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Deciphering impedance cytometry signals with neural networks 
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Microfluidic impedance cytometry is a label-free technique for high-throughput single-cell analysis. Multi-

frequency impedance measurements provide data that allows full characterization of cells, linking electrical 

phenotype to individual biophysical properties. To efficiently extract the information embedded in the electrical 

signals, potentially in real-time, tailored signal processing is needed. Artificial intelligence approaches provide a 

promising new direction. Here we demonstrate the ability of neural networks to decipher impedance cytometry 

signals in two challenging scenarios: (i) to determine the intrinsic dielectric properties of single cells directly from 

raw impedance data streams, (ii) to capture single-cell signals that are hidden in the measured signals for coincident 

cells. The accuracy of the results and the high processing speed (fractions of ms per cell) demonstrates that neural 

networks can have an important role in impedance-based single-cell analysis.  

1 Introduction 

The synergistic convergence of microfluidics and machine 

learning is expected to play a game-changing role in cell analysis 

and manipulation. Combining microfluidics - to acquire vast 

amounts of data at the single cell level - with machine learning 

- to analyse such complex data effectively - represents an

emerging opportunity in biotechnology that remains largely

untapped1,2. Machine learning potentially enables the

development of intelligent microfluidic platforms operated by

data-driven models and characterized by increased

automation3,4. This offers advantages in high-throughput and

precision analysis of cells. Human-based control and data

analysis is a labour-intensive and time-consuming process, also

prone to bias by the user and low accuracy. Real-time

monitoring and automatic control are highly desirable to

instruct normal operation as well as to ensure proper

functioning in the case of abnormalities (e.g., unexpected clogs

or air bubbles).

In recent years, the integration of machine learning with

microfluidics has led to improved imaging flow cytometry and

image-activated cell sorting technologies5–8. Technological

advances improved the trade-off between speed and accuracy9

with optimal machine learning approaches developed for

single-cell data analysis. The techniques can be categorized into

two groups based on the type of data that are analyzed by a

trained model, namely raw images or features extracted from 

images10. Aspects to be considered include the need for large 

and representative training data sets with data normalization 

and augmentation; the need for labelled data in supervised 

learning approaches; the selection of tailored network 

architectures along with possible transfer learning strategies. 

A research field that could benefit the developments of 

machine learning to cell analysis and sorting is single-cell 

impedance cytometry.  This technique is a label-free and high-

throughput method to characterize cellular systems based on 

their electrical phenotype11–13. Applications range from 

fundamental life-science and drug assessment research to 

point-of-care diagnostics and precision medicine. The 

development of novel approaches for multiparametric 

impedance-based characterization at high throughput requires 

tailored strategies for signal processing and data analysis.  

In contrast to other microfluidic fields (especially imaging flow 

cytometry), the application of machine learning to impedance 

cytometry is relatively unexplored. Recent studies have 

considered the use of machine learning tools to classify 

biological cells based on electrical features14–20 (i.e., scalar 

parameters extracted from the raw impedance signals). For 

instance, Schutt et al.14 used a k-means algorithm for 

subpopulation clustering of peripheral blood mononuclear cells, 

based on peak voltage and phase; Ahuja et al.16 used a Support 

Vector Machine (SVM) classifier to discriminate between live 

and dead T47D breast cancer cells, using peak impedance 

magnitude and phase at four frequencies; D’Orazio et al.17 used 

a SVM classifier in an 8-class pollen grain classification task, 

based on magnitude and phase at two frequencies; Yang et al.18 

used a backpropagation neural network to classify MCF-7 breast 

cancer cells with different deformability, using impedance 

magnitude and two transit time metrics; Feng et al.20 used fully 

connected networks to estimate three biophysical parameters 

a. Department of Civil Engineering and Computer Science, University of Rome Tor
Vergata, Rome, Italy. E-mail: caselli@ing.uniroma2.it

b. Center for Life Nano Science@Sapienza, Italian Institute of Technology (IIT), 
Rome, Italy.

c. Italian National Research Council - Institute for Photonics and Nanotechnologies
(CNR - IFN), Rome, Italy.

d. School of Electronics and Computing Science, and Institute for Life Sciences,
University of Southampton, Highfield, Southampton, UK.

