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ARTICLE INFO ABSTRACT

Keywords: As collaborative simulations gain prominence, there is a pressing need for methodologies
Modeling & simulation (M&S) that seamlessly integrate interoperability while safeguarding intellectual property. This paper
Business process presents a novel approach rooted in Model-Driven Architecture and combined with the High-

Collaborative simulation

e - : Level Architecture standard. This approach expedites the simulation process by automating the
Distributed simulation

HLA generation of Federation Object Model files and federate codes. Distinctly, we produce two

Model-driven Architecture (MDA) federates: one exclusively in Java and another integrating Java with the Discrete Event System

Model-driven Engineering (MDE) Specification, addressing diverse simulation paradigms. Utilizing the Unified Modeling Language
and the Business Process Model and Notation standards, we devise a systematic procedure
for modeling business operations while maintaining confidentiality. While our automation
framework is robust, certain intricacies of federate behavior necessitate manual adjustments
to ensure secure data transmission and protection of proprietary knowledge. The efficacy of
our approach, striking a balance between interoperability and confidentiality in High-Level
Architecture-based simulations, is demonstrated through a comprehensive experiment.

1. Introduction

Modern business processes operate within a complex network of interconnected subsystems, each contributing to the overall
operational efficiency [1]. Business process simulation is crucial for navigating this network, as it helps in understanding system
dynamics and identifying areas of improvement [2]. However, the challenge arises in enabling collaborative simulation while
maintaining the confidentiality of intellectual property [3].

In this context, we employ the High-Level Architecture (HLA) framework to foster a collaborative simulation environment where
entities with unique models can communicate and operate in a unified setting while protecting their intellectual property. This
approach promotes heterogeneity and autonomy, allowing each collaborator to simulate their models independently using their
preferred methods and fostering a nurturing ground for innovation and diversity [4].

As we delve deeper into the mechanisms facilitating collaborative simulations, our approach leverages the Model-Driven
Architecture (MDA) methodology coupled with the HLA standard [5]. This strategy automates the generation of federates and
Federation Object Model (FOM) files, bestowing each participant with autonomy during the simulation. We further integrate
Unified Modeling Language (UML) and Business Process Model and Notation (BPMN) standards to draft a UML conceptual model
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of the federation, and apply Model-to-Text transformation to create the FOM and initial BPMN collaboration model, preserving the
confidentiality of individual business processes.

Despite the substantial automation achieved, the refined delineation of federate behavior necessitates manual intervention
in the generated federate code. This endeavor underscores secure and restricted information exchange, fostering interoperability
without divulging detailed insights into their proprietary business processes [6]. By adhering to a low-code development paradigm,
our methodology markedly diminishes the manual labor traditionally required in HLA-based simulation of BPMN-guided process
collaborations.

To validate our strategy, we undertake an experiment delineating a UML conceptual model of the federation and automating
the generation of the FOM and preliminary BPMN collaboration model. This process culminates in a simulation execution, wherein
each participant adopts a bespoke simulation methodology embodied in the generated federate code.

The ensuing sections are organized as follows: Section 2 positions this study within existing literature and furnishes the requisite
background. Section 3 elaborates on the proposed methodology for distributed simulation of business process (BP) collaborations
adhering to the BPMN standard, discussing underlying assumptions and the creation process of JAVA-based and Discrete Event
System Specification (DEVS)-based federates. Section 4 details a case study involving two research institutions who independently
develop federate codes for a collaborative simulation experiment, demonstrating the interoperation under the HLA standard. Finally,
Section 5 recapitulates the central contributions and delineates avenues for future exploration.

This manuscript serves as a comprehensive guide to our strategy for simplifying the distributed simulation of BP collaborations,
guided by the BPMN standard, illustrating the journey from fundamental concepts to detailed developmental processes.

2. Research positioning and related works

As outlined in Section 1 this paper investigates methods and approaches for easing the development of distributed simulations.
The proposed contribution specifically deals with the simulation of independent and heterogeneous entities that operate separately
and interact through a message exchange. In this respect, the method introduced in this work along with the application scenario
adopted for its experimental evaluation, builds upon and extends authors’ previous contributions:

» The idea of introducing a transformation-based approach to support the development of HLA-based simulations has been
investigated in [7]. Specifically, such a contribution introduces a model-to-text transformation to automatically generate
the Federation Object Model from a conceptual model of the federation under study specified by the use of a UML Class
Diagram. The aforementioned contribution also introduces a preliminary version of the FOM-HLA Profile, an HLA-oriented
UML Profile which allows the identification of HLA-related concepts and entities in a federation abstract model, making it
able to provide the information required by the model transformation. As clarified in Section 3, the proposed method exploits
the above-mentioned transformation for generating the required FOM. Moreover, this work reuses and extends the FOM-HLA
Profile.

