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ABSTRACT Hand grasp patterns are the results of complex kinematic-muscular coordination and synergistic
control might help reducing the dimensionality of the motor control space at the hand level. Kinematic-
muscular synergies combining muscle and kinematic hand grasp data have not been investigated before.
This paper provides a novel analysis of kinematic-muscular synergies from kinematic and EMG data of
28 subjects, performing 20 hand grasps. Kinematic-muscular synergies were extracted from combined
kinematic andmuscle data with the recently introducedMixedMatrix Factorization (MMF) algorithm. Seven
synergies were first extracted from each subject, accounting on average for>75% of the data variation. Then,
cluster analysis was used to group synergies across subjects, with the aim of summarizing the coordination
patterns available for hand grasps, and investigating relevant aspects of synergies such as inter-individual
variability. Twenty-one clusters were needed to group the entire set of synergies extracted from 28 subjects,
revealing high inter-individual variability. The number of kinematic-muscular motor modules required to
perform the motor tasks is a reduced subset of the degrees of freedom to be coordinated; however, probably
due to the variety of tasks, poor constraints and the large number of variables considered, we noted poor
inter-individual repeatability. The results generalize the description of muscle and hand kinematics, better
clarifying several limits of the field and fostering the development of applications in rehabilitation and
assistive robotics.

INDEX TERMS Cluster analysis, cyberglove, hand synergies, kinematic-muscular synergies, kinematics,
matrix factorization, myoelectric prostheses, rehabilitation.

I. INTRODUCTION
The use of the hand to grasp and manipulate objects involves
the coordination of a multitude of degrees of freedom (DoF)
and the exploitation of redundancy and motor abundance [1]
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both at the kinematic and muscle level. When considering
hand grasps, the motion of the hand can be investigated in
the kinematic domain, monitoring joint movement, or in the
muscle domain, especially for the analysis of the activation
patterns at the forearm level. Muscle assessments are often
used to evaluate pathological conditions, such as for amputees
[2], or to exploit the potential of myoelectric control. While
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finger and hand DoFs are effectively investigated at the kine-
matic level (for example with sensorized gloves), forearm
coordination is usuallymonitored throughmuscle activity, for
example wearing EMG armbands. Depending on the desired
aim, one of the two domains is chosen. Many research studies
have focused on the commonly accepted concept that motor
modules are the basis of motor control at the neural level [3]
and that they may simplify the problem of motor control,
reducing the control space required for a variety of motor
tasks.

Hand kinematic synergies were applied widely in research,
for instance to study human grasps [4], [5], [6] and hand
prosthesis control [7].Manymethods allow to achieve dimen-
sionality reduction; the most frequently used method is the
Principal Component Analysis (PCA) [4]. Santello et al. [6]
recorded 15 joint angles in five subjects while performing of
imagined objects grasps, finding that two principal compo-
nents (PCs, i.e. postural synergies) accounted for more than
80% of the overall variation, while the remaining variation
was due to the fine tuning of additional motor control mod-
ules. Liu et al. [8] studied postural synergies in ten subjects
that were asked to grasp six objects in different relative
positions between the human hand and objects, concluding
that a reduced number of modules are needed to reproduce
the original movement and that synergies are task-dependent.
Mason et al. [9] studied five types of reach-to-grasp move-
ments in five subjects, showing that one synergy accounted
for more than 97% of the total variance. Jarrassé et al. [10]
investigated 15 DoFs in ten subjects grasping nine objects.
Four postural synergies were found: the first and second
PCs accounted for approximately 90% of the data varia-
tion, although pattern refinement can be achieved by adding
further PCs. In Patel et al. [11], ten subjects performed
twenty-five grasps. While the first few synergies accounted
for more than half of the total variation, the remaining vari-
ation was distributed across many synergies, indicating that
a large set of motor modules is needed to reconstruct the
original kinematics. In Thakur et al. [12], eight subjects
were asked to perform an unconstrained haptic exploration
of fifty objects, in a naturalistic setup. The objects were
only explored, few grasping movements were made and the
reach and release phases were not considered. Seven syn-
ergies encompassed over 90% of the total variance in the
hand-grasps and motions, but the results showed that the
synergies differ substantially across subjects and tasks. In a
recent study, involving a large variety of grasps and number
of subjects, Jarque-Bou et al. [4] showed that the number of
synergies underlying movement increases when considering
a large number of subjects and a large variety of movements
involving also the reach and release phases, probably as a
consequence of inter-individual variability and multitude of
conditions related to hand grasps. This study suggests that the
reduction of dimensionality might take place at a lower extent
thanwhat was hypothesized before, with an increased number
of motor synergies found with respect to previous work.

Despite the kinematic patterns being exploited more often
for hand analysis, some studies have investigated the dimen-
sionality reduction problem from the point of view of
muscle synergies. The muscle synergy approach is usually
based on decomposition algorithms that identify groups of
co-activating muscles (synergies) that are coordinated by
time-varying activation commands [3]. Another approach
is the extraction of time-varying synergies, that are scaled
in amplitude and shifted in time [13]. The extracted pat-
terns may be influenced by several factors regarding sEMG,
including fatigue, sweating, changes in electrode or arm posi-
tioning [14], clinical parameters of the subjects e.g., level of
the amputation, phantom limb sensation intensity [15], the
BMI [2], other anatomical characteristics of the subjects or
training when using myoelectric prostheses [16], as well as
signal pre-processing. Few studies to date have addressed
these effects and the impact on the resulting muscle syner-
gies. Considering two arrays of sEMG-electrodes, positioned
distally and proximally on the forearm, Castellini and Smagt
[17] found that the combination of 3 muscle synergies could
account for a set of 5 hand grasps, on both sets of the elec-
trodes. The ‘‘main synergy’’ represents a ‘‘global, indistinct’’
co-activation pattern, while the other two synergies account
for dorsal and ventral patterns, respectively. Overduin et al.
[18] used the time-varying muscle synergy model [19] to
analyze a set of 25 grasps of objects of different shape and
size in two monkeys and found that three synergies could
explain 71% of the total sEMG variation for proximal mus-
cles, 83% for the wrist and extrinsic hand muscles and 81%
of intrinsic muscles. The first of the three synergies was
linked to the muscles involved in the reach phase including
proximal muscles and distal flexors, the second was charac-
terized by bimodal activation of distal muscles and the third,
more related to the transport of the object, featured proximal
muscles and distal extensors.

