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Abstract We study a class of early universe cosmologi-
cal models based on Einstein–Cartan gravity and including a
higher derivative term corresponding to a power of the Holst
scalar curvature. The resulting effective action is basically
given by General Relativity and an additional neutral pseu-
doscalar field (the pseudoscalaron), unequivocally related to
the corresponding components of the torsion, that necessarily
acquire a dynamics. The induced pseudoscalaron potential
provides a realistic inflationary phase together with a very
rich postinflationary epoch, resulting from the coupling of
the pseudoscalaron to ordinary matter.
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1 Introduction

The theory of cosmological inflation [1–6] (for reviews, see
[7–11]) provides a comprehensive explanation for the origin
of the special initial conditions that support the standard Hot
Big Bang (HBB) theory. These conditions include the flat-
ness of the three-dimensional constant time hypersurfaces,
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the homogeneity and isotropy of the cosmic microwave back-
ground (CMB), the apparent absence of heavy relic parti-
cles such as magnetic monopoles, and the large (comoving)
observable entropy. Additionally, inflation generates adia-
batic, gaussian, and almost scale-invariant scalar metric per-
turbations. These perturbations are responsible for both mat-
ter inhomogeneities, that lead to the formation of the large-
scale structures, and the temperature anisotropies observed in
CMB photons. Furthermore, inflation also gives rise to ten-
sor perturbations, i.e. gravitational waves (GW), that could
be detected if the inflationary energy scale is sufficiently
high [12–14]. The inflationary stage can be triggered in vari-
ous ways, although the simplest one is the single-field slow-
roll scenario [15,16]. In this class of models, it is assumed
that below the Planck scale, a single, homogeneous, neu-
tral (spin 0), minimally coupled and canonically normalized
(pseudo)scalar field φ called the inflaton, plays the domi-
nant role within the stress-energy tensor Tμν of the Universe.
Specifically, the inflaton field is characterized by a scalar
potential V (φ), known as the inflationary potential, which
exhibits an almost plateau-like region and a global vacuum.
Initially, the inflaton field is misaligned from the minima
and slowly moves through the flat region. As a consequence,
the potential contribution dominates over the kinetic term
(φ̇2 � V (φ)), and it mimicks the presence of a false vac-
uum or a (transient) effective cosmological constant, whose
energy density contribution, V (φ) ∼ M4

in f � M4
p, leads to

an almost de Sitter expansion of the Universe. Once the infla-
ton crosses a total distance �φ [17–22] and reaches a slow-
roll-breaking value, inflation ends. As a results, the kinetic
term becomes important and the inflaton rapidly falls down
to the global vacuum, around which it begins to oscillate. The
inflaton field should also be coupled to the degrees of freedom
of the Standard Model (SM) or of its hypothetical extensions
(BSM), enabling the transfer of energy density stored in the
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field condensate to the SM (or BSM) sectors. The reheat-
ing of the Universe then occurs, resulting in a hot plasma of
SM (or BSM) particles with the required (comoving) entropy
and paving the way to the initial standard radiation dominated
phase of the HBB cosmology (see [23–29] for perturbative
reheating, [30–37] for nonperturbative reheating and [38–42]
for reviews).

The depicted single-field slow-roll inflationary scenario
should naturally arise within a more fundamental scheme,
where both extensions of the SM of particle physics at a scale
higher than the electroweak one and of General Relativity
(GR) are consistently coupled in a full quantum theory. The
only available examples of such theories are (Super)strings
or M-theory [43,44]. They cure the non-renormalizability
[45,46] of GR and typically predict effective actions contain-
ing exactly additional exotic matter and gauge fields together
with modified (super)gravities. Unfortunately, a complete
(realistic) top-down model is still not available starting from
ten or eleven dimensions, due to the huge number of vacua
and to the technical difficulties of selecting in a clean and
complete way a four dimensional preferred vacuum. In this
paper, we thus take a (bottom-up) effective action point of
view (see e.g. [47] for a general treatment), showing an exam-
ple of a class of theories (developed in [48]) where the inflaton
comes unequivocally from geometry. In the framework of an
Einstein-Cartan [49–52] extension of GR (see also [53–63]
for recent early universe developments) it is indeed possible
to integrate out some components of the connection. Intro-
ducing a suitable non-linear term related to a power of the
Holst curvature term [64–66], one gets a dynamical pseu-
doscalar field (the pseudoscalaron) equipped with a potential
able to drive an inflationary phase and, possibly, the subse-
quent reheating of the Universe. The pseudoscalaron would
not exist in a Riemannian geometry, and can be coupled to
SM (or BSM) matter. Many other examples in the same class
can be studied, giving rise to an interesting zoo of inflation-
ary models, fully compatible with the current observational
evidences. Moreover, the study of the rich post-inflationary
epoch could also provide interesting windows towards an
understanding of the reheating phase, leptogenesis, stochas-
tic primordial GW background and Dark Matter. We will
sketch a description of some of these issues, postponing a
more detailed analysis to forthcoming papers. The plan of the
paper is as follows. In Sect. 2, we briefly review the Palatini
approach to metric-affine extensions of GR [67–73], where
the affine connection is promoted to be independent of the
metric. We also review how to build a class of effective field
theories where the torsion of the Einstein–Cartan connec-
tion is dynamical and classically equivalent to a pseudoscalar
field, related to the so called Holst curvature term [64–66].
Finally, we introduce our simple class of modified gravities,
deriving the Lagrangian of the canonically normalized pseu-
doscalaron field. The pseudoscalaron potential is studied in

detail in Sect. 3, where we show how it is suited for inflation
in a single-field slow-roll cosmological scenario. In Sect. 4,
we numerically solve the inflationary equation of motion for
the pseudoscalaron evolution, computing the corresponding
potential slow-roll parameters (PSRP) and obtaining predic-
tions for the scalar spectral index and the tensor-to-scalar
ratio. We utilize the standard COBE normalization to con-
strain both the inflationary scale and the parameters of the
scalar potential. In Sect. 5, we provide an overview on the
postinflationary phase for the whole class of models, stress-
ing the dependence of the reheating epoch on the powers of
the introduced non-linear Holst scalar curvature term. In par-
ticular, we discuss qualitative features of the models, leaving
a quantitative deeper analysis to future publications. Sec-
tion 6 contains our final remarks and comments, with a sum-
mary of the results and also mentioning several open per-
spectives.

