠, 𝑎, 𝑠′). The strategy
followed by the agent, i.e., the mapping that selects the next
action as a function of the current state, is called policy. In
the following, we characterize the state space S, the action
space A and the cost function 𝑐 (𝑠, 𝑎, 𝑠′) for our problem.

State Space. In every time-window 𝜏 , each state 𝑠 (𝜏) ∈ S
can be represented as 𝑠 (𝜏) = ⟨Z, Ŷ, _,R⟩.

Note that, since the input workload _(𝜏) and the response
times R are continuous variables, traditional tabular RLmeth-
ods that use matrices to associate a specific state or state-
action pair to the expected reward cannot be applied in this
context [17]. Even for small systems involving two applica-
tion components, a discretization of the _ and R variables
considering 10 values would easily result in a state space
dimension close to 109 (i.e., a memory requirement of nearly
4𝐺𝐵), which is unfeasible in practical scenarios. We will
therefore consider the Deep Q-Learning algorithm, as dis-
cussed in Section 5.

Action Space. The available actions selected by the agent
according to the developed policy may involve single com-
ponents or resources. Specifically, the agent can: select a dif-
ferent DNN deployment for a given component, scale in/out
the number of VM instances selected for a given resource
or migrate a component partition on a different resource
with respect to the one where it is currently being executed.
In addition to these reconfiguration actions, the action set
A(𝑠) comprises a “do-nothing” action [ for every state 𝑠 .
When the agent picks the action [, the system configuration
is unchanged. Note that, to keep the cardinality of A under
control, only atomic moves are allowed, meaning that, for
instance, the agent cannot decide to concurrently scale in a
VM resource and migrate a component partition.

Cost Function. Our cost 𝑐 (𝑠, 𝑎, 𝑠′) in Equation 2 includes
four main components:^𝐺𝐶 (𝑠′) and^𝐿𝐶 (𝑠′) are performance
penalties related to the violation of Global or Local QoS Con-
straints, respectively. ^𝑒𝑥𝑒𝑐 (𝑠, 𝑎, 𝑠′) is the execution cost of
the component partitions on the selected resources, and it
corresponds to the total cost defined in Equation (1). Finally,
^𝑟𝑐 𝑓 (𝑎) is a penalty cost related to system reconfigurations,
which is introduced to account for the delays incurred when,
e.g., increasing the number of selected VM instances or stop-
ping and restarting components to perform migrations. We
defined ^𝐺𝐶 , ^𝐿𝐶 and ^𝑟𝑐 𝑓 as binary costs, meaning that ^𝐺𝐶
and ^𝐿𝐶 are equal to 1 if any global or local constraint is
violated, respectively, while ^𝑟𝑐 𝑓 is 1 if the agent chooses
any action different from [. The relative importance of these
four terms is determined through suitable weights𝑤𝐺𝐶 ,𝑤𝐿𝐶 ,
𝑤𝑒𝑥𝑒𝑐 and𝑤𝑟𝑐 𝑓 ∈ [0, 1] and such that

∑
𝑙 𝑤

𝑙 = 1.
The cost function 𝑐 (𝑠, 𝑎, 𝑠′) is defined as in other propos-

als [4] by the Simple Additive Weighting approach:



UCC ’23, December 4–7, 2023, Taormina (Messina), Italy Filippini, et al.

𝑐 (𝑠, 𝑎, 𝑠′) =𝑤𝐺𝐶^𝐺𝐶 (𝑠′) +𝑤𝐿𝐶^𝐿𝐶 (𝑠′)+

𝑤𝑒𝑥𝑒𝑐 ^
𝑒𝑥𝑒𝑐 (𝑠, 𝑎, 𝑠′) −𝐶min

𝐶max −𝐶min +𝑤𝑟𝑐 𝑓 ^𝑟𝑐 𝑓 (𝑎). (2)

𝐶min,𝐶max ∈ R+ are cost-normalization constants, which
can be computed a priori by assuming to select the cheapest
or most expensive assignment for each component partition.

