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A B S T R A C T   

Developing sustainable and efficient bifunctional catalysts for oxygen reduction (ORR) and evolution (OER) 
reactions is challenging for energy conversion and storage. This work proposes a hierarchical carbon matrix 
decorated with nitrogen atoms (NC) as a support for obtaining high-performance electrocatalysts based on iron 
and nickel (Fe/Ni@N–C). The effect of different Fe:Ni ratios and the pyrolysis conditions on the catalyst per-
formance were investigated by combining electrochemical tests, N2-adsorption-desorption, X-ray diffraction, 
Transmission Electron Microscopy, and X-ray photoelectron spectroscopy. Once optimized the pyrolysis condi-
tions and the Fe:Ni ratio, the Fe/Ni@N–C catalyst showed high bifunctional OER/ORR activity in a three- 
electrode cell in an alkaline environment (KOH 1 M), with an overall ΔE for the ORR-OER reaction of 0.75 V. 
Fe/Ni@N–C was assembled in a rechargeable zinc-air battery, resulting in an excellent electrochemical perfor-
mance in terms of power density (148.5 mWcm− 2) and durability, outperforming the benchmark Pt/C–RuO2.   

1. Introduction 

Over the last decades, energy demand has constantly increased, and 
finding efficient technological approaches to replace fossil fuels is 
crucial. Moving towards a more sustainable energetic scenario requires 
developing new technologies capable of efficiently exploiting renewable 
sources with as low environmental impact as possible [1,2]. H2-fed 
polymer electrolyte fuel cells and metal-air batteries (MAB) are potential 
power generation candidates for electric vehicles and flexible devices 
due to their high energy conversion efficiency, sustainability, and wide 
availability of raw materials [3–6]. 

MAB has been recognized as a valid alternative to conventional en-
ergy batteries [7,8]. The electrolyte in MAB can be a non-aqueous or 
aqueous medium, depending on the properties of the metals used at the 
electrodes. Although batteries with a non-aqueous electrolyte (e.g., 
lithium-air batteries) are currently more efficient, they often use flam-
mable organic electrolytes, causing safety and environmental issues [9]. 
In contrast, aqueous electrolytes-based batteries are more sustainable 
but may be limited by self-corrosion problems in an alkaline environ-
ment (e.g., Aluminum-Air (AlAB), Magnesium-Air (MgAB) batteries) 

[10,11]. Among MAB, Zinc-Air Batteries (ZAB) are the most advanced 
nowadays due to their considerable theoretical specific energy, low 
costs, abundant reserves, and relatively good cycle stability [12–20]. 

The critical aspect of designing a high-performing ZAB is lowering 
the reaction barrier for the oxygen reduction reaction (ORR) at the 
cathode during discharge and improving the oxygen evolution reaction 
(OER) during recharging [21,22]. The great challenge is, therefore, to 
develop high-performing bifunctional catalysts that facilitate the slow 
kinetics of oxygen-related reactions, being stable and cost-effective at 
the same time. Platinum group metal (PGM)-based materials, particu-
larly Pt/C and RuO2 at alkaline pH, are the reference ORR/OER catalysts 
due to their high electrochemical activity and efficiency [14,23]. 
However, their large-scale use is severely limited due to their scarce 
availability, high cost, and low durability [24,25]. In recent years, 
enormous efforts have been made to develop ORR, OER, and bifunc-
tional ORR/OER catalysts based on transition metals and 
nitrogen-doped carbon (M-N-C) [26–36]. Several strategies have been 
used to enhance catalytic activity, such as the introduction of hetero-
atoms [37–39], transition single metal site (SMS) [40,41], porous 
structures [42,43], defects engineering [44,45], and bimetallic doping 
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approach. This latter strategy is currently most attractive due to the 
increased flexibility of active sites and the further enhancement of 
multi-activities [46]. The performance of the catalysts obtained with the 
bimetallic doping approach depends on the selection of the metal ele-
ments and the synthesis methods. Among the various combinations 
studied in the literature (e.g., Fe-Co [47,48], Zn-Co [49,50], Fe-Mo [51], 
Fe-Cu [52], and Mn–Fe [53]), the Fe–Ni combination supported on 
nitrogen-doped carbon matrices shows high catalytic activity for both 
ORR and OER [54,55]. Despite the advantages of bimetallic doping, the 
effect of the second metal on the catalysts’ electronic structure and the 
resulting catalytic activity is still ambiguous [40,56]. 

In our work, Fe/Ni-doped electrocatalysts were prepared using the 
bimetallic approach on a hierarchically porous carbon matrix decorated 
with nitrogen (NC). The NC matrix was prepared using a phenolic- 
melamine resin, resulting in an effective tuning of the N–C functional-
ities, which is crucial to enhance the introduction of the metal centers, 
therefore boosting the final catalyst performance toward both ORR and 
OER. 

2. Materials and methods 

2.1. Materials 

Melamine (98.0 %), phenol (99.5 %), formaldehyde solution (37 wt 
% in H2O), iron (II) acetate (95.0 %), nickel (II) acetate (99.9 %), zinc 
acetate (99 %), RuO2 (99.9 %), Pt/C (40 wt% Pt), sodium hydroxide, 
potassium hydroxide, Nafion solution (5 wt% in lower aliphatic alcohols 
and water, 15–20 wt%), polytetrafluoroethylene (PTFE, 60 wt% 
dispersion in H2O) and 2-propanol were purchased from Sigma-Aldrich. 
Carbon Vulcan XC-72R was supplied by CABOT Corporation, and carbon 
paper 38-BC, used as a commercial gas diffusion layer, was purchased 
from SGL Technologies. Stainless steel woven wire mesh (0.125 mm 
pore size), used as a current collector, and zinc foil used as an anode was 
purchased from Goodfellow. Millipore water (18.2 MΩ cm @ 25 ◦C) was 
used for the materials preparation and experiments. 