The adoption of model-driven techniques for reducing the implementation effort of Java-based distributed simulations systems
has been proposed in [8]. Such a contribution deals with the distributed simulation of BPMN Collaborations and introduces a
model-transformation approach for supporting the generation of a Java-based discrete event simulation system. The proposed
method has also been applied to a simple yet effective concrete case to investigate its feasibility. In this respect, this work goes
beyond our previous work and specifically focuses on the distributed simulation of heterogeneous and independent federates.
Furthermore, this work extensively discusses the results of an experimentation of the proposed method.

In the study [9], we explored accurate resource allocation within business process simulations, proposing a metamodel-
based transformation approach for extending BPMN models with Business Process Simulation Interchange (BPSIM) elements
into DEVS simulation models. This approach was directly applied in the example experiment discussed in Section 4, where
we created a resource allocator Broker based on the transformation mapping delineated in this paper. This facilitated
improved decision-making and coordination in business process management, proving instrumental in the development of
the DEVS-based federate.

The incremental transformation methodology introduced in [10] advances the process of transforming BPMN models enriched
with BPSIM elements into DEVS simulations. This methodology innovatively employs an intermediate modeling layer and
executes a dual-phase transformation, considerably streamlining the transformation process. Elaborated in Section 3.5, this
approach not only simplifies the transition from modeling to simulation but also plays a pivotal role in facilitating the efficient
integration of complex BPMN models into the DEVS formalism. By evolving from the foundational work detailed in prior studies
to implementing this streamlined process, we demonstrate our commitment to advancing the efficiency and effectiveness of
DEVS-based federate development, making it more accessible and practical for a wider range of simulation scenarios.

To the best of our knowledge, no contributions have been proposed which demonstrate how model-driven technologies can
be effectively used in practice to support the development of a distributed simulation based on heterogeneous and independent
federates.

In order to better outline the state-of-the-art and underline the novelty of this contribution, this section reviews existing literature
in the Distributed Simulation (DS) field, specifically with regards to (i) the adoption of approaches to ease the DS development and,
(ii) the use of HLA for simulating the interaction of independent entities which cooperates throughout an exchange of messages.

The idea of introducing approaches and technologies to mitigate the difficulties of developing software systems is not new and
has been largely investigated in the past. Recently, the so-called low-code development paradigm which promotes the adoption of
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automated techniques for supporting the implementation of software systems has gained a considerable attention in the software
engineering field [11-13]. The adoption of automation for easing the development of a DS implementation is a pillar of the
proposed method which strongly relies on principles introduced in the Model-driven Engineering field and makes use of methods,
technologies and standards provided by the Model Driven Architecture [14]. In this respect, as underlined in [8], MDA-based model-
transformations can be effectively introduced as a part of a concrete approach founded on low-code paradigm principles. Moreover,
various contributions such as [15,16] underline the added value provided by Model-driven Engineering principles and standards in
developing DS systems.

In addition to the authors’ past work previously mentioned, which constitutes the conceptual foundation of this paper, various
previous contributions dealing with HLA and BPM have influenced the proposed research. In [17], a BPMN- and HLA-based method
to integrate discrete event simulation components has been introduced, while in [18,19], a framework to generate simulation code
from BPMN models by use of automated model transformations is discussed. The latter exploits the Java-based simulation platform
introduced in [20,21] that supports both the execution of sequential simulations and HLA-based distributed simulations. In [22],
the use of BPMN for DS development is investigated. In such an approach BPMN collaborations are used to describe the behavioral
view of an HLA federation.

This work starts from results achieved by such contributions but also goes significantly beyond. First, the proposed approach,
in a low-code perspective, encompasses all the activities required for developing an HLA-based DS and takes into consideration the
development of both the FOM and substantial portions of federates. Specifically, the latter includes the code required to invoke
the HLA Run-Time Infrastructure (RTI) services and handle the related callbacks. Moreover, this research takes into consideration
a realistic scenario in which federation participants are required to only agree on a shared data model, with no assumptions,
restrictions or constraints on technologies adopted for each federate’s implementation.

As regards modeling of HLA federations, in [23], the lack of modeling formalisms specifically addressing the behavioral
description of HLA federates is underlined. In addition, in [24], authors highlight the lack of established practices for dealing with
behavioral models in DS. In this respect, the model of the HLA federation adopted in this paper approach makes use of both a
UML Class Diagram, to specify the information model describing federate participants along with the exchanged data, and a BPMN
Collaboration, to provide the behavioral description.

Finally, it should be underlined that the BPMN standard does not provide primitives for data modeling, as also underlined by
the Object Management Group (OMG) itself, which states that this is not a BPMN 2.0 objective [25]. In order to specify the data
exchanged by federates representing participants of a process collaboration, this work exploits a BPMN extension introduced in [8]
and briefly outlined in Section 3.3.

