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Abstract: Thiosulfate: cyanide sulfurtransferase (TST), also named rhodanese, is an enzyme widely
distributed in both prokaryotes and eukaryotes, where it plays a relevant role in mitochondrial
function. TST enzyme is involved in several biochemical processes such as: cyanide detoxification,
the transport of sulfur and selenium in biologically available forms, the restoration of iron–sulfur
clusters, redox system maintenance and the mitochondrial import of 5S rRNA. Recently, the relevance
of TST in metabolic diseases, such as diabetes, has been highlighted, opening the way for research on
important aspects of sulfur metabolism in diabetes. This review underlines the structural and func-
tional characteristics of TST, describing the physiological role and biomedical and biotechnological
applications of this essential enzyme.
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1. Introduction

The enzyme thiosulfate sulfurtransferase (TST) (EC: 2.8.1.1), originally identified in
1933 by Lang [1], is widely distributed in both prokaryotes and eukaryotes [1–3]. Indeed,
Lang reported that rat liver contains an enzyme able to convert cyanide to thiocyanate
(SCN−) in the presence of thiosulfate (S2O3

2−), as shown in Figure 1, and this enzyme
was named ‘rhodanese’ from the German name for thiocyanate ‘rhodanid’. The tst gene
encoding the human TST, also named rhodanese, is located on chromosome 22q12.3 [4].
In mammals, TST/rhodanese is localized in the mitochondria [5] and its distribution in
the tissues appears to be tissue-specific, with the highest concentration in the liver and
significant amounts in the kidneys, adrenals and thyroid glands [6]. In particular, humans
have the highest rhodanese activity in the kidneys, which is twice that of the liver, followed
by the lungs, brain, stomach and muscles. In plants the TST enzyme is localized in the
cytoplasm, in mitochondria and in chloroplast [7,8]. According to the accepted mecha-
nism [9], the TST enzyme mediates the sulfur transfer from thiosulfate (donor) to cyanide
(thiophilic acceptor) via a double displacement reaction. First, TST/rhodanese accepts
a sulfane sulfur atom from a donor (e.g., thiosulfate), with the formation of a covalent
enzyme–sulfur intermediate (E–S) characterized by a persulfide bond at the sulfhydryl
group of the reactive cysteine in the active site (Cys 247 in bovine TST); subsequently,
the persulfide sulfur is transferred from the enzyme to the cyanide, recovering the native
enzyme form [3,10,11]. The estimated apparent Km of the recombinant human TST are
39.5 ± 2.5 mM and 29 ± 4 mM for thiosulfate and cyanide, respectively [12].

Among the sulfur donors of TST, there is mercaptopyruvate (Km = 2.6 mM), a substrate
processed also by mercaptopyruvate sulfurtransferase (MST) in cyanide detoxification.
There is strong evidence that TST and MST are evolutionarily related because, in addition
to being able to interact with the same substrate (cyanide, thiosulfate, mercaptopyruvate)
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although with distinct kinetics and different affinities, they show a striking similarity in
amino acid sequences around the active site (66% of sequence homology between TST and
MST in rat liver) [13]. In mammals, the sulfur transfer reactions catalyzed by rhodanese
represent a physiological detoxification mechanism because starting with cyanide leads
to the formation of thiocyanide, which is excreted renally and 200 times less toxic than
cyanide [14]. In fact, the level of rhodanese in different tissues is higher in animals which,
by ingesting a greater quantity of cyanide with their diet, need a greater detoxification
efficiency. In particular, since cyanide occurs naturally as cyanogenic glycosides in a number
of plants (e.g., sorghum, linseed, clovers, grasses, cassava and bamboo [15]), herbivores
are more exposed to cyanide through food than carnivores and, subsequently, they have
very high levels of TST in their tissues compared to the same tissues of carnivores [16,17].
TST expression and activity in both the liver and kidneys of pandas were found to be
significantly higher than in other animals such as cats. The detoxification of cyanide was
suggested as a primary activity of TST also in the case of plants, in which cyanide is
endogenously produced especially during the biosynthesis of ethylene in the ripening of
fruits and also in the senescence processes of leaves [18].
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Figure 1. Scheme of the ping-pong mechanism of the sulfur transfer reaction catalyzed by
TST/rhodanese.

In the last twenty years, several studies have highlighted the involvement of TST in
metabolic processes, as well as its relevance in various metabolic and non-metabolic dis-
eases. This review underlines the structural aspects of this enzyme, which has represented
and still represents an enzymatic structural model. Moreover, it highlights the involvement
of this mitochondrial enzyme in different and relevant biochemical processes, its involve-
ment in the onset of some diseases, as well as its possible application in biotechnology.