Electronic Supplementary Information (ESI) available. See DOI: 10.1039/x0xx00000x

For the final published version see https://doi.org/10.1039/D2LC00028H



ARTICLE Journal Name 

2 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

from peak impedance amplitude at four frequencies to classify 

5 cell types. 

In contrast to these studies, we describe the use of machine 

learning to directly process time-domain raw impedance signals 

(instead of pre-extracted electrical features), an approach that 

is in its infancy. Wang and co-authors used Convolutional Neural 

Networks (CNN) to implement pattern recognition in possibly 

interfering signal waveforms from a Coulter sensor network21, 

and implemented a closed-loop feedback control that drives a 

programmable pressure pump to maintain a desired cell flow 

speed22. Honrado et al.23 developed a Recurrent Neural 

Network (RNN) to perform real-time feature extraction from 

single-cell impedance signals, demonstrating accurate 

characterization of size, velocity, and cross-sectional position of 

beads, red blood cells, and yeasts, with a unitary prediction time 

of 0.4 ms.  

In this paper we demonstrate the use of tailored network 

architectures to tackle two challenging tasks in microfluidic 

impedance cytometry, namely, single-cell electrical 

phenotyping and coincidence resolution.  

Single-cell electrical phenotyping refers to the characterization 

of the intrinsic electrical properties of single cells, that can aid 

in understanding biological processes including disease 

progression at the cellular and molecular levels24. Assuming a 

single-shell model25, the electrical properties can be described 

in terms of the conductivity and permittivity of the membrane 

and cytoplasm, estimated by fitting the model to experimental 

impedance spectra. High speed multi-frequency impedance 

measurements have shown that impedance spectra of 

individual cells can be acquired at rates of up to a thousand cells 

per second26. Further developments such as active on-the-fly 

particle sorting27 require high processing throughput (number 

of analysed single-particle signals per unit time). This calls for 

tailored signal-processing approaches that can implement a 

complete processing workflow - from event-detection in the 

data stream to dielectric properties estimation - in real time. 

Neural networks are ideal candidates, as the main computation 

during network prediction consists of parallel matrix 

multiplications, resulting in high-speed processing28. To the best 

of our knowledge, this is the first time that neural networks 

have been used to determine the intrinsic dielectric properties 

of single cells directly form raw impedance data. 

Coincidence resolution describes the analysis of interfering 

signals that are generated by the passage of two or more cells 

roughly simultaneously through the sensing region (i.e., a 

coincidence). The shape of the overall measured signal depends 

on the number and the properties (size, dielectric properties, 

relative position, velocity) of the individual interfering cells29,30. 

This results in a plethora of possible signal shapes that can 

hardly be handled by standard processing approaches that 

assume a unique and well-defined signal shape (typically a 

Gaussian or a bipolar Gaussian pulse). As in Coulter-type 

devices, coincidence reduces number of cells that can be 

analysed and can lead to errors in the measured cell 

properties31. Restricting coincidence to typically below 10% 

imposes a limit on the sample concentration (typically below 

106 cell/ml), at the expense of increased reagent volume and 

increased assay time. We demonstrate the application of 

innovative neural network-based approaches to overcome this 

limitation. In fact, neural networks can uncover single-cell 

signals that are hidden in the overall measured signal. 

In this paper, studies of single-cell electrical phenotyping and 

coincidence resolution are separately presented, highlighting 

the innovative concepts and experimental outcomes. 

Guidelines for future studies are presented, emphasizing 

current challenges of this new research direction. 

2 Single-cell electrical phenotyping 

 

2.1 Experimental data  

The microfluidic impedance cytometer consists of a microfluidic 

channel (40 µm wide and 30 µm high) with several micron-sized 

electrodes, as shown in Fig. 1A. When an AC voltage is applied 

to a set of electrodes, a flowing cell perturbs the electrical 

current which is measured differentially (one electrode pair 

followed by a second pair). The measured differential signal has 

a bipolar Gaussian shape, where the peak amplitude 

corresponds to the cell impedance at that frequency. Low 

frequency (< 1MHz) impedance measurements provide a direct 

measurement of (electrical) cell size; at intermediate 

frequencies (1-5 MHz), the cell membrane capacitance 

dominates the measured impedance spectrum; at higher 

frequencies (>20MHz), the electrical properties are dominated 

by the cell cytoplasm and finally the nucleus (if present) at very 

high frequencies (cf. section S1 of the Supplementary Material). 