3. Method for the distributed simulation of BP collaborations

This section illustrates the proposed method for easing the distributed simulation of BP Collaboration specified by use of the
BPMN standard. The method hereby outlined starts from and significantly extends previous contributions, specifically [7] which
focuses on the generation of the FOM starting from a federation model, and [8] where a complete low-code development process
has been introduced to generate a JAVA-based federation. In this work the method has been considerably revised and extended in
order to address the concrete case briefly introduced in Section 1 and characterized by the following assumptions:

+ the development of a DS system is a challenging task often undertaken by different partners which might be interested in
simulating a common scenario, where each partner is responsible for developing its own federate. The proposed approach
does not assume or impose any restriction on the number of participants. In this respect, Section 4 discusses a concrete case
which deals with the design and implementation of a DS, whose development involves two entities: the Institut Mines-Télécom
Mines Ales (IMT) and the University of Tor Vergata (UTV);

partners shall agree on the information to be exchanged during the simulation execution. In this respect, they cooperate to
define a common data model;

each partner might not be interested in sharing any detail about the internal behavior/design of their federate(s), making only
available data and capabilities that each federate provides to and expects from other federates;

each partner develops its own federate according to the agreed data model, and make the federate available in a distributed
infrastructure. No assumptions are made on technologies upon which each federate implementation is based;

In this respect, Section 3.1 provides an overview of the method by illustrating the various activities which have to be undertaken
in order to simulate a BP Collaboration. Section 3.2 outlines a UML profile introduced for annotating the Class Diagram which
provides a conceptual model of the federation under study, Section 3.3 introduces an extension of the BPMN metamodel which
the proposed method exploits to specify the BPMN Collaboration model describing the interaction exchanged by federates during
the simulation execution. Finally, Sections 3.4 and 3.5 gives insight into the development process of the JAVA- and DEVS-based
federate, respectively.

3.1. Overview

The development process at the basis of the proposed method for the distributed simulation of BP collaboration is shown in
Fig. 1.
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Fig. 1. Development process of the distributed simulation.

The proposed approach makes use of two different models: a UML Class Diagram for specifying a conceptual model of the
federation under study that also provides a description of the adopted data model and a BPMN Collaboration for defining the flow
of messages that the RTI and the involved federates exchange during the simulation execution. As these two artifacts constitute
the input of automated model transformations that support the implementation of the simulation code, the information they shall
provide constitute an essential aspect to be addressed. In this respect, the BPMN Collaboration describes the data model entity that
is transferred in each message exchanged between a federate and the RTI. Unfortunately, the BPMN metamodel does not provide
metaclasses to model the structure and details of data exchanged in the business process. Therefore, it is necessary to introduce a
BPMN extension to enrich the BPMN semantics, allowing the specification of messages that the federate under study exchanges with
the RTL

The proposed method is inspired by the conceptual pillars of the Distributed Simulation Engineering and Execution Process [26],
which introduces a standardized process for managing distributed simulations, and exploits model-driven standards and technologies
to ease the development effort. Model transformations are introduced to generate preliminary models and a significant portion of
the required HLA implementation code, written in Java. Specifically, the method makes use of the following software components:

» the FOM-HLA UML Profile, introduced in [7], which allows the annotation of the UML Federation Model to map HLA-related
concepts to UML model elements. The FOM-HLA Profile, which has been revised and extended in this work, is illustrated in
Section 3.2.

» a BPMN extension, to enrich the BPMN Collaboration model with details about messages that the federate under study
exchanges with the RTIL.

» two automated generation activities, the first one to support the initial specification of the BPMN Collaboration model, and
the second one to generate the federation implementation;

The process includes four main activities, each further structured in different steps (see numbers from 1 to 6 in Fig. 1) which
are described below:

- Federation Specification: In this activity, the federation requirements are initially identified and then are used to define a
conceptual model of the federation. Specifically:

1. Federation Model Specification: in the first step, the federation requirements are provided to an HLA expert who is in
charge of manually specifying a UML-based Federation Model. Such a model aims at allowing federation’s participants
to agree on (i) a common data model which describes model elements which play a role in an HLA-based federation
(e.g., entities which have to be mapped to Object Classes or Interaction Classes), (ii) the capabilities each participant shall
provide (e.g., who publishes/subscribes what) and, finally, (iii) other HLA-related information required for describing
the federation (e.g., synchronization points). The output of the step 1 is a UML model annotated with the FOM-HLA
Profile.

2. Model-to-Text Transformation: an automated model-to-text transformation is executed to generate the Federation Object
Model (FOM) from the annotated federation model. The generation of an XML-based FOM from a UML model annotated
with the FOM-HLA Profile has been introduced in [7] and will not be further discussed in this work.

+ Federation Preliminary Design: This activity deals with the specification of a BPMN Collaboration Model which provides a
behavioral view of the federation under study. Such model aims at helping each federate’s designer in (i) defining the activity
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flow performed by the federate under his/her responsibility, and (ii) describing the interaction with other federates in terms
of the messages flow exchanged among the collaboration’s participants. Specifically:

3. Model-to-Model Transformation: at the third step a model-to-model transformation is executed to generate the Preliminary
BPMN Collaboration Model. Specifically, the BPMN model includes the one BPMN Pool element for each federate (plus
one Pool for the RTI) and a preconfigured list of the messages which are exchanged during the federation execution.
Such elements are generated according to the stereotypes included in the UML federation model.