2. Structure and Function of TST
2.1. TST/Rhodanese Structure: A Model for Studying the Protein Folding

The TST superfamily members are characterized by an alpha-beta topology with
a structural module in which alpha-helices surround a central five-stranded beta-sheet
core [19]. The sulfurtransferase family members differ for the structural organization of the
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rhodanese/TST domains [20]. Some TST members are characterized by a single rhodanese
domain, such as the bacterial GlpE [21] and PspE [22,23], and human TSTD1 [24], while in
other sulfurtransferase proteins, such as TST from humans (hTST), Bos taurus (Rhobov) and
Azotobacter vinelandii (RhdA) [20,25,26], the rhodanese domain is present in a tandem repeat
and the active site is located in a cleft between the N- and C-terminal domains [12,27]. TST
proteins such as GlpE, ThiI and RhdA exhibit a preferential sulfur transfer activity with
thiosulfate as a donor [28–30], although RhdA can have other substrates [31,32], while
TSTD1 probably plays a role in sulfide signaling, where the persulfidated thioredoxin serves
as a donor to TSTD1 and the thiol form of TSTD1 serves as a sulfur acceptor [33]. Figure 2
shows the tridimensional (3D) structure of TSTs. Moreover, there are other proteins, such as
in Cdc25 phosphatase [20] or in the PRF and CstB proteins [34,35], that have rhodanese/TST
domains without showing sulfurtransferase activity. The best-characterized TST is the
Rhobov, which represents the reference structure for the TST/rhodanese subfamily [36]
and has 90% similarity in the aminoacidic sequence with hTST. This enzyme represents a
structural model of a protein with alpha/beta topology and in several studies it was used
in order to clarify the chaperon mechanism of protein folding. Rhodanese has been the
classic protein substrate of the remarkable molecular machine GroEL/GroES that binds
unfolded proteins and allows them to fold within a cavity formed by the heptameric rings
of GroEL/GroES and ATP [37–41]. Rhobov can be also partially folded in the GroEL-
GroES-ADP complex, but in that case the protein doesn’t show TST activity [42]. The
N-terminal signal sequence (1–23) of Rhobov is crucial for the initial steps of the folding
process and, in particular, the first 40 amino acids of the bovine enzyme are essential in the
interaction with Gro-EL [43,44]. The crystal structure of both TST isoforms consists of two
similar globular structural domains [45] that have rather poor sequence similarity [40,46].
These domains are connected by a tether region and are associated by strong hydrophobic
interactions. The slightly smaller C-terminal domain hosts the active site, which is located
near the interdomain surface [12], Cys-247 [9] is the active residue directly involved in the
enzymatic reaction, and large conformational changes occur during the catalysis due to
the structural flexibility of the tether region [47,48]. Protein intrinsic fluorescence was also
used to follow the conversion from ES to E [49]. The observed quenching of the intrinsic
fluorescence of TST upon the binding of sulfur was also explained as a possible generalized
conformational change in the enzyme induced by persulfide formation [50–52]. Water
proton NMR relaxation studies [53] and 35Cl NMR relaxation studies [54] on eukaryotic
Rhobov report that there are significant changes in the exposure to solvent or to anion
binding for the two catalytic states ES and E. These results have been interpreted as due to
important interdomain reorientation(s) between the two structural domains of the enzyme
upon the catalytic cycle [54]. However, 15N NMR relaxation studies together with essential
dynamics studies on the prokaryotic TST from Azotobacter vinelandii (RhdA) [55,56] did not
show large differences between the two forms indicating that only small conformational
rearrangements, probably confined around the active site, occur between the ES and E form.
However, all the structural studies on both eukaryotic and prokaryotic TST proteins with
double domains are in agreement with an enhanced solvent accessibility in the E form. The
presence of the extra sulfur confers a major thermodynamical stability to the ES form of
bovine TST (Rhobov) that results in its being ~8 kcal/mol more stable than the E form [57].
The substrate specificity is conferred from the residues on the active-site loop including the
cysteine, which is persulfured during the catalysis. In particular, the positive charges of the
CRKGVT motif in hTST interact with the negative charges on the substrate (e.g., oxygen
atoms in the case of thiosulfate). The double mutants Arg248Gly and Lys249Ser of hTST,
to mimic the MST active site, increase to about 17-fold the Km value for thiosulfate and
decrease the kcat for rhodanese 6-fold [13].
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Figure 2. Cartoon representation of 3D structures of thiosulfate: cyanide sulfurtransferases with
tandem and single domain. (https://www.rcsb.org/) TSTbov (1 orb) [45], TSTD1 (6 bev) [33], GLlpE
(1 gmx) [21] and PspE (2 jtq) [58].

