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Abstract: Background: Obesity is a pandemic disease characterized by excessive severe body comor-
bidities. Reduction in fat accumulation represents a mechanism of prevention, and the replacement
of white adipose tissue (WAT) with brown adipose tissue (BAT) has been proposed as one promising
strategy against obesity. In the present study, we sought to investigate the ability of a natural mixture
of polyphenols and micronutrients (A5+) to counteract white adipogenesis by promoting WAT brown-
ing. Methods: For this study, we employed a murine 3T3-L1 fibroblast cell line treated with A5+, or
DMSO as control, during the differentiation in mature adipocytes for 10 days. Cell cycle analysis
was performed using propidium iodide staining and cytofluorimetric analysis. Intracellular lipid
contents were detected by Oil Red O staining. Inflammation Array, along with qRT-PCR and Western
Blot analyses, served to measure the expression of the analyzed markers, such as pro-inflammatory
cytokines. Results: A5+ administration significantly reduced lipids’ accumulation in adipocytes
when compared to control cells (p < 0.005). Similarly, A5+ inhibited cellular proliferation during the
mitotic clonal expansion (MCE), the most relevant stage in adipocytes differentiation (p < 0.0001).
We also found that A5+ significantly reduced the release of pro-inflammatory cytokines, such as
IL-6 and Leptin (p < 0.005), and promoted fat browning and fatty acid oxidation through increasing
expression levels of genes related to BAT, such as UCP1 (p < 0.05). This thermogenic process is
mediated via AMPK-ATGL pathway activation. Conclusion: Overall, these results demonstrated
that the synergistic effect of compounds contained in A5+ may be able to counteract adipogenesis
and then obesity by inducing fat browning.
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1. Introduction

Obesity is a pandemic health problem [1]. In 2016, the World Health Organization
(WHO) estimated that 650 million adults, 340 million adolescents and 39 million children
were affected by obesity, and these numbers are growing fast [2]. This condition has been
worsened by increased junk food consumption, highly enriched with sugar and fat, that
contributes to the development of visceral adiposity, which is strongly associated with
cardiovascular diseases (CVD) [3]. Visceral adiposity is primarily composed of white
adipose tissue (WAT) and is the main type of adipose tissue serving as energy storage.
WAT also acts as an endocrine organ, secreting several pro-inflammatory cytokines, such
as tumor necrosis factor (TNF)-α, Interleukin (IL)-6, and leptin, among others [4]. In a
state of obesity, the significant increase in WAT and in cytokine levels led to the onset of
a pro-inflammatory state typical of this pathological condition and its related disorders
(insulin resistance, diabetes mellitus, and CVD).

Recently, it has been proposed that WAT transdifferentiation into brown adipose tis-
sue (BAT), a phenomenon known as browning, may be a novel approach to counteract
obesity [5]. BAT activation enhances energy expenditure and promotes a negative energy
balance reducing weight gain in animal models [6,7]. BAT uncouples fatty acid oxidation
from adenosine triphosphate (ATP) production, dissipating energy as heat [8]. This benefi-
cial process is primarily mediated by AMP-activated protein kinase (AMPK) that, when
triggered by specific impulses, such as cold and/or fasting, induces phosphorylation and
activation of adipose triglyceride lipase (ATGL), leading to an increase in lipolysis and
fatty acids (FA) release [7,9]. These FA, in turn, bind to the uncoupling protein 1 (UCP1),
a protein located in the inner mitochondrial membrane, promoting the dissipation of an
electrochemical gradient as heat [9].

Based on these known mechanisms, several pharmacological and nutritional ap-
proaches have been proposed to counteract obesity and fat accumulation [10]. Among
nutritional compounds, polyphenols showed a significant anti-obesity effect by regulat-
ing lipid metabolism [11]. Resveratrol, the most studied among polyphenols, promotes
BAT metabolism by increasing expression of UCP1 in rodents [12]. However, the major
limitation in the clinical application of polyphenols, especially resveratrol, is their low
bioavailability [13]. To avoid this problem, several resveratrol derivatives with enhanced
bioavailability have been proposed and investigated, such as the glycosylated derivate
polydatin and the methoxylated derivative pterostilbene [14]. Chronic pterostilbene ad-
ministration in mice fed with a high fat diet has already been reported to improve lipid
metabolism and to promote expression of UCP1 and other factors related to BAT [15].
Recently, we demonstrated that a novel mix of polyphenols and micronutrients, called
A5+, was able to protect against inflammation by reducing cytokines-mediated processes
in different in vitro experimental models [16,17].