In Ref.26, eight frequencies were applied simultaneously in 

order to measure the complete spectrum of single cells. These 

frequencies were spaced logarithmically apart between 250kHz 

and 50MHz. In this work the experimental dataset is taken from 

Ref.26 

The sample contained a mixture of red blood cells (RBCs) and 

ghosts suspended in phosphate buffered saline (PBS). The RBC 

is the simplest model cell, and its dielectric characterization is 

critical in many applications, such as malaria diagnosis32, 

understanding sickle-cell disease33, and blood storage 

monitoring34. RBCs were sphered in order to simplify the 

analysis. Ghost cells were also used since their membranes 

reseal to a spherical shape and entrap a “cytoplasm” with well-

defined dielectric properties. In addition, reference beads (7 µm 

diameter) were used for signal normalization. The flow rate was 

set to 40 µl/min, while the sampling rate was 57.6 kHz. Full 

details are provided in Ref.26 

 

2.2 Dataset augmentation 

Neural network models learn to map inputs to outputs given a 

training dataset of examples. Data augmentation encompasses 

a suite of techniques that enhance the size and quality of 

training datasets such that better machine learning models can 

be built using them35,36. Data augmentation attempts to 

increase the generalization ability of trained models by reducing 

overfitting (which occurs when a model describes features that 

arise from noise or variance in the training data, rather than the 
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underlying distribution from which the data were drawn37). The 

need for generalization is especially important for real-world 

data and can help networks overcome small datasets or 

datasets with imbalanced classes. While data augmentation is a 

common practice in image processing with neural networks, it 

is not established as a standard procedure for analysis of time 

series (like time-domain impedance signals). We implemented 

a data augmentation which mimics variations in the sample flow 

rate, and hence particle velocity. In particular, the original 

dataset was time-stretched and resampled to maintain the 

original sampling rate (Fig. S3 Supplementary Material). Five 

stretch values were considered, logarithmically spaced in the 

range 0.5-2.  

In order to perform hold-out cross-validation, the augmented 

dataset was subdivided into training set, validation set, and test 

set according to the following proportions: 70%, 15%, 15%, 

respectively. 

 

2.3 Neural network-based workflow 

The overall signal-processing workflow (Fig. 1) is described below. 

Additional technical details are provided in section S3 of the 

Supplementary Material. 

Segmentation of the raw data stream. The first step consists of 

identification of the data stream portions associated with cell 

passing through the sensing zone (i.e., data stream 

segmentation or event detection). To achieve this, we mimic a 

technique originally developed for Voice Activity Detection 

(VAD)38. Particle signals in the impedance data stream are 

considered as word sounds in an audio recording. The proposed 

approach is based on a Recurrent Neural Network (RNN) 

composed of five layers (Fig. S4 Supplementary Material): (i) 

sequence input layer, (ii) bidirectional Long Short Term Memory 

(bi-LSTM) layer, (iii) fully connected layer, (iv) softmax layer, (v) 

classification layer. The sequence input layer receives the 

impedance data stream, which is composed of 16 sequences (8 

frequency channels, each with real and imaginary components). 

The final classification layer outputs a binary sequence wherein 

0 indicates noise and 1 indicates particle-signal, thus yielding 

the data stream segmentation mask (Fig. 1A). The network was 

trained via supervised learning, by using a labelled dataset. The 

labelling (i.e., the target segmentation mask) was obtained by 

processing the data stream with a previously validated 

algorithm39.   

Cell dielectric characterization from impedance images. The single-

cell signals, comprising 16 traces (8 frequencies, real and 

imaginary parts) are reshaped as impedance images (Fig. 1B), i.e. 

two-dimensional representations where the rows correspond 

to the different frequency channels and the columns 

correspond to the different time samples. Each image has two 

colours: one corresponds to the real signal component, and the 

other to the imaginary signal component. This novel concept of 

impedance image lends itself well to CNN-based processing. In 

particular, we used CNNs with the following architecture (Fig. 