The high number of members of the homology superfamily of rhodanese (accession
number: PF00581 (accessed on 1 April 2021); http://sanger.ac.uk/cgi-bin/Pfam) suggests
that the rhodanese domain can be involved in distinct physiological roles [20,59].

2.2. Functional Role of TST in Cell Metabolism

TST/Rhodanese, in addition to cyanide detoxification, either alone or in association
with other proteins, can perform a variety of biological roles, ranging from the transport of
sulfur and selenium in biologically available forms [29,60,61] and the mitochondrial import
of 5S rRNA [62] to the detoxification processes [48] and restoration of iron–sulfur clusters in
Fe-S proteins, such as the aconitase [63] and mitochondrial respiratory complexes [64]. All
of these functions are summarized in the Figure 3. The persulfide intermediate (ES form) of
the enzyme acts as a sulfur-carrier and plays a critical role in sulfur trafficking by delivering
sulfur in a “safe” chemical species in several biosynthetic pathways [65–67]. TST is able
to interact with enzymes of oxidative metabolism, such as succinate dehydrogenase [64],
NADH dehydrogenase [68], xanthine oxidase [69] and NADH nitrate reductase [8]. The
iron-sulfur clusters of ferrodoxins, succinate dehydrogenase, and mitochondrial NADH
dehydrogenase can be reconstituted by incubation with TST, a sulfur donor and an iron
source [23,64,68,70]. Due to these interactions with the enzymes of the ETC (electron
transfer chain), TST could have direct control of mitochondrial respiratory activity. Besides,
a TST down regulation has been related to a reduced availability of iron-sulfur centers and
the rate of electron transport with an increase in superoxide anions formation [71]. Many
studies suggest, in fact, that the proteins have roles in ‘managing’ stress tolerance and
in maintaining redox homeostasis [63,72,73]. TST is also able to degrade reactive oxygen
species (ROS) with thioredoxin in cell-free systems [74,75]. Analyses of TST expression

https://www.rcsb.org/
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and activity also revealed that it was overexpressed in MST-knockout mice in order to
compensate for the effect of the MST deficiency [76].
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The E form of TST can be phosphorylated as a result of cellular signaling [77], at
serine 124 in bovine TST, which is accessible only in unsulfurated TST. The conformational
change in the enzyme induced by the phosphorylation brings the side chain containing
Cys-247 into proximity with either Cys-254 or Cys-263 [78]. These cysteines can form a
disulfide bridge and render the phosphorylated TST unable to metabolize sulfane sulfur
donors. On the contrary, dephosphorylated TST could increase the rate of electron transport
and ATP production by catalysis of the reverse reaction and the mobilization of sulfur for
iron–sulfur cluster synthesis or repair [79]. TST phosphorylation could be a highly dynamic
post-transcriptional process with a steady-state level of modification of iron–sulfur centers
in the electron transport chain. TST phosphorylation represents a mechanism by which
mitochondria adjust the rate of oxidative metabolism in response to energetic demand.
Adaptive changes in the activity and expression of cystathionine-lyase (CSE), MST and TST
in various frog tissues in response to exposure to lead, mercury and cadmium confirmed the
protective function of these enzymatic proteins against electrophilic stress [80]. TST activity
is inhibited by Ca2+, Zn2+ [3], Cu2+ [81] ions, SO32− [3], SO42−, oxaloacetate, pyruvate [82],
H2O2 [83] and in general by oxidative stress. On the other hand, TST is activated by
glutathione [84] and L-cysteine [85], and reducing conditions can reactivate the enzyme.
Other activating molecules, such as butyrate and histone-deacetylase inhibitors, have
been found to increase TST activity. A significant increase in TST activity and expression
was observed in human cancer cell line HT-29 in advanced colon cancer [86], where the
expression of both thiosulfate sulfurtransferase and mercaptopyruvate sulfurtransferase
was markedly reduced. The gene expression analysis in colonic mucosa from cancerous
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and normal tissues showed that the tst gene was one out of three mitochondrial genes that
had a statistically significant decrease in expression from normal tissue to tumor at every
Dukes’ stage A–D, hypothesizing that a possible cause of colorectal cancer carcinogenesis
might be located in the mitochondria [87,88].