2.2. Synthesis of the nitrogen-carbon (NC) matrix 

0.6 g of phenol and 1.2 g melamine were dissolved in 15 mL of a 0.1 
M NaOH solution in DI water and kept under stirring at 50 ◦C for 30 min. 
After that, 4.2 mL of formaldehyde was added, and the temperature was 
raised and kept at 70 ◦C for 30 min, followed by the addition of 15 mL of 
a 64 mgmL− 1 aqueous solution of Pluronic F127 at 60 ◦C. After 2 h, the 
reaction mixture was diluted with 50 mL of DI water and kept under 
stirring at 60 ◦C overnight. After cooling at room temperature, 30 mL of 
the resulting solution was diluted with 112 mL of DI water, transferred 
in a Teflon autoclave, and heated to 120 ◦C for 24 h. The obtained 
polymer (NC) was washed by vacuum filtration and dried in a room 
chamber at 50 ◦C. 

2.3. Synthesis of Fe/Ni-based electrocatalysts 

300 mg of NC precursor were dispersed in 30 mL of ethanol con-
taining 5 mg of Fe(II) acetate and 19 mg of Ni(II) acetate and kept at 
room temperature under stirring overnight. The resulting impregnated 
polymer was dried in an oven at 50 ◦C and subjected to carbonization 
through pyrolysis in an inert atmosphere (Ar) at 5 ◦C min− 1 up to 250 ◦C, 
then 1 ◦C min− 1 to 600 ◦C, hence 10 ◦C min− 1 to 900 ◦C. 

After these steps, further heat treatment under different conditions 
was carried out to obtain five different samples: 20 min NH3 followed by 
1 h Ar at 900 ◦C (2Ni1Fe-NC), 1 h in Ar followed by 20 min NH3 at 
900 ◦C (2Ni1Fe-NC_a), 20 min in NH3 (2Ni1Fe-NC_b), 1 h in Ar (2Ni1Fe- 
NC_c), and 10 min in Ar (2Ni1Fe-NC_d). 

The metal content was determined by inductively coupled plasma 
(ICP), resulting in 2.5 ± 0.4 wt% of total Fe and Ni content, with a 2:1 
Ni:Fe weight ratio. While maintaining the same metal content, the Ni:Fe 

weight ratio was reduced to 1:1, adapting the abovementioned pro-
cedure and obtaining the 1Ni1Fe-NC sample. 

A metal-free sample was also prepared as a control by adopting the 
same procedure except for the impregnation step of the NC matrix with 
metal salts (NC_d). Table 1 lists the sample prepared, highlighting the 
Ni:Fe ratio and pyrolysis conditions. 

2.4. Preparation of air cathodes 

The Fe/Ni-based electrocatalysts were incorporated into air cathodes 
for ZAB tests. Stainless steel (SS) meshes were used as a current collec-
tor, which was modified with a homemade gas diffusion layer (GDL) as 
follows: 300 mg of Carbon Vulcan were dispersed in 4 mL of ethanol 
containing 400 μL of PTFE emulsion (40 wt% dispersion in H2O). The 
obtained thick slurry was homogenously spread on SS mesh (7 cm2) and 
dried in an oven at 40 ◦C for 5 min. The GDL-modified SS mesh was hot 
pressed twice (80 ◦C and 4.96 MPa) for 1 min. Then, the 38-BC carbon 
paper (CP), used as commercial GDL, was integrated into the GDL- 
modified SS mesh and hot pressed under 80 ◦C and 4.96 MPa for 1 
min. The catalyst layer was prepared by dispersing 24 mg of catalyst into 
a Nafion 5 wt% (160 μL) and isopropanol solution (200 μL), and the ink 
was deposited onto CP by brush painting to a catalyst loading of 3.14 
mgcm− 2. The prepared cathodes were air-dried overnight and hot 
pressed (80 ◦C and 4.96 MPa) for 2 min. According to the same pro-
cedure, an air-cathode based on Pt/C–RuO2 with (Pt:RuO2 1:1 wt ratio) 
was prepared with a 1 mgcm− 2 of catalyst loading and used as a control. 

2.5. Methods of investigation 

Thermogravimetric analysis (TGA) was performed by using a ther-
mogravimetric analyzer TGA/DSC1 Star System (Mettler Toledo) 
working between 25 and 1000 ◦C under an N2 flow, with a heating rate 
of 20 ◦C min− 1. The materials were held in a platinum sample holder 
with a cover having one central vent hole. 

N2-adsorption-desorption analysis was performed by Micromeritics® 
TriStar II Plus, Brunauer-Emmett-Teller (BET) method was used to 
calculate the specific surface area, and the pore volume was deduced by 
the adsorbed quantity of nitrogen at P/P0 = 0.99. The pore size distri-
bution was calculated by the Barrett-Joyner-Halenda (BJH) model of the 
desorption isotherm. Samples were carefully prepared before measure-
ments to remove possible impurities that might have been adsorbed in 
the air; they were kept at 250 ◦C for 4 h under vacuum and then placed 
in sample holders to measure N2 desorption. 

Transmission electron microscope (TEM) images were acquired with 
a Tecnai F30 microscope operated at 300 kV, alongside images obtained 
in the Scanning-Transmission mode with a High Angle Annular Dark 
Field detector (STEM-HAADF). The samples were ultrasonically 
dispersed in ethanol for 15 min and then placed in a Cu carbon grid. 

Scanning Electron Micrographs (SEM) were obtained using a Leo 
Supra 35 field-emission scanning electron microscope (Carl Zeiss, 
Oberkochen, Germany). 

Powder X-ray diffraction (XRD) patterns were recorded using a 
Philips PW1730 diffractometer with Cu Kα radiation (λ = 1.5406 Å). 

The surface chemical composition was evaluated through X-ray 
Photoelectron Spectroscopy (XPS) analysis using a SPECS PHOIBOS 150 

Table 1 
Samples’ label, including metal ratio and pyrolysis conditions.  