S5 Supplementary Material): (i) image input layer, (ii) 3 

repetitions of convolutional layer, batch normalization layer, 

and Rectifier Linear Unit (ReLU) layer, (iii) fully connected layer, 

(iv) depending on the network task (i.e., classification or 

Fig. 1 Single-cell dielectric spectroscopy workflow. (A) An AC voltage signal containing n=8 frequencies is applied to two top electrodes of a microfluidic impedance chip, and the 

differential current is collected from the two opposite bottom electrodes. The signal is demodulated into its real (ℝ𝑗) and imaginary (ℐ𝑗) components at each frequency 𝑓𝑗. The 

resulting 16 data streams are fed as inputs to a classification RNN that is trained to identify the data stream portions corresponding to individual flowing particles/cells (i.e., the 

network outputs a binary segmentation mask). (B) The signals ℝ𝑗  and ℐ𝑗 of each detected particle/cell are reshaped as impedance images, which are fed into a classification CNN 

that performs particle classification (beads or cells). Cell impedance “images” are then processed  by a regression CNN that predics cell size and dielectric properties, whereas bead 

signals are used to obtain the calibration signal 𝑆𝑏𝑒𝑎𝑑. The image of the microfluidic chip in panel (A) is adapted with permission from Ref. 26. 
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regression), either a softmax layer followed by a classification 

layer, or a regression layer. 

As detailed in Ref.26, the measured frequency-dependent 

impedance for a single cell includes effects from the 

measurement hardware (non-linear behaviour of the 

electronics and chip parasitics), which need to be compensated. 

Therefore the measured cell impedance is normalized against 

the bead impedance (cf. section S1 Supplementary Material). 

This task is performed by a classification CNN which classifies 

the event impedance images in two classes (bead or cell), 

followed by a regression CNN which outputs the peak 

amplitudes of the bead signals, to be used for normalization. 

The normalized cell impedance images are processed by a 

regression CNN that predicts the cell size (radius 𝒓) and the cell 

intrinsic dielectric properties, namely, membrane capacitance 

𝑪𝒎𝒆𝒎, cytoplasm conductivity 𝛔𝒄𝒚𝒕, and cytoplasm permittivity 

𝜺𝒄𝒚𝒕.  

The networks were trained via supervised learning, by using a 

labelled dataset. The labels (target class, target peak 

amplitudes, and target values of radius and dielectric 

properties) were obtained using standard signal processing 

algorithms based on template-fitting and impedance spectra 

fitting11,26 (Fig. S2 Supplementary Material). Target features 

were scaled to the range [0, 1]. Neural network predictions 

were then scaled back to their original ranges. 

 

2.4 Results  

The results relevant to the segmentation of the data stream are 

shown in Table 1 and Fig. 2A. Table 1 shows the particle 

counting performance and summarises the number of correctly 

detected particles (true positives, TP), missed particles (false 

negatives, FN), noise regions misinterpreted as particles (false 

positives, FP), and the resulting values of sensitivity (S) and 

positive predictive value (PPV): 

S =
TP

TP + FN
,   PPV =

TP

TP + FP
 . 

Fig. 2A evaluates the quality of event-length predictions. In 

particular, the histograms of predicted and target event length, 

and the density plot of predicted length against target length 

are shown in sub-panels (i) and (ii), respectively. The correlation 

coefficient (R) and the average relative error (µE) are 98.9% and 

1.5%, respectively. 

The results of system normalization using calibration beads are 

reported in Fig. S7, Supplementary Material. The accuracy of 

the binary classification of beads or cells is close to 100%, with 

unitary prediction time UT=0.10 ms. The latter is defined as the 

overall network prediction time divided by the cardinality of the 

test set. The relative error on the estimated bead calibration 

signal is lower than 3% (with UT=0.04 ms). 

Fig. 2B shows results of cell dielectric characterization. In 

particular, the predicted values of cell radius and cell intrinsic 

properties (membrane capacitance, cytoplasm conductivity, 

and cytoplasm permittivity) are compared with target values 

using superimposed histograms and 2D density plots. 

Correlation coefficients (R) and average relative errors (µE) are 

also reported, highlighting the remarkable prediction 

capabilities of the network, which exhibited a unitary prediction 

time UT=0.11 ms.  

As expected, RBCs and ghosts have similar radii and membrane 

capacitance (Fig. 2B, sub-panels (i)-(iv)), but different cytoplasm 

conductivity and permittivity (Fig. 2B, sub-panels (v)-(viii); Fig. 