Another role of TST is in selenium metabolism, as demonstrated in vitro that the E form
of TST binds selenium at a 1:1 molar ratio, leading to the formation of the stable perselenide
form of TST [32]. Accordingly, TST can have a critical role in the generation of the reactive
form of selenium for the synthesis of selenophosphate (SePO3), which is an active selenium
donor required for SeCys-tRNA synthesis, a relevant precursor of selenocysteine. Therefore,
the TST enzyme can have a relevant role in the synthesis of selenoenzymes and so indirectly
facilitate the removal of hydrogen peroxide by GSH and provide reducing equivalents to
thioredoxin (TRX). All members of the sulfurtransferase family can oxidize and reduce,
respectively, the thiol and persulfidated forms of TRX [33,73,89]. In mammalian cells, an
interaction of TST with TRX plays a relevant role in the balance of metabolism. TST activity
is important for mitochondrial oxidation and could be an effective marker of mitochondrial
dysfunction in response to oxidative stress. An organo-sulfane sulfur compound, such as
sodium 2-propenyl thiosulfate, was found to induce the inhibition of TST activity in tumor
cells. The activity of the enzyme was restored by thioredoxin 2 (TRX2) in a concentration-
and time-dependent manner [89]. The TST detoxification function from intra-mitochondrial
oxygen free radicals seems also to be protective against persistent oxidative stress, including
that induced by radiation, which leads to TST induction [90–93]. TST, in association with
MST, can promote an anti-oxidative stress function by regulation of sulfane sulfur, GSH or
thioredoxin leading to the inhibition of the persistent oxidative stress [94]. In agreement
with this relevant function of TST, low TST expression has been detected as a negative
prognostic marker in hemodialysis patients [71]. During the last decade, a relevant role of
TST in the mitochondrial pathway of the endogenous gasotransmitter hydrogen sulfide
(H2S) has been recognized. However, the detailed molecular role of TST is still debated.
TST/Rhodanese is a crucial enzyme in the H2S oxidation route that leads to the formation of
hydropersulfides (-SSH), thiosulfate and sulfate. TST/Rhodanese catalyzes the transfer of
sulfane sulfur from glutathione persulfide (GSSH) to sulfite, which is produced in a reaction
catalyzed by persulfide dioxygenase (SDO), i.e., ETHE1, to form thiosulfate [12,95,96].

TST is also able to catalyze the formation of H2S using dihydrolipoic acid (DHLA) [97,98]
which is also involved in the generation and transport of sulfane sulfur as well as H2S
production from L- and D- cysteine [46,98]. The ability of TST to catalyze the production of
the H2S [26,76] has suggested the possibility that rhodanese might be a source of H2S in vivo.
However, although the reaction is reversible, the efficiency for thiosulfate production is much
greater than that for thiosulfate utilization in this reaction [12].

This is suggested due to the activity of the sulfide quinone oxidoreductase (SQR),
which is the first enzyme in the mitochondrial sulfide oxidation pathway, and predomi-
nantly catalyzes the synthesis of GSSH. The amount of rhodanese is about 4-fold lower
than of CSE, but is 14-fold higher than of cystathionine-synthase (CBS) [99], the sulfide
pathway enzymes that synthetize H2S [100,101]. The ability of TST from murine liver
lysate to produce H2S from thiosulfate in the presence of GSH is only ~1% of the ability
of cystathionine -synthase and -cystathionine lyase to produce H2S from cysteine and
homocysteine. This suggests a primary role of rhodanese in H2S catabolism rather than
in its production. The involvement of TST in the metabolism expands the relevance of
this enzyme in several biochemical pathways and diseases, considering the remarkable
properties of the endogenous H2S as a gasotransmitter, cytoprotective agent, mediator
of vascular response and platelet adhesion, and regulator of glucose metabolism, redox
balance and the detoxification of intra-mitochondrial oxygen free radicals [102–106]. In the
following paragraph the effects of the dysregulation of TST expression and activity on the
development of some diseases will be discussed.
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3. TST in Diseases
3.1. Lebers Hereditary Optic Neuropathy

