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Abstract: To date, the relationship between central hallmarks of multiple sclerosis (MS), such as white
matter (WM)/cortical demyelinated lesions and cortical gray matter atrophy, remains unclear. We
investigated the interplay between cortical atrophy and individual lesion-type patterns that have
recently emerged as new radiological markers of MS disease progression. We employed a machine
learning model to predict mean cortical thinning in whole-brain and single hemispheres in 150 cortical
regions using demographic and lesion-related characteristics, evaluated via an ultrahigh field (7 Tesla)
MRI. We found that (i) volume and rimless (i.e., without a “rim” of iron-laden immune cells) WM
lesions, patient age, and volume of intracortical lesions have the most predictive power; (ii) WM
lesions are more important for prediction when their load is small, while cortical lesion load becomes
more important as it increases; (iii) WM lesions play a greater role in the progression of atrophy
during the latest stages of the disease. Our results highlight the intricacy of MS pathology across
the whole brain. In turn, this calls for multivariate statistical analyses and mechanistic modeling
techniques to understand the etiopathogenesis of lesions.

Keywords: cortical atrophy; multiple sclerosis; machine learning; explainability; rim lesions;
leukocortical lesions

1. Introduction

Multiple sclerosis (MS) is a chronic, immune-mediated disease of the central nervous
system and the leading cause of nontraumatic neurological disability in young adults in
the Western world [1]. Classically considered a white matter disease, MS also involves gray
matter (GM) and is characterized by focal and/or diffuse inflammation, demyelination
and neurodegeneration. GM neurodegeneration is now recognized as a crucial component
of disease pathology and a substrate of clinical disability [2]. Moreover, the gray matter
volumetric changes that occur during the disease are also relevant for monitoring treatment
efficacy in clinical trials [3]. However, the mechanisms underlying the loss of GM in MS
remain largely undetermined [4]. For example, it is unknown whether cortical tissue
loss, the primary determinant of gray matter loss [5], is due to disconnection mechanisms
caused by white matter (WM) lesions [6], local demyelination [7] or a combination or
interaction of both. Using the increased sensitivity of ultrahigh field (UHF, 7T) magnetic
resonance imaging (MRI) to identify cortical lesions in MS [8,9], it has been shown that WM
lesions play a greater role than cortical lesions in cortical neurodegeneration [10]. However,
thus far, no studies have compared the different destructive potential of different types of
lesions in inducing cortical tissue loss. Among the different types of pathological lesions,
chronic active lesions are of particular interest due to their association with the failure of
repair mechanisms, which leads to progressive tissue destruction. Their hallmark, i.e., a

Brain Sci. 2023, 13, 198. https://doi.org/10.3390/brainsci13020198 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci13020198
https://doi.org/10.3390/brainsci13020198
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0003-4210-5065
https://orcid.org/0000-0003-1929-5833
https://doi.org/10.3390/brainsci13020198
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci13020198?type=check_update&version=2


Brain Sci. 2023, 13, 198 2 of 12

paramagnetic rim, can be clearly identified in a high-resolution susceptibility-weighted
MRI. Commonly called ‘rim lesions’, these findings have been observed in all stages of
the disease, with a predominant localization in WM [11,12]. Nevertheless, the cortical
location of rim lesions is possible, according to the observation of a paramagnetic rim in
some leukocortical lesions [9,13]. Chronic active rim lesions are characterized by chronic
inflammation, slow expansion, remyelination failure, and axonal loss. They have been
associated with an overall higher lesion load, subcortical atrophy, ventricular enlargement,
and more severe clinical disability [11,14,15]. Furthermore, the disruption of the structural
network caused by chronic active lesions appears to be greater than that generated by other
types of lesions [16].

In this study, by combining 7T MRI and machine learning algorithms based on ex-
treme gradient boosting techniques and explainability strategies that uniquely identify
the importance of each type of lesion (as well as other data) in each prediction, we aimed
to assess the relationship and individual importance of different subtypes of cortical and
WM lesions on cortical tissue loss. The flexibility and efficacy of modern gradient boosting
algorithms allows us to maximize prediction power, while a machine learning approach,
which includes train/test splits and hyperparameter optimizations, results in findings that
are more generalizable than those of conventional statistical approaches. Furthermore, our
objective was to also investigate whether the relationship between different subtypes of
lesions and cortical neurodegeneration changes as a function of the disease stage.

