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Abstract

Despite receiving antiretroviral therapy (ART), an increasing number of adolescents and

young adults with perinatally acquired HIV (PHIVAYA) are at risk of developing premature

senescence and aging-associated illnesses, including cancer. Given this concern, it is cru-

cial to assess aging biomarkers and their correlation with the HIV reservoir in order to com-

prehensively characterize and monitor these individuals. Fifty-five PHIVAYA (median age:

23, interquartile range [IQR]: 20–27 years, and 21 [18–23] years on ART at the time of study

sampling) were studied along with 23 age-matched healthy controls. The PHIVAYA exhib-

ited significantly higher percentages of activated, senescent, exhausted CD4 and CD8 T

cells, shorter telomeres, reduced thymic output, and higher levels of circulating inflammatory

markers (PAMPs, DAMPs, and pro-inflammatory cytokines IL-6, IL-8, and TNFα) as well as

denervation biomarkers (neural cell adhesion molecule 1 [NCAM1] and C-terminal Agrin

fragment [CAF]), compared to controls. HIV-DNA levels positively correlated with activated,

senescent, exhausted CD4 and CD8 T cells, circulating biomarkers levels, and inversely

with regulatory T and B cells and telomere length. According to their viremia over time, PHI-

VAYA were subgrouped into 14 Not Suppressed (NS)-PHIVAYA and 41 Suppressed (S)-

PHIVAYA, of whom 6 who initiated ART within one year of age and maintained sustained

viral suppression overtime were defined as Early Suppressed (ES)-PHIVAYA and the other

35 as Late Suppressed (LS)-PHIVAYA. ES-PHIVAYA exhibited significantly lower HIV-DNA

reservoir, decreased percentages of senescent and exhausted CD4 and CD8 T cells,

reduced levels of circulating inflammatory and denervation biomarkers, but longer telomere

compared to LS- and NS-PHIVAYA. They differed significantly from healthy controls only in
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a few markers, including higher percentages of regulatory T and B cells, and higher levels of

DAMPs. Overall, these results underscore the importance of initiating ART early and main-

taining viral suppression to limit the establishment of the viral reservoir and to counteract

immune and cellular premature aging. These findings also suggest new approaches for min-

imally invasive monitoring of individuals at high risk of developing premature aging and age-

related illnesses.

Author summary

The introduction of combined antiretroviral therapy has led to the transition of HIV peri-

natally infected children into adolescence and young adulthood, thereby increasing their

susceptibility to aging-related diseases, including cancer. While previous studies have

examined aging markers in individuals living with HIV, no study has comprehensively

integrated multifaceted features of aging in adolescents/young adults with perinatally

acquired HIV (PHIVAYA). In this study, we conducted a comprehensive evaluation of a

multiparametric aging profile, including immunophenotypic aspects (activated, senescent

and exhausted T and B cells), cellular markers (telomere length and thymic output), circu-

lating inflammatory (PAMPs, DAMPs, cytokines) and denervation (CAF and NCAM1)

biomarkers. Our findings demonstrate that aging biomarkers in PHIVAYA were altered

compared to age-matched controls and were correlated with HIV-DNA reservoir levels.

Importantly, PHIVAYA with early and sustained viral suppression exhibited levels of

most aging biomarkers comparable to those of controls. The insights from this study have

the potential to significantly impact healthcare strategies and improve the well-being of

these individuals.

Introduction

The introduction of combined antiretroviral therapy (ART) has yielded significant benefits,

including suppression of HIV replication, restoration of immune function, reduction of HIV-

related morbidity and mortality, but it does not fully restore health [1]. The persistence of

latent HIV reservoir necessitates lifelong treatment to maintain virus suppression [2]; indeed,

despite ART, viral reservoir persistence, mainly due to damage to the gut mucosa and the

release of pathogen-associated molecular patterns (PAMPs) like 16S ribosomal (r)DNA, and

damage-associated molecular patterns (DAMPs) such as mitochondrial (mt)DNA, induces a

chronic state of inflammation/immune activation, which likely leads to biological and immu-

nological senescence, including shorter telomeres and higher percentages of exhausted and

senescent immune cells [3]. This progressive accumulation of perturbations is associated with

a progressive decline in health, leading to the premature onset of age-related conditions, such

as metabolic, cardiovascular, neurological disorders, and cancers [4–6]. It is worth noting that

although ART reduced mortality among individuals living with HIV, cancer remains a signifi-

cant cause of death. Recent years have seen a shift from AIDS-associated tumors, primarily

attributable to immunosuppression and interaction with other oncogenic viruses, to non-

AIDS-associated tumors which are on the rise as the HIV population ages [7].

Aging involves a remodelling of the immune system, including reduced thymic output and

circulating naive T cells, increased frequency of well-differentiated memory CD28- T cells

with limited proliferative potential, elevated levels of several pro-inflammatory cytokines, and
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a decreased CD4/CD8 lymphocyte ratio [1]. Frailty, which encompasses sarcopenia and mus-

cle weakness, is also a hallmark of aging. The neuromuscular junction (NMJ) undergoes dele-

terious morphological, functional and molecular changes, and ultimately degenerates,

releasing soluble isoforms of neural cell adhesion molecule 1 (NCAM1), identified as a marker

of denervation [8, 9]. In addition, circulating elevated levels of C-terminal Agrin fragment

(CAF), crucial for the formation and stabilization of NMJ, have been identified as a marker of

sarcopenia [10].

Limited data were available in this context [11–13]: functional impairment in elderly living

with HIV during successful ART was associated with higher CD8 cell activation and IL-6 levels

[11], as well as higher CD8 cell senescence and plasma levels of sCD14 [12]. In a study evaluat-

ing circulating markers of inflammation in frail or non-frail individuals living with or without

HIV, the highest levels of sCD14 and TNF-α has been found in HIV-positive frail individuals

[13].