» Federation Detailed Design and Implementation: In this activity each partner is engaged in the development of its own
federate.

4. Federates Development: as previously stated, on the one hand the proposed method aims at providing a general framework
for supporting the federation implementation and, in this respect, introduces standards and architectures such as HLA
or MDA to pursue interoperability and reduce the development effort. On the other hand, the method does not make
any assumption on strategies and technologies adopted for developing the required federates. Indeed, in a general
perspective, the implementation of each federate might be based on different strategies, methodologies and technologies.
As stated in Section 1, along with the definition of the method, this paper also discusses its actual adoption in a
concrete case in which a JAVA-based simulator and a DEVS-based one are federated in a joint simulation experiment
(see Section 4. In this respect, the specific process adopted by each federation participants to develop the relevant
federate is discussed in Sections 3.4 and 3.5, respectively.

+ Simulation Deployment and Execution: The last activity deals with the actual execution of the distributed simulation system:

5. Federate Deployment and Configuration: the fifth step consist in a manual activity in which the federates generated at
step 4 are deployed and the federation environment is configured;

6. Federation Execution: finally, at the last step, the federation is ready to be executed to carry out the simulation study for
the addressed scenario.

3.2. UML profile for annotating the federation model

The UML Federation Model specified at the first step of the methodology illustrated in Fig. 1 plays a primary role in the proposed
approach. On the one hand, it constitutes the input of the model-to-text transformation in charge of generating the FOM (step 2 in
Fig. 1). On the other hand, it is also used for deriving the BPMN Preliminary Collaboration Model (step 3 in Fig. 1). In order to
generate the expected outputs, the above-mentioned model transformations have to be provided with appropriate information which
describe the federation model from an HLA-oriented perspective. To this purpose, a UML profile which extends the UML semantics
and, ultimately, allows designers to enrich the federation model with the required HLA-related concepts. An initial version of the
adopted FOM-HLA Profile has been proposed in [7]. In this work, the profile has been extended, in order to make the UML Federation
Model suitable for driving the above-mentioned model transformations.

The FOM-HLA Profile consists of a set of stereotypes which have been defined as extensions of standard UML metaclasses. Each
stereotype allows the annotation of appropriate UML model elements so as to specify the required information need for characterizing
the element in terms of relevant HLA properties.

The metamodel of the FOM-HLA Profile is shown in Fig. 2. The profile includes the HLADatatypes package, illustrated in Fig. 3,
which provides a set of enumerated types used for describing the attributes of available stereotypes. The profile stereotypes and the
relevant data types have been both based on HLA Object Model Template, the standard that defines the format of HLA FOMs [27].

The red boxes in Figs. 2 and 3 enclose the profile parts which have been revised or added in this work. Specifically, as regard the
profile stereotypes, new stereotypes have been introduced, i.e., <<SimpleDataType>>, <<FixedRecordDataType>>, <<Ar-
rayDataType>>, <<EnumeratedDatatype>> and <<VariantRecordDatatype>> for extending the UML metaclasses
Datatype and Class and allows the specification of relevant types provided by the Object Model Template. Moreover, the new
stereotypes <<SyncPoint>> <<Register>> and <<Achieve>> have been introduced as extension of the Association UML
Metaclass, for allowing the appropriate representation of each federate responsibility in achieving and/or registering the required
synchronization points. It is worth underlining that the <<Register>> stereotype can also be used for denoting that a federated is
required to register a given Object Class. Finally, the <<Federate>> has been revised and various attributes have been introduced
in order to allow the specification of the following implementation-related properties:

-+ timeRegulating: a boolean value which is set to true if the federate is time-regulated, false otherwise;

- timeConstrained: a boolean value which is set to true if the federate is time-constrained, false otherwise;

» timeManagement: an enumeration which denotes whether a federate is time-stepped or event-driven. The attribute is specified
by the TimeManagementKind type.

- timeImplementation: an enumeration which denotes whether a federate logical time is implemented as a float or an integer
value. The attribute is specified by the TimeImplementationKind type.

+ lookadead: the (optional) value of the federate lookahead;

+ generate: a boolean value which denotes the federate under study. It is set to true if the federate code has to be generated,
false otherwise;
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Fig. 2. Metamodel of the FOM-HLA Profile.

As regard the HLADatatypes package, five new enumerations have been introduced. Specifically, HLAArrayEncodings,
HLAFixedREcordEncodings and HLAVariantRecordEncodings have been introduced for enabling a compliant representa-
tion of relevant HLA data types. Finally, HLATImeImple- mentationKind and TimeManagementKind have been introduced
to include in the model implementation-level information related to the federate logical time and its management.

3.3. BPMN extension

As mentioned in Section 3.1, the third step of the proposed methodology introduces an automated transformation step in charge
of generating the preliminary BPMN Collaboration Model, from the Federation Model.