Throughout this paper, we use natural units with h̄ = c =
1. The reduced Planck mass is denoted as MP = 1/

√
8πGN ,

where GN indicates the gravitational Newton constant. We
adopt the “mostly plus” spacetime signature (−,+,+,+)

for the four-dimensional Lorentzian spacetime metric.

2 Einstein–Cartan gravity and the pseudoscalaron from
dynamical torsion

The original Starobinsky cosmological model demonstrated
that (trace anomaly) gravitational higher-order corrections
could drive a successful inflationary phase. Subsequently,
such proposal was revisited and it was soon realized that
(i) inflation is basically controlled just by the R2 correction
and that (ii) this version is classically equivalent to GR plus
an additional scalar field, the so-called scalaron, canonically
coupled to GR and equipped with a nontrivial potential [74–
78]. This insight was also recognized in the supergravity con-
text [79] and further extended, suggesting that effective mod-
ified gravity theories with a (phenomenological) lagrangian
density of the form f (R) could correspond to the well known
scalar-tensor theories [80–82]. In an effective field theory
approach that aims to describe the coupling of the Standard
Model of particle physics to gravity, higher order terms also
emerge quite naturally by quantum corrections1 or in the
realm of UV (quantum) completions of GR, like Supergrav-
ities or (Super)string/M-theory. Moreover, such extensions
of GR are better described if the connection is promoted to
be an independent field with respect to the metric. Indeed,
the choice of (metric and torsionless) Levi–Civita connection
in GR is a convenient option, basically related to the choice
of the (natural) Einstein–Hilbert action. A metric-affine con-
nection differs from the Levi–Civita connection by a tensor

1 As happens in the original Starobinsky investigation.
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that we dubb (as in [48]) distorsion. Gravity theories based
on a generic (linear) affine connection are known as “metric-
affine” gravities [67–73]. In this paper, we limit ourselves
to Einstein–Cartan manifolds, where the connection has tor-
sion but is metric compatible. The reason is that spinor fields
coupled to gravity must also be included in the matter sector.
Following the notations and conventions in [48], the distor-
sion is defined as

C ρ
μ σ ≡ A ρ

μ σ − � ρ
μ σ , (1)

whereA ρ
μ σ is the generic connection, while �

ρ
μ σ is its Levi–

Civita component. Obviously, the torsionTμνρ is the antisym-
metric part of the distorsion

Tμνρ ≡ Cμνρ − Cρνμ. (2)

The curvature associated with A ρ
μ σ is defined by

R ρ
μν σ ≡ ∂μA ρ

ν σ − ∂νA ρ
μ σ + A ρ

μ λA λ
ν σ − A ρ

ν λA λ
μ σ . (3)

and can be expressed in terms of C ρ
μ σ as

R ρ
μν σ = R ρ

μν σ + DμC
ρ

ν σ − DνC
ρ

μ σ

+C ρ
μ λC

λ
ν σ − C ρ

ν λC
λ

μ σ , (4)

where R ρ
μν σ is the “standard” (Levi–Civita) Riemann ten-

sor. The curvature tensor can be contracted to provide the
usual Ricci scalar curvature

R ≡ R μν
μν (5)

and a pseudoscalar called the Holst invariant (see [64–66])

R′ ≡ εμνρσRμνρσ , (6)

where εμνρσ is the totally antisymmetric Levi–Civita tensor
with

√−g ε0123 = 1. Note that R′ vanishes for C ρ
μ σ =

0, namely when the connection is the distorsionless Levi–
Civita one. This is the reason why in the standard formulation
of GR R′ is always absent. However, it plays a prominent
role in the class of theories we are going to consider, where
the distorsion is dynamical. As shown in [48], they can be
described using an action of the form

S[gμν,�] =
∫

d4x
√−g (α(�)R

+β(�)R′ + �(�,R,R′) + �(�,D�,C)
)
,

(7)

where with � we generically denote all fields that do not
depend upon the distorsion and enter the action in combina-
tions that respect the (global and local) symmetries present
in the lagrangian, together with its scalar nature. It should
be noticed that the α and β functions contain (possible)
non-minimal couplings to the scalar and pseudoscalar cur-
vatures, while � is an arbitrary function of the indicated
fields and curvatures that brings the non-linear terms. It must
be chosen appropriately (see Ref. [48] for more details) in

order to guarantee that field redefinitions do not take the
model back to cases where the distorsion is non-vanishing but
non-dynamical. Finally, �(�,D�,C) contains the “matter”
fields. Notice that it depends on the distorsion through the
covariant derivatives built out of the whole A connection,
and thus on C .