While these studies highlight that hand grasps have been
investigated in the framework of muscle and kinematic syn-
ergies, a key challenge of using muscle synergies to analyze
hand grasps remains unaddressed. This is represented by
the impossibility to track all the muscles involved in the
grasps, as EMG signals from hand muscles are difficult
to acquire due to their small size and anatomical location,
which can easily produce cross-talk, and due to encum-
brance of probes/wires on the palm of the hand that can
prevent a physiological grasp execution. Nevertheless, the
reduction of the dimensionality is still a crucial process for
the comprehension of the patterns underlying hand use and
grasps. On the contrary, the main limitation in using kine-
matic analysis is that it does not provide a comprehensive
overview of muscle activations generating movement, and
thus it limits the description to movement output (limit-
ing applications related to electrical stimulation, prosthesis,
and rehabilitation). Thus, as muscle and kinematic analysis
are interlinked complementary approaches, combining them
could allow to shed light on the nature of hand movement

VOLUME 11, 2023 108545



A. Scano et al.: Functional Synergies Applied to a Publicly Available Dataset

control. Despite being clear that different body segments
are better analyzed in a specific domain, and despite the
potential of the combination of the two approaches, only a
few studies have tried to capture the muscle and kinematic
relationship in hand grasps in the framework of kinematic
and muscle synergies. In fact, a very small number of studies
assessed kinematic and muscle patterns together, in order
to capture the relationships between the two. One of them
is the work of Tagliabue et al. [20] on two-digit grasp-
ing. A reduced number of modules (2–3) was needed to
explain the largest part of the variation in each grasp and
a correlation between muscle and kinematic primitives was
suggested, justifying synergy-based analysis in both domains.
A multi-modal approach was also suggested in a recent work
[21], in which correlations between kinematic and muscular
patterns were computed during different grasps. The recent
mixed-matrix factorization (MMF) algorithm developed by
Scano et al. [22] allows the extraction of synergies from any
combination of non-negative signals and unconstrained sig-
nals. This algorithm, as the non-negative matrix factorization
(NMF) algorithm [23] commonly used for muscle synergy
extraction, decomposes signals into synergies and temporal
coefficients and allows some of the signals to be also negative.
Therefore, when extracting kinematic-muscular synergies,
the muscular signals are constrained as non-negative, while
the kinematic signals are unconstrained as they may be
either positive (joint flexion) or negative (joint extension).
As output, the algorithm gives muscle weights (synergies),
that can be positive or negative, and non-negative temporal
coefficients. Kinematic-muscular synergies directly link the
kinematic and muscular domains, allowing a more complete
physiological interpretation and providing new insights in the
motor control organization. There are several open points in
the literature regarding hand graspmulti-modal synergies that
can be investigated in more detail. In fact, the intimate link
between muscle activations and kinematic coordination was
not investigated yet in a comprehensive study and may open
new perspectives in the understanding of the coordination
patterns at hand level. Also, to define a complete repertoire
of hand coordination patterns, analyzing a complete gesture,
including pre-shaping, reaching and release, is needed.

In order to contribute to clarifying the mentioned lim-
its of the current scientific literature, the aim of this study
was to extract representative kinematic-muscular hand syn-
ergies with the MMF algorithm from a publicly available
database (NinaPro). The database includes a large number
of subjects performing hand movements, and a large num-
ber of grasps. The correspondence between the considered
hand movements and activities of daily living also fosters
the application of the results to improve rehabilitation and
assistive robotics. Lastly, the identified motor modules might
be employed both in basic studies of motor control, opening
new perspectives on the understanding the complexity of
coordination of kinematic-muscular patterns, and to evaluate
pathological conditions of patients or to control prosthetic
devices.

II. METHODS
A brief overview of the main steps of the methods used in this
study is reported in Fig. 1.

A. SUBJECTS
The data used in this experiment are from the publicly avail-
able NinaPro database [24]. The complete dataset includes
over 130 subjects performing up to 53 movements (the num-
ber of movements varies slightly between the data sets) while
several sensors record the handmovements (e.g. sEMG, force
sensors, data gloves, accelerometers, IMUs, eye trackers, . . .).
The dataset chosen for this study was Database 2. It includes
40 healthy subjects (28 males, 12 females; 34 right handed,
6 left handed; age 29.9 ± 3.9 years). Due to possible, occa-
sional noise on some channels, the analyses of this paper
focused on the data from 28 selected subjects from NinaPro
Database 2, each performing 6 repetitions of 20 hand grasps.

B. ACQUISITION SETUP
The acquisition setup included several sensors, designed
to record hand kinematics, kinetics and muscle activity.
The sensors were connected to a laptop for data acqui-
sition. Hand kinematics was measured using a 22-sensor
CyberGlove II data glove (CyberGlove Systems LLC,
www.cyberglovesystems.com). The CyberGlove is a motion
capture data glove, instrumented with joint-angle measure-
ments. It uses resistive bend-sensing technology to transform
hand and finger motions into real-time digital joint-angle
data, achieved through an accurate calibration. Data from
the CyberGlove were transmitted over a Bluetooth-tunneled
serial port at a sampling frequency slightly lower than 25 Hz.
Each data sample was associated with an accurate timestamp
using Windows performance counters. The signal was up-
sampled at 2 kHz to match the sampling frequency of the
EMG signal. The acquisition setup is described in detail in
Atzori et al. [24], and in Jarque-Bou et al. [4].

The sEMG electrodes were a double differential Delsys
Trigno wireless system, measuring the myoelectric signals
at 2 kHz with a baseline noise inferior to 750 nV RMS.
A total of 12 electrodes were placed over the forearm (8-
channel armband), on the flexor carpi ulnaris and extensor
carpi ulnaris, biceps and triceps, as shown in previous studies
[24], [25]. The set-up is portrayed in Fig. 2.