To date, available data concerning children with perinatally acquired HIV infection have

shown that the viral reservoir is associated with increased inflammation and immune activa-

tion, likely resulting in early immune exhaustion and senescence [14–16]. However, very little

is known about biological and immunosenescence in perinatally acquired HIV adolescents

and young adults (PHIVAYA) under continuous ART for a long period of time [17–19]. Iden-

tifying a multifaceted aging profile, characterized by biological, immunological and denerva-

tion markers and their correlation with the viral reservoir, can be useful in designing new

approaches for minimally invasive monitoring of individuals at high risk of developing prema-

ture age-related illnesses, including cancers.

Results

1. Characteristics of the studied populations

A total of 78 adolescents and young adults were included in this study: 55 PHIVAYA and 23

healthy controls with a median [interquartile range-IQR] age of 23 [20–27] and 19 [18–27]

years, p = 0.107, respectively. PHIVAYA initiated ART at a median age of 3.5 [0.9–5.9] years

and had been on ART for a median duration of 21 [18–23] years at the time of study sampling.

As detailed in Materials and Methods, according to their plasmaviremia over time, the 55

PHIVAYA were subgrouped into: 14 Not Suppressed (NS)-PHIVAYA, characterized by tran-

sient periods of detectable viremia (>1000 copies/ml), and 41 Suppressed (S)-PHIVAYA, with

undetectable HIV-RNA plasma levels (<50 copies/ml) and with no more than one annual

viral blip of HIV-RNA (from 50 to 400 HIV-RNA copies/ml) for at least the last 10 years of fol-

low-up. Within the S-PHIVAYA group, 6 individuals were classified as Early Suppressed (ES)-

PHIVAYA, characterized by undetectable HIV-RNA plasma levels (<50 copies/ml) achieved

after viral suppression within 12 months of ART initiation, and the other 35 as Late Suppressed

(LS)-PHIVAYA. The characteristics of the studied populations at the time of study sampling

are shown in Fig 1 and Table 1.

2. Immunological and cellular aging biomarkers of the PHIVAYA

subgroups

First of all, we compared the immunological and cellular aging biomarkers between S-PHI-

VAYA and NS-PHIVAYA (Table 2). The two subgroups showed significant differences: the

S-PHIVAYA exhibited higher percentage of CD4 cells, lower percentage of CD8 cells, resulting

in a higher CD4/CD8 ratio, lower percentages of activated CD4 cells, senescent CD4 and CD8

cells, and exhausted CD8 compared to the NS-PHIVAYA (Table 2). In addition, S-PHIVAYA
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had significantly longer telomeres (RTL) and higher thymic output (TREC) than NS-PHI-

VAYA (Table 2).

Within the S-PHIVAYA subgroup, the 6 ES-PHIVAYA displayed lower percentage of CD8

cells, higher CD4/CD8 ratio, lower percentages of senescent and exhausted CD4 and CD8 cells

and higher percentages of T and B regulatory cells compared to LS-PHIVAYA (Table 3). Nota-

bly, ES-PHIVAYA also exhibited significantly longer telomeres and higher TREC levels than

LS-PHIVAYA (Table 3). Overall, the ES-PHIVAYA had lower levels of immune activated,

senescent, and exhausted CD4 and CD8 cells, highest levels of T and B regulatory cells and thy-

mic output, and longer telomeres compared to the other PHIVAYA subgroups (Fig 2).

Fig 1. Schematic representation of the studied populations at the time of study sampling. Characteristics of

PHIVAYA subgroups (NS-PHIVAYA, LS-PHIVAYA and ES-PHIVAYA) and healthy control group.

https://doi.org/10.1371/journal.ppat.1012547.g001

Table 1. Characteristics of the studied populations at the time of study sampling.

Characteristics

Median [IQR]

NS-PHIVAYA

(N = 14)

LS-PHIVAYA

(N = 35)

ES-PHIVAYA

(N = 6)

Healthy controls

(N = 23)

gender (M/F) 7/7 13/22 3/3 17/6

Age (years) 24 [21–27] 24 [19–27] 21 [19–22] 19 [18–27]

Age at ART initiation (years) 5 [3–8] 4 [1–6] 0.3 [0.1–0.8] -

Time on ART (years) 21 [17–22] 22 [17–23] 21 [19–21] -

Combination of ART:

NRTI/PI 2 21 2 -

NRTI/NNRTI - 6 4 -

NRTI/NNRTI/PI 1 2 - -

NRTI/ CCR5 inhibitors 2 2 - -

NRTI/PI/CCR5 inhibitors 6 2 - -

NRTI/NNRTI/CCR5 inhibitors - 1 - -

NRTI/NNRTI/PI/CCR5 inhibitors 3 - - -

Comorbidities* 4/14 17/35 1/6 -

IQR: interquartile range; ART: antiretroviral therapy; NRTI: nucleoside reverse transcriptase inhibitors; NNRTI: non-nucleoside reverse transcriptase inhibitors; PI:

protease inhibitors.

* lipodystrophy, dyslipidemia, hypercholesterolemia, osteopenia, HIV encephalopathy, chronic renal failure, arterial hypertension, psoriasis, cone-rod dystrophy,

polycystic ovary, non-alcoholic fatty liver disease, diabetes type I, multifocal progressive leukoencephalopathy.

https://doi.org/10.1371/journal.ppat.1012547.t001
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3. Viral reservoir in the PHIVAYA subgroups

The persistence of the HIV reservoir is contributed by clonal expansion of a few clones con-

taining intact, replication-competent proviruses, but primarily by defective, replication-

incompetent proviruses, which may be transcriptionally active [20–22].