Based on these findings, the present study aimed to evaluate the effects of A5+ in coun-
teracting adipogenesis by promoting WAT browning in a model of 3T3-L1 murine fibroblasts.

2. Materials and Methods
2.1. Cell Culture, Differentiation and Treatments

A murine 3T3-L1 fibroblast cell line was provided by Prof. Massimiliano Caprio (San
Raffaele Open University) and cultured in Dulbecco’s Modified Eagle’s Medium (DMEM,
4.5 g/L glucose) (Gibco, Thermo Fisher Scientific, Waltham, MA, USA), supplemented with
10% Fetal Calf Serum and 1% penicillin/streptomycin (Gibco, Thermo Fisher Scientific,
Waltham, MA, USA) at 37 ◦C in a humidified, 5% CO2 atmosphere.

To induce differentiation, as previously reported [18], cells were seeded at the desired
concentration in the culture medium. When they reached confluence, the medium was
changed. The new differentiation medium was composed of DMEM 4.5 g/L glucose supple-
mented with 10% Fetal Bovine Serum (FBS, Corning, NY, USA), 1% penicillin/streptomycin,
1 µg/mL insulin, 0.5 mM isobutylmethylxanthine (IBMX), and 1 µM dexamethasone, 50 µM
A5+ (SirtLIfe srl, Rome), or DMSO (for control cells) (Sigma Aldrich, Saint Louis, MO, USA)
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for 2 days. On day 2, the differentiation medium was replaced with DMEM (4.5 g/L
glucose) containing 10% FBS, 1 µg/mL insulin, and 50 µM A5+, or DMSO (for control cells),
until day 10. The medium was changed every 2 days until day 10.

A5+ is composed of ellagic acid (20%), polydatin (98%), pterostilbene (20%), and
honokiol (20%), mixed with recommended doses of zinc, selenium, and chromium. It is
dissolved in DMSO at 1 mg/mL, as reported by Pacifici et al. [17].

2.2. Oil Red O Staining

Oil Red O staining was performed to quantify the intracellular lipid content as pre-
viously described [18]. Briefly, 1 × 105 cells were seeded in a 6-multiwell plate and
differentiated as reported in Section 2.1. Then, the cells were washed and fixed with 4%
formalin (Sigma Aldrich, Saint Louis, MO, USA). Subsequently, the cells were incubated
with 60% isopropanol (Sigma Aldrich, Saint Louis, MO, USA) and then stained with Oil
Red O solution (0.5 g/L, Sigma Aldrich, Saint Louis, MO, USA). The dye solution main-
tained by the cells was dissolved in pure isopropanol and quantified at 490 nm by using
the Multiskan FC microplate reader (Thermo Fisher Scientific, Waltham, MA, USA).

2.3. Proliferation Assay

For cell proliferation, 2 × 104 cells were plated in a 24-multiwell plate and differ-
entiated as previously reported. At time 0 and at 48 h, the cells were detached using
trypsin solution 0.05% (Gibco, Thermo Fisher Scientific, Waltham, MA, USA), then they
were centrifuged and the pellet was resuspended in culture medium. Then, 10 µL o cell
resuspension was added to 10 µL of trypan blue (Sigma Aldrich, Saint Louis, MO, USA)
and analyzed with a Countess Automated Cell Counter (Thermo Fisher Scientific, Waltham,
MA, USA).

2.4. Cell Cycle Analysis

Cell cycle analysis was performed using Propidium Iodide staining as reported in
Pacifici et al. [17]. Briefly, the cells were seeded at 1 × 105 in a 6-multiwell plate and
differentiated as reported in Section 2.1. Then, both the supernatants and cells were
collected in a FACS collection tube and centrifuged at 1600 rpm for 5 min. Subsequently,
the supernatant was discarded, and the pellet was fixed with 70% ethanol for 45 min [19].
Finally, the cells were washed with PBS, stained with PI solution, and analyzed using
cytofluorimetric analysis.