2. Materials and Methods
2.1. Patient Population

One hundred and eleven patients were prospectively recruited at Massachusetts
General Hospital (Boston). We included 74 patients with relapsing–remitting (RR) MS
and 37 with secondary progressive (SP) MS. Figure 1 depicts the inclusion criteria. All
protocols were approved by the institutional review board. Each participant gave written
informed consent.
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2.2. MRI Protocol

The assessment of WM and cortical lesions, as well as a paramagnetic rim surrounding
the lesions, was performed on bidimensional T2*-weighted (T2*-w) MR images acquired
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at 7T (fast low-angle shot FLASH sequence, TR = 1700 ms, TE = 21.8 ms, resolution
(x, y, z) = (0.33, 0.3, 1) mm3 resolution). Additionally, three-dimensional T1-weighted (3D
T1-w) MR images were acquired at 3T (TR = 2530 ms, isotropic resolution of TE = 1200 ms,
0.9 mm3) for cortical thickness evaluation, as described below.

2.3. Image Processing

Cortical thickness was evaluated by segmenting 3D T1-w through the FreeSurfer
(Software version 5.3.0, 2013, http://surfer.nmr.mgh.harvard.edu (accessed on 24 June
2021)) reconstruction stream. After vertexwise reconstruction of the pial and white surfaces,
cortical thickness (evaluated as the distance between two corresponding vertices on the pial
and white surfaces) was aggregated in a region of interest (ROI)-wise manner by averaging
within-ROI values (Destrieux atlas [17]). ROI-wise values were then averaged to obtain the
mean thickness in the left and right hemispheres and in the whole brain.

2.4. Lesion Identification

Lesions were identified via consensus between one radiologist and one neurologist
(CAT, CM), each with approximately 20 years of experience in neuroimaging analysis, and
segmented using Slicer (version 4.4.0; http://www.slicer.org, (accessed on 24 June 2021)).
Cortical hyperintensities extending for at least three voxels across two consecutive slices
on magnitude T2*-w image lesions were classified as (i) intracortical lesions if subpial or
confined to the cortex (Figure 2A) and (ii) leukocortical lesions when they also involved the
WM (Figure 2B).
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Figure 2. Examples of lesions visible on T2*-w images in a 48-year-old female MS patient (intracortical
(A) and leukocortical (B) lesions identifiable in magnitude imaging; (C) rim lesion visible in phase-
contrast imaging.

All lesions presenting a hypointense peripheral margin on phase T2*-w images [18]
(Figure 2C) surrounding an isointense to extralesional center were considered “rim lesions.”

Lesion counts and volumes were quantified using FreeSurfer and FSL (version 5.0).

2.5. Predictive Model

We employed prediction models for local and mean cortical thickness based on the
extreme gradient boosting (XGBoost) technique [19]. Our models used 13 demographic
variables (sex, patient age and age at disease onset) and lesion characteristics (rim le-
sion presence/absence; rim lesion load (dichotomous variable, <4 rim lesions ≥ 4 rim
lesions [11]); count and volumes of rim, rimless, leukocortical and intracortical lesions).
The model-building procedure was as follows:

(i) We randomly divided the data set in a stratified manner into training and test sets
(70% and 30%, respectively).

http://surfer.nmr.mgh.harvard.edu
http://www.slicer.org
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(ii) We used a grid search (5-fold cross-validation) during training to optimize model
hyperparameters (maximum depth of a tree; step size shrinkage used in update to
prevent overfitting; the minimum sum of instance weight needed in a child).

(iii) We evaluated model performances by calculating, through the same Python script,
the Pearson correlation (r) and p value between the real and predicted values in the
test set.

(iv) The individual and cumulative contribution of each feature to the final prediction was
assessed by calculating the Shapley additive explanations (SHAP) values [20].

(v) By repeating 50 times all the procedure on different 70/30 randomly split training
and test sets, it was possible to obtain a confidence interval for both r- and p-values,
as well as average SHAP values across repetitions.

All calculations were performed on a dual Xeon Workstation that was also connected
to large-scale cloud computing resources [21]. To examine the relationship between lesion
characteristics and brain atrophy at different stages of MS, we used the above procedure to
predict mean atrophy (evaluated in the whole brain and both hemispheres) in two subject
groups, G1 and G2. G1: 54 patients with MS from more than five years—age = 47 ± 8,
age at onset = 30 ± 10; F:16, M:38; G2: 46 patients affected by MS from less than five
years—age = 37 ± 8, age at onset = 35 ± 4; F:8, M:38. In this case, we employed a leave-
one-out cross-validation (with hyperparameter optimization in a 5-fold cross-validation
fashion on each training set) and assessed model performance in terms of both r and
p values calculated on the observed and predicted values (54 for G1 and 46 for G2). All the
above analyses were carried out in Python 3.6 and the scikit-learn module [22].