We measured the total proviral DNA, the total cell-associated HIV-RNA and the unspliced

HIV-RNA, which can represent the full-length genomic HIV-RNA. Levels of total HIV-DNA

were significantly higher in NS- than in S-PHIVAYA (Table A in S1 Table). Overall, ES-PHI-

VAYA exhibited lowest levels of total HIV-DNA compared to LS- and NS-PHIVAYA (32 [27–

47] vs 70 [37–168] vs 208 [84–281] copies/106 PBMC) (Fig 3A and Table B in S1 Table).

Levels of unspliced HIV-RNA were significantly lower compared to those of total cell-asso-

ciated HIV-RNA, not only in ES-PHIVAYA (1 [1–30] vs 118 [77–304] copies/106 IPO8 in

PBMC; p = 0.003) and LS-PHIVAYA (26 [1–76] vs 424 [126–675] copies/106 IPO8 in PBMC;

p = 0.000), but also in NS- PHIVAYA (90 [26–158] vs 704 [306–1432] copies/106 IPO8 in

PBMC; p = 0.000) (Fig 3B).

Within the PHIVAYA subgroups, levels of both total cell-associated and unspliced

HIV-RNA were significantly higher in NS- than S-PHIVAYA (Table A in S1 Table). Addition-

ally, levels of both total cell-associated HIV-RNA (Fig 3C and Table B in S1 Table) and

unspliced HIV-RNA were significantly lower in ES- than in NS- and LS-PHIVAYA (Fig 3D

and Table B in S1 Table).

Table 2. Immunological and cellular aging biomarkers in Suppressed (S) and Not Suppressed (NS) PHIVAYA.

Parameters

Median [IQR]

PHIVAYA

(N = 55)

S-PHIVAYA

(N = 41)

NS-PHIVAYA

(N = 14)

p-value*

%CD4 35.6 [28.2–38.9] 37.0 [29.8–39.7] 30.9 [24.4–35.5] 0.003

%CD8 31.7 [25.3–40.2] 30.3 [24.7–36.8] 36.8 [31.2–42.2] 0.008

CD4/CD8 1.0 [0.8–1.4] 1.2 [0.9–1.7] 0.8 [0.6–1.1] 0.006

CD4 activation

(%CD3+CD4+CD38+HLA-DR+)

1.4 [1.0–2.5] 1.2 [1.0–2.1] 2.3 [1.3–3.1] 0.028

CD8 activation

(%CD3+CD8+CD38+HLA-DR+)

1.3 [0.7–2.1] 1.2 [0.7–1.8] 1.7 [0.7–2.5] 0.297

B activation

(%CD19+CD10-CD21-CD27+)

8.0 [6.0–10.9] 7.6 [6.0–10.4] 9.7 [5.7–13.4] 0.979

CD4 senescence

(%CD3+CD4+CD27-CD45RA+CD28-CD57+)

12.5 [5.9–22.2] 8.1 [5.3–18.2] 20.6 [16.9–27.9] 0.000

CD8 senescence

(%CD3+CD8+CD27-CD45RA+CD28-CD57+)

6.5 [3.4–12.8] 5.3 [3.2–10.8] 13.8 [7.5–17.4] 0.023

B senescence

(%CD19+CD27-IgD-)

10.4 [7.2–14.6] 10.5 [8.4–14.6] 9.1 [6.3–14.3] 0.212

CD4 exhaustion

(%CD3+CD4+ TIGIT+)

3.9 [2.8–7.4] 3.7 [2.0–6.9] 5.3 [3.7–8.0] 0.710

CD8 exhaustion

(%CD3+CD8+TIGIT+)

17.8 [13.6–33.6] 15.6 [11.9–20.5] 41.6 [32.5–53.0] 0.000

T-regs

(%CD4+CD25+CD127-FoxP3+)

11.8 [9.4–19.5] 12.2 [9.5–19.8] 11.6 [9.4–15.4] 0.750

B-regs

(%CD19+CD24++CD38++)

3.3 [2.4–4.4] 3.3 [2.5–4.7] 3.5 [2.5–4.1] 0.505

TREC copies/106 PBMC 379 [213–692] 425 [289–809] 91 [38–251] 0.000

RTL 1.2 [1.1–1.3] 1.2 [1.1–1.3] 1.1 [1.1–1.2] 0.012

* Adjusted by age, time on ART and time of ART initiation.

https://doi.org/10.1371/journal.ppat.1012547.t002
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The entire size of the HIV reservoir was estimated considering levels of the total proviral

DNA and levels of total cell-associated HIV-RNA. In the entire cohort, levels of total

HIV-DNA and total cell-associated HIV-RNA were positively correlated (r = 0.500, p = 0.001),

and their relationships with immunological markers of senescence were detailed in Fig 4 and

S2 Table. Specifically, total HIV-DNA levels showed positive correlations with activated CD4,

CD8, and B cells, senescent CD4, CD8, and B cells, and exhausted CD4 and CD8 cells. Con-

versely, HIV-DNA displayed inverse correlations with T and B regulatory cells and telomere

length (Fig 4 and S2 Table).

Total cell-associated HIV-RNA tended to be positively correlated with percentages of acti-

vated CD4, CD8 and B cells, senescent and exhausted CD8 cells, while inversely correlated

with T regulatory cells (Fig 4 and S2 Table).

Remarkably, most of these correlations, in particular for HIV-DNA, remained significant

even after adjusting for age, time on ART and time of ART initiation (Fig 4 and S2 Table), sug-

gesting that the HIV itself directly impacts immune activation and senescence, rather than

therapeutic treatment.

4. Viral reservoir and circulating markers

The persistence of the HIV reservoir may lead to the release of PAMPs and DAMPs into circu-

lation, resulting in a chronic state of inflammation and immune activation [23]. Therefore, we

analysed levels of PAMPs (as 16S rDNA), DAMPs (as mtDNA), and pro-inflammatory

Table 3. Immunological and cellular aging biomarkers of Early Suppressed (ES)- and Late Suppressed (LS)-PHIVAYA.