2.5. Inflammatory Array

Cytokines profile was analyzed in the supernatants of differentiated cells using the
Mouse Inflammation Array C1 (Ray-Biotech, Inc., Norcross, GA, USA), as previously
reported [17]. Briefly, the cells were treated as described in Section 2.1; at day 10, the
supernatants were collected, centrifuged to remove cell debris, and used for the assay.
Membranes with 40 spotted cytokine antibodies were blocked with the supplied blocking
buffer and then incubated overnight at +4 ◦C with the supernatants. The next day, the
membranes were washed and incubated overnight at +4 ◦C with a biotinylated antibody
cocktail. The next day, the membranes were washed, and HRP-Streptavidin solution was
added over night at +4 ◦C. The following day, the membranes were washed and detected
by chemiluminescence. The membranes map is reported in Table 1.

Table 1. Membrane cytokines array map.

POS POS NEG NEG Blank BLC CD30L Eotaxin Eotaxin-2 Fas L Fractalkine GCSF

POS POS NEG NEG Blank BLC CD30L Eotaxin Eotaxin-2 Fas L Fractalkine GCSF

GM-CSF IFNγ IL-1α IL-1β IL-2 IL-3 IL-4 IL-6 IL-9 IL-10 IL-12
p40p70

IL-12
p70
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Table 1. Cont.

GM-CSF IFNγ IL-1α IL-1β IL-2 IL-3 IL-4 IL-6 IL-9 IL-10 IL-12
p40p70

IL-12
p70

IL-13 IL-17 I-TAC KC Leptin LIX Lymphotactin MCP-1 MCSF MIG MIP-1α MIP-1γ

IL-13 IL-17 I-TAC KC Leptin LIX Lymphotactin MCP-1 MCSF MIG MIP-1α MIP-1γ

RANTES SDF-1 TCA-3 TECK TIMP-1 TIMP-2 TNF-α sTNF RI sTNF RII Blank Blank POS

RANTES SDF-1 TCA-3 TECK TIMP-1 TIMP-2 TNF-α sTNF RI sTNF RII Blank Blank POS

2.6. Gene Expression Analysis

For gene expression analysis, total RNA was isolated by using TRIzol reagent (In-
vitrogen, Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s
protocol. Then, 2.5 µg of total RNA was reverse transcribed into cDNA by using the
High-Capacity cDNA Archive Kit (Invitrogen, Thermo Fisher Scientific, Waltham, MA,
USA). qRT-PCR was performed using the ABI Prism 7500 instrument (Applied Biosystem,
Thermo Fisher Scientific, Waltham, MA, USA). cDNA amplification was assessed using a
specific primer reported by Marzolla et al. [20] (UCP1, Adbr3, Cidea, DIO2, Cpt1beta, Cpt2,
Crat, ACADM, ACADL, Hadha, Aco2, Idh3a Sdhac, Cs), and PowerUp SYBR green dye
(Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s
protocol. All samples were normalized using TATA-box binding protein (TBP) as an inter-
nal control; the relative quantification was calculated using the comparative ∆∆CT method,
and the values were expressed as 2−∆∆CT.

2.7. Western Blot Analysis

The 3T3-L1 cell pellets were lysed at 4 ◦C in an HNTG lysis buffer (1% Triton X-100,
50 mM HEPES, 10%glycerol, 150 mM NaCl, 1% sodium deoxycholate) supplemented with
Phosphatase Inhibitor Cocktail 2 and 3 (Sigma Aldrich, Milan, Italy) and protease inhibitor
cocktail (Sigma Aldrich, Milan, Italy). A clear supernatant was obtained by centrifugation
of lysates at 13,000× g for 15 min at 4 ◦C. Protein concentration was determined using a
BCA protein assay kit (Pierce; Thermo Fisher Scientific, Milan, Italy). Protein samples were
subjected to sodium dodecylsulfate polyacrilamide gel electrophoresis (SDS-PAGE) using
Miniprotean precast gels (BioRad; Segrate, Italy) and electroblotted onto nitrocellulose
membranes (Bio-Rad, Segrate, Italy). Membranes were blocked for 1 h at room temperature
(RT) with 5% non-fat milk in Tris-Buffered Saline with 0.05% Tween 20 (TBS-T). Incubation
with primary specific antibodies was performed in the blocking solution (5% milk or
bovine serum albumin in TBS-T) overnight at 4 ◦C and horseradish peroxidase-conjugated
secondary antibodies (in blocking solution) for 1 h at RT. We used antibodies against
AMPK-α 1:1000 (Cell Signaling, Danvers, MA, USA), phospho-AMPK-α (Thr172) 1:1000
(Cell Signaling, Danvers, MA), ATGL 1:1000 (Cell Signaling, Danvers, MA), phospho-ATGL
(Ser406) 1:1000 (Abcam Cambridge, MA, USA), and UCP1 1:1000 (Abcam Cambridge,
MA, USA). The appropriate secondary horseradish peroxidase-conjugated antibodies from
Jackson Immunoresearch were used in the blocking solution (1:5000). Immunoreactive
bands were visualized by Luminata Forte Western Chemiluminescent HRP substrate
(Millipore (Merk); Milan, Italy) using an ImageQuant LAS 4000 (GE Healthcare). Equal
samples loading was confirmed using GAPDH 1:30,000 (Sigma Aldrich, Milan, Italy) and
bands quantified by densitometry using the ImageQuant TL software from GE Healthcare
Life Sciences.