Note that adopting binary penalties for theQoS constraints
violations, neglecting the number or entity of the violations,
may be a strong limitation in practice. In future work we
plan to address this issue so to better penalize the delays.

5 FIGARO
FIGARO (reinForcement learnInG mAnagement acRoss the
computing cOntinuum) is an integrated framework that sup-
ports the runtime management of AI applications. One of
the main sources of variability in a real environment is the
input workload. This usually fluctuates over time due to,
e.g., variations in the incoming data volumes, increasing the
risk of resources saturation or underutilization if a static
assignment is considered. Periodically running the design-
time framework to determine a new optimal solution is not
feasible, since this usually requires a too large computing
time to be exploited at runtime (where reconfigurations need
to happen in seconds). RL algorithms, which continuously
learn how to adapt their choices according to the environ-
ment responses, are very promising in this field. However,
they usually require a significant training time to learn an
effective behavior. To mitigate this issue, which would lead,
in the initial exploratory phase, to frequent QoS violations or
large overspending, we designed the FIGARO framework to
exploit the design-time knowledge available from the open-
source SPACE4AI-D tool available in the literature [14]. Our
RL agent learns how to mimic the design-time policy, which
can be considered as a good starting point for runtime recon-
figurations, in an initial, offline training phase. The learned
policy is then injected in a simulation loop where the interac-
tions with the Environment Simulator are used for validation
and may determine further updates according to the new
experienced scenarios.
The FIGARO architecture is illustrated in Figure 3 and

comprises the following components:

• Workload Trace Generator: it simulates a workload
injector, generating a trace for _(𝜏).

• Coordinators: the goal of both the Offline Training Co-
ordinator (OTC) and the Simulation Loop Coordinator
(SLC) is to manage the communications among other
components. In each time-window 𝜏 , they query the
Workload Trace Generator to retrieve _(𝜏). Then:
– The OTC queries SPACE4AI-D, which returns a good-
quality configuration used as baseline to evaluate

the improvement of our RL Agent. Based on the dif-
ference between the current Agent policy and the
behavior of SPACE4AI-D, it exploits HyperOpt [2] to
determine the next set of hyperparameters, provided
to the Agent to start the new training loop.

– The SLC queries the Environment Simulator to re-
trieve the components response times R(𝜏) under
the current configuration ⟨Ŷ(𝜏),Z(𝜏)⟩ and workload
_(𝜏), computes the cost accordingly and provides this
information to the Agent, receiving in turn the next
configuration to be considered.

• Environment Simulator: given the current configura-
tion ⟨Ŷ(𝜏),Z(𝜏)⟩ and input workload _(𝜏), it returns the
response times R(𝜏) of all the application components.

• Agent: given the current configuration ⟨Ŷ(𝜏),Z(𝜏)⟩, in-
put workload _(𝜏), response times R(𝜏) and observed
cost, it determines the next action to be applied in the
system, thus generating a new solution. As discussed in
the following, the agent can implement a static policy or
dynamically learn from the observed interactions.

Offline Training. The FIGARO Agent is based on the Deep
Q-Learning (DQL) algorithm. Q-Learning is an off-policy
RL algorithm aiming to learn the optimal action-value func-
tion 𝑄∗ (𝑠, 𝑎) [17], whose current approximation is stored in
a table and updated every time a new pair (𝑠, 𝑎) is visited.
The agent chooses the next action at each step according to
the so-called Y-greedy policy, i.e., by selecting with proba-
bility Y ∈ [0, 1] a random action, and with probability 1 − Y

the action 𝑎′ that maximizes the current value 𝑄 (𝑠, 𝑎′). The
DQL algorithm extends Q-Learning to more complex sce-
narios, where a tabular representation of the action-value
function is not feasible (e.g., because the state or action space
is infinite-dimensional) [8], approximating 𝑄 (𝑠, 𝑎) through
a Deep Neural Network called Q-Network. We adopted DQL
in our problem since, as discussed in Section 4, our state
space includes continuous variables.
The goal of the offline training loop is to let the Agent