Samples Metal ratio (Ni:Fe) Pyrolysis condition 

1Ni1Fe-NC 1:1 20 min. NH3, 1 h Ar 
2Ni1Fe-NC 2:1 20 min. NH3, 1 h Ar 
2Ni1Fe-NC_a 2:1 1 h Ar, 20 min. NH3 

2Ni1Fe-NC_b 2:1 20 min. NH3 

2Ni1Fe-NC_c 2:1 1 h Ar 
2Ni1Fe-NC_d 2:1 10 min. Ar 
NC_d / 10 min. Ar  
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XPS system and monochromatic Al Kα (14866 eV) X-ray source with a 2D 
CMOS true counting detector. The system was calibrated using Au4f 
spectra at 84 eV. The powder samples were placed in a custom-made 
sample holder of electrolytic Cu sputtered with Au. For each sample, 
the measurements involved a full survey and five different Core levels, 
namely C1s, O1s, N1s, Fe2p, and Ni2p. The fittings were performed 
using Kalibri KolXPD software to get a set of constrained parameters for 
each element to be used in every sample. Asymmetric components were 
fitted using a Doniach-Sunjic peak, while Ni2p was evaluated using a set 
of fits for each chemical state, as reported in the XPS methodology found 
in the Supporting Information. 

Electrochemical tests were performed using a standard three- 
electrode cell: either a rotating ring disk electrode (RRDE- 
AFE6R2GCPT, Pine Research Instrumentation) or a rotating disk elec-
trode (RDE-AFE4R2GCPT Pine Research Instrumentation) was used as 
working electrode (WE), whereas a graphite rod as counter electrode 
(CE) and saturated silver/silver chloride electrode (Ag/AgCl 3.3 M) as a 
reference electrode (RE). The measurements were recorded with a VMP3 
Potentiostat (Bio Logic Science Instruments) controlled by a computer 
through EC-Lab V10.18 software. The potential values for all electro-
chemical tests were measured vs. Ag/AgCl (3.3 M) and converted to the 
reversible hydrogen electrode (RHE). 

Before the electrochemical test, the WE was polished with an 
alumina slurry (0.05 μm particle size). The catalysts inks were prepared 
by dispersing 3.4 mg of catalyst in 425 mL of a 2-propanol and 75 μL 
Nafion/H2O solution (0.5 wt%). The suspension was ultrasonicated for 
2 h at room temperature. The ink was then drop-casted onto the glassy 
carbon disk of the WE to a catalyst loading of 0.20 mgcm− 2 and dried in 
a ventilated oven at 40 ◦C for 1 min. 

RuO2 and Pt/C (40 wt% Pt) were used as benchmark catalysts for 
OER and ORR, respectively. RuO2 ink was prepared according to the 
following formulation: 2 mg RuO2 (99.9 %), 150 μL 2-propanol, 14 μL DI 
water and 6 μL Nafion (5 wt%). The total loading was 0.28 mgcm− 2. The 
Pt/C ink was prepared following the formulation of 1 mg of Pt/C (40 wt 
% Pt), 630 μL Milli-Q, 220 μL 2-propanol, 150 μL Nafion (0.5 wt%)/H2O) 
with a Pt/C loading of 40 μgcm− 2 (16 μgcm− 2 Pt). Before deposition on 
the WE, the ink was treated in an ultrasonic bath at 15 ◦C for 1 h. 

The tests were performed in a three-electrode setup with 1 M KOH as 
electrolyte solution purged with N2 for 20 min. Before testing, the cat-
alysts were activated by cyclic voltammetry (CV) in a potential window 
of 1.2–0.3 V vs. RHE at a scan rate of 500 mVs− 1 (200 cycles). 

After purging the electrolyte with either nitrogen or oxygen, linear 
sweep voltammetry (LSV) curves were acquired with RDE and RRDE to 
evaluate the OER and ORR performance. Experiments were run at a scan 
rate of 10 mVs− 1 and a rotation speed of 1600 rpm from 1.0 to 0.0 V vs. 
RHE in O2-saturated to evaluate ORR and from 1.8 to 1.0 V in N2- 
saturated condition for OER tests [57]. 

Disk and ring currents were background corrected by subtracting the 
capacitive current measured in N2-saturated electrolyte, and the po-
tentials reported were iR-compensated. The number of electrons trans-
ferred (n) and hydroperoxide anion (HO2

− ) produced were calculated 
according to Eqs. (1) and (2), where N is the ring collection efficiency 
(0.26). 

n=
4 × |IDisk|

|IDisk| +
⃒
⃒IRing

/
N
⃒
⃒

(1)  

HO-
2(%)=

200 ×
⃒
⃒IRing

/
N
⃒
⃒

|IDisk| +
⃒
⃒IRing

/
N
⃒
⃒

(2) 

ZAB tests were performed by assembling the air cathodes prepared as 
described in the 2.3 section into an in-house ZAB prototype, realized by 
sealing four plexiglass (5x5x0.5 cm) sheets with Viton rubber gaskets. 1 
mm thick zinc foil served as an anode, and 7 mL of an aqueous solution 
of 0.2 M Zn(CH3COO)2 in 6.0 M KOH was used as an electrolyte. Po-
larization and power density curves were obtained using a multichannel 

VSP potentiostat/galvanostat (BioLogic, France) connected with a 
computer operating the EC-Lab software. The tests were carried out 
using a two-electrode configuration with the cathode connected to the 
working electrode channel and the anode connected to the counter and 
reference electrode channel. The cycling stability and efficiency were 
evaluated by the galvanostatic charge-discharge mode at a current 
density of 5 mAcm− 2 for 20 min per cycle. The round-trip efficiency (η) 
was calculated by dividing the voltage recorded during the discharge 
process by the voltage recorded during the charging process. 

The polarization curves were recorded through a linear sweep vol-
tammetry test using a scan rate of 100 mVs− 1. The power density and 
current density generated by ZABs were normalized according to the 
active cathode geometric surface area (3.14 cm2). 

3. Results and discussion 

3.1. Catalyst characterization 

Different Fe/Ni-based electrocatalysts were prepared as described in 
the experimental section, and Fig. 1 shows a schematic of the synthesis 
strategy. 