C. ACQUISITION PROTOCOL
In this paragraph, we briefly present the acquisition pro-
tocol. Details are presented in previous papers presenting
the publicly available Ninapro datasets [2], [24]. During the
experiment, participants were asked to sit at a desktop with
the arms relaxed on the table and to repeat a set of movements
with their right hand as naturally as possible. The entire
experiment included up to 52 movements plus rest, divided
into three exercises and selected from the activities of daily
living (ADL) and the hand taxonomy literature [26]. In this
work, we considered only the set of hand grasps depicted in
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FIGURE 1. Brief overview of the methods of the study. The experimental protocol consisted in executing 6 repetitions for each of 20 considered grasps.
We analyzed data from 28 subjects (1). The recorded data were from a 12 channels EMG (2) and a 17 degrees-of-freedom Cyberglove (3). Data from EMG
and kinematics were filtered, time-aligned, resampled and normalized (4). Data were concatenated across repetitions (5) to prepare the input for the
MMF algorithm (6). Invariant spatial synergies and temporal coefficients were extracted for each subject; spatial synergies from all subjects were then
clustered (7). Original multi-modal signals were successfully reconstructed with the set of extracted synergies and the reconstruction R2 was evaluated
(8) and lastly, we defined the inter-individual repeatability and similarity found at kinematic-muscular synergy level (9).

Fig. 3 (i.e. the first 20 movements of the NinaPro exercise
B). The subjects were asked to repeat the movements rep-
resented in short films that were shown on the screen of a
laptop with their right hand and they were asked to focus
on mimicking the movements rather than on exerting high
forces. Each movement was repeated 6 times in Database 2.
Each repetition lasted about 5 s andwas separated by the other
movements by 3 s of rest. The experiment was approved by
the Ethics Commission of the Canton Valais (Switzerland)
and were conducted in accordance with the Declaration of
Helsinki. Before data acquisition, the subjects were given a
thorough written and oral explanation of the experiment itself
and were asked to sign an informed consent form.

D. KINEMATIC SIGNAL PRE-PROCESSING
Seventeen kinematic DoF of the Cyberglove were selected:
carpometacarpal flexion digit 1 (CMC1f), metacarpopha-
langeal digit 1 (MCP1), interphalangeal digit 1 (IP1),
carpometacarpal abduction digit 1 (CMC1a), metacarpopha-
langeal flexion digit 2 (MCP2f), proximal interphalangeal
digit 2 (PIP2), metacarpophalangeal flexion digit 3 (MCP3f),
proximal interphalangeal digit 3 (PIP3), metacarpopha-
langeal flexion digit 4 (MCP4f), proximal interphalangeal
digit 4 (PIP4), metacarpophalangeal abduction digit 4
(MCP4a), metacarpophalangeal flexion digit 5 (MCP5f),
proximal interphalangeal digit 5 (PIP5), metacarpopha-
langeal abduction digit 5 (MCP5a), carpometacarpal flexion

digit 5 (CMC5), wrist flexion (WRISTf), wrist abduction
(WRISTa). The data analysis was fully performed with MAT-
LAB 2021a with custom-developed software. Joint angles
were sampled at 2000 Hz and filtered with a low pass But-
terworth filter with a cut-off frequency of 5 Hz. Then, first
and second order derivatives were computed to find angular
velocities and accelerations. The segmentation procedure was
performed according to a threshold on the maximum velocity
of all the channels, and allowed to detect movement phases.
Tails of 500 ms were used before movement onset and after
movement offset in order to capture the full EMG waves.
In order to allow the comparison across grasps, the number
of time-samples of each movement repetition was rescaled
to 100, considering all phases (reaching, grasp and release)
and all the grasps. Then, the 6 available repetitions of each
grasp from each subject were concatenated. We followed this
approach for two reasons. First, to increase reconstruction
quality [27]; second, we noted that averaging grasp repe-
titions might alter or reduce the link between EMG and
kinematic time series (especially for differential kinematics).
In order to make kinematic data comparable across subjects
and to EMG data, we normalized each acceleration waveform
to the maximum absolute value found across all the kinematic
DoF of all the 20 grasps. In this way, DOFs with a small
amplitude are not amplified reflecting the real contribution
to the movement and all kinematic data were scaled in an
interval of values comprised between −1 and 1.
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FIGURE 2. The experimental set-up: EMG electrodes placement (left panel) and the Cyberglove used for kinematics acquisition
(right panel).

FIGURE 3. The considered hand grasps; each subject repeated each grasp 6 times.

E. EMG SIGNAL PRE-PROCESSING
In this study, EMG signals from 10 muscles were used:
flexor digitorum (flex), extensor digitorum (ext), and the
eight channels armband (f1: extensor forearmmuscle respon-
sible for ulnar deviation, f2: flexor muscle/ulnar deviation,
f3: flexor muscle/pronator teres; f4: flexor muscle, f5: flexor
muscle/brachioradialis, f6: extensor muscle/supination, f7:
extensor muscle/radial deviation, f8: extensor muscle). The
EMG signals from the 12 channels were sampled at 2000Hz
and were filtered with a high-pass Butterworth filter with a
cut-off frequency of 20 Hz, rectified and low-pass filtered
with a Butterworth filter with a cut-off frequency of 10 Hz,
following the standard procedure for EMG pre-processing
in muscle synergy analysis [28]. Then, signals were aligned
according to the kinematic segmentation and tails of 500ms
were used before movement onset and after movement offset.
The delay of EMG data with respect to the kinematics was
considered in order to account for the electromechanical
delay between the muscular onset and movement produc-
tion [29]. The resulting envelopes were then resampled at

100 frames per repetition to match kinematic sampling.
Lastly, for each subject, each EMG envelope was normalized
to the maximum absolute value found for each channel in all
the 20 grasps [30]. In this way, the muscle activation reflects
the real activitywith respect to itsmaximum activity, and each
EMGwaveformwas scaled in an interval of values comprised
between 0 and 1, achieving normalized EMG envelopes.