In this paper, we focus on a simple class of theories that
are exactly solvable and give rise to an interesting set of
inflationary models where the inflaton can be identified with
a pseudoscalar field representing exactly a pseudo-scalar
combination of the distorsion components, thus originating
directly and unequivocally from the geometry of the under-
lying spacetime. To stress the inflationary scenario, we take
� = 0 and select 2α(�) = M2

P (thus directly the “Ein-
stein frame”) and 4γβ(�) = M2

P where γ is known as the
Barbero–Immirzi parameter [83,84]. Moreover, we choose
� depending solely by the pseudoscalar curvature and of the
form2

�(R′) = ξ R′ p (8)

where p > 1 is a real number and ξ is a coupling constant
with the dimensions of mass [m]4−2p. As shown in [48], one
may introduce an auxiliary pseudoscalar field z, in such a
way that the considered model is classically equivalent to

S[gμν, z] =
∫

d4x
√−g

[
M2

p

2
R +

(
β + ∂�(z)

∂z

)
R′

+�(z) − z
∂�(z)

∂z

]
(9)

provided ∂2�
∂z2 �= 0. Indeed, the equation of motion of the aux-

iliary fields yields z = R′, giving back the previous model
on-shell. It is now an easy algebraic exercise to decompose
the distorsion into its irreducible components and to integrate
it out. Defining the quantity

B(z) = β + ∂�(z)
∂z

M2
P

(10)

it happens that its derivative sources the equations of motion
of the vectorial and pseudovectorial components of the dis-
torsion. In other words, on shell the action can be written
as the sum of the Einstein–Hilbert action and the lagrangian
density of the pseudoscalar field z,

S[gμν, z] =
∫

d4x
√−g

×
{
M2

P

2
R − K (z)

(∇B(z))2

2
− V (z)

}
, (11)

2 Some aspects of the p = 2 case have already been discussed in [85].
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where R is the usual Levi Civita scalar curvature, the function
K (z) reads as

K (z) = 24M2
p

[1 + 16B2(z)] (12)

and the potential results

V (z) = z
∂�(z)

∂z
− �(z). (13)

The action in Eq. (11) suggests that B(z) brings about the
(non-canonical) kinetic term related to the pseudoscalaron
z, that in turn certainly is not a ghost, since K (z) is always
positive. As usual, a field redefinition allows to rewrite the
pseudoscalar action in a canonical way. Firstly, we have to
introduce a pseudoscalar field φ whose kinetic term is the
standard one. This can be done letting

φ(z) =
∫ z

dζ
√
K (ζ ). (14)

The expression of K (z) in terms of B(z), allows us to estab-
lish the universal relation between the pseudoscalar field φ

and B(z), which holds for the whole considered class of mod-
els, i.e.

φ(z) − φ0 =
√

3

2
MP sinh−1 [4B(z)], (15)

where φ0 is an integration constant. Secondly, we need to
invert the previous relation to find z as a function of φ, in
order to find the potential V = V [z(φ)]. This procedure
involves the solution of a complicated non-linear differential
equation related to �(z) and its first derivative. In most cases,
it is not possible to find an analytic solution. Fortunately, the
simple form of our choice in Eq. (8) allows to do that, as
shown in the next section.

3 Inflationary model

The assumption of Eq. (8) allows to write the pseudoscalar
sector of the action (11) in terms of the canonically normal-
ized field φ. Indeed, the potential can be written as

V (z) = ξ(p − 1)z p (16)

and Eq.(15) can be explicitly inverted to give

z p−1 = 1

ξ p

[
M2

P

4
sinh

(√
2

3

1

MP
(φ(z) − φ0)

)
− β

]
.

(17)

Therefore the final cosmological action is

S[gμν, φ] ∼
∫

d4x
√−g

(
M2

p

2
R − 1

2
∂μφ∂μφ − V (φ)

)
.

(18)

Here g is the determinant of the assumed Friedmann–
Lemaitre–Robertson–Walker (FLRW) metric tensor gμν ,
with spacetime line element given by

ds2 = −dt2 + a2(t)dl2 (19)

where dl is the line element of the three-dimensional spatial
subspace, t is the cosmic time and a(t) is the dimensionless
cosmic scale factor, which allows to define the standard Hub-
ble rate H(t) = ȧ/a. Finally, the scalar potential comes out
to be

V (φ) = p − 1

pp/(p−1)

1

ξ
1

p−1

×
∣∣∣∣
M2

p

4
sinh

(√
2

3

1

Mp
(φ − φ0)

)
− β

∣∣∣∣
p

p−1

. (20)

The evolution of the inflaton as a function of the cosmic
time t is described by the standard Einstein–Klein–Gordon
equations

φ̈(t) + 3H(t)φ̇(t) + dV (φ)

dφ
= 0, (21)

H2(t) = 1

3M2
p

(
1

2
φ̇2(t) + V (φ)

)
, (22)

properly equipped with a set of initial conditions (for the field
and its derivative) of the form

φ(t∗) = φ∗, φ̇(t∗) = φ̇∗. (23)

where the time t∗ is meant to be close enough to the hori-
zon crossing era of observed cosmological scales, typically
around 50/60 e-folds before the end of inflation. The vac-
uum expectation value (vev) v of the field at the minimum
of the potential is not constrained and typically could differ
from φ = 0, as happens in models with a spontaneous sym-
metry breaking. To select an inflationary model with v = 0
and to interpret the pseudoscalaron φ as a particle oscillat-
ing around a flat Lorentz invariant vacuum, thus avoiding a
Cosmological Constant term associated to the potential, it is
customary to choose appropriately the integration constant
φ0. In this respect, it is useful to introduce the combination

X (φ) =
√

2

3

φ

Mp
+ θγ (24)

where

θγ = sinh−1(γ −1), (25)

with γ the Barbero–Immirzi parameter. The condition
V (φ) = 0 for φ = 0 implies that

φ0 = −
√

3

2
Mp sinh−1 (γ −1). (26)
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In conclusion, the scalar potential can be written in the con-
venient form

V (φ) = M4
in f f0(φ), (27)

where the scale of inflation can be identified with

M4
in f = p − 1

pp/(p−1)