In an HLA federation, federate interaction follows a message-passing paradigm which uses the HLA RTI as a broker. In this
respect, such a preliminary BPMN Collaboration model includes the following elements:

+ a BPMN participant element for each class of the federation model annotated with the <<federate>> stereotype;

+ a BPMN participant which represents the HLA Run Time Infrastructure;

» an empty BPMN Pool for each participant introduced in the two previous steps, which constitutes its visual representation; a
list of message elements representing the information each participant exchanges with the RTL

More specifically, messages are included to represent, e.g., a participant which sends a message to the RTI for publishing or
subscribing an interaction class or an object class. Messages are also exchanged when interactions are sent or received or for notifying
the update of an object attribute. In this respect, the preliminary BPMN Collaboration includes the semantic description of the various
messages, but the corresponding visual elements are not added to the model: the actual message flow will be specified during a
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Fig. 3. Metamodel of the FOM-HLA Profile (HLADatatypes package).
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Fig. 4. Metamodel of the HLA-oriented BPMN extension.

subsequent refinement step. As discussed in Section 3.1, during the Federate Development step, the message flow will be manually
specified by selecting the appropriate message from the list of existing ones, according to the BP execution flow.

As underlined in Section 3.1, the FOM specifies a common data model defining the data type of each information entity produced
and consumed at federation execution time. In an HLA-based simulation, such information entity can be an object class, which
represents a persistent entity, an interaction class, which represents an event, or a synchronization message. In this respect, the
proposed approach exploits the UML Class Diagram constituting the Federation Model to specify the data model. Differently, the
BPMN Collaboration model aims at specify the flow of messages, as described in Section 3.

As highlighted in Section 3.1, the BPMN standard metamodel lacks metaclasses that allow the description of HLA messages
exchanged during the federation execution. Therefore, a BPMN extension addressing the specification of data exchanged in a message
flow is required. For this purpose, this work makes use of the BPMN extension introduced in [8], which is hereby summarized for
the sake of completeness.
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Fig. 5. MDA-based development process for the Java Federate.

Various approaches can be followed for extending BPMN, each providing specific advantages and weaknesses. An exhaustive
comparison among the various approaches for extending BPMN is out of the scope of this paper. Interested readers are sent to [8]
where a detailed discussion is provided.

Specifically, the above-mentioned extension has been initially specified from a conceptual point of view. A metamodel compliant
to the OMG Meta-Object Facility standard [28] has been introduced to describe the various extension elements and clarify how they
extend the relevant BPMN base classes.

The metamodel has been serialized to a corresponding XSD schema. The BPMN process collaboration model includes an
Extension element in each message which represents an interaction between a federate and the RTI, whose structure is provided
according to the relevant XML schema. Finally, such message extension is handled by the automated transformation steps in charge
of generating the preliminary collaboration model and the federate implementation.

The metamodel shown in Fig. 4 represents from a conceptual point of view the BPMN semantic extension adopted in this work.
The metamodel implementation is based on Ecore, the Eclipse reference implementation of the Meta-Object Facility standard. The
extension core is constituted by the main class HLAdescriptionType which allows the specification of object class attributes and
interaction class parameters. The various subclasses of the BaseType class allow the appropriate and complete description of the
actual type used for defining each attribute or parameter. A complete description of each BPMN extension element is provided
in [8].

The metamodel is finally serialized to an XSD-based XML schema, which is used for specifying a corresponding hlaExt
namespace.

3.4. Development of the JAVA-based federate

The fourth step of the development process shown in Fig. 1 deals with the development of the required federates. As illustrated
in Section 3, the proposed method does not make any assumption on strategies and technologies adopted for the actual development
of each federate, but only assumes that the main input is constituted by the preliminary BPMN Collaboration Model. In this respect,
this section illustrates how a Java-based federate is generated starting from the XML representation of the collaboration model, by
introducing appropriate MDA-based model transformations. The development process, which is shown in Fig. 5, is structured in
three steps:

(a) Refinement of the Collaboration Model: the Preliminary Collaboration model which constitutes the input of this step is
the result of the automated Model-to-Model transformation executed at step 3 (see Fig. 1. Such a model includes empty BPMN
pools, each associated to one federate (plus one pool representing the RTI) and a pre-configured list of the messages that
each participant is expected to exchange with the RTI. It should be underlined that the BPMN specification of such messages
is augmented according to the BPMN extension illustrated in Section 3.3. The refinement step is a manual activity carried
out by a human expert which specifically focuses on a designated participant (i.e., a BPMN Pool) that in this specific case is
the JAVA-based federate. The model refinement is accomplished by creating the message flow exchanged by the designated
participant and the RTI, by selecting the concrete message from the pre-configured list of existing messages.