F. KINEMATIC-MUSCULAR SYNERGIES
A kinematic-muscular synergy is defined as the coordi-
nated activation of muscles (represented by EMG envelopes)
and angular acceleration of articular joints. Despite the
non-linearity of the neuromusculoskeletal system, it is rea-
sonable to search for a linear relationship between EMG and
acceleration [31], since force is linearly related to accelera-
tion. Moreover, linear models were frequently employed for
similar purposes [32]. Following Scano and colleagues [22],
our choice was to combine joint accelerations with muscle
activities, rather than joint angles or range of motion. For
each subject, data from kinematics (angular accelerations
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from 17 DoF) and EMG (10 channels) were grouped in
an aggregated matrix before synergy extraction. For each
subject, the kinematic-muscular matrix had dimensionality
27 × 12000. Twenty-seven was the number of kinematic-
muscular channels. Instead, for each of the 20 considered
grasps, we had 6 time series (repetitions) per grasp, each one
100 samples long. Since the nature of kinematics and EMG
signals are different and not directly comparable, apart from
the normalization procedure performed in the preprocessing,
we employed the MMF algorithm [22]. The peculiarity of
the MMF algorithm is that the constrain of non-negativity to
the kinematic coefficients is removed (while the EMG data
were kept non-negative by definition), allowing the spatial
synergies to be negative to account for flexion and extension
of joints. The algorithm is based on a gradient descent update
rule and decomposes the data x (kinematics and EMG) as a
combination of n synergies (i.e., decomposition order):

x (t) =

∑n

i=1
wici (t)

where w are the time-invariant weights or spatial syner-
gies and c(t) the corresponding temporal coefficients. w can
be either positive or negative for the kinematic part and
non-negative for the muscular part, c(t) are constrained to
be non-negative. The quality of reconstruction was evaluated
with the reconstruction R2, that is widely used in synergy
analysis and quantifies how much of the original signal can
be reconstructed [33]. For each decomposition order, the
reconstruction R2, defined as 1 – SSE/SST where SSE is the
sum of the squared residuals, SST is the sum of the squared
differences with the mean EMG vector [13], was computed.
The extraction was repeated 20 times starting from different
random initial conditions and the best solution (higher R2)
was chosen as representative of that decomposition order.
The algorithm requires to set the parameters µ, that con-
trols the gradient step, and λ , that regularizes the synergy
sparseness and the reconstruction accuracy. The parameters
µ and λ were chosen empirically and set 0.04 and 3000,
respectively. These values allowed to have a good recon-
struction accuracy and to minimize cancellations between
synergies with weights of opposite sign. The values for µ

and λ were determined by generating cancellation and R2

surfaces, similarly to Scano et al. [22], in order to identify
the optimal ranges for µ and λ , by selecting a trade-off
between the reduction of cancellations and the R2 reduction.
The result of the extracting procedure were spatial kinematic-
muscular synergies. Ten weights representing EMG channels
were non-negative, while 17 weights representing kinematic
variables could be either positive or negative, depending if
a joint was flexed or extended as a result of EMG activity.
Thus, each extracted synergy was a vector that contained
the weights of each of the 27 original variables in a nor-
malized, dimensionless space where the original data were
grouped showing their coordination across physical domains.
A schematic description of the MMF algorithm is presented
in Fig.4. The mean R2 across participants was computed and
the minimum number of synergies needed for achieving at

least 0.75 of the mean R2 were selected [34]. Extracting the
same number of synergies from all the participants allows to
compare synergies with similar sparseness.

G. COMPARISON ACROSS SUBJECTS AND
IDENTIFICATION OF MEAN KINEMATIC-MUSCULAR
SYNERGIES
Following the extraction of kinematic-muscular synergies for
each subject, their structure was compared across subjects.
The extracted synergies were groupedwith a k-means cluster-
ing analysis, which is a multivariate technique that allows the
classification of elements into groups or clusters, so that each
element is very similar to those in its own cluster according
to a specific selection criterion. To achieve this, at first the
extracted synergies from all the subjects were grouped in a
single matrix (dimension: (Ns× S)×Ndof , where Ns = 28 is
the number of subjects, S is the number of extracted synergies
for each subject, Ndof = 27 is the number of DoF). Then, this
matrix was used as input to a k-means clustering procedure.
The synergies were grouped into clusters minimizing the
sum of the Euclidean distances between each synergy in the
cluster and the centroid (mean synergy) of the cluster. The
desired number of clusters was identified as the minimum
number of clusters needed to avoid more than one synergy
from the same subject to belong to the same cluster. This was
achieved by increasing the clustering order ncl , repeating k-
means clustering 100 times for each ncl , and selecting the
best solution for that order. The minimum ncl required to
prevent repetitions stopped the algorithm. We then computed
the inter-individual repeatability related to centroid (mean
synergies within each clusters) usage, as in previous work
[30], as the number of subjects that used each centroid, to find
at what extent synergies are shared across subjects (synergy
generalizability), and the inter-individual similarity in each
cluster, as the cosine angle between all the synergies of the
cluster, to measure the robustness of each cluster.

H. SUMMARY OF THE ANALYSIS STEPS
Due to the complexity of the proposed analysis, we report a
summary of the main steps.

1) Kinematic-muscular synergy extraction: Extraction of
kinematic-muscular synergies from 20 grasps from
each of the 28 selected subjects of Ninapro Database 2
(using MMF, reconstructed mean R2 > 0.75). The
following analyses were performed:

• synergy extraction and reconstruction R2 for dif-
ferent decomposition orders for each subject;

• selection of the decomposition order for all sub-
jects according to the mean R2;

2) Synergy clustering: Clustering of the whole dataset of
extracted synergies (k-means clustering). The follow-
ing analyses were performed:

• identification of the centroids;
• identification of the inter-individual repeatability
of each centroid;
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FIGURE 4. The MMF algorithm is based on the gradient descent rule and takes as input the EMG and acceleration data, µ

and λ and gives as output kinematic-muscle synergies and the corresponding temporal coefficients. The termination
coefficients for the algorithm are: error between two successive iterations reaches the threshold, the absolute residual
error reaches the thresholds, or the number of maximum iterations is reached.

• identification of the inter-individual similarity in
each cluster;

• functional characterization of the mean synergies.

III. RESULTS
A. KINEMATIC-MUSCULAR SYNERGY EXTRACTION
First of all, the output of the kinematic-muscular synergy
extraction procedure is shown, by presenting the results from
a typical (subject 5). In Fig. 5 (upper panel), time-invariant
or spatial kinematic-muscular synergies are portrayed; in
Fig. 5 (lower panel), temporal coefficients for each synergy
and each grasp are shown. Multiple temporal coefficients
graphs are reported since temporal coefficients are repeated
for each concatenated repetition of each grasp. Synergies
(W) are either positive or negative for the kinematic compo-
nents and non-negative for the muscular parts. The temporal
coefficients (C) are constrained to be non-negative. W1 and
W2 can be considered as muscular synergies, since they
are characterized by strong muscular activations with small
kinematic activity. W1 activates both extensors (f1, f6, f7,
f8) and flexors (f2, f3, f5), W2 activates f3, f4, f5 and the
extensor digitorum and the flexor digitorum. Since synergies
with muscle activations associated with no kinematic activa-
tions are recruited in the static holding phase, the temporal
coefficients (C1 and C2) show mainly monophasic activity,
with the maximum at the half of the movement. Temporal
coefficients of synergies with kinematic activity are charac-
terized by more peaks. W3 and W4 are characterized by the
flexion of MCP joints and extension of PIP joints of the digits
from 2 to 5, while the joints of the thumb are the opposite.
In fact, CMC1 flexes and IP1 extends in W3, while CMC1
extends and IP1 flexes in W4. Both W3 and W4 are mainly
coupled with the activation of extensor muscles. W5 repre-
sents the flexion of almost all the joints, with the activation
of extensor muscles and the extensor digitorum. Finally, W6