Parameters

Median [IQR]

S-PHIVAYA

(N = 41)

ES-PHIVAYA

(N = 6)

LS-PHIVAYA

(N = 35)

p-value*

%CD4 37.0 [29.8–39.7] 37.9 [36.4–38.7] 36.9 [28.6–39.9] 0.886

%CD8 30.3 [24.7–36.8] 26.9 [20.2–30.0] 33.0 [24.8–40.2] 0.023

CD4/CD8 1.2 [0.9–1.7] 1.4 [1.3–2.0] 1.0 [0.8–1.7] 0.021

CD4+ activation

(%CD3+CD4+CD38+HLA-DR+)

1.2 [1.0–2.1] 1.1 [1.0–1.4] 1.3 [1.0–2.2] 0.258

CD8+ activation

(%CD3+CD8+CD38+HLA-DR+)

1.2 [0.7–1.8] 0.8 [0.3–1.4] 1.2 [0.8–1.8] 0.092

B activation

(%CD19+CD10-CD21-CD27+)

7.6 [6.0–10.4] 6.9 [6.7–7.8] 8.3 [6.0–10.5] 0.024

CD4+ senescence

(%CD3+CD4+CD27-CD45RA+CD28-CD57+)

8.1 [5.3–18.2] 5.0 [3.4–7.5] 10.0 [5.3–21.4] 0.013

CD8+ senescence

(%CD3+CD8+CD27-CD45RA+CD28-CD57+)

5.3 [3.2–10.8] 3.8 [3.3–5.2] 6.4 [3.1–12.3] 0.016

B senescence

(%CD19+CD27-IgD-)

10.5 [8.4–14.6] 12.0 [9.4–14.0] 10.3 [8.3–14.6] 0.879

CD4+ exhaustion

(%CD3+CD4+TIGIT+)

3.7 [2.0–6.9] 2.8 [2.1–3.4] 3.8 [2.3–7.6] 0.040

CD8+ exhaustion

(%CD3+CD8+TIGIT+)

15.6 [11.9–20.5] 12.0 [7.8–14.9] 16.0 [13.2–22.1] 0.001

T-regs

(%CD4+CD25+CD127-FoxP3+)

12.2 [9.5–19.8] 15.1 [10.5–22.5] 12.2 [9.1–19.7] 0.008

B-regs

(%CD19+CD24++CD38++)

3.3 [2.5–4.7] 4.0 [3.2–4.9] 3.3 [2.4–4.2] 0.016

TREC copies/106PBMC 425 [289–809] 505 [336–624] 425 [280–884] 0.000

RTL 1.2 [1.1–1.3] 1.3 [1.2–1.4] 1.2 [1.1–1.3] 0.042

* Adjusted by age, time on ART and time of ART initiation.

https://doi.org/10.1371/journal.ppat.1012547.t003
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cytokines (IL-6, IL-8 and TNF-α) in PHIVAYA subgroups. ES-PHIVAYA had lowest circulat-

ing levels of PAMPs and pro-inflammatory cytokines than LS- and NS-PHIVAYA, while levels

of mtDNA were significantly lower compared to NS-PHIVAYA, but higher than in LS-PHI-

VAYA (Fig 5 and S3 Table).

Fig 2. Comparison of immune and cellular markers of aging among PHIVAYA subgroups. Comparison of levels of activated CD4 (A), CD8 (B) and B (C)

cells; senescent CD4 (D) and CD8 (E) cells; exhausted CD4 (F) and CD8 (G) cells; regulatory T (T-regs) (H), and B (B-regs) cells (I), relative telomere length

(L), and thymic output (TREC) (M) among PHIVAYA subgroups; p-values were adjusted for age, time on ART and time of ART initiation.

https://doi.org/10.1371/journal.ppat.1012547.g002
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Notably, HIV-DNA positively correlated with circulating levels of PAMPs, DAMPs, IL-6,

IL-8 and TNF-α, while no correlation was found with cell-associated HIV-RNA, except for IL-

6 (Fig 4 and S2 Table).

Additional observations can be made from the correlation plot depicted in Fig 4: PAMPs

tended to positively correlate with senescent CD4 (r = 0.71, p = 0.052) and CD8 cells (r = 0.60

and p = 0.077). Pro-inflammatory cytokines positively correlated with activated CD4 (TNF-α:

r = 0.36, p = 0.098), activated CD8 cells (with IL-6: r = 0.41, p = 0.025; and IL-8: r = 0.39,

p = 0.054), and exhausted CD4 cells (IL-6: r = 0.37, p = 0.040; IL-8, r = 0.34, p = 0.089; TNF-α:

r = 0.50, p = 0.007) (Fig 4).

Regarding markers of muscle wasting and denervation, ES-PHIVAYA displayed the lowest

circulating levels of NCAM1, and CAF compared to both LS- and NS-PHIVAYA (Fig 5 and S3

Table). HIV-DNA levels were positively correlated with circulating levels of both NCAM1 and

CAF (Fig 4 and S2 Table).

Fig 3. Comparison of HIV-DNA and cell-associated HIV-RNA levels among PHIVAYA subgroups. Comparison of levels of total HIV-DNA (A), total cell-

associated HIV-RNA (C), unspliced HIV-RNA (D) and between total and unspliced HIV-RNA (B) among PHIVAYA subgroups; p-values were adjusted for

age, time on ART and time of ART initiation.

https://doi.org/10.1371/journal.ppat.1012547.g003
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Of note, a subgroup of 22 PHIVAYA who developed one or more comorbidities were com-

pared to 33 PHIVAYA without comorbidities (Table 1). The results showed that circulating

levels of PAMPs, TNF-α and CAF were significantly higher in PHIVAYA with comorbidities

than those without (S4 Table). Notably, PHIVAYA with comorbidities showed circulating

CAF levels, ranging from 1,743 to 7,205 pg/mL, which align with those found in sarcopenic

volunteers and in patients with low muscle mass [24].