1

ξ
1

p−1

∣∣∣∣
M2

p

4γ

∣∣∣∣
p

p−1

, (28)

while the dependence on the field is encoded in

f0(φ) =
∣∣∣∣γ sinh X (φ) − 1

∣∣∣∣
p

p−1

. (29)

In the spirit of an effective field theory approach, it is also use-
ful to write the coupling strength in the form ξ = ξ0/M

2p−4
p ,

where ξ0 is dimensionless. The sign of the Barbero-Immirzi
parameter determines the direction of the slow-roll phase.
Specifically, the slow-roll phase occurs for decreasing val-
ues of the inflaton field (i.e. φ̇ < 0) for negative values of
γ , while it occurs for increasing values of φ (i.e. φ̇ > 0) for
positive values of γ . In Fig. 1 both the global shape of infla-
tionary potential and the vacuum geometry are shown, for
γ = −10−3 and some chosen pairs (p, Min f ). The Barbero–
Immirzi parameter models the height and shape of the infla-
tionary potential. It is straightforward to show that smaller
values of γ (e.g. ∼ |10−2|) implies a higher inflation scale
and a shorter plateau. The parameter p controls the exten-
sion of the inflationary plateau, the asymptotics of the poten-
tial for large field values as well as the vacuum geometry.
Indeed, as p increases, the plateau region becomes longer
and the vacuum geometry becomes more and more cuspy.
It is worth noting that the shape of the inflationary potential
closely resembles that of some superstring-derived inflation-
ary scenarios such as large volume inflation [86] and in par-
ticular fibre inflation [87–89] (see also [90] for an overview
on (super)string-inspired inflationary cosmology). For exam-
ple, the expanded form of the scalar potential for p = 2 and
γ < 0 can be written as

V (φ) = M4
in f

(
a0 − a1e

−bφ/Mp + a2e
−2bφ/Mp

+a3e
bφ/Mp + a4e

2bφ/Mp
)

, (30)

where b =
√

2
3 and the coefficients ai are positive and read

a0 = 1 − γ 2

2 ; a1 = |γ |e−θγ ; a2 = γ 2

4
e−2θγ ; (31)

a3 = |γ |eθγ ; a4 = γ 2

4
e2θγ .

The mathematical difference with the fibre inflation model
lays on the exponential growth of V (φ) for large field values.
In the superstring case, the divergence of the potential is just
driven by a single positive exponential term, while in the

present case there are two exponential contributions related to
the a3 and a4 coefficients. Exponential potentials of the form
V ∼ ek φ/Mp are also interesting in string theory because
they can provide some clues on the very onset of inflation,
due to the “climbing” phenomenon. In certain orientifold
models (see [91] for a review) corresponding to k ≥ 3/2
in d = 10, a range whose d = 4 counterpart would be
for k ≥ √

6, the dilaton can only emerge from the initial
singularity “climbing” the exponential potential and reaching
a turning point before a descent phase that can inject slow-roll
inflation [92–94]. With an exponential well, like in our case,
within the interesting range p/(p − 1) > 3 (or p < 3/2),
the behaviour near the singularity is even more complicated
[95], with a chaotic sequence of bounces.

In the following sections, we will study the inflationary
phase related to the potential in Eq. (27) for negative values
of γ .

4 Inflationary phase

To start the analysis of the inflationary scenario, it is funda-
mental to characterize the slow-roll parameters and thus to
compute the derivatives of the potential. One gets

V ′(φ) = M4
in f

Mp
f1(φ), (32)

where

f1(φ) =
√

2 γ p cosh X (φ) |γ sinh X (φ) − 1| p
p−1

√
3 (p − 1) (γ sinh X (φ) − 1)

, (33)

and

V ′′(φ) = M4
in f

M2
p

f2(φ), (34)

with

f2(φ) = 2 γ p |γ sinh X (φ) − 1| p
p−1

3(p − 1) (γ sinh X (φ) − 1)2

×
(

γ

p − 1
(p sinh2 X (φ) + 1) − sinh X (φ)

)
.

(35)

The introduced parametrization easily provides the poten-
tial slow-roll parameters [16] purely as combinations of the
functions fi (φ). In particular, at the leading order the first
two PSRP are

εV (φ) = 1

2

(
f1(φ)

f0(φ)

)2

(36)

and

ηV (φ) = f2(φ)

f0(φ)
, (37)
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Fig. 1 First panel: pseudoscalaron potential normalized to a chosen
reference scale M4

re f ∼ 1062 GeV4. The parameter p controls the exten-
sion of the inflationary plateau. In particular, smaller values of p favor
a potential uphill climbing for smaller values of the scalar field while
larger values of p tend to suppress the potential uphill climbing, which

begins at larger field values. Second panel: pseudoscalaron potential
around the vacuum. The parameter p also governs the vacuum geome-
try. It is evident that when p increases, the anharmonic terms around the
vacuum become significant also for |φ| � Mp . Moreover, for p > 2
the potential is cuspy around the minimum
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namely

εV (φ) = γ 2

3

(
p

p − 1

)2 cosh2 X (φ)

(γ sinh X (φ) − 1)2 (38)

and

ηV (φ) = 2 γ p

3(p − 1) (γ sinh X (φ) − 1)2

×
(

γ

p − 1
(p sinh2 X (φ) + 1) − sinh X (φ)

)
.