learn an initial policy that can achieve results comparable
to SPACE4AI-D. During this training stage, our Agent does
not interact with the Environment Simulator: the response
times of all components are estimated via M/M/1 models.
Due to the wide range of hyperparameters that charac-

terize DQL algorithms, the offline training proves to be a
complex task, requiring a large computational time to be exe-
cuted effectively (e.g., in our experimental setting, a training
loop with nearly 1000 iterations could last up to three days).
HyperOpt helps to speed-up the parameters space explo-
ration by leveraging Bayesian optimization to find the most
promising set of hyperparameters, comparing the current
policy with the behavior of SPACE4AI-D.

Simulation Loop. The learned policy is evaluated and, pos-
sibly, further updated by connecting the Agent to the SLC
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Figure 3. FIGARO architecture.

(dotted lines in Figure 3), creating a new loop featuring the
interactions with the Environment Simulator. This can be
implemented exploiting: (i) SPACE4AI-D, which computes
the response times through analytical M/M/1 models (see
Section 2), or (ii) a simulator based on OMNeT++, which sup-
ports heterogeneous service times distributions. Interactions
with a real environment is part of our future work.

In the initial policy-evaluation phase, the Agent plays a
static policy, i.e., the new collected experience is not used
to trigger further updates. However, continuous learning is
one of the crucial benefits of RL; FIGARO can leverage the
state-action pairs observed while interacting with the Envi-
ronment Simulator to improve a dynamic Y-greedy policy.

6 Experimental Results
We now present the experimental evaluation of FIGARO.
As this is the first implementation of our framework, we
consider application pipelines including up to two compo-
nents, as the one presented in Section 3, and enable only
scaling actions. We set a response time constraint for the
whole application, and, since our main goal is to avoid vio-
lations, we chose the weights in Equation (2) as:𝑤𝐺𝐶 = 0.9,
𝑤𝑒𝑥𝑒𝑐 = 0.08,𝑤𝑟𝑐 𝑓 = 0.02, as discussed in, e.g., [4, 13] (𝑤𝐿𝐶 is
0 since we do not consider local constraints). Table 1 lists the
parameters used to train the Agents (both offline and online).
They can be divided into environment parameters (weights
for constraints and costs, description of workload, and of
episodes), network parameters (to describe the network used
for the DQN algorithm), and agent + training parameters
(description of how the agent should behave). We chose the
optimal parameters for our experimental setting according
to Hyperopt [2], which was originally fed with the ranges
shown in the second column of Table 1.

Each component is deployed on a fixed VM. At this stage
of proof of concept, only atomic scaling actions are available:
increase/decrease by 1 the number of instances of a VM, or
keep the configuration unchanged.
We generated a realistic profile for _(𝜏). Request rates

usually follow some patterns, such as bell-shaped curves
with a bi-modal distribution. The Workload Trace Generator

Table 1. Parameters used to train the Agents.
Name Range Optimal Value

EnvironmentParameters/ObjectiveFunctionWeights
GlobalConstraintWeight − 0.899999
LocalConstraintWeight − 0.000001

ExecutionCosts − 0.08
ReconfigurationCosts − 0.02

EnvironmentParameters/WorkloadVariation
Type − exponential

AverageInterval 30, 60, 120, 240, 360, 720 60
MaxNVariations 150, 300, 600, 900, 1200, 2400 1200
MinNBimodal 2, 4, 5, 6, 7, 8, 10 4
BimodalInterval − 15000

EnvironmentParameters
EpisodeLength − 60000

ReconfigurationInterval 50, 100, 200, 500, 800 100
BatchSize 1, 2, 4, 10, 20, 50 4

NetworkParameters
ActivationFunction 𝑙𝑖𝑛𝑒𝑎𝑟, 𝑟𝑒𝑙𝑢, 𝑠𝑖𝑔𝑚𝑜𝑖𝑑, 𝑡𝑎𝑛ℎ tanh
NumberOfLayers 1, 2, 3, 5 2
NumberOfNeurons 30, 50, 75, 100, 125, 200 75