5. Comparison of multifaceted aging biomarkers among PHIVAYA

subgroups and healthy controls

The entire cohort of PHIVAYA was compared to healthy controls (S5 Table). While the per-

centage of CD4 cells did not statistically differ (35.6 [28.2–38.9] vs 36.6 [34.7–40.2], p = 0.088),

PHIVAYA had a significantly higher percentage of CD8 cells than healthy controls (31.7

[25.3–40.2] vs 21.1 [18.0–25.3], p = 0.000), and thus, CD4/CD8 ratio was significantly lower in

PHIVAYA compared to healthy controls (1.0 [0.8–1.4] vs 1.8 [1.4–2.2], p = 0.000). PHIVAYA

had significantly higher levels of activated, senescent, and exhausted CD4 and CD8 T cells,

and lower TREC levels and shorter telomere length than healthy controls (S5 Table). Further-

more, PHIVAYA had significantly higher levels of circulating markers, including PAMPs,

DAMPS, pro-inflammatory cytokines IL-6, IL-8 and TNF-α, NCAM1 and CAF than healthy

controls (S5 Table).

When the PHIVAYA subgroups were individually compared to the healthy controls group,

several important differences emerged (S5 Table). In particular, ES-PHIVAYA exhibited the

lowest percentages of senescent and exhausted CD4 and CD8 cells than the other PHIVAYA

subgroups, but similar to healthy controls (Fig 6 and S5 Table). Additionally, telomere lengths

in ES-PHIVAYA were longer than those observed in the other PHIVAYA subgroups, and

comparable to those of the healthy controls (Fig 6 and S5 Table). In addition, ES-PHIVAYA

subgroup exhibited lower levels of PAMPs, pro-inflammatory cytokines IL-8 and TNF-α,

NCAM1 and CAF than those observed in the other PHIVAYA subgroups, and comparable to

Fig 4. Correlation plot between HIV reservoir and immune and cellular markers in PHIVAYA. Colour scale represents Spearman’s correlation coefficient.

Red and blue correspond to positive and negative coefficients, respectively. Asterisks * p< 0.05, ** p<0.01, *** p<0.001.

https://doi.org/10.1371/journal.ppat.1012547.g004
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those observed in healthy controls (S5 Table). Lastly, in ES-PHIVAYA circulating levels of

DAMPS were lower than in NS-PHIVAYA, but significantly higher than healthy controls

(Fig 6 and S5 Table).

Discussion

Lifelong ART is essential for achieving sustained HIV suppression [25]. However, the persis-

tence of the HIV reservoir can accelerate processes of immunosenescence and aging, ulti-

mately leading to the onset of age-associated illnesses, including cancers, which represent a

primary cause of death in the HIV population [4–7]. Remarkably, the United Nations Pro-

gramme on HIV/AIDS (UNAIDS) estimated that by the end of 2022, there would be 1.5 mil-

lion children (<15 years) living with HIV, with over 130,000 newly infected [26]; this

represents a growing population at a higher risk of aging-associated diseases. In this study, for

the first time, we have delineated a multifaceted aging profile in adolescents and young adults

Fig 5. Comparison of circulating biomarkers among PHIVAYA subgroups. Circulating levels of 16S rDNA (PAMPs) (A), mtDNA (DAMPs) (B), and pro-

inflammatory cytokines IL-6 (C), IL-8 (D) and TNF-α (E), and muscle wasting and denervation biomarkers, NCAM1 (F) and CAF (G) in PHIVAYA

subgroups; p-values were adjusted for age, time on ART and time of ART initiation.

https://doi.org/10.1371/journal.ppat.1012547.g005
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Fig 6. Comparison of markers of aging among PHIVAYA groups and healthy controls. Comparison of levels of immune senescent CD4 (A),

CD8 (B), exhausted CD4 (C) and CD8 (D) cells, telomere length (E), and DAMPs (F) among PHIVAYA subgroups and healthy controls; p-

values were adjusted for age.

https://doi.org/10.1371/journal.ppat.1012547.g006
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with perinatally acquired HIV, who have been infected with HIV since birth and are at height-

ened risk of aging-associated illnesses.

Despite over two decades of treatment, the latent reservoir remains a major barrier to cure

HIV; it has been demonstrated that after an initial decay period spanning several years, the

viral reservoir does not further decrease [27]. The persistence of the HIV reservoir is driven by

clonal expansion of a few clones containing intact, replication-competent proviruses capable

of producing infectious virions [20], but it primarily consists of defective proviruses. Recently,

it has been demonstrated that defective, replication-incompetent proviruses may be transcrip-

tionally active and capable of producing viral proteins, ultimately contributing to chronic

inflammation and immune activation [21,22]. We found that the levels of unspliced

HIV-RNA, which can represent the full-length genomic HIV-RNA, were significantly lower

than total cell-associated HIV-RNA. Therefore, the entire size of the HIV reservoir was esti-

mated according to the value of total proviral DNA and total cell-associated HIV-RNA. Find-

ings that viral reservoir was significantly lower in ES-PHIVAYA indicate that early ART limits

the size of the HIV reservoir; how the timing of therapy initiation influences the proportion of

intact replication-competent proviruses vs defective proviruses remains an interesting

question.