2.8. Statistical Analysis

All data were analyzed using GraphPad Prism 9 (La Jolla, CA, USA). An unpaired
two-tailed Student’s test was used for statistical analysis and significance. All data were
expressed as mean ± SEM. Values of p < 0.05 were considered statistically significant.
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3. Results
3.1. A5+ Blunts Intracellular Lipid Accumulation

In order to test whether A5+ was able to reduce intracellular lipid accumulation, we
induced 3T3-L1 differentiation into a mature adipocyte phenotype. Then, we stained the
differentiated cells with an Oil Red O solution that recognized triglycerides and lipids. As
reported in Figure 1, A5+ administration significantly reduced lipid accumulation when
compared to control cells, as confirmed by the Oil Red O absorbance at 490 nm (p < 0.005).
These results indicated a direct effect of this compound on the mechanisms associated with
fat storage. To further validate a reduction in adipogenesis, we also analyzed the mRNA
expression of some adipogenic factors (Figure 1, Panels b–d). Accordingly, we observed
a significant increase in FAB4 (p < 0.001) and adiponectin expression (p < 0.05) in the
A5+-treated cells. Moreover, PPARγ levels were increased following A5+ administration, in
agreement with its ability to promote adipogenesis in both white in brown adipose tissue,
and to boost the brown-fat characteristics in white adipose tissue [21]. Taken together, these
data suggest an involvement of A5+ in reducing white adipocytes maturation.

Figure 1. Oil Red O staining in 3T3-L1 adipocytes. Cells were seeded at a density of 1 × 105 cells/well
in a 6-well plate and differentiated with or without A5+. (a) Cells were stained with Oil Red O and
lipid droplets were visualized in optical microscopy (20× magnification) and quantified by measuring
absorbance. (b–d) Bar graphs illustrating the most relevant adipogenesis-related genes modulated
by A5+. Results are expressed as the mean ± SEM. * p < 0.05, ** p < 0,005, *** p < 0.001. Graphs
illustrate three different experiments conducted separately. FAB4: Fatty acid-binding protein 4;
PPARγ (peroxisome proliferator-activated receptor gamma).

3.2. A5+ Inhibits Cell Proliferation by Arresting the Cell Cycle in G2-M Phase

Mitotic clonal expansion (MCE) is one of the most relevant stages in adipocytes differ-
entiation. MCE is the moment where the cells reentered the cell cycle and promoted the
transcription of several genes involved in 3T3-L1 adipocytes differentiation [22]. Based on
the importance of MCE, we tested whether A5+ could act at this stage by reducing cell pro-
liferation and thus, the differentiation driving force. Cells were plated at 1 × 105 cells/well
in a 6-multiweel plate and differentiation was induced as previously reported. Then, at
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day 2, cell number and cell cycle were assessed. As expected, while physiological prolifera-
tion occurred in control cells, A5+ administration significantly reduced cell proliferation
(p < 0.005) (Figure 2, Panel a). We also evaluated the cycle to confirm the cell growth arrest
mediated by the selected compound. As reported in Figure 2, Panel b, cells treated with
A5+ showed a cell cycle arrest in G2-M phase compared to control cells (p < 0.05). These
results were further confirmed by the G2-M cell cycle arrest observed during the follow-up
of this process with a peak at day 10 (p < 0.0001) (Figure 2, Panel c).