QLayerActivationFunction − linear
AgentParameters

LearningRate 0.0005, 0.001, ..., 0.004 0.001
Optimiser − adam
Epsilon 0.05, 0.1, ...0.35, 0.4 0.15

TargetUpdateTau 0.05, 0.1, ...0.35, 0.4 0.2
TargetUpdatePeriod 10, 40, 70, ..., 210 150
TDerrorsLossFunction − element-wise squared loss

Gamma − 0.99
EpsilonDecay 0.7, 0.75, ..., 0.95, 1 1.0

LearningRateDecay 0.7, 0.75, ..., 0.95, 1 0.95
TauDecay 0.7, 0.75, ..., 0.95, 1 0.9

TrainingParameters
BatchSize 32, 64, 128, 256, 512, 1024 64

ReplayBufferCapacity 1, 2, ..., 10 ∗𝑀𝑎𝑥𝑁𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑠 2400
NumberCollectedEpisodes 1, 2, 3, 5, 10 3

mimics this trend: we generated a synthetic reference work-
load from a real web system, scaled between _𝑚𝑖𝑛 and _𝑚𝑎𝑥

and modified by adding noise a random shift in time.
We first discuss the results obtained during the offline

training of the RL Agent in the case of a two-component
application (a single-component application shows a similar
behavior). Figure 4 reports the number of instances selected
by the policy for the two VMs, over one episode including
600 steps, compared with the results of SPACE4AI-D. We can
see that the Agent effectively mimics SPACE4AI-D, following
the workload evolution by adapting the number of allocated
resources.

After the offline training terminates, we plugged the final
policy in the validation loop. We compared the behavior of
various Agents, interacting with the Environment Simulator:
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(b) Selected VM2 instances
Figure 4. Number of selected VM instances in a 2-components
system. Comparison between the choices made by SPACE4AI-D
(orange), those by the RL Agent (blue), and the workload (red).

• A Static RL Agent (SRL) that applies the policy learned
offline without further improvements;

• A Dynamic RL Agent (DRL) that continuously updates
an Y-greedy policy starting from the one learned offline;

• Constrained SPACE4AI-D (CS4AID), which enables the
comparison with the design-time tool: when determining
the optimal configuration at design-time, SPACE4AI-D
has no constraints on the number of decisions it can per-
form, while the RL Agent can only take atomic actions
that involve a single component or resource (see Sec-
tion 4). CS4AID runs SPACE4AI-D to get the new optimal
configuration, but is forced to apply only atomic actions
to implement it. Comparing FIGARO with CS4AID high-
lights whether it can perform better when considering
each specific action.

• A Randomly-initialized RL Agent (RRL) implemented to
test the benefits of the offline training: it corresponds to
DRL but starts from a random policy.
We configured the Environment Simulator to generate

response times under three different assumptions on the
service-time distributions, to test the Agents reactions in

heterogeneous scenarios: (i) exponential with the same mean
` considered during the offline training, (ii) exponential with
mean increased by 20%, and (iii) log-normal with mean ` and
standard deviation 2`. To analyze the Agent’s performance,
we evaluated the number of global constraints violations and
the cumulative delay, i.e., the cumulative difference across
the whole simulation between the response times and the
corresponding thresholds.

(a) Cumulative number of violations.

(b) Cumulative delay.
Figure 5. Cumulative number of violations and delay for all Agents,
with both exponential and log-normal distributions.

Figure 5 shows the behavior of all Agents for the exponen-
tial distribution with mean ` and the log-normal distribution.
As expected, the cumulative number of violations in Figure
5a is significantly lower in the exponential case for all the
Agents trained offline, which had experienced the same dis-
tributions. Moreover, the pre-trained Agents always violate
less than CS4AID, proving the efficacy of our method.
While performing much worse than the others with the

exponential distribution, RRL shows fewer violations in the
log-normal setting. This is due to the fact that it is not biased
in the beginning, as it starts from a random policy. There-
fore, it is more free to explore and test solutions, learning a
valid policy in around 1000 loop iterations and then showing
similar results for both distributions. However, as we can
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see in Figure 5b, this exploration comes at the cost of very
large delays. This plot further demonstrates how effective
the offline training is, since also CS4AID is responsible for a
greater cumulative delay under both distributions. Figure 6
shows the response times of the online system when each
policy is applied. The most relevant information represented
in these plots is that the Dynamic Agent with a random
initialization shows high response times for the first 1000
iterations, after which it learns how to behave properly.