The persistence of HIV appears to be a key driver of premature senescence. HIV can induce

the release of PAMPs and DAMPs into circulation, leading to chronic inflammation and per-

sistent immune activation [23], thereby contributing to the onset of a senescent pathway/phe-

notype. Indeed, in agreement with previous findings in early treated PHIV adolescents

[15,16,28], we found that HIV-DNA positively correlated with immune activated, exhausted

and senescent T and B cells. Moreover, we also found that the increased levels of 16S rDNA,

mtDNA, and pro-inflammatory cytokines correlated with immune activation, which, in turn,

was associated with immune exhaustion and senescence. Importantly, even after adjusting for

age, time on ART and time of ART initiation, the HIV reservoir correlated with markers of

aging, thus supporting that HIV itself plays a role in inducing immune senescence and exhaus-

tion. Furthermore, we found that PHIVAYA exhibit higher levels of immune activation, senes-

cence and exhaustion compared to controls, in line with findings in PHIV children (aged 0–5

years) [14]. Fastenackels and colleagues [17] reported increased immune activation, immune

senescence and inflammation (quantified as serum C-reactive protein levels) in young adults

living with HIV compared with age-matched uninfected individuals; however, unlike our

study population, in their research, these markers were associated with uncontrolled viral

replication.

Regarding cellular senescence, levels of TREC were significantly lower in all PHIVAYA

subgroups compared to age-matched healthy controls. This contrasts with the findings of two

recent studies, which did not observe differences in TREC levels in young adults with perina-

tally acquired HIV compared to age-matched controls [18] or compared to young adults with

non-perinatally acquired HIV [19]. Notably, NS-PHIVAYA had lower levels of TREC than

S-PHIVAYA, suggesting that reduced TREC levels in blood may result not only from dimin-

ished thymic output, but also from a more rapid conversion into activated memory cells.

Telomere length is also significantly shorter in PHIVAYA than in healthy controls. This

finding aligns with other studies [14,18]. Furthermore, we found an inverse correlation of telo-

mere length with HIV-DNA, confirming that viral persistence, likely by inducing chronic

immune activation and cell replication, impacts telomere length [15].

Of significant importance, the small group of ES-PHIVAYA, who initiated ART within the

first year of life and achieved sustained viral suppression, exhibited lowest HIV reservoir size,

lowest inflammatory profile and lowest percentages of senescent and exhausted T and B cells

compared to the other PHIVAYA subgroups. Consistently, effective ART treatment initiated
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within 6 months of life in children living with PHIV dampens the long-term inflammatory

plasma profile compared to late ART initiation [29]. Interestingly, ES-PHIVAYA exhibited

levels of inflammatory markers, immune senescence and exhausted profile comparable to

those of healthy controls. Notably, the ES-PHIVAYA had higher levels of TREC levels than the

other PHIVAYA subgroups. This was consistent with previous studies [15,30], describing that

delayed treatment in adolescents with perinatally acquired HIV correlates with lower TREC

levels in PBMC. Additionally, telomere lengths in ES-PHIVAYA were longer than in other

PHIVAYA subgroups and comparable to those of age-matched healthy controls, suggesting a

low rate of immune activation and cellular replication in these subjects. These findings indi-

cated that very early ART initiation by restricting the size of HIV reservoir, constrains the pre-

mature cellular aging.

T and B regulatory cells play a role in maintaining immune homeostasis by reducing sys-

temic immune activation and promoting appropriate immune responses [31–35]. Their role

in HIV infection is still controversial; they can either suppress generalized T-cell activation,

which is beneficial, or impede protective anti-HIV cell-mediated immunity, contributing to

viral persistence [35]. In our cohort, PHIVAYA had higher levels of T and B regulatory cells

compared to controls, particularly in the subgroup of ES- PHIVAYA. The percentages of these

cells were inversely correlated with levels of HIV-DNA and cell-associated HIV-RNA, and

negatively correlated with immune activation, suggesting that regulatory cells by restricting

immune activation, ultimately reduce the size of HIV reservoir and immune exhaustion and

senescence.

However, it should be underlined that ES-PHIVAYA, although exhibiting a significantly

better profile compared to LS- and NS-PHIVAYA, still display a residual detectable HIV reser-

voir and a low grade of inflammation. Notably, while levels of PAMPs were comparable to

those of controls, their levels of DAMPs, although lower than those of the NS- and LS- PHI-

VAYA subgroups, remained significantly higher compared to controls, and they likely play a

role in driving the low grade of inflammation and cellular activation in ES-PHIVAYA. The

reason of this increased levels of DAMPs remains an open question.

Aging is associated with the progressive loss of muscle mass and function [24]. Recently,

frailty, which includes measures of sarcopenia and muscle weakness, has been linked to mor-

tality and comorbidity in subjects aged�45 years living with HIV [36]. CAF and NCAM1

have been identified as muscle wasting and neuromuscular junction denervation biomarkers

[10,24]. In this study, for the first time, NCAM1 and CAF have been evaluated as functional

markers of aging in PHIVAYA. Circulating levels of NCAM1 and CAF in the ES-PHIVAYA

subgroup were similar to those of healthy controls, and significantly lower than the other NS-

PHIVAYA and LS- PHIVAYA subgroups, and their levels were significantly correlated with

the HIV reservoir. Of interest, PHIVAYA with comorbidities showed circulating CAF levels

consistent with those found in sarcopenic volunteers and in patients with low muscle mass

[24]. In addition, recent findings have reported an association between aging-related diseases,

such as cardiac dysfunction, and inflammatory profile in children and young adults living with

HIV [37]. Overall, the comorbidities observed in our cohort are not strictly defined as aging-

associated diseases. Nonetheless, the increased immune activation and high levels of biomark-

ers, such as PAMPs, TNF-α and CAF found in PHIVAYA with comorbidities may indicate a

vulnerable condition that could precede clinical manifestations. The ongoing follow-up of

these patients will allow for the evaluation of the prognostic value of these markers.