The stage of polymerization and self-assembly allows obtaining an 
aerogel polymer with high nitrogen content by polymerizing phenol and 
melamine, followed by adding a nonionic surfactant as a soft template 
(Pluronic F127) which formed micro micelles trapped in the polymer 
structure. The sol-gel product was subjected to a hydrothermal treat-
ment to form an aerogel, used as N-doped carbonaceous support (NC) for 
the impregnation through dual metal doping, obtaining Ni/Fe-NC 
samples before pyrolysis (2Ni1Fe-NC_precursor and 1Ni1Fe-NC_precur-
sor with two different Ni:Fe ratios, as described in the experimental 
section). The heat treatment (pyrolysis) is critical for developing elec-
trocatalysts with a hierarchically porous structure and anchoring metal 
atom sites onto the carbon matrix. A thermo-gravimetric (TG) analysis 
was carried out (Fig. S1) on NC and 2Ni1Fe-NC_precursor to optimize 
pyrolysis conditions. Fig. S1 shows that metal-free and metal-doped 
precursors underwent substantial weight loss due to the removal of 
Pluronic F127 between 300 and 400 ◦C and subsequent carbonization of 
the polymer [58,59]. Metal-free NC had lower weight loss (68 %) than 
2Ni1Fe-NC_precursor (86 %), indicating that the presence of Ni and Fe 
enhanced carbon decomposition in agreement with previous works [60, 
61]. As previously reported, at 900 ◦C, the graphitization of carbon 
occurs [62,63]. Based on that, 900 ◦C was selected as pyrolysis tem-
perature and controlled temperature ramps were used to preserve 
morphology and avoid the collapse of pores due to surfactant sublima-
tion. The effect of the pyrolysis atmosphere (inert or reactive), time 
(10–80 min), and Ni:Fe weight ratio on the electrocatalysts’ properties 
was evaluated, obtaining seven different samples as detailed in Table 1. 
Fig. 2(a–c) and Fig. S2 show the prepared samples’ scanning electron 
microscope (SEM) images. 

The comparison of SEM images of metal-based samples (Fig. 2b and 
c, S2a-e) with those of metal-free sample (Fig. 2a and Fig. S2f) indicates 
that metal impregnation and the different thermal treatments do not 
affect the morphology, and all the samples show a spheroidal shape. 
Furthermore, the pyrolysis treatment in an inert (Ar) atmosphere allows 
the spheroidal shape to be retained (Fig. 2b and Fig. S2d), while a 
reactive atmosphere (NH3) partially eroded the NC-supports, as can be 
seen from Fig. 2c and Fig. S2a, S2b, and S2c. 

N2-adsorption-desorption isotherms for all the samples (Fig. 2d) 
were classified as type IV, typical of mesoporous solids, according to the 
IUPAC classification [64]. The specific surface area (SSA), estimated 
according to the BET method, were 571.2 ± 5.4 m2g-1, 603.9 ± 6.2 
m2g-1, 573.9 ± 4.8 m2g-1, 501.8 ± 5.1 m2g-1 and 510.4 ± 6.4 m2g-1 for 
2Ni1Fe-NC, 2Ni1Fe-NC_a, 2Ni1Fe-NC_b, 2Ni1Fe-NC_c and 2Ni1Fe-NC_d, 
respectively. In particular, the samples obtained by a single pyrolysis 
step under Ar atmosphere (2Ni1Fe-NC_c and 2Ni1Fe-NC_d) had a lower 
specific surface area than 2Ni1Fe-NC_b obtained by a single pyrolysis 

B. Ricciardi et al.                                                                                                                                                                                                                               



Carbon 219 (2024) 118781

4

step under NH3 atmosphere. This trend agrees with previously reported 
works that confirm the beneficial effect of pyrolysis under the NH3 at-
mosphere in increasing the porosity and formation of N-based active 
sites [33,65,66]. When NH3 and Ar were combined into two pyrolysis 
steps (NH3 → Ar or Ar → NH3), the SSA further increased for the sample 
obtained by a first pyrolysis in Ar followed by a second pyrolysis in NH3 
(2Ni1Fe_NC_a); by contrast, if the first pyrolysis is conducted in NH3 
followed by a second pyrolysis in Ar (2Ni1Fe_NC), SSA did not signifi-
cantly increase. This finding can be explained by considering that the 
first pyrolysis in Ar leads to the development of graphitic shells, which 
promotes the surface and porosity development in the second pyrolysis 
step [67–69]. In contrast, when the pyrolysis is first conducted in NH3, 
the porosity development obtained from the first pyrolysis step is not 
particularly affected by the second treatment in Ar. 

The effect of the pyrolysis atmosphere was also reflected by BJH pore 
size distribution (Fig. 2e). All samples had a pore size distribution be-
tween 1.8 and 4.4 nm in a border zone between micro- (pore width< 2 
nm) and meso-pores (2 nm < pore width <50 nm). Moreover, larger 
pores can also be observed for all samples, except for 2Ni1Fe-NC_c and 
2Ni1Fe-NC_d, which exhibited a lower contribution in the BJH range of 
39–300 nm. 

Fig. 2f and Fig. S3 show XRD patterns, indicating an amorphous 
carbon component between 2θ = 21◦–24◦ and the 002 graphitic plane in 
the range 2θ = 24◦–28◦ (JCPDS Card No. 12–0212) [70] with a different 

graphitization degree depending on the thermal treatments. Along with 
enhancing graphitization, the presence of Ni/Fe metals leads to forming 
metal phases, among which the catalytically active phase of FeNi3 alloy 
(JCPDS sheet n. 38–0419) is predominant. NiFe2O4 (JCPDS sheet n. 
44–1485) [71,72] and nickel oxide (JCPDS sheet n. 03–1209) [73] 
phases are also present to a lesser extent. 