3. Results

We evaluated 100 MS patients (74 RRMS and 26 SPMS; 76 female, 24 male; age = 43 ± 10,
age at disease onset = 33 ± 9). The number and volume of different types of cortical and
WM lesions evaluated using MRI are summarized in Figure 3. Circles and stars represent
outliers with values between 1.5 and 3 box lengths from the nearest box edge and larger
than 3 box lengths, respectively. In our cohort, all but four participants had at least one
cortical lesion, while rim lesions were present in 63% of MS patients. When looking at
lesion types, a susceptibility rim was visible in 4.5% (233/5161) of WM lesions and in 0.7%
(14/1950) of cortical lesions (all leukocortical).
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Figure 3. Boxplots summarizing the distribution of the number and volume of different types of
cortical and white matter lesions from 100 multiple sclerosis patients. Boxplots represent the median,
interquartile range and range. Points outside the whiskers are considered outliers (circles—cases
with values between 1.5 and 3 box lengths from the nearer edge of the box; stars—cases lying more
than 3 box lengths).
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Table 1 shows the satisfactory performance of the model (mean p < 0.02 and mean
Pearson r > 0.4 evaluated) when predicting mean cortical thickness, both in individual
hemispheres and in the whole brain. This finding confirms a strong relationship between
lesion characteristics and cortical atrophy, which is well-generalized to the test set.

Table 1. Mean values and standard deviations (in brackets) of Pearson correlation (r) and correspond-
ing p values evaluated between the real and predicted values across 50 repetitions.

Mean Thickness r-Value p Value

Right Hemisphere 0.47 (0.15) 0.009 (0.0013)
Left Hemisphere 0.44 (0.18) 0.016 (0.020)
Whole Brain 0.48 (0.17) 0.008 (0.011)

Figure 4A–C show the feature importance ranking when predicting mean thickness
values in individual hemispheres/entire brain (the top variables contribute more to the
model than the bottom). The four most important characteristics for all these predictions
were rimless WM lesion volume, patient age, rimless WM lesion count, and intracortical
lesion volume.
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Figure 4. Mean feature importance evaluated across 50 repetitions obtained when predicting cortical
thickness in single hemispheres (A,B) and whole brain (C).

Figure 5 shows SHAP dependence plots, i.e., the impact of each feature on prediction
performance as a function of the feature value itself when predicting globally averaged
cortical thickness. Firstly, a decreasing dependence of importance on feature values is
observed with the increased volume of rimless WM lesion load (i.e., volume and count),
indicating that the smaller the lesion burden, the greater its role in predicting atrophy.
SHAP values also decrease with increasing patient age, indicating a decrease in the contri-
bution of this feature in predicting cortical thinning as its value increases. In addition, the
volume of intracortical lesions becomes more important in the prediction of atrophy as its
value increases.
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Figure 5. SHAP dependence plots of the rimless WM lesion volume, patient age, rimless WM
lesion count and intracortical lesion volume obtained when predicting mean cortical thickness in the
whole brain.

When the analysis was repeated region by region, good prediction performances
(which were termed “good” when they corresponded to statistically significant Pearson
correlations with a value of <0.05 between real and predicted values) were obtained in
15 regions of the brain in both brain hemispheres (7 in the left hemisphere and 8 in the right
hemisphere), as shown in Table 2. These regions mainly belong to the frontal and temporal
cortices of the brain, with only the areas of the superior frontal gyrus (F1), the medial
occipitotemporal and lingual sulcus, and the superior temporal sulcus found between the
cerebral hemispheres.

Figure 6A shows the mean feature importance of 15 regions where significant associa-
tions between real and predicted values were found. As a summary measure, we propose
the area under the curve, as pictured in Figure 6B. This curve was obtained by calculating
the fraction of times (over 50 repetitions) each of the 15 features appeared in each position
in single-region rankings, thus generating a global picture based on locally heterogeneous
predictions. Interestingly, the features that contributed the most to predictions were the WM
lesion volume and count (without considering rim lesions), patient age, and intracortical
lesion volume.