In conclusion, while successful ART has extended the lifespan of people living with HIV,

this population may experience premature aging, leading to the early onset of aging-associated

illnesses, including cancer. Here, we have described a multifaceted aging profile (Fig 7), with

biological, immunological, and functional biomarkers, as potential tools for non-invasive
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monitoring of the aging profile. Data provided from this study support the concept that early

ART initiation and sustained viral suppression restrict the viral reservoir and constrain prema-

ture aging. Findings that LS-PHIVAYA exhibited lower levels of CD4 activation, senescence,

and CD8 exhaustion, as well as reduced levels of PAMPs, DAMPs, proinflammatory cytokines

IL-6 and IL-8, alongside higher levels of TREC and longer telomeres compared to NS-PHI-

VAYA, but significantly different from those of age-matched controls, support that the sus-

tained viral suppression over time is a key determinant to limit premature senescence.

Moreover, findings that circulating markers of inflammation and denervation/sarcopenia

correlate with cellular senescence open up new avenues for minimally invasive monitoring of

adolescents and young adults with perinatally acquired HIV to assess their risk of age-related

illnesses.

A limitation of this study is the small size of the three groups, especially the ES-PHIVAYA

group. This constraint is understandable given the approach to ART 20 years ago. Nonetheless,

aging in this population remains understudied, and even with small group sizes, our results

contribute insights into this underexplored area.

It is emerging that early ART initiation may create conditions conducive to long-term post-

treatment control and support the concept of analytic treatment interruption (ATI) as a strat-

egy to achieve ART-free remission for infants with perinatally acquired HIV [38,39]. One

open question is the parameters to select infants who can undergo to ATI [40,41]. Our results

suggest that criteria for selecting candidates for treatment interruption may be based not only

Fig 7. Schematic pathogenetic pathway of how persistent HIV reservoir may lead to premature aging and

precocious onset of aging-related comorbidities. ART does not eradicate the virus, which persists as proviral

HIV-DNA and residual cell-associated HIV-RNA. This persistence, likely through the damage of the gut mucosa and

the release of PAMPs and DAMPs into the circulation, leads to a chronic inflammatory/immune activated condition,

which in turn causes cellular and immunological senescence, including increased immune senescence and exhaustion,

decreased thymic output, shorter telomeres, and higher levels of muscle wasting and denervation biomarkers. This

multifaceted premature aging profile adds new tools for the minimally invasive monitoring of premature/accelerated

aging-associated status in people at high risk since they have been living with the virus for their entire lives. The Not

Suppressed (NS)-PHIVAYA subgroup displayed the highest (red arrow) HIV reservoir size, degree of inflammation

(measured as levels of PAMPs, DAMPs, and proinflammatory cytokines), highest immune senescence and exhaustion,

lowest levels of TREC, shorter telomere length and highest levels of NCAM1 and CAF compared to Late Suppressed

(LS) (orange arrow) and Early Suppressed (ES) (green arrow) PHIVAYA.

https://doi.org/10.1371/journal.ppat.1012547.g007
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on viral load and CD4 count but also on a more comprehensive panel of markers, including

chronic immune activation and aging biomarkers.

Materials and methods

Ethics statement

This study was approved by the Ethics Committee of Azienda Ospedaliera Padova (Approval

number: #2921P) for the PHIVAYA study population, and by the Ethics Committee according

to national regulations (Approval number: 71779) for the control group.

Study participants (aged 18 years and older), or the parents/legal guardians of those under

18, provided written informed consent in accordance with the Declaration of Helsinki.

Study population and sampling

A total of 55 PHIVAYA, who attended the Department of Women’s and Children’s Health of

the University Hospital of Padova, were included in this study. All study participants have

been followed since birth and at the time of inclusion has been treated with ART. Plasmavire-

mia was recorded at diagnosis, ART initiation, throughout treatment and at the time of sam-

pling. One subgroup of 41 participants, with undetectable HIV-RNA plasma levels (<50

copies/ml) and with no more than one annual viral blip of HIV-RNA (from 50 to 400

HIV-RNA copies/ml) for at least the last 10 years of follow-up has been identified as Sup-

pressed PHIVAYA (S-PHIVAYA). The 14 remaining subjects, characterized by transient peri-

ods of detectable viremia (>1000 copies/ml), likely due to poor drug adherence and/or

resistant mutations, were defined as Not Suppressed PHIVAYA (NS-PHIVAYA). Among the

S-PHIVAYA, a small subgroup (n.6), characterized by undetectable HIV-RNA plasma levels

(<50 copies/ml) achieved after viral suppression within 12 months of ART initiation and with

no more than one annual viral blip during the time of follow-up, has been identified as Early

Suppressed (ES-PHIVAYA), and the other 35 as Late Suppressed (LS-PHIVAYA). A control

group of 23 gender- and age-matched healthy adolescents and young adults was included in

the study (Fig 1).

Blood samples were collected in EDTA-containing tubes. Peripheral blood mononuclear

cells (PBMC) and plasma were separated by centrifugation on a Ficoll-Paque gradient (Phar-

macia, Uppsala, Sweden) and appropriately stored in liquid nitrogen and at -80˚C, respec-

tively, until use.

DNA and RNA extraction

DNA was extracted from PBMC using QIAamp DNA Mini Kit (Qiagen, Hilden, Germany), as

already described [14]. RNA from PBMC was extracted using Maxwell RSC simplyRNA Blood

Kit on the Maxwell RSC 48 Instruments (Promega, Madison, WI, USA), following the manu-

facturer’s instruction. The concentration of eluted RNA was measured by Implen Nanophot-

ometer 15920.