Historically, the first disease related to an alteration in the expression of TST/rhodanese
is Lebers hereditary optic neuropathy (LHON). LHON is a rare neurodegenerative disease
that results in significant visual loss or even total blindness. In most cases, this disease
occurs in young men and leads to a selective degeneration of retinal ganglion cells (RGCs)
with optic atrophy within a year of disease onset. LHON is caused by the presence
of mitochondrial DNA point mutations [107] that affect complex I subunit genes. The
dysfunction of NADH: ubiquinone oxidoreductase due to LHON mutations leads to the
overproduction of ROS which, in turn, triggers a series of mitochondrial dysfunctions that
eventually result in the death of retinal ganglion cells via apoptosis [108,109]. A pronounced
reduction in TST activity was found in liver biopsies [110] from Leber patients suggesting a
role of TST in this disease. Moreover, the deficiency of the cyanide detoxification pathway
plays a role in disease progression. TST activity in rectal mucosa has also been found
to be six-fold lower in patients with LHON, and these evidences have suggested that
TST deficiency can either cause LHON or be directly involved in its development [111].
Conversely, others [112,113] failed to show evidence of quantitative or qualitative defects on
the liver TST isozyme patterns of subjects with LHON. However, there is vast heterogeneity
of the samples due to the high tissue-specificity of TST expression and the population-
specificity of the mtDNA LHON-associated mutations distribution [114–116]. Thus, the
differences may be also due to the selection of patients from different ethnic groups and
the use of different tissue in the experiments.

3.2. Colonic Diseases and Cancer

The effects of alteration in TST expression and activity are detected in several other
diseases with mitochondrial dysfunction and/or unbalance in redox state or in H2S
metabolism, such as colonic diseases and, according to recent studies, also obesity-associated
type 2 diabetes mellitus (summarized in Figure 4). TST seems to play a significant role
in colonic diseases where it may function primarily by decreasing H2S in rectal mucosa.
Hydrogen sulfide is normally present in the colonic lumen because of sulfate-reducing
bacteria activities and in patients with active ulcerative colitis (UC) H2S concentration
is increased [117], with a subsequent cytotoxicity effect of this molecule. Accordingly,
rhodanese is likely to be the main responsible enzyme for the detoxification of H2S in the
colon [118]. A reduction in TST activity correlates to the development of ulcerative colitis,
conversely mucosal healing is associated with an increased TST gene expression [119].
However, it is not clear if this deregulation in TST level is a primary defect or the result
of local inflammation. Besides its role in UC, rhodanese is a protein related to the process
of aging [120]. It is decreased in colonic epithelial tissues from old people and may be
associated with a slow decline in physiological vigor and an increasing susceptibility to
age-related diseases, including colon cancer. Some experimental studies in neoplastic cell
lines have highlighted a decrease in the intracellular sulfurtransferase activity, such as TST
activity, and of the presence of sulfane sulfur-containing compounds [121–124]. Recently,
TST activity was detected two-fold lower in mouse mammary gland tumor cells (4T1 cell
line) as compared to the activity in mouse mammary gland cells (MNuMG cell line) [124].
All this seems to suggest a different sulfur metabolism in the cancer cells with the possibility
to develop selective anti-tumor therapies taking into account the differences in the sulfur
metabolism with the normal cells.
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3.3. Diabetes Mellitus Type 2 and Friedreich’s Ataxia

In recent years, a dramatic increase in obesity and in diabetes mellitus type 2 (DMT2)
was observed worldwide, due mainly to the globalization of a diet with a high content of
animal fat and protein, refined grains and added sugar. Obesity is related not only to an
obesogenic environment, but also to a genetic susceptibility [125,126] and similarly DMT2
is linked to the combination of an unhealthy lifestyle (overnutrition and sedentary life) with
the genotype of the subject [127,128]. Therefore, for the development of new interventions
in order to prevent or reverse excess weight gain and diseases associated with it, it is crucial
to clarify the genetic variants that play a major role in inducing susceptibility or resistance
to obesity and to DMT2. Recently, the tst gene has been identified as a candidate obesity
resistance gene involved in low adiposity and metabolic health. Morton et al., using a
polygenic lean mouse model, showed a connection between the up-regulation of the tst gene
expression and reduced adiposity and insulin sensitization in white adipose tissue [129].
TST enzyme up-regulation, besides the demonstrated antidiabetic and leanness effects,
was found to reduce the inflammatory status feature of obese subjects [130]. Furthermore,
it was observed that when TST is pharmacologically activated by its substrates, sodium
thiosulfate and the garlic compound diallyl disulfide (DADS), this leads to a significant
reduction in inflammatory cytokines production in a mouse adipocyte cell model [130].
Among the roles of the tst gene, the quenching of mitochondrial ROS and H2S, both
involved in adipocyte function, has been mentioned [131,132], leading to maintenance of
insulin sensitization in adipose tissue, lipolytic responsiveness and adiponectin release that
ultimately drives peripheral oxidative disposal of excess fat. Chronically high levels of ROS
cause an elevated oxidative stress in obese individuals [133] and lead to the development of
insulin resistance [134,135]. This unbalanced redox state in adipocytes is linked to diverse
factors such as the action of circulating free fatty acids highly concentrated in the plasma
of obese patients. Among others, palmitate causes the increase in FABP4/aP2 (fatty acid-
binding protein 4) expression [136], which results in reduced expression of uncoupling
protein 2 (UCP2) [137], determining an increased ROS production. Interestingly, TST-
knockdown adipocytes engendered higher levels of mitochondrial ROS after cells were
exposed to oxidative stress, further suggesting a functional role of TST on ROS. Moreover,
the inhibition of TST activity with 2-propenyl thiosulfate leads to a reduction of ROS-
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sensitive adiponectin release from a preadipocyte cell line model (3T3-L1). In cells from
TST-knockout mice was found a reduced basal lipolysis, a process dose-dependent from
the sulfide concentration in the preadipocyte cell line; these findings further support
the role of TST in the modulation of H2S effects on adipocyte function. Notably, since
several recent studies highlight a link between insulin resistance and an altered electron
transport chain [138,139] due to the ability of TST to influence mitochondrial respiration,
there may be an implication of TST interaction with the iron-sulfur centers, correlated
with the anti-diabetic effect exerted by the enzyme. Negative correlation between TST
and body mass index and positive correlation with levels of glucose transporter type 4,
insulin receptor substrate 1 and peroxisome proliferator activated receptor gamma were
also observed [129,140].