(a) DRL and CS4AID are comparable, while RRL shows very
large response times for the first 1000 iterations.

(b) RRL is significantly more inefficient than the others for
the first 1000 iterations; for all agents, response times are
higher than in the exponential case.

Figure 6. Application response time with components demand
following an exponential and a log-normal distribution.

By moving from an exponential to a log-normal distri-
butions we proved that offline training is useful to reduce
violations. SRL and DRL show comparable results, which
would apparently invalidate the benefits of continuous learn-
ing. However, Figure 7 shows a comparison of the behaviors
of the Agents when the components demand is increased by
20%. The static agent is the worst performing of all, as its vio-
lation rate never changes and is close to 100%. The violation
rates of the Dynamic Agents actually decrease throughout
the validation iterations, and their behaviors look similar
to each other. However, analyzing the application response
time it is clear that the Dynamic Agent initialized with the

offline policy is performing better than the randomly initial-
ized one. Moreover, the entity of violations of the randomly
initialized Agent is in fact much higher throughout the first
20000 iterations.

(a) Violation rate.

(b) Application response time.

(c) Cumulative delay.
Figure 7. Comparison of the behaviors of the Agents when the
average service times are increased by 20%.

7 Related Work
Lately, a lot of research has been devoted to the RS-CP prob-
lem. Many literature proposals tackle the problem at design
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time; for example, [14] and [15] determine the minimum-cost
solution that complies with QoS restrictions for a fixed value
of expected workload.

A work similar to ours is [13], where RL manages the hori-
zontal and vertical elasticity of container-based applications.
Being RS-CP a continuous-control problem, it can be tack-
led efficiently with Deep Reinforcement Learning (DeepRL).
DeepRL has been applied to various computing-continuum
systems, e.g., UAVs [21], real-time tasks in a Mobile Edge
Computing setting [1] and Vehicular Edge Computing [10].
DeepRL for resource allocation has been also applied to

Virtual Reality (VR) and eXtended Reality (XR): in [16] and
[18], computationally demanding tasks are offloaded at run-
time by relying on DeepRL techniques. Moreover, a relevant
topic when dealing with Cloud and Fog computing is energy
consumption: this is tackled by works such as [9].
Overall, multi-resource allocation problems are not triv-

ial to solve [19]. Recently, authors have addressed them in
multi-agent settings where each RL agent can focus just on
a specific subtask, such as [7]. Multiple agents can be coop-
erative or independent. Some solutions have demonstrated
the efficacy of a hierarchical collaborative organization [6].

8 Conclusions and Future Work
This paper proposes FIGARO, a novel Reinforcement Learning-
based framework capable of handling the runtime adaptation
of a computing continuum environment in terms of allocated
resources for specific application components. FIGARO ex-
ploits the design-time knowledge to speed up the learning
process of the Agent, enabling the deployment of a policy
that is already effective with respect to the environment. We
tested our framework in a simulated environment and vali-
dated it by changing the service-time distributions. By mea-
suring the response times of the application components, we
demonstrated that our framework outperforms a static agent
adapted from the design time, particularly when considering
initial offline training and then continuously updating the
policy during the simulation.

This work refers to components of an AI application, but
the same approach could be extended to cope with the de-
ployment of microservices as well, in particular to those that
can be partitioned and for which we might have multiple
versions. The current implementation is only capable of per-
forming scaling actions on the number of resource instances,
but we plan to integrate the migration of components be-
tween different resources. Moreover, we also plan to evaluate
our framework in a real environment (instead of a simulated
one) to ultimately validate it.
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