and W7 represent the extension of the MCP joints, related to
the extensor muscles (f8) in W6, and to the radial deviator
and the extensor digitorum in W7. In Fig. 6, we show the
original signal for joint accelerations and EMG, and the
corresponding reconstructed signal achieved with the set of
kinematic-muscular synergies and temporal coefficients, for a
subset of grasps. EMG signals have smoother shapes and they
can be reconstructed better than the accelerations, that are
characterized by more peaks. However, most of the variables
can be reconstructed adequately and the main patterns can be
reproduced.MCP1 andCMC5 show theworst reconstruction,
due to the small and noisy activity.

B. NUMBER OF SYNERGIES
In this paragraph, we show the results concerning the
data from all the subjects. We begin with the R2 curve.
In Fig. 7, we report the mean and std R2 computed on
the sample of 28 subjects. To achieve at least 0.75 of the
mean R2, seven synergies had to be extracted from each
subject.

C. EXTRACTED KINEMATIC-MUSCULAR SYNERGIES
In Fig. 8 and Fig. 9, we report the extracted centroids that
were found after applying the k-means algorithm on the
whole set of synergies from all subjects. Seven synergies
were extracted from each participant. Starting from an overall
dataset of 196 synergies from 28 subjects, we found that
21 clusters were needed to group the extracted synergies
and guaranteeing that in each cluster included no more than
one synergy from the same subject. Then, the centroids were
classified in four groups, on the basis of a qualitative assess-
ment aimed at distinguishing the main kinematic patterns,
which we summarized in 4 main groups: flexion syner-
gies, extension synergies, hybrid synergies, static grasping
synergies.
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FIGURE 5. Example of spatial kinematic-muscular synergies extracted from the multi-modal data of a subject. In the lower-panel, the
temporal coefficients for each synergy and repetition are shown. The portrayed dataset is the full set of extracted synergies and
temporal coefficients for subject 5. The complete dataset of kinematic-muscular invariant synergies includes a set of synergies for each
of the 28 subjects.

1) FLEXION SYNERGIES
We found three kinematic-muscular synergies characterized
by a dominant flexion activity. The first and the second
synergies represent the flexion of the digits from 2 to 5 on
the MCP joint and on the PIP joint, respectively. The first
synergy is mainly coupled with the activation of the extensor
muscles, while the second one is coupled with both flexor
and extensor muscles. While the MCP and the PIP joints
are always flexed synergistically, at the kinematic-muscular
level they are extracted separately. The third synergy, instead,
is characterized by a general flexion of all the joints, coupled
mainly with the extensor muscles.

2) EXTENSION SYNERGIES
Seven synergies were classified as synergies with a domi-
nant extension activity. The first and the seventh synergies
represent a general extension of all the fingers, with a great
activity also on the joints of the thumb. These two syner-
gies are related to different muscular activations: the first
synergy is coupled with extensor muscles and the seventh
with both flexor and extensor muscles. The second and the
forth synergies regard the extension of MCP joints, with a

major activation of the extensor muscles. The third and the
sixth synergies showed the extension of all the joints: the
third synergy is coupled with the extensor muscles, the sixth
mainly with f8. Finally, the fifth synergy is characterized by
a great activation of the flexor muscles, coupled with the
activation of the thumb and of the third digit.

3) HYBRID SYNERGIES
Seven synergies were classified as hybrid, since both flexion
and extension activities were present, but none of the two
dominated clearly. Such synergies represent more complex
patterns that are found in a mixture of flexion and extension
movements. The first and the third synergies are characterized
by a strong extension activity of the thumb, related to the
extension and flexion of the other joints, respectively. The
first synergy is coupled mainly with the extensor muscles and
the third with the flexor muscles. The second and the forth
synergies show the extension of the PIP joints and flexion of
the MCP joints, with almost all muscles activated. The fifth
and sixth synergies are, instead, characterized by flexion of
the PIP joints and extension of the MCP joints, with a strong
activation of extensors in the fifth synergy and extensor and
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FIGURE 6. Examples of reconstructed kinematic-muscular envelopes (red) and original kinematic-muscular envelopes (light gray area) of the first
repetition of subject 5 in a subset of five grasps (1, 5, 8, 9, 10). The reconstruction is achieved by summing the contribution for each spatial synergy,
multiplied with its correspondent temporal coefficient. Reconstructing at least 75% of the R2 with 7 synergies, an adequate matching of the
reconstructed signal with respect to the original one was achieved, except for MCP1 and CMC5.

FIGURE 7. Reconstruction R2. The mean and std of the R2 is reported in blue, the R2

of each subject is reported in gray. Only orders 1 to 10 are shown.

deviators in the sixth. The seventh synergy is dominated by
the flexion of the thumb, coupled with the activation of the
flexor muscles.

4) STATIC GRASPING SYNERGIES
Synergies with almost only muscular activations represent
the grasp phase in which only muscles are activated during
the grasp and they are characterized by four patterns. The
first synergy is characterized by a strong activity of f1 that

represents extensor and ulnar deviator muscles; the second
one represents the extensor muscles; the third one is char-
acterized by a strong activity of f8 (extensor muscles) and
extensor digitorum; the last one represents the activity of
brachioradialis, flexor muscles and flexor digitorum.

D. INTER-INDIVIDUAL REPEATABILITY AND SIMILARITY
In Fig. 10, we reported a histogram indicating the number of
subjects who share each of the mean multi-modal synergies.
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FIGURE 8. Kinematic-muscular synergy clusters (1/2). In the dataset composed of 28 subjects, each one executing 20 grasps, 21 clusters were
needed to cluster the extracted synergies without repetitions across subjects. Each cluster is represented by a centroid (mean of the synergies
within the cluster) and they were subdivided based on the main kinematic patterns represented: flexion synergies (in red, 3 centroids), extension
synergies (in blue, 7 centroids), hybrid synergies (in green, 7 centroids), and static grasping synergies (in orange, 4 centroids).