A first screening of the overall bifunctional electrocatalytic perfor-
mance of the samples obtained with different pyrolysis treatments was 
evaluated by the potential difference (ΔEOER-ORR) between the OER 
potential values at a current density of 10 mAcm− 2 (EJ10) and the ORR 
half-wave potential values (E1/2), obtained from the overall OER-ORR 
polarization curves shown in Fig. 3. ΔEOER-ORR values are listed in 
Table S1, together with typical ΔE values previously reported in the 
literature for other Fe/Ni-based electrocatalysts. The comparison with 
the literature data highlights that the samples prepared in this work 
have a good bifunctional OER/ORR activity. In particular, 2Ni1Fe-NC 
exhibited the lowest ΔE (0.75 V), outperforming the reported state-of- 
art bifunctional electrocatalysts and the catalysts obtained in this 
work with different thermal treatments, pointing to the crucial role of 
NH3 atmosphere for the formation of catalytically active Fe/Ni–N do-
mains. It is well-known that NH3 gas at high temperatures (>800 ◦C) 
with carbon domains produces the N functionalities required to bind 
iron cations to the carbon support, which is essential in forming active 
sites [74]. 

Fig. 1. Schematic illustration of the synthesis of Fe/Ni-NC catalysts. (A colour version of this figure can be viewed online.)  

Fig. 2. SEM images of NC_d (a), 2Ni1Fe-NC_c (b), and 2Ni1Fe-NC (c). N2-adsorption-desorption isotherms (d), BJH pore-size distribution (e), and XRD patterns of 
2Ni1Fe-NC, 2Ni1Fe-NC_a, 2Ni1Fe-NC_b, 2Ni1Fe-NC_c, and 2Ni1Fe-NC_d (f). (A colour version of this figure can be viewed online.) 
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To get deeper insights into the effect of the pyrolysis conditions on 
the formation of Fe/Ni–N active sites, a sample with an increased Fe:Ni 
ratio was prepared (1Ni1Fe-NC) with the same thermal treatment as 
2Ni1Fe-NC. As pointed out by SEM images and BET analysis (Figs. S4 
and S5), 1Ni1Fe-NC had a similar morphological and textural feature as 
compared to 2Ni1Fe-NC; however, the XRD pattern (Fig. S6) showed 
structural differences due to the high amount of iron in 1Ni1Fe-NC 
which increased graphitization and promote the formation of different 
Ni alloys (Fe0.64Ni0.36) [75,76]. 2Ni1Fe-NC and 1Ni1Fe-NC samples 
were further characterized by transmission electron microscopy (TEM) 
analysis, and the corresponding results are shown in Fig. 4 and Fig. S7, 
respectively. 

Fig. 4a and Fig. S7a show high-angle dark-field scanning electron 
microscopy (HAADF-STEM) images revealing the presence of 

homogeneous metal nanoparticles (NPs) on the carbon substrate. The 
composition of the NPs was further analyzed by energy dispersive X-ray 
spectroscopy (STEM-EDS) microanalysis (Fig. 4b and Fig. S7b), con-
firming the formation of Fe/Ni alloys and oxides. TEM analysis (Fig. 4c 
and Fig. S7c, S8a, and S8b) confirms what has already been observed for 
the SEM and BET analysis: the porous spherical morphology of the 
samples was partly preserved despite the reactive NH3 treatment during 
pyrolysis. Comparing the two samples, the higher Ni content in 2Ni1Fe- 
NC also catalyzes the formation of carbon nanotubes (CNTs) (Fig. 4d–e). 
By contrast, this feature is less pronounced in the 1Ni1Fe-NC sample, as 
seen by comparing Fig. S7e. The shape of CNTs is tubular, undulate 
hollow with bamboo-like junctions, which is common when there is a 
strong presence of N on the surface [77–79]. Fig. 4f and Fig. S7f show 
that the prolonged effect of pyrolysis in Ar induces the formation of 
carbon shells on some NPs. 

The surface chemistry was investigated using XPS upon collection of 
the surveys, reported in Fig. 5a. High-resolution scans for the identified 
core levels C1s, N1s, and Ni2p3/2, for the most significant samples 
1Ni1Fe-NC and 2Ni1Fe-NC, were reported in Fig. 5b–d; instead, 
deconvolution of O1s and Fe2p spectra were reported in Figs. S9–S10, 
respectively. All the remaining samples are reported in the Supporting 
Information, Figs. S11–S15. 

The C1s, O1s, and N1s spectra have been fitted using the same 
criteria employed in previous studies [80–83], but due to the presence of 
nickel, Ni2p and Fe2p have been managed following the principles 
present in specific literature for Ni-based compounds [84–86], as thor-
oughly explained in the Supporting Information (XPS methodology). 
The chemical speciation of elements for all samples is reported in 
Tables S2–S6. 

The spectra recorded for carbon and nitrogen were peculiar to sys-
tems characterized by a high content of graphitic structure (always 
higher than 50 %) alloyed with N moieties of predominantly pyrrolic 
form. Indeed, the fit resulted in 93.6 % of C and 3.2 % of N for the 
2Ni1Fe-NC_c sample and, respectively 92.4/4.7 %, 92.2/4.1 %, 94.2/ 
3.4 %, and 95.4/1.9 % for the samples 2Ni1Fe-NC_b, 2Ni1Fe-NC_a, 
2Ni1Fe-NC and 1Ni1Fe-NC. The oxygen content was usually below 3 %, 
except for 2Ni1Fe-NC_a (3.4 %). Within the C1s, 2Ni1Fe-NC_a has the 
lowest C sp2 content (highest disordered C sp3), while 1Ni1Fe-NC has the 
highest C sp2 content (lowest disordered C sp3). This can be associated 
with the post-treatment in NH3 of 2Ni1Fe-NC_a, partially disrupting the 

Fig. 3. Overall LSV polarization curves of 2Ni1Fe-NC, 2Ni1Fe-NC_a, 2Ni1Fe- 
NC_b, 2Ni1Fe-NC_c, and 2Ni1Fe-NC_d in 0.1 M KOH at a 10 mVs− 1 potential 
scan rate, and 1600 rpm rotation speed. (A colour version of this figure can be 
viewed online.) 

Fig. 4. (a) HAADF-STEM, b) STEM-EDS, and (c–f) TEM images at different magnifications of sample 2Ni1Fe-NC. (A colour version of this figure can be 
viewed online.) 
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graphitic plane. Other minor components of C1s are C–N, C–O, C––O, 
and COOH. 