S6, Supplementary Material). Whilst cytoplasm conductivity 

would be sufficient to distinguish RBCs and ghosts, the full set 

of properties could be useful for identifying subpopulations 

with similar electrical phenotype. For example, Honrado et al.32 

Fig. 2 Single-cell dielectric spectroscopy results (Targ: target; Pred: predicted). (A) Data streams segmentation: (i) histogram of predicted and target event length, (ii) density plot 

of predicted event length vs target event length. (B) Estimation of cell dielectric properties: histograms of predicted and target radius (i), membrane capacitance (iii), cytoplasm 

permittivity (v), and cytoplasm conductivity (vii), along with the associated density plots (ii), (iv), (vi), and (viii), respectively. Correlation coefficients R and average relative errors 

µE are also reported within the density plots.
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showed that the membrane capacitance and cytoplasmic 

conductivity of Plasmodium falciparum-infected RBCs increased 

with time, due to membrane alterations caused by parasite 

infection. Alterations of dielectric properties of RBCs have been 

related to oxygen carrying capacity40, glucose homeostasis41, 

and age42. Recently, the use of RBCs as multimodal standard 

particles with systematically modulated membrane capacitance 

and cytoplasm conductivity has been presented43. Machine 

learning could provide improved, high speed method for 

classifying these subtle differences between cells. 

 

Table 1 Particle counting results 

TP FN FP S (%) PPV (%) 

6483 142 274 97.8 95.9 

 

3 Coincidence resolution 

This section introduces an original neural network-based 

approach to coincidence resolution. 

  

3.1 Experimental data  

The microfluidic cytometer in this case comprises two 

measurement zones separated by a hyperbolic constriction (Fig. 

3A). The microchannel is 40 µm wide in the first measurement 

zone and 20 µm wide in the second one, while channel height is 

20 µm. Each measurement zone has three coplanar electrodes: 

AC voltage is applied to the central electrode and the 

differential current from the lateral electrodes is measured. 

Each particle contributes to the measured signal giving a bipolar 

Gaussian signal (one for each sensing zone). However, when 

two or more particles flow in close proximity their signals 

interfere, and the overall measured signal is given by the 

superposition of the individual bipolar Gaussian profiles (see 

example in Fig. S8, Supplementary Material). Since the relative 

position of particles changes with time because they generally 

have different velocities, signals generated by more than one 

particle (i.e. coincidences) will have different shapes in the two 

measurement zones. Therefore, the electrical signals from two 

measurement zones instead of one, provide valuable 

information for coincidence resolution30.  

The experimental dataset used for this case study is taken from 

Ref.30 The samples contained either beads (6 µm diameter) or 

red blood cells suspended in PBS. Since the application was 

focused on coincidence resolution (rather than dielectric 

characterization), only one frequency was used in each 

measurement zone, and only the real component of the 

measured signals was recorded. The flow rate was set to 30 

µl/min, while the sampling rate was 230 kHz. Full details are 

provided in Ref.30 

 

3.2 Generation of synthetic multi-particle signals and data 

augmentation 

Since the issue of coincidence resolution is especially 

challenging, we designed a strategy to build artificial k-particle 

events (i.e. coincidence signals generated by k particles with 

known properties). As shown in Fig. S9A-B, Supplementary 

Material, single-particle signals were extracted from an 

experimental data stream of beads/RBCs at low concentration 

(105 particles per ml); synthetic k-particle events were obtained 

by randomly superimposing single-particle signals extracted 

from the available pool. In order to mimic an experimental 

dataset with extreme conditions (very high coincidence), a 

concentration of 107 particles per ml was used, assuming a 

Poisson distribution for particle arrival times. For these 

conditions, the expected fraction of singlets, doublets and 

triplets is 52%, 25%, and 12%, respectively30. The overall 

fraction of k-particle events with k>3 is 11% (of which: 5.6% with 

k=4, 2.8% with k=5, 1.4% with k=6, and progressively lower 

fractions for higher values of k). 