Interestingly, while some synergies were shared, no synergy
was found across all subject and only two mean synergies are
shared by more than the half number of subjects.

In Table 1, the inter-individual repeatability and similarity
is reported for each centroid. All mean synergies were shared
by at least 5 subjects, but no mean synergy was shared across
all subjects. The mean number of synergies per cluster was
9.33 (3.85). The mean similarity in each cluster was between
0.64 and 0.78, except for one cluster in which the similarity
was lower (0.53). The mean inter-individual similarity was
0.69 (0.06). The average similarity of random chosen pairs of
synergies extracted from our dataset was 0.26 (0.22), so con-
sistently lower than the obtained similarities in clusters.

IV. DISCUSSION
A. SUMMARY OF THE MAIN RESULTS
In this paper, we extracted for the first time a set of
kinematic-muscular synergies, linking EMG activity to the
angular acceleration of hand joints thanks to a newly devel-
oped algorithm for synergy extraction (Scano et al., 2022).
We found that a reduced set of kinematic-muscular syn-
ergies underlie the execution of a large variety of grasps
performed by 28 individuals. Seven synergies were extracted
from each subject and 21 centroids (mean synergies) were
needed to describe the whole dataset of multi-modal syner-
gies. These results suggest that kinematic-muscular synergies
can describe a large dataset of grasps with a reduced number

VOLUME 11, 2023 108553



A. Scano et al.: Functional Synergies Applied to a Publicly Available Dataset

FIGURE 9. Kinematic-muscular synergy clusters (2/2). In the dataset composed of 28 subjects, each one executing 20 grasps, 21 clusters were
needed to cluster the extracted synergies without repetitions across subjects. Each cluster is represented by a centroid (mean of the synergies within
the cluster) and they were subdivided based on the main kinematic patterns represented: flexion synergies (in red, 3 centroids), extension synergies
(in blue, 7 centroids), hybrid synergies (in green, 7 centroids), and static grasping synergies (in orange, 4 centroids).

of modules; however, they have a limited inter-individual
repeatability.

B. MODULAR ORGANIZATION OF KINEMATIC-MUSCULAR
SYNERGIES
Whether the human central nervous system exploits a mod-
ular organization for the simplification of the motor control
problem is widely debated. In this context, the muscle syn-
ergy approach represents the current state of the art for the
analysis of the modular organization of the neuro-motor sys-
tem. The analysis of hand and forearm behavior in refined

movements as grasps is particularly meaningful, since it is
naturally connected to a wide variety of movements related
to activities of daily living, exploiting abundancy at both the
kinematic and muscle level [1]. This scenario requires the
exploration of a large variety of conditions and thus is suitable
for muscle synergy analysis.

We found that 7 kinematic-muscular synergies recon-
structed reasonably well EMGs and kinematics for all
subjects, supporting the hypothesis of modularity. However,
we observed a large inter-individual variability in synergy
structure. Thus, in this experimental scenario, while it is
believable, or even likely that motor control is organized
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FIGURE 10. For each of the mean centroids (n = 21), the histogram shows
the number of subjects that share the same kinematic-muscular synergy.
Groups are highlighted by different colors: flexion synergies in red,
extension synergies in blue, hybrid synergies in green and grasping
synergies in orange.

TABLE 1. Number of synergies in each cluster (inter-individual
repeatability), and the mean inter-individual similarity of synergies in
each cluster.

in synergies, we cannot conclude that the same synergies
are used by all individuals when considering daily life
movements along with their natural variability. According
to our study, it emerges that, when examining hand coor-
dination through kinematic-muscular synergies, the control
space has a higher dimensionality and less consistency across
individuals than previously reported. This result is in par-
tial disagreement with the findings of previous studies that
instead are in general supporting low-dimensional and consis-
tent upper-limb synergies [13], [18], even though suchmodels
were muscular-only; however, the testing conditions and the
examined domains are different in respect to the one of our
study and are not directly comparable. Higher modularity
with respect to previous literature was already found on hand

and wrist movements by Jarque-Bou et al. [4], in which a high
number of kinematic synergies was needed to reconstruct a
dataset including large number of grasps and subjects.

C. ANALYSIS OF VARIABILITY
In this work, we addressed the variability of muscle syner-
gies focusing on the inter-individual variability. We found
that only two modules were shared by more than half of
the participants. The large amount of inter-individual vari-
ability found in our results may be due to several factors.
First, the experimental protocol proposed in this study was
based on structured reach-to-grasp gestures, involving several
movement phases (reach, pre-shaping, grasp, release, going
back). It was already observed in a recent kinematic anal-
ysis performed on the Ninapro dataset that this might be
a factor leading to increased number of extracted modules
[4]. Moreover, it was also recently shown that naturalistic
experimental conditions with limited constrains may lead to
higher variability of the extracted modules with respect to
more constrained experiments [30]. One may observe that
different modules were found because strong movement con-
strains were not imposed; however, in real life and scenarios,
tasks are never constrained in pre-determined paths and thus
this experimental condition is realistic. In these kind of move-
ments, high variability of muscle synergies was found also
in synergies extracted from the different acquisition sessions
of the same subject, demonstrating that there is a natural
variability in human movements and, therefore, this leads
to a high variability between subjects [35]. The moderated
experimental variability is thus resembling real use cases.
In fact, differently from many previous articles where only
postural synergies are studied [6], [8], the data refer not only
to the postural synergies for grasping, but also include the pre-
shaping, object grasping, and release movement phases, with
a relative freedom given to subjects as in a natural context.
It is thus understandable that inter-individual repeatability is
lower than in previous studies, as dynamic features are inves-
tigated, emphasizing also the agonistic and antagonistic roles
of muscles that may need more synergies to be explained.
The wider intra-individual repeatability found could also
indicate the existence of different strategies to perform the
same grasp based on both subjects’ previous experience and
the anatomical differences between subjects as shown in
previous work [36]. Kinematic-muscular analysis may help
in quantifying the different strategies adopted for each grasp,
and these characteristics could be used to better discriminate
the distinct grasps. Thus, our findings seem to suggest more
complex patterns for hand coordination and agree with recent
work and with neurophysiological evidences. First, extending
synergistic analysis on a large number of subjects, grasps and
repetitions, Jarque-Bou et al. [4], already demonstrated that
‘‘more synergies’’ where needed to describe hand motion.
Secondly, recent work also observed that the complex mech-
anisms for hand control cannot be reduced to the control
of flexion and extension postures only. In the work from
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Santello et al. [6], the authors found that principal compo-
nents analysis showed that the first two components could
account for >80% of the variance, implying a substantial
reduction from the 15 degrees of freedom that were recorded.
Further synergies could explain specific features of objects.
In this work, we instead show that the origin of neural pattern
underlying motion when hand grasp and the dynamic phases
of motion are included seem to be more complex and not
based on two postural synergies only, especially whenmotion
for preshaping and object release are involved. When the
dynamic phases of motions are included more variability
is introduced. A limited number of synergies might still
be available for subject without being shared by others as
the more complex movements introduce further sources of
variability in how subjects perform the entire movement.
In neurophysiological studies, the complex coordination of
the hand was demonstrated outside of the synergistic frame-
work. Indeed, numerous neurons distributed in different areas
of the primary motor cortex are activated for performing hand
movements, resulting in a complex motor control [37]. It is
thus fully believable that 21 kinematic-muscular modules are
needed to express the motion of the hand in a wide variety of
hand grasps.