(39)

As usual, the PSRP allow to infer the inflationary predictions.
The (superhorizon solutions of the) scalar and tensor power
spectra in terms of the horizon crossing epoch commonly
read as

PS(k) ∼ 1

8π2M2
p

H2

εV

∣∣∣∣
k=aH

, PT (k) ∼ 2

π2

H2

M2
p

∣∣∣∣
k=aH

(40)

and become, in terms of some horizon crossing inflaton value
φ

PS(φ) ∼ M4
in f

18 π2 M4
p γ 2

(
p − 1

p

)2

× (γ sinh X (φ) − 1)2

cosh2 X (φ)

∣∣∣∣γ sinh X (φ) − 1

∣∣∣∣
p

p−1

(41)

and

PT (φ) ∼ 2 M4
in f

3 π2 M4
p

∣∣∣∣γ sinh X (φ) − 1

∣∣∣∣
p

p−1

. (42)

The related scalar spectral index and tensor-to-scalar ratio at
first order in the PSRP result

nS(φ) ∼ 1 − 6εV (φ) + 2ηV (φ), (43)

r(φ) ∼ 16εV (φ), (44)

or

nS(φ) ∼ 1 − 2 γ 2

3

(
p

p − 1

)2 cosh2 X (φ)

(γ sinh X (φ) − 1)2

+ 4 γ p

3(p − 1) (γ sinh X (φ) − 1)2

×
[

γ

p − 1

(
p sinh2 X (φ) − 1

)
− sinh X (φ)

]

(45)

and

r(φ) ∼ 16

3
γ 2
(

p

p − 1

)2 cosh2 X (φ)

(γ sinh X (φ) − 1)2 . (46)

The primary focus lies in computing such inflationary pre-
dictions for inflaton values corresponding to a time interval

compatible with the number of e-folds before the end of infla-
tion between 60 and 50, as usual. These inflaton values can
be roughly or qualitatively determined by examining the final
portion of the slow-roll plateau region of the scalar potential
V (φ). Nevertheless, a preferred approach is to determine the
inflaton values by exactly solving the inflationary equation
of motion in Eq. (21), reformulated using as independent
“clock” variable the number of e-folds instead of the cosmic
time. One gets

d2φ

dN 2 + [3 − εN ] dφ

dN
+ [3 − εN ]Vef f (φ) = 0, (47)

where the εN slow-roll parameter in terms of N is defined as

εN = 1

2M2
p

(
dφ

dN

)2

, (48)

and

Vef f (φ) = Mp

√
2εV (φ). (49)

Equation (47) is a second-order differential equation, nonlin-
ear with respect to the first derivative. It includes an effective
potential term Vef f determined by the first slow-roll param-
eter εV . Unfortunately, this equation cannot be solved ana-
lytically and requires numerical integration. The result is an
inflationary field trajectory φ(N ) that provides inflationary
predictions as functions of N , the number of e-folds before
the end of inflation. Before proceeding with the numerical
integration, it would be interesting to explore the slow-roll
limit of the equation and attempt to find a close, albeit approx-
imate, relation between φ and N . In the slow-roll approxi-
mation, where the inertial term and εN are subdominant

d2φ

dN 2 � 1, εN � 1, (50)

the equation can be approximated with a linear first order
ODE

dφ

dN
+ Mp

√
2εV (φ) ∼ 0, (51)

whose integration allows to relate the number of e-folds
before the end of inflation to εV (φ) and to the field values by

N (φ, φend) ∼ 1

Mp

∫ φ

φend

dφ′ 1√
2εV (φ′)

. (52)

The number N depends on the value of φ at the end of infla-
tion, defined by the condition

εV (φend) = 1. (53)
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Using Eq. (38), one gets the two solutions

φ±
end

Mp
=
√

3

2

⎡
⎣sinh−1

⎛
⎝− γ

σ 2 − γ 2 ±
√

γ 2

(σ 2 − γ 2)2 − σ 2 − 1

σ 2 − γ 2

⎞
⎠

− sinh−1
(
γ −1

)⎤⎦ , (54)

where

σ 2 = γ 2

3

(
p

p − 1

)2

. (55)

Of course, given the shape of the pseudoscalaron potential
in Fig. 1, φend must be chosen as the smaller, positive value
among the two solutions in Eq. (54) (since γ < 0). At the
same time, the integrand of N (φ, φend) can be computed as

1√
2εV (φ′)

=
√

3

2

p − 1

γ p

[
γ tanh X (φ′) − 1

cosh X (φ′)

]
.

(56)

Hence, the slow-roll solution N (φ) results

N (φ, φend) = 3(p − 1)

2p

[
ln

∣∣∣∣ cosh X (φ)

∣∣∣∣

− 1

γ
tan−1 (sinh X (φ))

] ∣∣∣∣
φ

φend

= 3(p − 1)

2p
ln

∣∣∣∣ cosh X (φ)

∣∣∣∣∣∣∣∣ cosh X (φend)

∣∣∣∣
−3(p − 1)

2 γ p

[
tan−1 (sinh X (φ))

− tan−1 (sinh X (φend))
]
. (57)

The first contribution just depends on the (log)ratio of two
hyperbolic cosine while the second contribution is the dif-
ference between the Gudermannian function computed at φ

and φend . In general, this equation cannot be exactly inverted
in terms of the scalar field. However, it remains a very useful
tool to compute pairs (N , φ) that can be used, for exam-
ple as initial conditions to trigger the dynamics described by
the Eq. (47). For example, if γ ∼ −10−3, then for p = 2,
φ(60) ∼ 5.45 while for p = 4 one gets φ(60) ∼ 4.99. Note
that for values of the Barbero-Immirzi parameter |γ | � 10−1

Eq. (57) can be properly approximated as

N (φ, φend) ∼ 3(p − 1)

2|γ |p
[
tan−1 (sinh X (φ))

− tan−1 (sinh X (φend))
]
. (58)

It is possible to invert such expression and find

X (φ) ∼ sinh−1(tan ω(N )),

φ(N )

Mp
= −

√
3

2
θγ +

√
3

2
sinh−1(tan ω(N )), (59)

where ω(N )

ω(N ) = 2|γ |p
3(p − 1)

N (φ, φend) + tan−1 (sinh X (φend)) .