(b) Execution of the Model-to-Text Transformation: at the second step of the proposed method, an automated Model-to-Text
Transformation that generates a preliminary implementation of the federate under study is executed. The transformation
has been specified by use of Acceleo [29], a plugin of the Eclipse development environment. Acceleo implements the OMG
MOFMZ2T standard [30] and provides a model-to-text transformation engine which takes as input an XMI model that conforms
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to a given Ecore-based source metamodel and yields as output a text document. The latter is obtained by use of a template-
based approach, where fixed text is completed with the information retrieved from the input model. Specifically, the JAVA
implementation of the designated federate generated at this step is structured as follows:

« a Datatypes package, which includes the Java classes required for implementing the elements used for typing attributes
of UML classes stereotyped as <<ObjectClass>> and <<InteractionClass>>;

an Interactions package, which includes the Java classes that implement UML classes stereotyped as <<Interaction-
Class>>;

an Objects package, which includes the Java classes that implement UML classes stereotyped as <<ObjectClass>>;
a Federate package, which includes the Java implementation for the federate and the federate ambassador.

a Simulation package, which includes the implementation of Java classes for initializing and starting the simulation
environment.

(c) Java Code Refinement and Completion: the automated model transformation is able to generate a significant portion of the
required Java code, specifically those strictly tied to HLA (e.g. object classes and interaction classes declaration, publication
and subscription, attributes and parameters definition, types encoding and decoding, etc.). In order to finalize the federate
code and make it actually executable, a manual step is required to take into consideration the implementation of features and
aspects that cannot be automatically derived from the input model (e.g., details on federate’s internal behavior not captured
by the BPMN Collaboration model).

3.5. Development of the DEVS-based federate

The primary objective of this section is to outline a methodology for transforming an existing BPMN model, enriched with BPSIM
parameters, into a Java Federate capable of performing event-driven simulation using the DEVS formalism. In the approach used in
this paper, we utilize DEVS-Suite [31] to simulate the resulting DEVS model.

The methodology commences with the Preliminary BPMN Collaboration Model, as referenced in Section 3. This model is already
augmented with a BPMN extension for detailing messages exchanged with the RTI. An adept modeling user refines this model, with
particular attention to a designated collaborator (or pool). The refinement encompasses:

« Integrating proprietary business processes (BPMN+BPSIM) into the designated collaborator.
+ Connecting all the inputs and outputs of the model to the RTI pool using the interaction send and receive predefined messages.
+ Incorporating two supplementary BPMN tasks into the flow:

PS_Int_Classes and PS_Obj_Classes. These tasks are interconnected with the RTI pool through predefined messages.

Upon completion of these tasks, the refined BPMN+BPSIM model stands ready for the transformation phase.

3.5.1. Automatic transformation

In the course of developing this methodology, a comprehensive analysis of possible BPMN and BPSIM combinations was
conducted. The extensive range of allowed combinations posed a significant challenge, demanding an effective solution for
preserving vital functionalities in the transformation.

Instead of specifying the behavior of these combinations and then creating transformation rules conforming to this specification,
we chose to describe these specifications in a model similar to BPMN, which we call the Generic Interaction Model.

The transformation of a BPMN+BPSIM model to DEVS is then directed by this Generic Interaction Model, streamlining the
transformation process. To further refine this approach, we introduced the Intermediate Interaction Model (12M) [10].

I12M allows for a separation of concerns, breaking down functionalities and modeling their interactions separately in a BPMN-
like manner. Importantly, this methodology focuses on modeling interactions rather than resorting to code-based solutions. This is
advantageous for maintaining flexibility, as any changes in system dynamics can be easily accounted for by modifying the interaction
model, without the need for coding adjustments. Once the BPMN+BPSIM model is translated into I2M, the subsequent transformation
to DEVS is a straightforward one-to-one mapping. We have developed a dedicated library of I2M models in DEVS-Suite; the final
DEVS model is simply a coupling of the corresponding elements from this library, streamlining the entire transformation process.

To encapsulate the potential relationships a BPMN task can establish within the BPMN or BPSIM frameworks, we formulated a
Generic Interaction Model for a BPMN Task. To elucidate the aforementioned transformation process, we refer to a simple example
showcased in the Generic Interaction Model in Fig. 6, while noting that it does not represent all potential combinations.

During the initial transformation, the focus remains on pinpointing the interactions between the BPMN and BPSIM elements in
the user’s model using the Generic Interaction Model. Subsequently, non-essential I2M elements are discarded to derive the final
12M model.

For example, when examining a BPMN Receive Task that incorporates BPSIM time and resources, the corresponding 12M
representation aligns with the Generic Interaction Model for a task, omitting unnecessary elements, specifically i2 m:Send(msg)
and i2 m:Timer(Prob. Dist), that are not required for this particular instance.

The final step in the transition to DEVS only necessitates a DEVS library that accommodates the I12M elements in a one-to-one
relationship. Leveraging the DEVS-Suite where we have housed a dedicated library of I2M models facilitates this procedure, with
the ultimate DEVS model simply being a connection of the corresponding components from this library. Detailed mappings between
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I2M elements and their DEVS equivalents are provided in [10], ensuring accurate and functional representations within the DEVS
framework.