Deregulation of tst/rhodanese gene expression has also been related to other diseases,
such as Friedreich’s ataxia (FRDA). FRDA is an autosomal-recessive neuro- and cardio-
degenerative disease characterized by cardiomyopathy and progressive ataxia is related to
the inhibition of frataxin expression [141], a protein involved in iron–sulfur clusters (ISCs)
biogenesis. A down-regulation of both serine hydroxymethyltransferase and rhodanese
was observed in the fibroblasts and lymphoblast cells from the FRDA patients and the
neural NT2 cells line in which the expression of frataxin was inhibited [142].

All these findings that show the association between the expression of rhodanese
and degenerative states can make rhodanese a potential tumor/disease biomarker and
treatment target.

4. Biotechnological Application of TST

In the last few decades, TST, due to the capability of detoxifying cyanide, has been
investigated for its use in many environmental and biomedical biotechnologies (see Table 1).
Among the most important ones, in this review we emphasize the removal and biodegra-
dation of cyanide from different environmental compartments [143,144], the production
of carrier-based therapeutic catalytic bio-scavengers against cyanide [145,146], the reduc-
tion of toxic HCN concentration in ruminant animals’ diet [147] and the development of
innovative biosensors for cyanide detection [148].

Cyanide is a nitrile which is extensively employed in many industry fields such as phar-
maceuticals, food processing, coal cooking, jewelry, mining, electroplating, plastics, dyes
and paints [143]. It is present in various forms in industrial wastes (including free cyanide,
simple inorganic salts, metal cyanide complexes, cyanate and organic cyanides) [149], in
agricultural wastes (nitrile herbicides as dichlobenil, ioxynil or bromoxynil) [150] and
in wastes from precious metal mining (roughly 1.0 kg of sodium cyanide or potassium
cyanide is needed to recover 1.5 g of gold) [151]. Because of its potential environmental
toxicity, different cyanide detoxification strategies, both physical-chemical [152,153] and
natural-biological ones [149,154–156], have been developed and modified during the last
decades for curbing down cyanide pollution. The current physical-chemical approach,
often relatively expensive, mostly involves ozonization, chlorination, etc. [157] leading to
the release of further toxic reaction by-products in water-bodies, the air and soil.

Instead, the biological methods, which involve the use of biological agents such as
microorganisms (bacteria/fungi) and enzymes, represent an inexpensive, eco-friendly,
highly efficient approach with no release of toxic by-products [144,152]. Hence, bacteria
such as Escherichia coli expressing recombinant TST from Pseudomonas aeruginosa [158],
Azotobacter vinelandii [30,159], Bacillus pumilus [160] and the TST enzyme isolated from
bacteria [23], have been used in the biodegradation of cyanide. Although to a much lesser
extent, the use of TST from fungi such as Rhizopus oryzae [161], Trametes sanguinea [162] and
Aureobasidium pullulans [144] was also investigated. TST immobilization on supports such as
polyacrylamide gels [163] and sepharose [164] has been used extensively, since immobilized
enzymes show unique properties with respect to the free enzymes, such as more stability
and higher potential for reuse. Ademakinwa et al. produced TST from the yeast-like
fungus Aureobasidium pullulans and performed an immobilization via cross-linking with
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glutaraldehyde prior to enzyme entrapment in alginate supports, with the aim to develop
a new bio-device for the biodegradation of cyanide in cassava mill effluents [144].