(60)

In Fig. 2 we provide the inflationary predictions derived
through numerical integrations for N in the range [50, 60].
In particular, we show the standard (ns, r) plane for the
three cases of the parameter p, i.e. p = 2, 3, 4 and a set of
Barbero–Immirzi γ . The white region represents the Planck
constraints [96] for the scalar spectral index ns , namely
ns = 0.9649 ± 0.0042 at 68% of confidence level (CL). The
BICEP/Keck upper limit on the tensor-to-scalar ratio [97],
i.e r0.05 < 0.036 at 95% CL, is not visible. The computation
shows that as the parameter p decreases, the inflationary pre-
dictions shift towards the central region and become more and
more compatible with the Planck constraints. This means that
both the scalar spectral index and the tensor-to-scalar ratio
tend to decrease for a fixed value of γ . At the same time,
the ns–r curves tend to cluster together as γ becomes larger
(in modulus). For example, if N ∼ 55 and γ ∼ −10−3

then ns ∼ 0.9650 and r ∼ 0.0035. On the other hand, if
one considers the case p = 2 the scenario γ ∼ −10−2 is
practically disfavoured by the standard observations while
for γ ∼ 0.5 × 10−2 the compatibility with the observations
is almost recovered. Instead, the general predicted amplitude
of GW via the r parameter is of the order of ∼ 10−3 and it
is aligned with the plethora of models typically inspired by
supersymmetry, supergravity or superstring theories.

Let us also comment about the scale of inflation, namely
the value of Min f . By requiring that the scalar power
spectrum of Eq. (41) coincides with the COBE measured
PCOBE
S ∼ 2 × 10−9, we obtain

Min f

Mp
∼

⎡
⎢⎢⎢⎢⎣8 π2 γ 2 PCOBE

S

(
p

p − 1

)2 cosh2 X (φ)

(γ sinh X (φ) − 1)2

× 1∣∣∣∣γ sinh X (φ) − 1

∣∣∣∣
p/(p−1)

⎤
⎥⎥⎥⎥⎦

1/4

. (61)

The previous expression, fixed γ , p and N (or in other words
the associated value of φ), allows to constrain the coupling
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Fig. 2 Observational constraints on pseudoscalaron inflation for three
different values of the parameter p and a set of values for the Barbero–
Immirzi parameter. The case p = 2 shows that large values (in modulus)

of the γ parameter are heavily disfavoured while smaller values turns to
be compatible with the Planck constraints. As p gets larger, large values
of the Barbero–Immirzi parameters tend to become partially compatible
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parameter ξ that can be inferred to be

ξ ∼
[
p − 1

p
p

p−1

1

M4
in f

∣∣∣∣
M2

p

4γ

∣∣∣∣
p/(p−1)

](p−1)

. (62)

It is important to note that such a coupling constant depends
in a non-trivial way on the ratio of the Planck mass on a
certain power of the Barbero–Immirzi parameter γ . In Table
1, we present various scenarios for the inflationary energy
scale Min f and the magnitude of the dimensionless coupling

constant ξ0 = ξM2p−4
p . Notably, it can be observed that

the coupling strength is significantly suppressed for p > 2,
despite a slight variation in the inflation scale. This outcome
directly stems from the power (p−1): as p > 2, the dominant
contribution becomes M−4

in f , leading to a damping effect on
the value of ξ .

5 Postinflationary phase

The inflationary phase typically dilutes all the preexisting
energy and entropy densities, providing a very cold and
almost empty Universe. However, as the pseudoscalaron
reaches the corresponding slow-roll ending condition value
φend , it rapidly relaxes in the global vacuum and starts to
oscillate, paving the way for the reheat of the Universe. The
properties of the scalar field oscillations depend on the local
vacuum geometry and are obviously damped by the back-
ground Universe expansion. In pseudoscalaron inflation there
are basically two possible scenarios. Let us start by the first
one, already partially discussed in [85] and relative to the
case in which the potential in Eq. (27) exhibits a smooth
global minimum. It happens in the case with p = 2, where
the pseudoscalaron potential can be expanded around the
(Lorentz invariant) vacuum as

V (φ) ∼ 1

2
m2

φφ2 + gφ

3
φ3 + λφ

4
φ4 + · · · (63)

The pseudoscalaron acquires both a finite mass m2
φ =

d2V (φ)/dφ2|φ=0 and higher order self-coupling contribu-
tions. The mass term naturally overwhelms the higher-order
interactions and results larger than the Hubble rate H (mφ �
H ). As a consequence, the (homogeneous) pseudoscalaron
field begins to oscillate with a frequency ωφ compatible
with the mass mφ and with a period of oscillation tφ shorter
than the Hubble time scale tφ ∼ m−1

φ � H−1. In other
words, a Hubble expansion typically contains a huge num-
ber of field oscillations. At this stage of the Universe evo-
lution, the system can be thought of as a condensate of a
large number of heavy pseudoscalaron quanta with mass mφ

and zero momentum. Thus, the inflaton can be described in
terms of a perfect fluid with an averaged equation-of-state
[26–28] wφ = (n − 2)/(n + 2) ∼ 0, since V (φ) ∼ φn

with n = 2. In order to properly reheat the Universe and
to generate the corresponding (comoving) entropy density,
the pseudoscalar inflaton must couple to the particles of the
SM/BSM sectors, producing them in the open decay chan-
nels. Several decay products can appear in the �(�,D�,C)