To achieve robust network training, reduce the risk of 

overfitting and increase the network generalization capabilities, 

we implemented a two-fold data augmentation strategy. This is 

based on (i) amplitude augmentation at the level of the 

extracted single-particle signals (before their superposition), 

and (ii) velocity augmentation at the level of the assembled k-

particle signals. Each extracted single-particle signal produced 

four additional single-particle signals (Fig. S9C-D, 

Supplementary Material). The logarithm of the amplitude 

Fig. 3 Coincidence resolution workflow. (A) A microfluidic chip with two measurement zones separated by a hyperbolic constriction is used to acquire two electrical snapshots, 𝑠1(𝑡) 

and 𝑠2(𝑡) of each cluster of flowing particles (i.e. a single particle or a group of particles producing interfering signals). As shown in the inset, in each measurement zone three 

coplanar electrodes are used: AC voltage is applied to the central electrode and the differential current from the lateral electrodes is collected (indicated dimensions are in µm). (B) 

The signals 𝑠1(𝑡) and 𝑠2(𝑡) of each cluster are processed by a classification CNN that predicts the number of composing particles (i.e. it establishes if  the cluster is a singlet, a 

doublet, a triplet, or a k-particle event with k>3). Depending on the number of composing particles, a suitable regression RNN is used to predict the features of the s ingle-particle 

signals (RNN-s for singlets, RNN-d for doublets, RNN-t for triplets). In the example, a triplet is considered, and therefore RNN-t is used to unveil the three single-events embedded 

in 𝑠1(𝑡). The picture of the microfluidic chip in panel (A) is adapted with permission from Ref. 30.
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amplification factor was randomly uniformly distributed in the 

range 0.25-4. Each assembled k-particle signal produced four 

additional k-particle signals (Fig. S10, Supplementary Material). 

The logarithm of the stretch factor was randomly uniformly 

distributed in the range 0.5-2. More than 533k synthetic multi-

particle signals (285k singlets, 133k doublets, 61k triplets, and 

54k clusters involving more than 3 particles) were build and 

used to train the networks. 

The test dataset was generated with a concentration of 107 

particles per ml following the same procedure (without data 

augmentation), by superposing single-bead signals and single-

RBC signals extracted from two data streams at low 

concentration (2 x 105 particles per ml). As recommended to 

assess network generalization capability, these were new data 

streams (i.e., not the same set as used in training). 

 

3.3 Neural network-based workflow 

In this section the architecture of the signal-processing workflow 

(Fig. 3B) is described. Additional technical details are provided in 

Section S7 of the Supplementary Material. 

Classification. The first task is classification of k-particle signals 

based on the number of measured particles, i.e. singlets (k=1), 

doublets (k=2), triplets (k=3), and more (k≥4). This task is 

performed by a CNN with the same main structure as that used 

for single-cell dielectric characterization (Fig. S11, 

Supplementary Material). As illustrated in Fig. 3B, the network 

receives as an input the two electrical signals for the event (one 

from each measurement zone) and predicts as an output the 

corresponding class (singlet, doublet, triplet, or more). 

Regression. Events classified as singlets, doublets, or triplets are 

fed as input to regression RNNs that are trained to predict the 

features of the individual bipolar signals that compose a singlet, 

doublet, or triplet, respectively. In particular, each individual 

bipolar signal is characterized by four features (Fig. S12, 

Supplementary Material): the central time 𝒕𝐜, the peal-to-peak 

time 𝜹, the pulse width 𝝈, and the signal peak amplitude 𝒂. The 

RNNs have the same main architecture (Fig. S12, 

Supplementary Material) as that used for data stream 

segmentation. Target features were obtained using standard 

template fitting performed on the individual bipolar signal 

(before their superposition), and were scaled to the range [0, 

1]. Neural network predictions were then scaled back to their 

original ranges. 

 

3.4 Results  

The results of particle counting are shown in Fig. 4A. On the 

confusion matrix plot, the rows correspond to the predicted 

class (Output Class) and the columns correspond to the true 

class (Target Class). The diagonal cells correspond to 

observations that are correctly classified. The off-diagonal cells 

correspond to incorrectly classified observations. Both the 

number of observations and the percentage of the total number 

of observations are shown in each cell. More than 52k events 

were considered. An overall accuracy of 97% is achieved and all 

classes have precision higher than 90%. Full precision and recall 

are achieved on singlets, whereas precision and recall on 

doublets are 95% and 98%, respectively. Unitary prediction time 

was UT=0.05 ms. 