A second relevant factor that might have increased vari-
ability is the examination of multi-domain data (kinematics
and EMG). It is possible the muscle patterns usually found in
muscle synergy studies were associatedwith slightly different
kinematic outputs, or vice versa. It is worth noting that, due
to motor abundance [1], it is possible that the same output is
generated by different muscles, thus increasing the number
of kinematic-muscular synergies needed to reconstruct the
original patterns; this phenomenon might have been high-
lighted by our methodology. Our results suggest that when
investigating the causal kinematic-EMG relationships, some
synergies typically merged with similar motor functions may
split into more synergies with our approach. In our results,
we purposefully grouped synergies by their physiological
main function. There are some flexion synergies, extensor
synergies, hybrid synergies, and grasping synergies that are
distinguished often on the basis on the activated muscles.
Probably, in previous single-domain (mostly kinematic) stud-
ies, they would be extracted together as a single ‘‘flexion
synergy’’ or ‘‘extensor synergy’’ [9], [10]. It is possible that
the motor outputs that are mostly similar at a kinematic level
(extracted ‘‘together’’ in single-domain studies), might not be
underlid by the same EMG neural activation. This process is
known as the motor abundance feature of our control system
[1], that states that similar or identical kinematic outputs
can be achieved with non-identical EMG activations. Indeed,
because of the redundancy of the musculoskeletal system
there is a large space of EMG activation patterns that can gen-
erate the same joint torques, i.e. the same joint accelerations
(also known as muscular null space [38]). Thus, different
individuals may acquire a distinct set of muscle synergies
with different muscular null space components when learning
grasping and manipulation skills. With our algorithms, kine-

matic patterns are split into groups of synergies with similar
functions, that can be distinguished with a higher level of
detail due to different null space components of the EMG
activations.

A third factor affecting variability might have been the
large number of considered grasps (20), repetitions (6), and
subjects (28), and signals (27). This number is higher than
in most previous studies on muscle or kinematic synergies
alone; the coordinated recruitment of a control space of
such a dimension may be a source for differentiation among
subjects. A fourth factor to consider is that this study was
conducted on the very complex domain of hand coordina-
tion: some muscle structures might not have been exactly
mapped and detected across subjects, for example due to
physiological anatomical differences which are impossible
to model. Despite the recorded forearm EMG relate to kine-
matic patterns, we have neglected hand intrinsic muscles,
as in many applications they cannot be recorded as they
are too small (and EMG electrodes would interfere with
motion), or because applications to prosthetics do not allow
to record hand activity. This choice of the recorded muscles
may partially impact on the variability of the results achieved.
At the same time, in a so comprehensive mapping of hand
activations and movements, little differences found in DoF
might lead to new synergies. We even argue that a full map-
ping, including also the missing hand and finger muscles,
may generate an even wider and variable repertoire of multi-
modal synergies. On the contrary, we expect that probably,
when considering gross motor control (for example in upper
or lower-limb scenarios), the same approach might lead to
less differentiation across subjects and to a low-dimensional,
inter-individually consistent space of control.

D. PHYSIOLOGICAL FUNCTION OF SYNERGIES
We identified several types of kinematic-muscular syner-
gies, each apparently performing some specific physiological
function. Three flexion synergies were used to flex several
DoF of the hand. In these synergies, co-activation of a set
of flexor muscles is associated with flexion of the DoF (both
EMG and kinematic loads are positive). In particular, the flex-
ion of the joints of the second to fifth fingers are controlled
with separated synergies: one synergy flexes theMCP joint of
the four fingers, and the other flexes the PIP joint of the same
fingers. Then, an additional synergy represents the flexion of
all the joints. Seven extensor synergies were used to extend
the hand. In these synergies, co-activation of a set of extensor
muscles is associated with extension of the DoF (kinematics
loads are negative). Two synergies controlled the extension
of the MCP joints of the four fingers, coupled with extensor
muscles. Two synergies showed the extension of all the joints,
with the activation of extensor muscles and minor flexor
muscles activations, while another one showed the activation
of the flexor muscles related to a small extension of the joints.
Other two synergies represented the extension of the joints
of the thumb. Seven hybrid synergies represented complex
coordination patterns including a mixture of flexions and
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extensions depending on the joint (kinematic loads are part
positive, part negative). In some of these synergies, the exten-
sion of PIP joints was coupled with the flexion of MCP joints
and, in other synergies, the flexion of PIP joints was coupled
with the extension of MCP joints. Three synergies showed
a major activation of thumb joints, associated with minor
activities of the other kinematic joints. Finally, static grasping
synergies are a special case where the hand is not moving and
only muscle patterns are active. These kinematic-muscular
synergies appear as mostly muscle synergies. Four muscular
patterns were found: extensor and ulnar deviator muscles;
extensor muscles; extensor and ulnar deviator muscles and
extensor digitorum; flexor muscles and flexor digitorum.