Figure 2. Cell proliferation and cell cycle analysis. (a) Cell proliferation during MCE; (b) Cell cycle
analysis during MCE; (c) Cell cycle analysis at day 10. Results are expressed as the mean ± SEM.
* p < 0.05, ** p < 0.005, *** p < 0.001, **** p < 0.0001. Graphs illustrate three different experiments
conducted separately.

3.3. A5+ Administration Blunts Inflammatory Cytokines Release in Adipocytes

It is well known that mature adipocytes secrete several pro-inflammatory cytokines,
thereby contributing to systemic inflammation and complications in obese subjects [23]. In
order to evaluate whether this novel compound may impact on inflammation, we tested
the secretion levels of several cytokines directly involved in adipocytes maturation and
lipid accumulation in a differentiated mature 3T3-L1 adipocytes medium. As shown in
Figure 3, A5+ administration significantly reduced the release of BLC, Eotaxin 1, IL-6, Leptin
(p < 0.005), the chemokin CXCL9 (p < 0.05), RANTES (p < 0.001), and TIMP1 (p < 0.05) when
compared to control cells. These data further highlight the relevant anti-inflammatory
effect of polyphenols in general, and A5+ in particular. These findings are also in agreement
with our previous data [17].
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Figure 3. A5+ reduced adipocytes induced inflammation. (a) Representative blot assay reporting
all cytokines evaluated; (b) Bar graph illustrating the most relevant cytokines modulated by A5+

administration. Data are reported as mean ± SEM (n = 4). (* p < 0.05; ** p < 0.005; *** p < 0.001). ctr:
control; BLC: B lymphocyte chemoattractant; IL-6 Interlukin-6; CXCL9: chemokine (C-X-C motif)
ligand 9; RANTES: Regulated upon Activation, Normal T Cell Expressed and Secreted; TIMP1: Tissue
inhibitor matrix metalloproteinase 1.

3.4. A5+ Promotes Fat Browning

Recently, a novel strategy to counteract obesity has been reported: it is based on the
increase in activity and/or amount of brown adipose tissue (BAT), which, as opposed to
WAT, dissipates energy by generating heat and leading to a negative energy balance and
weight loss [6]. Based on our previous results, we tested whether reduction in lipid content
after A5+ treatment may be attributed to fat browning. Therefore, we differentiated cells
and isolated RNA to evaluate gene expression levels of important genes related to BAT. As
reported in Figure 4, cells treated with A5+ displayed significantly increased levels of UCP1
(p < 0.05), Adrb3 (p < 0.0001), and Cidea (p < 0.05). A positive but non-significant trend was
also shown for DIO2. These data demonstrated that this natural compound was able to
promote fat browning, suggesting a potential role in blunting fat accumulation and obesity
by triggering the switch from WAT to BAT.

Figure 4. A5+ promotes browning related genes. Bar graph illustrating the most relevant browning-
related genes modulated by A5+ administration: (a) UCP1, (b) Adrb3, (c) Cidea, (d) DIO2. Data are
reported as mean ± SEM (n = 4). (* p < 0.05; **** p < 0.0001). ctr: control; UCP1: uncoupling protein 1;
Adrb3: β3-adrenergic receptor; DIO2: Deiodinase, iodothyronine, type II. ns: not significant.
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3.5. A5+ Regulates Lipid Metabolism

Fatty acid (FA) oxidation is essential to induce UCP1 expression and, thus, to main-
tain and develop fat browning [24]. Based on our results showing the up-regulation of
browning-related genes, we decided to analyze expression levels of genes involved in
FA oxidation (Figure 5). As expected, genes involved in mitochondrial FA uptake, in
particular Cpt2, significantly increased in A5+-treated cells when compared to control (ctr)
cells (p < 0.05) (Figure 5, Panel a). Moreover, following A5+ administration, all analyzed
components linked to FA oxidation increased when compared to ctr cells (ACADM: p < 0.05;
ACADL: p < 0.005; Hadha: p < 0.05) (Figure 5, Panel b). The Acetyl-Coa derived from FA,
metabolized by FAO, enters the TCA cycle to produce the most relevant cofactors essen-
tial for mitochondrial respiration [25]. According to the previously shown results genes
involved in the TCA cycle were upregulated after treatment (Aco2 and Idh3a: p < 0.005;
Sdhac and Cs: p < 0.05) (Figure 5, Panel c). Taken together, these data suggest that A5+

regulates brown fat thermogenesis.