The results of single-particle signal characterization are shown 

in Fig. 4B, which shows (column-by-column) the histograms of 

target and predicted features, namely, central time (with 

respect to the cluster start sample), peak-to-peak time, pulse 

Fig. 4 Coincidence resolution results. (A) Confusion matrix of coincidence classification into singlet, doublet, triplet or more (i.e., k-particle event with k>3). Normalizations by row 

(i.e., precision) and by column (i.e., recall) are also reported. (B) Histograms of target and predicted features (i.e., central time, peak-to-peak time, pulse width, and amplitude) of 

the composing single-particle signals (Targ: target; Pred: predicted). The collection of features of single-particle signals composing singlets, doublets, and triplets are plotted on 

separate rows (from top to bottom).
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width, and signal amplitude. The features of the individual 

events composing singlets, doublets, and triplets are plotted in 

separate histograms (row-by-row). As expected, the histograms 

of peak-to-peak time, pulse width, and amplitude of the 

individual events exhibit the same distribution irrespective of 

the cluster they come from (singlet, doublet, or triplet). On the 

other hand, for the histogram of central time a tail of events at 

higher values appears for doublets and triplets, representing 

the second and – for the triplets - third events of the cluster. 

Correlation coefficients (R) and average relative errors (µE) are 

also reported within the histograms, showing the good 

prediction capabilities of the networks. All features have µE 

lower than 4%, except for the amplitudes of events from 

doublets or triplets (µE of 7% and 11%, respectively). Density 

plots of target and predicted features are shown in Fig. S13, 

Supplementary Material. Unitary predictions times of the RNN 

used for singlets, doublets, and triplets were 0.69 ms, 0.82 ms, 

and 0.86 ms, respectively.  

4 Discussion & outlook 

The results presented in this work demonstrate the ability of 

neural networks to decipher at high speed the information 

embedded in raw impedance data streams, in challenging 

scenarios involving multi-frequency analysis or intricate signals. 

From an application point of view, we developed an approach 

to single-cell dielectric spectroscopy that combines high-

throughput acquisition with high-throughput processing and is 

therefore compatible with real-time sorting. Also, we 

demonstrate the feasibility of the approach in overcoming the 

limitation of sample concentration by resolving coincident 

events. This is valuable in applications demanding accurate 

counting where high sample dilution is not possible.  

In developing our methods, two network types were 

considered: recurrent neural networks, which are frequently 

used to process data with a temporal dimension, and 

convolutional neural networks, which are widely used in image 

analysis. After preliminary investigation, for each task the 

network exhibiting best performances was chosen. Extensive 

comparison with fine optimization of all network 

hyperparameters is outside the scope of this paper. A Matlab 

implementation on a PC resulted in unitary prediction times of 

fractions of ms. Faster processing could be achieved with 

dedicated hardware solutions. 

Data augmentation was used to increase the generalization 

capability of the networks. We considered augmentation at the 

level of signal amplitude, to mimic a broad range of particle 

sizes, and augmentation at the level of time domain, to mimic 

e.g., variations in particle velocity arising from flow-rate 

changes. Other approaches to data augmentation could be 

devised (e.g. translation in time, noise addition) and finite 

element simulated signals could also play a role in network 

training (e.g. network weights initialization).  

A challenging issue is the need for a ground truth providing 

labels. In this work we used either reference non-real-time 

algorithms, or suitably built synthetic signals. However, other 

applications may profit from the development of semi-

supervised or unsupervised learning approaches tailored to 

impedance cytometry signals.  

In this work, neural networks are trained to predict single-cell 

features. These features can be used as input to classifier 

models (e.g., Support Vector Machines) trained to discriminate 

cell phenotypes via supervised learning. Alternatively, a 

classification neural network could be trained to directly predict 

the cell phenotype from raw impedance signals. In that case, 

the network itself would identify the most distinctive features 

that may be hidden in the input signal, which could lead to 

increased classification accuracy (although the physical 

meaning of the network-selected features may be not obvious). 

Furthermore, unsupervised learning approaches (e.g., based on 

Generative Adversarial Networks44) might lead to the 

identification of unknown cell types. 

Artificial Intelligence (AI) is now pervasive in image processing. 

The use of AI to analyse impedance signals, as described in this 

work, could foster the synergistic integration of impedance flow 

cytometry and imaging flow cytometry.  Universal networks for 

impedance cytometry could be developed, analogous to 

AlexNet or GoogleNet for image processing. To this end, raw 

impedance data streams could be collected across different 

laboratories, to increase network generalization capabilities. 

The synergistic convergence of microfluidics and machine 

learning is opening new challenges and opportunities for next 

generation impedance cytometry systems. 
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