Other applications of TST are more related to civilian and military research, trying
to develop effective catalytic bio-scavengers for a therapeutic and prophylactic defense
against cyanide as a chemical toxic agent. The treatment of cyanide intoxication requires
the use of scavengers (e.g., methemoglobin former sodium nitrite or cobalt compounds or
cyanohydrin formers) and/or the transformation of cyanide into the less toxic thiocyanate
(SCN−) by means of the exogenously administered sulfane sulfur and sulfurtransferase
enzymes [165–167]. Towards this aim, isolated, purified, recombinant TST from bacteria
has been tested in in vitro and in vivo experiments. Frankenberg and colleagues widely
investigated the possibility of directly injecting free rhodanese in mice after cyanide poison-
ing [168]. However, the enzyme activity in plasma decreases rapidly after the intravenous
injection mainly due to renal excretion [168]. Therefore, the fast degradation and excretion,
together with an adverse immunologic reaction against the free administered enzyme,
has limited its use in vivo. To overcome these limitations, in the last decades, the real-
ization of biodegradable, nontoxic TST-carrier systems, microparticles and nanoparticles,
characterized by better pharmacokinetic parameters, has been investigated [145,169–171].
For example, microparticles (micrometers in diameter), the Carrier Red Blood Cells (CR-
BCs), and resealed and annealed erythrocytes, have been successfully used as a cyanide
antagonist [172–175]. However, some practical difficulties related to the use of CRBCs
such as prior blood typing requirements, the cells’ fragility and the need for sophisticated
encapsulation techniques, have pushed towards the use of a different approach, consist-
ing of encapsulating TST within a bioprotective environment such as sterically stabilized
long-circulating liposomes (SL) (100–150 nm diameter) [176,177]. Nowadays, dendritic
polymers (DPs), of some nanometer size, provide an excellent system for capturing en-
zymes. Petrikovics et al. focused on nano-intercalated rhodanese using a DP based on
hyperbranched poly(2-ethyloxazoline) with a CH5(CH2)17 chain modified surface in com-
bination with the classic inorganic sodium thiosulfate (TS) and a chemical component of
garlic, diallyldisulfide (DADS), a sulfur donor, to prevent cyanide lethality in a prophylactic
mice model. They showed that DADS is not a more efficient sulfur donor than TS; however,
the use of external TST significantly enhanced the in vivo efficacy of both sulfur donor-
nitrite combinations, indicating the potential usefulness of enzyme nano-delivery systems
in developing antidotal therapeutic agents [178]. Recently, an alternative approach was
proposed by Bellini et al. which produced a photo-polymerizable hybrid hydrogel using
exopolymeric substances (REPS) extracted by the cyanobacterium Trichormus variabilis
VRUC 168, with the addition of polyethylene glycol diacrylated (PEGDa) [146]. Bellini
and colleagues used the recombinant TST from Azotobacter vinelandii [26,30,56,89] as an
enzymatic model to assess the enzyme carrier ability of REPS-hydrogel. This enzyme is
characterized by the presence of only one Cys residue, which is also the catalytic residue
present in the active site and the enzymatic activity is easily evaluated using the Sörbo
assay [179]. They demonstrated that the REPS solution did not significantly affect TST
activity, even after many hours of incubation and even after photo-polymerization, the
hydrogel embedding TST (TSTREPS-Hy) showed enzymatic activity; these findings suggest
the possibility to use the REPS-Hy as a TST carrier system for cyanide detoxification [146].

Another potential application of TST concerns the use of this enzyme to reduce rumi-
nant animals’ mortality due to cyanide-containing feed ingestion [147]. In fact, phytotoxins
called cyanogenic glycosides are found in many plant species commonly used as a source
of energy for ruminant animals in tropical regions [180,181], such as cassava root; these
compounds produce highly poisonous HCN when consumed leading to high rate of an-
imals’ mortality, representing a big issue particularly for breeding cattle. Supapong and
Cherdthong found that increasing the dose of rhodanese up to 1.0 mg/104 ppm KCN
significantly increased the rate of ruminal HCN degradation. Moreover, they found that,
though the in vitro dry matter digestibility (IVDMD) was suppressed when increasing
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doses of KCN were administered at 600 ppm, the supplementation of rhodanese enzymes
at 1.0–1.35 mg/104 ppm KCN enhanced IVDMD [147].