Figure 5. A5+-induced lipid metabolism. Bar graph illustrating the most relevant lipid metabolism-
related genes modulated by A5+ administration: (a) Genes related to mitochondrial fatty acids (FA)
uptake, (b) Genes involved in fatty acid oxidation (FAO), (c) Genes regulating tricarboxylic acid
(TCA) cycle. Data are reported as mean ± SEM (n = 4). (* p < 0.05; ** p < 0.005; ns: not significant).
ctr: control; Cpt1beta: Carnitine palmitoyltransferase I beta; Cpt2: Carnitine palmitoyltransferase II;
Crat: Carnitine acetyltransferase; ACADM: acyl-Coenzyme A dehydrogenase, C-4 to C-12 straight
chain; ACADL: Acyl-CoA dehydrogenase, long chain; Hadha: Hydroxyacyl-CoA dehydrogenase/3-
ketoacyl-CoA thiolase/enoyl-CoA hydratase, alpha subunit; Aco2: aconitase 2; Idh3a: Isocitrate
dehydrogenase subunit alpha; Sdhac: Succinate dehydrogenase complex subunit C; Cs: Citrate
synthase; TBP: TATA box binding protein.

3.6. A5+ Regulates Cellular Lipid Metabolism in 3T3-L1 via AMPK-ATGL Pathway

The observation that A5+ treatment increases the expression of thermogenesis-related
markers prompted us to investigate the molecular mechanisms underlying the browning
of 3T3-L1 adipocytes. 3T3-L1 pre-adipocytes were differentiated, in complete medium, in
the presence or absence of A5+ for 10 days. A5+ effects on 3T3-L1 cells were assessed using
western blot analysis of UCP-1 protein expression in terminally differentiated 3T3-L1 cells
(day 10). A significant increase of UCP-1 protein expression was observed in A5+-treated
3T3-L1 cells when compared with control cells (p < 0.05) (Figure 6, Panel b). Given the
well-known role of AMP-activated protein kinase (AMPK) as a sensor of intracellular
energy state by regulating FA metabolism and thermogenesis in adipose tissue [26], we
investigated whether A5+ was able to activate AMPK. We observed that A5+ administration
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induced a significant increase of AMPK-α phosphorylation at threonine-172 (Thr172) at
day 10 of 3T3-L1 cell differentiation, indicating its capacity to induce AMPK activation
(p < 0.001) (Figure 6, Panel b). Adipose triglyceride lipase (ATGL) can be phosphorylated
at serine-406 (Ser406) by AMPK to increase its catalytic activity and, in turn, lipolysis in
adipocytes [27].Therefore, we examined ATGL phosphorylation at Ser406 in A5+-treated
3T3-L1 cells and observed that it was significantly increased in A5+-treated cells when
compared to control cells (p < 0.05) (Figure 6, Panel b).

Figure 6. A5+ determined activation of AMPK-ATGL pathway in 3T3-L1 adipocytes. (a) Represen-
tative immunoblots of UCP1, AMPK, and ATGL activation analysis (n = 6), (b) distribution graphs
of the densitometric scanning analyses performed by ImageQuant TL software by using GAPDH
as loading control. Phosphorylated forms were normalized in comparison with their total forms.
* p < 0.05; *** p < 0.001.

4. Discussion

In the present study, by using a model of a 3T3-L1 fibroblast cell line differentiated
into mature adipocytes, we reported, for the first time, that a mix of polyphenols and
micronutrients (A5+) may be useful in preventing obesity and its related complications. A5+

administration reduced the accumulation of intracellular lipids and inhibited adipocytes
differentiation during MCE, therefore blunting fat accumulation. Moreover, as reported
in our previous studies [16,17], A5+ significantly reduced the release of pro-inflammatory
cytokines, including leptin. All these beneficial properties of A5+ were primarily linked
to its ability to triggering fat browning, or rather switching white adipose tissue to brown
adipose tissue, as demonstrated by an increase in the genes linked with this mechanism and
with fatty acid oxidation. At a molecular level, overexpression of UCP1 and the activation
of AMPK represented the main thermogenic pathways involved.