We now facilitate a dual-phase transformation, first from BPMN+BPSIM to 12M and then from I12M to DEVS. These transforma-
tions are executed using the Atlas Transformation Language, a pivotal tool for describing complex transformations in a readable,
declarative, and maintainable manner [32]. With the DEVS model in hand, a Model-to-Text transformation is carried out using
Acceleo [29].

This process generates Java code compliant with the DEVS model. Leveraging HLA-dedicated libraries and a selection of APIs
created to communicate with DEVS-Suite, a Java DEVS Federate is constructed. Our approach incorporates a dual-phase Model-to-
Model transformation followed by a Model-to-Text transformation, which ultimately facilitates the generation of the federate code
for the DEVS-based Java federate.

This approach provides an efficient and flexible means to transform BPMN models, enriched with BPSIM parameters, into a
simulation-ready format. The advantage of this methodology lies not only in its accuracy in capturing the dynamic nature of business
processes but also in its adaptability, allowing for incremental changes and updates without the need for extensive code revisions.
By utilizing this method, we contribute to preserving intellectual property, as the two different federates (Java-only federate and
DEVS-based federate) are generated separately, thereby promoting interoperability.

Our comprehensive methodology ensures a seamless transition from a BPMN model to an event-driven simulation, facilitating
in-depth analysis and potential optimization of complex systems.

4. Example application

This section describes an application case that highlights the dynamic interactions between two main entities: Collaborator 1
(IMT) and Collaborator 2 (UTV).

In compliance with the federation requirements, UTV dispatches a “Specification” message to IMT. After processing this
specification, IMT sends back a “Design” message to UTV.

A UML conceptual model for the federation, illustrated in Fig. 7, is constructed based on these interactions. This model outlines
vital components, symbolizes entities with HLA terminology, identifies roles such as publishers and subscribers, and incorporates
HLA-specific markers including synchronization points. The FOM-HLA UML Profile annotations are incorporated for enhanced
clarity.

Following the completion of the UML Federation Model, the Model-to-Text transformation phase starts. This UML model is
instrumental in guiding the FOM file’s creation, which outlines the federation’s structure, interactions, and adherence to established
standards.

The Preliminary BPMN Collaboration Model is then derived using Model-to-Model transformation, with the UML model as its
basis. Components from the UML are converted into their BPMN counterparts. Entities like ’Collaborator 1 (IMT)’, ’Collaborator 2
(UTVY, and ‘RTT are represented as BPMN Pools, derived directly from the UML. Simultaneously, a message list is auto-generated,
emphasizing the key communications. See Section 3.1.

The BPMN diagram in Fig. 8 displays the theoretical synchronized workflow between UTV and IMT. UTV initiates the process
with a predesign phase, transmitting specifications to IMT, and subsequently awaits the design. Concurrently, IMT processes UTV’s

10
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specifications, moves to the design phase, and forwards the design to UTV for validation. In real life, these collaborators are only
aware of the exchanged messages but not each other’s flow. The real communication between these two flows will be done only
through the RTI. A key aspect of their collaboration is the protection of intellectual property. The primary goal of this simulation is
to ensure that proprietary processes of both IMT and UTV remain confidential. While the BPMN serves as a mutual reference, each
collaborator refines its portion within the BPMN model separately.

Both IMT and UTV will then independently refine their respective models. The outcomes of these refinement efforts are illustrated
in Figs. 9 and 10. This is done according to Section 3.

Both federates implement the Interaction and Participant Object configuration during their initial setups, correlating them with
HLA methods. The interactions and Objects are defined in the auto-generated FOM file. Configuration details include:

» Communication Configuration Messages:

- Send_Int_Communication (SEND) and Receive_Int Communication (RECV): Relate to HLA methods for sending and

receiving interactions: sendInteraction, receivelnteraction.

» Initialization Configuration Messages:

— ROP (Register_Obj_Participant): For registering a participant object: Relate to HLA method for object configurations:
registerObjectInstance.
- PIC (Publish_Int_ Communication) and SIC (Subscribe_Int Communication): For configuring the publish and subscribe
mechanisms for interactions: Relate to HLA methods for publishing and subscribing to interactions: subscribelnterac-

tionClass and publishInteractionClass.

— POP (Publish_Obj_Participant) and SOP (Subscribe_Obj_Partici- pant): For configuring the publish and subscribe mech-
anisms for objects: Relate to HLA methods for publishing and subscribing to object attributes: subscribeObjectClassAt-
tributes and publishObjectClassAttributes.

Post configuration, the Java-Based federate is prepped for RTI communication based on the FOM file.

11
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The Java-based federate is developed following the method illustrated in Section 3.4. The availability of an execution
environment, such as the Eclipse Modeling Framework, makes the methodology easy to be actually carried out. The adoption of
MDA-based model transformations allow the seamless execution of the various steps and guarantees the straightforward coherence
of the different artifacts (data model, preliminary and complete collaboration model, federate implementation). The federate
implementation step highly benefits from the availability of automated transformation, as the proposed approach considerably
reduces the required effort. In this respect, it should be underlined that observed advantages are not limited to a mere reduction
of the lines of code to be developed by hand. Indeed, the transformation step specifically addresses the automated generation of
the HLA-related code, which is the most difficult portion to be developed and the one which requires significant know-how and
technical skills.