HIV-DNA quantification by Droplet Digital PCR

HIV-DNA levels were measured in total PBMC by using the QX200 Droplet Digital PCR

(ddPCR) system (Bio-Rad, Pleasanton, CA), as already reported [15]. The HIV copy number

was normalized against the copy number of the TERT housekeeping gene, and the final results

were expressed as HIV-DNA copies/106 PBMC.
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Cell-associated HIV-RNA quantification by One-Step RT Droplet Digital

PCR

The content of total and unspliced cell-associated HIV-RNA was quantified using in house

quantitative assay based on One-Step RT ddPCR (Bio-Rad, Pleasanton, CA), with primers and

probe previously reported [15,42]. In particular, we employed primers for the LTR region, that

is present in all cell-associated HIV-RNA species, to measure the total cell-associated RNA,

and primers for gag/pol region to measure the unspliced RNA, whose detection indicates the

presence of full-length genomic HIV-RNA, able to produce infectious virions [42]. Levels of

total and unspliced cell-associated HIV-RNA were assessed against the reference gene impor-

tin 8 (IPO8) (Bio-Rad, Pleasanton, CA), and expressed as total and unspliced HIV-RNA cop-

ies/106 IPO8 in PBMC.

Telomere length measurement

Relative telomere length (RTL) was determined in DNA extracted from PBMC by multiplex

quantitative Real-time PCR, as previously described [14, 15]. All DNA samples and reference

samples were run in triplicate. RTL values were calculated as telomere/single-copy gene ratio,

as previously described [14].

Thymic output quantification

Thymic output in PBMC was studied by measurement of TREC levels by real-time PCR, as

previously described [43]. TREC levels were expressed as TREC copies/106 PBMC.

Flow cytometry

Whole blood was routinely stained with BD Multitest CD3/CD8/CD45/CD4 (Becton-Dickin-

son, San Diego, CA, USA) to obtain total frequencies of CD4 and CD8 cells and calculate the

ratio CD4/CD8. The specific profile of activated, senescent, exhausted and regulatory T and B

cells was studied by flow cytometry. Cells were thawed, washed, and stained for 20 min in the

dark with the Live/Dead Fixable Near-IR Dead Cell Stain Kit (Life Technologies, Carlsbad,

California, USA) and the following labelled monoclonal antibodies: anti-CD3 [FITC], anti-

CD4 [PerCP], anti-CD38 [phycoerythrin (PE)], anti-HLA-DR [allophycocyanin (APC)], anti-

CD27 [PE], anti-CD45RA [APC], anti-CCR7 [PE-Cy7], anti-CD28 [BV421], anti-CD57

[PE-CF594], anti-TIGIT [BV605], anti-CD21 [BV421], anti-CD27 [PE-Cy7], anti-IgD [PE]

(Becton-Dickinson-BD, San Diego, California, USA); anti-CD8 [VioGreen], anti-CD19

[VioBright515], anti-CD10 [APC] (Miltenyi Biotec, Auburn, California USA). The cells were

then washed and resuspended in PBS supplemented with 1% paraformaldehyde. T-regs were

determined using anti-CD4 [BB515], anti-CD25 [BV421], anti-CD127 [PE-CF594] (Becton-

Dickinson, San Diego, CA, USA) and combined membrane and intracytoplasmic staining for

anti-FoxP3 [AlexaFluor 647] using a Transcription Factor Buffer Set according to the manu-

facturer’s protocol (Becton-Dickinson, San Diego, CA, USA).

All samples were analysed using an LSRII Flow cytometer (Becton-Dickinson). A total of

50000 events were collected in the lymphocyte gate using morphological parameters (forward

and side-scatter). Data were processed with FACSDiva Software (Becton-Dickinson) and ana-

lysed using Kaluza Analyzing Software v.1.2 (Beckman Coulter, Brea, CA, USA) (S1 Fig).

Circulating levels of PAMPs, DAMPs and pro-inflammatory cytokines

DNA was extracted from 200 μl of plasma using the QIAamp DNA Mini Kit (QIAGEN, Hil-

den, Germany) and eluted in 50 μl of AE buffer. To estimate circulating levels of 16S ribosomal
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(r)DNA, 5 μl of DNA were amplified by Real-Time PCR, using primers and probe as already

reported [44]. Results were expressed as 16S rDNA copies/μl of plasma.

To quantify circulating levels of mitochondrial (mt) DNA, a quantitative method based on

real-time PCR assay was performed with primers pair and probe as previously described [44].

Results were expressed as mtDNA copies/μl of plasma.

Circulating levels of pro-inflammatory cytokines were quantified using a Luminex platform

(Human Cytokine Discovery, R&D System, Minneapolis, MN) for the simultaneous detection

of the following molecules: IL-6, IL-8, IL-17, TNF-α, according to the manufacturer’s instruc-

tion. Results were expressed as pg/ml of plasma.

Circulating levels of C-terminal Agrin Fragment (CAF) and Neural Cell

Adhesion Molecule 1(NCAM1)

Plasma levels of CAF and NCAM1 were determined using commercially available enzyme-

linked immunosorbent assay (ELISA) kits (ab216945 Human Agrin SimpleStep, Abcam, Cam-

bridge, UK, and RayBio Human NCAM1 ELISA Kit, RayBiotech Norcross, Georgia, USA,

respectively), following the manufacturer’s instructions. All samples were run in duplicate.

Plasma samples were diluted 1:10 using the appropriate diluent purchased with the kit. Con-

centrations of CAF and NCAM1 were read at 450 nm at Victor X3 (PerkinElmer, Waltham,

MA, USA), interpolated from the respective standard curve, corrected for sample dilution, and

expressed as pg/ml and ng/ml, respectively.

Statistical analyses

Continuous variables were summarized using median and interquartile range (IQR) and their

distributions among PHIVAYA subgroups were compared using the Kruskal-Wallis test

adjusted for age. The correlation between variables was investigated through the Spearman

rank correlation and the partial Spearman rank correlation was adjusted for age, time on ART

and time of ART initiation. All statistical tests were two-sided and a p-value <0.05 was consid-

ered statistically significant. Statistical analyses were performed using the RStudio (RStudio:

Integrated Development for R. RStudio Inc., Boston, MA, US).
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