The analysis of the N1s XPS spectrum showed that an appreciable 
component of Fe-Nx or amine can be seen along with pyridinic N. 
Indeed, the amine moieties overlap at the same BE of Fe-Nx, around 
399.8 eV [87,88]. Considering the pyrolysis conditions used to prepare 
our FeNi-based catalysts, the amine presence at the catalysts’ surface 
cannot be excluded, even more so for the samples prepared using NH3 
flow as single (2Ni1Fe-NC_b) or last step (2Ni1Fe-NC_a) of pyrolysis, as 
previously reported by other authors [89–91]. For all samples, the 
amine/Fe-Nx content is always higher than 2Ni1Fe-NC_c, reaching its 
maximum with the 2Ni1Fe-NC_a, treated with ammonia after the py-
rolysis in argon. In the case of 2Ni1Fe-NC_a, differently than the others, 
the pyridinic component resulted in a higher amount than pyrrolic N. 
Regarding 2Ni1Fe-NC and 1Ni1Fe-NC, the post-treatment with Ar 
reduced the quantity of amine bound to the surface with respect to 
samples 2Ni1Fe-NC_a and 2Ni1Fe-NC_b. 

Regarding Ni2p and the abovementioned assumptions for peaks 
fitting, the samples were characterized by the presence of a main broad 
peak located at ~854.8 eV, except for 2Ni1Fe-NC_a, positively shifted of 
0.4 eV ca, which can be deconvoluted with multiple components. 
Indeed, according to TEM and XRD results, due to the composition of the 
systems, containing both Fe and Ni, the fits were thus performed using 
Ni ferrite (NiFe2O4), NiOOH, and NiO sets, resulting in percentages of 
each reported in Table S4. In addition, the surface chemistry investi-
gation of the 2Ni1Fe-NC family provided evidence of minor content of 
metallic Ni or alloys like FeNi3, possessing the same features of Ni(0), 
eventually buried under graphitic layers. In the case of sample 1Ni1Fe- 
NC, Ni ferrite was used instead of metallic Ni because of the differences 
in composition. The NiOOH phase was not identified in the diffraction 
patterns, concluding that a higher oxidation state can be found only on 
the surface. In this case, the maximum content of NiOOH (Ni3+) can be 
found on sample 2Ni1Fe-NC, decreasing in the order 2Ni1Fe-NC >

2Ni1Fe-NC_a > 2Ni1Fe-NC-b > 2Ni1Fe-NC_c, with an opposite trend in 
NiO content. As a qualitative observation of the peculiar nature of 
2Ni1Fe-NC, its satellite structure (about 861 eV) differs from the others, 
containing shallower components [92,93]. Despite the lower thermal 
stability of the NiOOH species at high temperatures as compared to 
oxides and alloy phases, spectroscopical studies demonstrated that their 
formation and stabilization could be promoted by the presence of nickel 
oxides at a temperature ranging in between 200 and 650 ◦C, as previ-
ously reported [94–96]. Considering the presence of NiO evidenced even 
from the XRD analysis, the experimental conditions adopted to prepare 
the Fe/Ni-based catalysts during the pyrolysis steps, promoted the for-
mation of NiOOH species at the catalyst’s surface. 

Finally, for Fe2p the signal recorded from all the samples is too low to 
be accurately fitted to evaluate the chemical speciation of the element. 
In addition, Auger lines LMM of Ni can be found at 712 eV (1P) and 706 
eV (3P), overlapping with the Fe2p spectra. Nevertheless, qualitatively, 
it is possible to identify a component around 710 eV ascribable to Fe(II) 
and a second peak associated with iron oxides between 711 and 713 eV 
[87,97–99]. 

Overall, the synthesis protocols resulted in highly graphitic samples 
with N inclusions. This characteristic is common in systems where C- 
containing compounds are pyrolyzed at high temperatures along with 
transition metals like Fe, Ni (and Cu). Thus, the low resolution of Fe 
spectra (but also Ni for 1Ni1Fe-NC) can be associated with the existence 
of crystalline secondary phases buried under graphitic layers of a few 
nanometers, creating an external shell grown because of the simulta-
neous presence of the two metals. Fe-Nx coordination, beneficial for 
ORR, cannot be excluded, but secondary phases like oxides and Ni alloys 
impact their formation, modifying the materials and conferring oxygen 
evolution capabilities. Hence, the ORR performance of the synthesized 
Ni/Fe-based electrocatalysts can be mainly attributed to a balance be-
tween the formation of Fe-Nx-C and pyridinic active sites [87,100], 
combined to the catalytic activity of the iron oxides in highly alkaline 

Fig. 5. XPS survey scans of the 1Ni1Fe-NC, 2Ni1Fe-NC, 2Ni1Fe-NC_a, 2Ni1Fe-NC_b and 2Ni1Fe-NC_c (a), deconvoluted high-resolution XPS spectra for C 1s (b), N 1s 
(c) and Ni 2p3/2 (d) XPS spectra of 1Ni1Fe-NC and 2Ni1Fe-NC. (A colour version of this figure can be viewed online.) 

B. Ricciardi et al.                                                                                                                                                                                                                               



Carbon 219 (2024) 118781

7

conditions (pH = 14) [101–103]. Although the higher content of 
Fe-Nx/amine moieties has been found for the samples 2Ni1Fe-NC_a and 
2Ni1Fe-NC_b (Table S3), their ORR activity was lower than that 
observed for 2Ni1Fe-NC (Table S1). These results indicate that pyrolysis 
under NH3 as single (2Ni1Fe-NC_b) or last pyrolysis step (2Ni1Fe-NC_a) 
led to a higher contribution of inactive amine groups in the lower ORR 
activity of these catalysts. 