For the DEVS-based federate, we follow the method described in Section 3.5. The BPMN+BPSIM model undergoes conversion
into an I2M model, subsequently transforming into a DEVS simulation that encapsulates essential parameters and task dependencies.

This dual-stage transformation, from BPMN+BPSIM to I2M (Fig. 11) and subsequently to DEVS (Fig. 12), offers a holistic
perspective on the process, setting the foundation for anticipated improvements and augmented efficiency.

Having generated the final DEVS model, we will proceed with the Model-to-Text transformation to produce the DEVS-based
federate. The transformation also includes connections with the DEVS-Suite APIs. A DEVS Coupled coordinator is then instantiated

12
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Fig. 12. DEVS Model resulting from I12M.

and configured for the IMT model. Integration with this DEVS Coordinator facilitates simulation in DEVS-Suite and allows for the
injection of simulation events. This two-tiered transformation procedure offers a thorough insight into the complete workflow,
forming a foundation for prospective improvements.

Fig. 13 displays the logs derived from the collaborative simulation illustrated in Fig. 8. In this example, the task durations for
UTV and IMT are set at 5000 ms and 10 000 ms, respectively. Starting their processes individually at time 0 ms, both UTV and IMT
progressed according to their own operational methodologies.

The cornerstone of their collaboration lies in the synchronization facilitated by secure message exchanges through the RTIL. This
synchronization, first evident at the 5000 ms mark, allows for secure sharing of sensitive data, bridging the separate timelines of UTV
and IMT into a unified workflow. It showcases the effectiveness of message-driven synchronization in collaborative environments.

13



M. El Kassis et al. Simulation Modelling Practice and Theory 135 (2024) 102977

UTV Letivity |UTV Timestamp (ma) |IMT Timestamp(ma)| IMT Activity

I | |
Start [0 [0 | Start
Parallel Gateway: Fork [0 [0 | Parallel Gateway: Fork
Start Task: Pre-design (5000 ms) [0 [0 | Start Task: Preparation (10000 ms)
RTI wait message: Design [0 [0 | RII wait message: Specification
End Task: Pre-design (5000 ms) [5000 [0 | -
RII send msg:{"Specification”:"5000 ms"}15000 == 15000 | RII recv msg: ["Specification":"5000 ms")
2 [5000 |10000 | End Task: Preparation (10000 ms)
- |5000 110000 | Parallel Gateway: Join
S [5000 [10000 | Start Task: Design (10000 ms)
- 5000 120000 | End Task: Design {10000 ms)
RII recv msg:{"Design":"20000 ms"} [20000 <= 120000 | RII send msg:{"Design":"20000 ms"}
Parallel Gateway: Join [20000 120000 | Start Task: Closure (10000 ms)
Start Task: Design Validation (5000 ms) |20000 30000 | End Task: Closure (10000 ma)
End Task: Design Validation (5000 ms)  [25000 130000 | End

End 125000 - | -

Fig. 13. UTV-IMT collaboration simulation log.

The log reveals a notable point that the UTV federate completes its process at 25000 ms, while the IMT federate concludes at
30000 ms. Despite the difference in completion times, the successful synchronization of tasks and message exchanges guide the
independent simulations of UTV and IMT towards a harmonized conclusion, illustrating the efficacy of our approach in managing
collaborative simulations with disparate task durations and operational strategies.

5. Conclusions

In response to the growing demand for collaborative simulations, our research introduces a methodology that integrates the High-
Level Architecture with the Model Driven Architecture. Through detailed model-to-model and model-to-text transformations, our
approach facilitates the transformation of a conceptual UML federation model into the Federation Object Model and a Preliminary
BPMN Collaboration Model. As a result, this framework has led to the automatic generation of code for two distinct federates, each
embracing a unique simulation approach: one based on Java and the other anchored in the DEVS formalism. Despite their differing
simulation paradigms, these federates demonstrated impressive interoperability within the HLA framework. Their ability to work
together, given their distinct simulation foundations, emphasizes the versatility and resilience of our introduced method.

A core accomplishment of our research is its dedication to preserving confidentiality in collaborative simulations. We have
devised a mechanism that enables varied business models to interact efficiently, yet with assurance that their proprietary information
remains uncompromised. Through this selective and controlled information exchange methodology, we maintain the essential
confidentiality of proprietary processes while enabling effective collaboration in a shared simulation environment.

In summation, this study provides a comprehensive approach to distributed simulations, striking a balance between the
advantages of collaboration and the imperative need for autonomy and security. Future work will focus on refining this methodology,
enhancing its operational efficiency and reinforcing its security mechanisms.
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