Finally, the cyanide-detoxifying ability of rhodanese has also been exploited to develop
biosensors for cyanide detection [182–185]. A fundamental issue for optimal performance
in biosensors is preserving the catalytic activity of the enzyme immobilized in bioelectronic
devices [186,187]. De Araujo and colleagues have adsorbed rhodanese onto Langmuir–
Blodgett (LB) monolayers of the phospholipid di-myristoyl-phosphatidic acid (DMPA),
and characterized the enzyme-films by fluorescence spectroscopy, polarization-modulated
infrared reflection-absorption spectroscopy (PM-IRRAS), and atomic force microscopy. LB
films could be a suitable and innovative strategy for the realization of nanostructured films
since monomolecular films can be deposited on solid supports allowing the control of chem-
ical composition and surface density [148]. Accordingly, de Araújo and Caseli showed that
the enzyme activity of rhodanese could be better preserved when immobilized as DMPA
LB film with respect to the homogeneous medium due to interactions of the polypeptide
structure with the phospholipid, resulting in systems with a higher stability after one
month. The Rh-DMPA LB film was tested to detect cyanide in a proof-of-concept approach,
which allows the use of the Langmuir–Blodgett methodology for the future development
of stable colorimetric cyanide sensors with control over the molecular structure [148].

Table 1. Biotechnological applications of the TST enzyme.

TST Applications References

Aureobasidium pullulans
- Biodegradation of cyanide in

cassava wastewater using
immobilized rhodanese on alginate

[144]

Azotobacter vinelandii

- Cyanide removal from cassava mill
wastewater using Azotobacter
vinelandii;

- REPS-hydrogel as enzyme carrier
system;

- TST-microbubbles addition in
PF-hydrogel for the optimization of
3D cellular scaffold

[146,159,188]

Bacillus pumilus and
Pseudomonas putida

- Aerobic cyanide degradation by
bacterial isolates from cassava
factory wastewater

[160]

Bos taurus

- Enzyme therapy in cyanide
poisoning: effect of rhodanese and
sulfur compounds;

- Encapsulation of rhodanese and
organic thiosulfonates by mouse
erythrocytes;

- Characterization of liposomal
vesicles encapsulating rhodanese for
cyanide antagonism;

- Nano-intercalated rhodanese in
cyanide antagonism; Reducing
cyanide concentrations and enhance
fiber digestibility in ruminant
animals;

- Immobilized rhodanese on
sepharose for cyanide detoxification

- Rhodanese incorporated in
Langmuir–Blodgett films of
dimyristoylphosphatidic acid

[147,148,164,168,172–
174,176–178]
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Table 1. Cont.

TST Applications References

Bos taurus and
Saccharomyces cerevisiae

- Biosensor for cyanide detection [182,183,185]

Pseudomonas aeruginosa

- Cyanide detoxification by
recombinant bacterial rhodanese;

- Involvement of pseudomonas
aeruginosa rhodanese in protection
from cyanide toxicity

[23,158]

Rattus norvegicus
- Immobilized rhodanese on

polyacrylamide gel [163]

More recently, the application field of TST is represented by the optimization of hydrogel-
based cellular scaffolds for tissue engineering and regenerative medicine [146,188,189]. TST
was also used in the context of the study and design of a new hydrogel-based scaffold for
three-dimensional (3D) cell cultures with potential applications in tissue engineering and re-
generative medicine. Mauretti and colleagues produced bovine serum albumin microbubbles
(MBs) coated with recombinant TST from Azotobacter vinelandii and incorporated the TSTMBs
into photo-polymerizable polyethylene glycol-fibrinogen hydrogel (PFHy), with the aim to
realize H2S-releasing scaffolds to promote the human Lin− Sca-1pos cardiac progenitor cells
(hCPCs) proliferation and differentiation [188]. In particular, the proliferation of hCPCs into
3D TSTMBs-PFHy molds was monitored in a cell culture medium with the addition of 3 mM
of thiosulfate and a significant increase in cell proliferation with respect to PFHy samples was
detected [188]. The observed increase in cell proliferation, obtained both with the addition of
TST and thiosulfate in the medium and embedding TSTMBs in the PFHy, was linked to the
slow H2S release over time which exerts an antioxidant protective effect on cells, therefore
stimulating cell growth [188]. All of these biotechnological applications are possible for the
great structural and functional stability of this enzyme.

Certainly, this property of TST together with the recent discovery of its relevance in
metabolic diseases, such as diabetes, could favor the development of new bio-medical
applications of this enzyme in the future.
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