Regarding the OER performance, high and comparable OER activity 
has been reported for both FeNi3 and Fe0.64Ni0.36 alloys [104,105], 
while nickel ferrite (NiFe2O4) demonstrated to be more active than NiO 
[106]. The synergistic effect between metallic and oxide-based phases 
has also been reported to tune the catalyst activity due to strong 
coupling between FeNi alloys and NiFe2O4 for electron transfer [107]. 
Hence, we expect that the OER activity of the prepared Fe/Ni-based 
samples is dictated by a synergic effect between the metallic alloys 
and oxides phases combined with oxyhydroxides, together with the 
possible impact of the in-situ surface reconstruction of metal species 
during OER [108]. 

To investigate the bifunctional ORR/OER activity of the Fe/Ni-based 
samples, polarization curves for 1Ni1Fe-NC and 2Ni1Fe-NC under hy-
drodynamic conditions were acquired in an alkaline environment 
(Fig. 6a for ORR and Fig. 6c for OER) and compared with those of the 
reference Pt/C and RuO2 (Figs. S16 and S17) [23,82]. Fig. 6a shows that 
the ORR activity for 1Ni1Fe-NC is lower than that observed for 
2Ni1Fe-NC, as indicated by the E1/2 values (0.83 V and 0.85 V, respec-
tively). This trend was also confirmed when calculating the number of 
electrons exchanged (n) and the peroxide yield (HO2

− ) (Fig. S18). For 
both samples, n was around 4 (n = 3.4 for 1Ni1Fe-NC and 3.5 for 
2Ni1Fe-NC), and HO2

− at 0.7 V vs. RHE was 31 % and 26 % for 
1Ni1Fe-NC and 2Ni1Fe-NC, respectively, indicating that ORR takes 
place mainly through a 4e− pathway (O2 + 4H2O + 4e− → 4OH− ). The n 
values lower than 4 can be related to the promotion of an indirect 2x2e−

pathway (O2 +H2O + 2e− → OH2
− + OH− ; OH2

− + H2O + 2e− → 3OH− ) 
[109,110] by the Fe/Ni oxide phases required for the OER activity, that 
are known to display low activity towards the ORR [111]. The higher 

catalytic activity of 2Ni1Fe-NC is in good agreement with the chemical 
speciation of the N1s XPS spectra, which showed a high content of 
pyridinic-N and Fe-Nx moieties (highly ORR active) in combination with 
a low content of nitrogen oxides (poorly ORR active) [112]. The ORR 
Tafel plots were obtained by plotting iR-corrected potential values as a 
function of the logarithm of the kinetic current density, as shown in 
Fig. 6b. The plots were linearly fitted from the onset potential values to 
0.70 V vs. RHE. The 2Ni1Fe-NC and 1Ni1Fe-NC had a slope of 69 ± 2 
mVdec− 1 and 62 ± 2 mVdec− 1, respectively. Based on the ORR mech-
anism reported in section 3 of the Supporting Information (Page S12), 
the Tafel slope values are consistent with a rate-determining step (rds) 
due to the formation of MO2H species [113]. 

Fig. 6c shows OER polarization curves for 2Ni1Fe-NC and 1Ni1Fe-NC 
samples. For both samples, the potential value at a current density of 10 
mAcm− 2 (EJ10) was 1.60 V, indicating that the Ni alloys (FeNi3 and 
Fe0.64Ni0.36) and Ni oxides (NiO and NiFe2O4), evidenced in both sam-
ples by XRD, are active for OER catalysis. However, although the two 
samples had a similar crystalline phase composition (as evidenced by 
XRD), they showed a different chemical surface. Based on the literature, 
the metal species on the surface of the catalysts undergo in situ recon-
struction phenomena during OER, and the nickel sites tend to transform 
into an oxyhydroxide-like active phase responsible for a high OER ac-
tivity [108,114–116]. Considering the Fe/Ni-based phases of 2Ni1Fe-NC 
and 1Ni1Fe-NC evidenced by XPS and XRD analysis, the surface 
reconstruction of NiFe2O4/NiO (1Ni1Fe-NC) and Ni-metal/NiO 
(2Ni1Fe-NC) to generate oxyhydroxide species (NiOOH) driven by the 
anodic potential makes the two catalysts very similar in terms of OER 
activity. 

Although slightly higher than EJ10 of RuO2 (1.56 V), the overall ΔE 
evaluation of bifunctional activity for OER/ORR was very competitive 
with other PGM-free systems previously reported in the literature 
(Table S1), especially considering the low content of metals (2.5 % of Fe 
+ Ni) and the synthesis process involving only a polymeric matrix. 

The Tafel analysis was carried out to evaluate the rds involved in the 
OER electrocatalysis based on the elementary steps reported in the 

Fig. 6. ORR polarization curves in O2-saturated 1 M KOH electrolyte at 1600 rpm and 10 mVs− 1 (a), ORR Tafel plots (b) OER polarization curves in N2-saturated 1 M 
KOH electrolyte, at 1600 rpm and 10 mVs− 1 (c), and OER Tafel plots (d) for 1Ni1Fe-NC and 2Ni1Fe-NC. (A colour version of this figure can be viewed online.) 
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Supporting Information (Page S12). The Tafel plots (Fig. 6d) were ob-
tained in two linear regions: the onset potential Eon and the EJ10 regions. 
The slopes in the Eon region were between 68.2 and 81.6 mVdec− 1; 
according to the theoretical approach of Shinagawa and coworkers 
[113], those values suggest a possible rate-determining step as MO +
OH− ⇄ MOOH and MOOH + OH− ⇄ MOO− + H2O, involving O–O bond 
formation on the catalyst surface [117]. In the EJ10 region, the Tafel 
slopes were between 93.9 and 116 mVdec− 1 range values, close to the 
ideal kinetic mechanism according to Antipin et al. [118], a set of 
concerted surface mechanisms taking place [113,119]. 

Considering the highly efficient bifunctional catalytic activity of 
2Ni1Fe-NC and 1Ni1Fe-NC, a homemade aqueous rechargeable ZAB was 
assembled, as described in the experimental section. Fig. 7a illustrates 
two series-connected ZABs equipped with the Fe/Ni cathodes powering 
several LEDs. A ZAB equipped with commercial Pt/C and RuO2 com-
posite (Pt:RuO2 (1:1) weight ratio) as an air cathode was also assembled 
for comparison. 