part of the Lagrangian of Eq. (7). For instance, one may have
spinor fields minimally coupled to Einstein–Cartan grav-
ity. Additional effective couplings among matter fields, that
respect the symmetries of the total lagrangian and that can be
generated by quantum corrections are also allowed. Among
them, quite interesting are effective non-minimal couplings
of scalar fields to the scalar curvatures as well as effective
couplings of (abelian) gauge fields to the vectorial and pseu-
dovectorial components of the distorsion. The former can
give rise, for instance, to decays of the inflaton directly to the
Higgs SM sector [85]. The latter allow mixings of abelian
gauge fields to vector or pseudovector fields, paving the way
to an interpretation of these new dynamical components of
the distorsion as dark photons [48]. The interactions with
ordinary (or dark) matter are very model-dependent, being
connected to the way they mix to the “visible” photon and
to the form of the gravity sector. Some effective interaction
terms of the expansion can be guessed, at least at the low-
est order. For instance, a non-minimally coupled additional
scalar field χ can be considered. It means to have in Eq. (7)
the α term no-longer constant but function of χ . At the lowest
order it results

α(χ) = M2
P

2
+ gχχ2, (64)

where gχ is a dimensionless coupling constant. It results in
an interaction term in the effective Lagrangian of the form

Lχ
int ∼ cφχχ

MP
χ ∂μφ ∂μχ. (65)

Analogously, for a Dirac fermion ψ minimally coupled the
interaction term is of the form

Lψ
int ∼ cφψψ

MP
∂μφ ψ̄ γ 5 γ μ ψ. (66)

The exact coefficients can be obtained by integrating out
the non-dynamical part of the connection, as before. Notice
that the coupling strengths cφi i are typically functions
of the Barbero-Immirzi parameter γ . The inflaton energy
(density) conversion process is characterized by a pertur-
bative phase, sometimes preceded by a preliminary non-
perturbative regime, although the details strongly depend on
the model parameters as well as on the couplings cφi i . In
the case of a negligible or absent nonperturbative regime,
the inflaton decay and the related particle production is just
a single-particle (non collective) process, basically driven
by the decay rates of the inflaton to the daughter particles
�φ→i1,...,in . Such decay amplitudes typically depend on the
inflaton mass, while the total decay amplitude is the sum over
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Table 1 Constraints on inflationary scale and coupling parameter
ξ0 = ξM2p−4

p for some selected values of the Barbero–Immirzi param-
eter and the power p. The simplest case p = 2 provides a very large

coupling ξ while for smaller values, the coupling values is higly sup-
pressed. The inflationary scale could be easily of the order of ∼ 1016

GeV

γ = −10−2 γ = −10−3

p φ(60)/Mp Min f [GeV] ξ0 [GeV]2p−4 φ(60)/Mp Min f [GeV] ξ0 [GeV]2p−4

2 5.53 1.31 × 1016 5.38 × 109 5.45 5.59 × 1015 1.60 × 1013

3 5.16 1.10 × 1016 6.74 × 1019 5.12 4.29 × 1015 1.16 × 1026

4 5.02 1.01 × 1016 1.19 × 1030 4.99 3.85 × 1015 1.28 × 1039

all the possible channels. As is well known, the impact of this
process on the inflaton oscillations about the vacuum can be
modeled by introducing a phenomenological friction term
∼ �φφ̇ in the inflaton equation of motion, that represents a
further source of damping in addition to the standard Hubble
friction. It is important to stress that the computed total decay
amplitude �φ is crucial to establish the out-of-equilibrium
decay of the pressureless pseudoscalaron (average) energy
density ρφ and the corresponding growing of the (SM/BSM)
radiation one ρr , via the usual Einstein–Boltzmann equations
[26–29]

ρ̇φ + 3Hγφρφ = −γφ�φρφ (67)

ρ̇r + 4Hρr = +γφ�φρφ (68)

where γφ = 1 + wφ and wφ = 0 in the present case. The
Hubble parameter is defined by the Freedman equation

H2 = 1

3M2
p

(
ρφ + ρr

)
, (69)

while the initial conditions are

ρφ(tend) = ρ(φend), ρr (tend) = 0. (70)

This evolution is characterized by a final reheating tem-
perature that notoriously scales as Treh ∼ √

Mp�φ . As
qualitatively discussed in [85], the decay amplitude of the
pseudoscalaron to fermion is proportional to ∼ mφm2

ψ/M2
p.

Therefore a quite large fermion mass (e.g mψ � mφ) is
required in order to reach a reheating temperature well above
the electoweak scale. The SM does not contain such heavy
fermions and an interesting possibility would be to insert
in the matter sector, in addition to the SM fields, sterile
right-handed neutrinos (RHN), that naturally possess such
large masses. Moreover, RHN could also work as the cru-
cial ingredients to get nonthermal leptogenesis in this sce-
nario. Clearly, a decay channel of the pseudoscalaron to
non-minimally coupled scalars like that in Eq. (64) would
be sufficient to reheat the Universe in a more efficient way
to the needed temperature. Indeed, the decay rate is indepen-
dent of mχ and proportional to ∼ m3

φ/M2
p. As noted in [85],

the scalar field χ could naturally be identified with the SM
Higgs. Thus, the presence of only the distorsion in the gravity

sector is sufficient to get inflation and reheating, without the
necessity of additional BSM degrees of freedom.

Adding a minimally coupled scalar is also a possibil-
ity. However, there is no direct interaction with the pseu-
doscalaron, since the distorsion does not enter the covariant
kinetic term of the additional scalar. Rather, the two scalars
would naturally mix giving rise, likely, to a multifield infla-
tion.

All the details missed or just mentioned in this brief
description will be presented in a separate publication,
where a quantitative and complete description of perturbative
reheating and Leptogenesis in the proposed scenario will be
given.