To assess the role of different types of demyelinated lesions in the development of cortical
atrophy at different disease stages, the analyses above were separately repeated in two groups
divided according to disease duration (cutoff: 5 years) by MS (G1 > 5y G2 < 5y). Table 3 shows
model performances for the prediction of the average thickness in the whole brain and in the
individual hemispheres in both G1 and G2 patient groups.
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Table 2. Prediction performances of local cortical thickness values in 15 brain regions belonging to
both brain hemispheres where p value < 0.05.

LEFT HEMISPHERE RIGHT HEMISPHERE

REGION r Value (SD) p-Pearson (SD) REGION r Value (SD) p-Pearson (SD)

Superior frontal gyrus (F1) 0.436 (0.149) 0.016 (0.023) Superior frontal gyrus (F1) 0.480 (0.125) 0.007 (0.011)

Medial occipitotemporal
sulcus (collateral sulcus) and
lingual sulcus

0.537 (0.131) 0.002 (0.003)
Medial occipitotemporal
sulcus (collateral sulcus) and
lingual sulcus

0.539 (0.125) 0.002 (0.003)

Superior temporal sulcus
(parallel sulcus) 0.444 (0.121) 0.014 (0.019) Superior temporal sulcus

(parallel sulcus 0.388 (0.212) 0.034 (0.050)

Opercular part of the inferior
frontal gyrus 0.420 (0.157) 0.021 (0.030)

Middle-posterior part of the
cingulate gyrus and sulcus
(pMCC)

0.374 (0.227) 0.042 (0.060)

Long insular gyrus and
central sulcus of the insula 0.371 (0.137) 0.044 (0.055) Middle frontal gyrus (F2) 0.443 (0.178) 0.014 (0.020)

Middle temporal gyrus (T2) 0.396 (0.134) 0.030 (0.042) Anterior transverse collateral
sulcus 0.377 (0.163) 0.040 (0.056)

Medial orbital sulcus
(olfactory sulcus) 0.387 (0.104) 0.034 (0.043) Superior occipital sulcus and

transverse occipital sulcus 0.439 (0.116) 0.015 (0.020)

Lateral occipito-temporal
sulcus 0.413 (0.165) 0.023 (0.033)
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were obtained by calculating the mean fraction of times (over 50 repetitions) each of the features
appeared in each position in single-region rankings.

Table 3. Pearson’s correlation (r) coefficients and corresponding p values evaluated between the real
and predicted values in two different subject groups (G1, with a disease duration > 5 years and G2,
disease duration < 5 years).

G1 G2

Mean Thickness r-Value p Value r-Value p Value

Right Hemisphere 0.46 0.0006 0.19 0.21

Left Hemisphere 0.41 0.002 0.12 0.43

Whole Brain 0.45 0.0007 0.19 0.21
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The prediction performances for G1 were satisfactory (average p < 0.002 and r > 0.4),
while our models were unable to predict atrophy in G2 (p > 0.05 in all cases).

Figure 7A–C show the SHAP feature ranking for predicting mean thickness values in
patients with disease durations longer than five years (patient group G1). For the prediction
in the entire subject population (see Figure 4), the volume of the rimless lesions in WM and
the patient’s age also appeared among the main predictors. Both in the whole brain and in
individual hemispheres, we found that the volume of the intracortical lesions and the number
of leukocortical lesions had a greater importance in the prediction of mean thickness values,
suggesting an increased role of cortical lesions in inducing the loss of cortical tissue in patients
with a disease duration of 5 years or more. This result was also confirmed when looking at
the mean positions in the SHAP feature ranking in the local regions, where the performance
of the cortical thickness was satisfactory (p value < 0.05, 36 regions in total). In fact, at the local
level, thickness values are mainly predicted as (1) rimless WM lesion volumes, (2) patient age,
(3) intracortical lesion volume and (4) leukocortical lesion count.
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hemispheres (A,B) and in the whole brain (C). (D): Mean feature ranking position evaluated across 36 brain
regions, where the thickness values were assessed in a satisfactory manner (p value < 0.05).

4. Discussion

In this study, we developed an interpretable machine learning approach to investigate
whether cortical tissue loss in MS is mainly dependent on local pathological processes or
disconnection from distant WM lesions and whether lesions that are pathologically known
to have a higher degree of tissue destruction [23] could play a critical role in this process.
The predictions were formulated in 150 brain regions of 100 MS patients, allowing us to
satisfactorily predict cortical thickness values using radiological features mainly extracted
from ultrahigh resolution 7T MRI data along with several demographic characteristics. Our
results suggest that the most important characteristics in the prediction of cortical thickness
are WM lesion load, age, and intracortical lesion volume. Furthermore, we observed that
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the importance of cortical lesions in predicting cortical tissue loss was greater in patients
with a longer duration of disease.