From our results, we can notice that fingers (from
the second to the fifth) are controlled together, but their
joints, so MCP and PIP, can be controlled by separated
synergies. The thumb, instead, is generally controlled by
separated synergies. Although the kinematic part of the
kinematic-muscular synergies that we found can describe
well the control of hand and fingers during grasp, it is dif-
ficult to define a clear physiological relationship between the
kinematic and the muscular activations. In fact, extension of
joints was sometimes coupled with flexor muscles, and vice
versa. This issue could be related to the complex structures
that underlie the hand and fingers control.

E. APPLICATION OF THE STUDY TO A VARIETY OF
SCENARIOS
Kinematic-muscular synergies provide a new attempt towards
a synthetic description of the organization of the neuromotor
system, that can lead to new perspectives in the analysis of
motor control in clinical practice. The concept of modular
organization has been already used in rehabilitation for mus-
cle and kinematic synergies, since changes in their structure
and number allow to discriminate pathological conditions
[39]. Therefore, kinematic-muscular synergies may allow to
assess the coordination of movements in a more comprehen-
sive way, linking directly muscular and kinematic patterns.
Moreover, many devices are used for hand rehabilitation
[40], and synergy-based paradigms may allow to improve
the restoration of motor functionality [41]. The association
between muscular and kinematic patterns can provide more
insights on grasp patterns to improve hand rehabilitation
devices [42].

Kinematic-muscular synergies for hand movements can
also lead to applications in prosthetics. Dexterous, naturally
controlled surface EMG prostheses better allow amputees
to perform personal needs such as eating or using tools.
Prosthetics companies and scientific research are advancing
toward this goal but dexterous naturally controlled pros-
thetic hands are not yet available, neither on the market nor
in scientific research mainly due to control problems [43]
related to robustness. Clinical parameters of the amputees
were demonstrated to affect control capabilities [15]. In order
to foster the improvement of control systems for sEMG

hand prostheses, a publicly available dataset for robotic hand
prosthesis control (the Ninapro database1) was released in
2014 [24], and extended with several additional datasets
afterwards [44], [45]. Currently, the database includes over
130 subjects (including 11 trans-radial amputees), repeating
as naturally as possible up to 53 handmovements with several
acquisition setups ranging in price from a few hundred to
several thousand dollars. The aim of Ninapro is to foster the
improvement of the field by allowing the development and
test of advanced machine learning methods. However, the
path to natural control of dexterous prosthetic hands can also
be paved by the simplification of the problem, for instance
via the identification of a set of motor modules sufficient to
control a comprehensive set of hand grasps.

The application of muscle and postural hand synergies
to myoelectric hand prostheses development and low-level
control was recently suggested in the literature and tested in
specific settings, while high level control strategies are still
not extensively explored. The application of postural hand
synergies to hand prostheses development is particularly evi-
dent in the development of the PISA/IIT Softhand, a robotic
hand actuated by a single motor [46]. The application of
postural hand synergies to low level control approaches can
be defined as controlling a dexterous robotic hand with few
(usually 4) independent input signals that modulate some of
the first synergies (usually the first one or two) in the robotic
hand, leading the robotic hand to reproduce several hand
grasps [47], [48], [49].

F. LIMITATIONS AND FUTURE WORK
Our analysis included 27 ‘‘mixed channels’’ (kinematics +

EMG) that provide a complex and multifactorial assess-
ment including a comprehensive mapping of DoF. While the
assessment is ‘‘advantageous’’ on one side since it provides
a high dimensional mapping, a multi-modal dataset may at
the same time carry artifacts due to the pre-processing steps
needed to provide coherent data to feed to the extraction
algorithm. It is not trivial to compare signals from multiple
domains and there are of course several factors that might
have affected the analysis. First, the choice of using accel-
eration for describing kinematics; it is possible that using
angular position, ranges of motion or velocities, results might
be interpreted differently. Second, the various steps for signal
analysis and normalization might impact the results (how-
ever, this consideration is valid for any study on synergies
and is not related to our experimental set-up, protocol or
analysis pipeline). Moreover, with respect to previous studies
in the field, the number of DoF is increased and may lead
to higher variability. There is also a lack of comparative
studies. Even more, the delays between kinematic variables
and EMG signals are considered with a simple fixed delay
model [29].

Moreover, although the analyzed grasps are representative
of a realistic scenario, in which movements are not con-
strained, the proposedmapping is still limited by the adoption
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of a laboratory setup not yet integrated in a real-life scenario.
Boundary conditions related to interaction with objects or
force applicationwere not considered in this study. The differ-
ent weights of the objects were not considered in this study;
future work will investigate the effects of the weight of the
objects on muscle synergies.

A very important question to consider is that MMF
algorithm implicitly assumes that kinematics and muscle
activity share a linear relationship, while the dynamic of
muscle contraction and effector muscles might be non-linear
[50]. This might imply that the model for capturing relation-
ships between muscle and kinematic coordination requires a
non-linear modelling needed for a more precise interpretation
of the results, which is not considered in this study. Further-
more, while the synergy approach has shown to be compatible
with experimental findings, in this study its transportability to
the effector space has to be demonstrated [51]. In this study,
as well as in the majority of muscle synergy works, it is not
demonstrated that the set of extracted synergy is able to define
the same motor output as the original kinematics and EMG
did, but only that it reconstructs effectively the signals used
as input for our novel algorithm.

While the range of applications may vary and unravel
toward several fields, it is likely that depending on the appli-
cations the findings of this study can be furtherly refined.
For example, the application of this database to neurological
patient performancemight benefit fromfine-tuned recordings
for the matching of the reference database to the peculiar
features of motor impairment (e.g. reduced range of motion,
jerky movements, lack of repeatability), which were not
investigated in this study.

V. CONCLUSION
In this paper, kinematic-muscular synergies were extracted
for the first time from EMG and kinematic data recorded
during the performance of several hand grasps. The proce-
dure allows to describe hand movements with a reduced set
of multimodal components. The variability of the extracted
synergies was investigated to evaluate the repertoire available
to healthy people and characterize the kinematic-muscular
synergies.

We found that a limited number of spatial synergies,
modulated by a time-varying activation signal, underlies the
execution of a large variety of upper-limb exploration move-
ments. However, synergies were not always consistent across
subjects, revealing a large inter-individual variability in hand
control strategies. In general, considering a wide repertoire
of movements, as well as reducing their constraints, leads to
the identification of a more flexible modular architecture with
respect to the ones identified in previous studies.
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