Let us now briefly discuss the second class of scenarios,
related to the case where p > 2. As one can immediately
recognize from Eq. (27), the global minimum around φ = 0
is not smooth, being of the form

V (φ) ∼ M4
in f

∣∣∣∣∣∣

√
2(1 + γ 2)

3

φ

Mp

∣∣∣∣∣∣

p
p−1

. (71)

Therefore, the scalar potential exhibits a cuspy behaviour.
Similar potentials occur in many models, like in k-inflation
[98] and in string theory, e.g. in axion monodromy mod-
els and in flux compactifications [99–102]. What happens is
the following: first of all, the field oscillates around the mini-
mum, but clearly the oscillations cease to be harmonic and the
(would be) mass term is divergent. Figure 3 shows an example
of pseudoscalaron oscillation in the usual Minkowski space-
time (upper panel) and in the realistic expanding postinfla-
tionary Universe (lower panel). In the first case, the pseu-
doscalaron starts from a reference plateau field value and
falls in the global vacuum. Here, it exhibits an asymmet-
ric oscillation that is quite regular in the standard (almost)
quadratic scenario, p = 2. However, as p > 2, the cuspy
potential leads to a nontrivial oscillation characterized by
a natural damping. In the second case, the Hubble friction
plays a crucial role in suppressing the oscillation structures
of the previous scenario, although one can always appreciate
the difference between the quadratic and cuspy cases.
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Fig. 3 Prototype pseudoscalaron oscillation in a Minkowski spacetime (upper panel) and in the more realistic postinflationary Universe (lower
panel). The decay of the pseudoscalaron to daughter particles is neglected

In the p > 2 framework, the pseudoscalaron can still be
treated as a perfect fluid that, however, is equipped with a
highly nontrivial EoS given by

wφ = n − 2

n + 2

∣∣∣
n=p/(p−1)

= 2 − p

3p − 2
, (72)

This quantity is generically different from zero when p �= 2
and in the limit of p � 2, the EoS parameter takes the
value −1/3, mimicking the same effect of a linear potential
V (φ) ∼ |φ| around the vacuum. Certainly, the inflaton is

still able to transfer energy to the decay products. Indeed,
as shown in [103,104], cuspy potentials naturally lead to a
so-called preheating phase, where the (highly efficient) infla-
ton energy density conversion process is realized through
an exponential growth of (the occupation number of) the
pseudoscalaron decay product modes. In other words, collec-
tive phenomena lead to a very fast reheating of the Universe
because of Bose condensation effects triggered by a decay
product phase space that is sufficiently populated. Preheat-
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ing in the form of parametric resonance can also be treated
when the involved couplings are large (see, for instance,
[32]). In addition, preheating in cuspy potentials can also
give rise to a copious formation of oscillons that source an
additional stochastic background of primordial gravitational
waves (GW) [103,104]. Such GW peaks could be visible
in the future observing run of the LIGO-Virgo experiment
[105]. To summarize, the post-reheating phase of the consid-
ered models with p > 2 is quite rich and interesting and it
deserves, in our opinion, a deeper and more complete anal-
ysis. Again, we will report specific and detailed predictions
on preheating (and related GW generation) in separate, forth-
coming publications.

6 Conclusions and prospects

Fundamental theories containing (extensions of) the SM
coupled to gravity, like superstrings or M-theory, typically
cure the non-renormalizability [45,46] of GR and predict
(Einstein–Cartan) modified gravities coupled to SM or BSM
fields, together with a plethora of additional sectors. Pure
Einstein–Hilbert GR is typically accompanied by quantum
corrections, due to string loops and higher derivative cor-
rections, related to massive string states. In a bottom-up
approach, it is possible to include corrections in an effec-
tive action consisting of a power series in curvature terms
weighted by corresponding powers of the Planck mass. In
this paper, we have discussed a class of models (a sub-
class of those introduced in [48]) where the corrections
to GR are unequivocally linked to the geometry of the
(non-Riemannian) spacetime. In particular, we have con-
sidered Einstein–Cartan gravities with dynamical distorsion
and higher derivative terms given by powers of the so-called
Holst scalar curvature that, as known, vanishes in a Rieman-
nian geometry. The resulting effective field theory is equiva-
lent to GR coupled to a pseudoscalar field that can naturally
drive a single-field slow-roll inflationary phase fully com-
patible with the current observational evidences. In addition,
compatible couplings to ordinary matter provide a highly
non-trivial reheating phase that depends on the power p of
the (non-linear) Holst term (see Eq. (8)). Indeed for p = 2
the potential is smooth around the minimum, giving rise to
a standard field oscillation that can source both a preheat-
ing phase and/or a (subsequent) perturbative reheating phase
driven by the decay rates of the inflaton to SM fields or hypo-
thetical BSM fields. On the other hand, for p > 2 the poten-
tial is cuspy around the minimum and the standard, almost
quadratic oscillation phenomenon, is absent. The inflaton
energy density conversion can be realized via a rich pre-
heating phase with a possible production of GW via oscillon
dynamics. Moreover, the coupling of the pseudoscalaron to
heavy RHN and their resulting decay can pave the way for

nonthermal leptogenesis and the generation of the observed
baryon asymmetry of the Universe. We have described in
detail the class of involved models and their inflationary slow-
roll phase. We have also depicted, in a qualitative way, the
postinflationary phase, stressing the involved and peculiar
interesting properties. The richness of the postinflationary
phase requires and deserves a careful and deeper analysis.
We leave it to separate, forthcoming, publications [106,107].
Finally, It would be challenging to discover string theory
setups where similar potentials are realized and give rise
to the “climbing” phenomenon, as explained at the end of
Sect. 3. It would also be important to search for a new class
of Einstein–Cartan gravities that generalize those proposed in
this paper to models that are scale-invariant at any coupling,
along the lines of [53] as well as [108,109].
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