While several previous studies have linked cortical atrophy to WM lesion load [6,7,24],
as well as changes in the normal-appearing WM [25,26], other investigations suggest that
intracortical demyelination is the most important factor for determining cortical tissue
loss [27,28]. However, most of the studies were carried out on scanners with a 1.5 or 3.0 T
field strength or used traditional statistical methods with an unknown true prediction
power due to their limited generalizability. By combining the increased sensitivity of
ultrahigh resolution T2* gradient echo acquisitions at 7.0 T MRI for cortical and rim lesion
detection with modern machine learning algorithms to assess the cumulative power and
individual importance of cortical and rim lesion types, alongside with traditional imaging
markers of disease burden, we demonstrated that both white matter and cortical lesions
are the main contributors to cortical tissue loss.

The inclusion of both WM and intracortical lesions in those top-ranking predictors suggests
an articulate interaction between close-by pathology and a distanced disconnection.

Interestingly, despite their highly destructive potential, rim lesions per se are not
associated with reduced cortical thickness. Previous MRI studies have found, however, that
gray matter atrophy, and specifically, the atrophy of deep gray matter structures is more
pronounced in patients with rim lesions compared to those without [11,29]. Nevertheless,
no study has yet investigated the relationship between rim lesions and cortical tissue
loss. The evaluation of the unique, individual contributions of each lesion feature to
cortical tissue loss also demonstrated that a small load of the WM lesion is important in the
prediction of atrophy. In contrast, the cortical lesion load behaves in the opposite manner,
indicating that cortical lesions need to accumulate to produce a similar effect. In fact, GM
atrophy is more severe in patients with advanced disease stages [30], the same class of
patients in whom histopathological studies have shown the presence of extensive GM
demyelination [31–33].

Even if we could not predict changes in cortical thickness in early disease stages,
we successfully predicted cortical thickness values in the patient group affected by MS
for more than five years. Furthermore, our results suggest that, both at the local level
and in the whole brain, most of the prediction power is carried by the volume of the
rimless WM and intracortical lesions, as a result of the entire population analysis, and
by the leukocortical lesion count (more abundant in advanced disease stages [34,35]),
demonstrating that depending on the stage of the disease, different types of lesions could
play a differential role in the loss of cortical tissue.

At a local level, our model was able to predict thickness values in 15 regions of the
brain that belong to both brain hemispheres. Interestingly, the areas where the prediction
was successful were the regions most affected by the disease (superior frontal, temporal
sulcus, middle temporal, middle temporal gyrus, middle frontal gyrus [36,37], inferior
frontal [38], and occipital [37,39] areas). Looking at the mean importance for the prediction
in these regions, we again found the same subset of characteristics (WM lesion load, patient
age, and intracortical lesion volume) that carry most of the prediction power, pointing to a
mechanism that might not be influenced by the region in which it operates.

Limitations of the Study

The contribution of the intracortical lesion subtype to cortical tissue loss could have
been underestimated because even 7 T MRI cannot detect the entire extent of cortical
demyelination, although neuropathological–MRI correlations at 7 T have shown that it
more than doubles cortical lesion detection in MS compared to lower-field MRI systems [7,8].
In addition, model performances in predicting the mean cortical thickness in all experiments
were only fair. Other strategies, e.g., parasitic modeling, should be employed in future
research [40]. Thirdly, no model accounted for changes in the cortical normal-appearing
gray matter.
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5. Conclusions

Our results suggest that the overall WM lesion load is the main determinant of cortical
tissue loss in MS and is more important than focal cortical demyelination. However, the
contribution of cortical lesions to cortical neurodegeneration increases with the duration of
the disease. White matter lesion load has a vital effect on cortical thinning when it is low,
whereas cortical lesions need to accumulate to produce a similar outcome. Interestingly,
WM rim lesions, which are known to be a more aggressive subtype, do not seem to
contribute much to overall cortical tissue loss. This might be related to their reduced
number, volume and/or slow evolution. Furthermore, rim lesions are not present in all
multiple sclerosis patients, while cortical tissue loss is a common finding.
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