Polarization and power density curves, obtained immediately after 
assembling the ZAB, are depicted in Fig. 7b: the open circuit voltage 
(EOC) for Pt/C–RuO2 based cathode resulted in a higher potential (1.5 V) 
than both 2Ni1Fe-NC (1.3 V) and 1Ni1Fe-NC (1.38 V). A higher 
maximum power density (PDmax) was obtained for 2Ni1Fe-NC (148.5 
mWcm− 2) in comparison to 1Ni1Fe-NC (137.8 mWcm− 2), while Pt/ 
C–RuO2-based cathode showed 167 mWcm− 2 as PDmax. Polarization and 
power density curves were acquired also after 150 charge-discharge 
galvanostatic cycles (Fig. S19) and the results indicated that the power 
density retention capability at the end of cycling was higher for 2Ni1Fe- 
NC and 1Ni1Fe-NC (78.8 mWcm− 2 and 60.5 mWcm− 2, respectively, as 
PDmax), than commercial Pt/C–RuO2 (53.7 mWcm− 2). This finding 
demonstrates a superior long-term stability of Fe/Ni-based cathodes 

than PGM cathodes. Galvanostatic cycling at a current of 5 mAcm− 2 

with 10-min discharging 10-min charging intervals are shown in Fig. 7c 
and d. The magnified view of the charge-discharge cycles (Fig. 6c) in-
dicates a slight difference in the discharge potential values during the 
first cycles (1.25 V for 2Ni1Fe-NC and 1.23 V for 1Ni1Fe-NC), due to the 
higher ORR activity of 2Ni1Fe-NC than 1Ni1Fe-NC (Fig. 5a). Despite this 
similar performance trend observed in both half-cell tests and ZAB tests, 
the significant ORR performance difference of 2Ni1Fe-NC and 1Ni1Fe- 
NC is not strictly reflected in the ZAB polarization curves; in fact, as 
previously reported in the literature [120–123], along with the catalyst 
activity, other factors such as the cell configuration, electrolyte and 
oxygen concentration, and preparation of the catalyst ink, play a key 
role in influencing the activation, ohmic, and concentration polariza-
tions, and resulting in severe performances discrepancies [124]. 

Moreover, a similar initial difference in charge and discharge voltage 
(Egap) for ZABs equipped with 1Ni1Fe-NC, 2Ni1Fe-NC, and Pt/C–RuO2- 
based air cathodes was observed (0.74 V, 0.68 V, and 0.71 V, respec-
tively). However, after continuous cycling for 150 cycles, a significant 
increase in Egap (1.14 V) can be observed for the PGM cathodes. In 
contrast, only a slight Egap increase can be observed for the 2Ni1Fe-NC 
and 1Ni1Fe-NC air cathodes (0.83 V), showing better long-term cycla-
bility as compared to commercial Pt/C–RuO2. 2Ni1Fe-NC and 1Ni1Fe- 
NC also showed superior round-trip efficiency (59 %) in comparison 
to the Pt/C–RuO2 (50 %) at the end of 150 cycles (50 h). The ZAB 
equipped with Pt/C–RuO2-based air cathodes experienced a voltage loss 
of 430 mV in contrast to 2Ni1Fe-NC and 1Ni1Fe-NC, which exhibit a 
voltage loss of 150 mV and 120 mV, respectively. Hence, The NiFe-NC 
materials demonstrated an enhancement of long-term ZAB perfor-
mance as compared to commercially available cathodes. Table 2 sum-
marizes the electrochemical parameters extrapolated from the ZAB tests 

Fig. 7. Photograph of light emitting diodes (LEDs) powered by two series-connected ZABs (a), power density and polarization curves (b) galvanostatic char-
ge–discharge cycling profile (150 cycles >50 h) (c) and magnified view charge-discharge cycling profile (d). (A colour version of this figure can be viewed online.) 
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for 1Ni1Fe-NC, 2Ni1Fe-NC, and Pt/C–RuO2 based air cathodes. 
The performance of Zn-air batteries based on 2Ni1Fe-NC and 

1Ni1Fe-NC were compared with other previously reported Zn-air bat-
teries, and the electrochemical parameters are summarized in Table S7. 
2Ni1Fe-NC and 1Ni1Fe-NC showed similar or even higher Egap and 
power density than other metal-nitrogen-carbon-based catalysts previ-
ously reported in the literature. 

4. Conclusions 

Hierarchical porous catalysts were produced from a carbon matrix 
decorated with nitrogen atoms and functionalized with iron and nickel 
(2.5 wt% total metal content). The Fe/Ni-based electrocatalysts have a 
spheroidal shape with an extensive and homogeneous porosity, with a 
different graphitization degree depending on the thermal treatments 
and the relative Fe/Ni content. The samples had a pore distribution 
between 1.8 and 4.4 nm in a border zone between micro and mesopores, 
with a specific surface area in the 500–600 m2g-1. 

Tailoring the pyrolysis conditions and the Fe:Ni ratio allowed 
obtaining a highly graphitic carbon matrix with N inclusions decorated 
with Fe/Ni functionalities. XRD, XPS and TEM analysis revealed the 
existence of iron-nitrogen coordination, metal oxide phases and Fe/Ni 
alloys. As the rotating ring-disk electrode experiments indicated, the 
materials exhibited oxygen reduction activity, the ORR preceding 
mainly through a direct (4e− ) pathway promoted by Fe-Nx active sites. 
The existence of FeNi alloys and the corresponding oxides confers oxy-
gen evolution capability to the materials, also considering the recon-
struction phenomenon on metal species during OER to generate an 
oxyhydroxide-like active phase responsible for oxygen evolution 
activity. 

Given the excellent bifunctional oxygen reduction and evolution 
activity (ΔEOER-ORR = 0.75 V), the electrocatalysts were integrated as air 
cathodes into a rechargeable zinc-air battery, with promising results. In 
fact, the materials presented enhanced long-term stability and power 
density retention than commercial platinum—group-based cathodes 
after being cycled 150 times for more than 50 h at 5 mAcm− 2. 
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