Recently, we showed that A5+ significantly blunted inflammation in an in vitro model
of Parkinson’s disease [17]. This relevant effect was explained, at least in part, by the
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synergistic and integrative effect of its components that act in different phases of cellular
rescue mechanisms against damage and/or cellular stress. Similarly, in obesity, where a
low grade of inflammation plays a pivotal role [28], the components of A5+ may induce
a preventive and protective effect. The efficacy of the different polyphenols against obe-
sity has been already largely explored and reported [29]. We previously demonstrated
that tyrosol, a major polyphenol found in extra virgin olive oil, inhibited adipogenesis
by downregulating several adipogenic factors (leptin and aP2) and transcription factors
(C/EBPα, PPARγ, SREBP1c, and Glut4) and by modulating the histone deacetylase sir-
tuin 1 [18]. A study using the same in vitro model of the present research, showed that
phenolic acids, including ellagic acid, inhibited lipid accumulation throughout the whole
process of adipogenesis differentiation [30]. However, in this study it was remarked that,
despite the similar structure of these compounds, they show interactions with different
targets when compared to those reported in the previous study; they also exert distinct
effects in adipogenesis [30]. Moreover, polydatin, pterostilbene, and honokiol were not
tested. Polydatin was shown to reduce body weight in high fat diet (HFD)-fed mice and to
downregulate serum levels of triglyceride, low density lipoprotein (LDL), aspartate amino-
transferase (AST), and alanine aminotransferase (ALT), and to upregulate high-density
lipoprotein (HDL) [31]. In association with the loss of weight, polydatin also reduced levels
of pro-inflammatory factors such as IL-6 [31]. On the other hand, pterostilbene significantly
ameliorated free fatty acids (FFA)-induced lipid accumulation in HepG2 cells and activated
FA β-oxidation to inhibit FA synthesis in HFD-fed mice via AMPK activation [32]. Again,
honokiol supplementation promoted the browning of WAT by upregulation of UCP1 and
AMPK expression in HFD mice [33]. All these findings are completely in line with the
results of the present study and with our hypothesis of the concomitant and interactive
effect of the A5+ compounds on the adipogenesis mechanisms.

After A5+ treatment, we found a cell cycle arrest in the G2-M phase during adipogene-
sis, which may be the main cause of the following cascade effect, including reduction in
cytokine cellular secretion. Among all pro-inflammatory factors, a significant decrease in
leptin release was found. This may have an important consequence since leptin is a primary
adipokine linked to mechanisms leading to obesity and its complications regulating body
mass via negative feedback between adipose tissue and hypothalamus. [28,34]. In turn, the
reduction of IL-6 and CXCL9, that increase the concentration of FFA [35], may drive the
regulation of mitochondrial FA metabolism.

The ultimate protective step of induced by A5+ is the promotion of fat browning.
This is a complex process in which gut microbiota also plays an important role [36]. BAT
includes several cells, such as pre-adipocytes, stem progenitor cells, and immune cells,
and has anti-inflammatory action through the ability to dissipate energy in the form of
heat, primarily mediated by UCP1 [8]. In obesity, BAT function is negatively affected by
inflammatory mediators, such as high levels of cytokines. For this reason, anti-inflammatory
supplementation, even natural, has already been proposed to preserve it [5]. Here we found
that treatment with A5+ increases the expression of the main genes involved in fat browning
and in FA oxidation. These processes control adipose tissue thermogenesis [8]. UCP1
generates a heat dissipating energy proton gradient from the electron transport chain in
mitochondrial respiration [37]. The increase in cellular respiration has favorable effects on
other cellular pathways such as AMPK-ATGL, which, in turn, are pivotal to activate central
and peripheral beneficial effects of BAT [9]. Here, we demonstrated either an increase of
UCP1 and AMPK-ATGL expression after A5+ treatment. Interestingly, AMPK has already
been shown to be positively modulated by other polyphenols, such as resveratrol [9].

The beneficial effect of minerals dissolved in A5+ (zinc, selenium, and chromium)
against obesity has been largely demonstrated. Recently, the levels of these elements were
found to be significantly reduced when measured in blood serum, hair, and urine of obese
adult patients, demonstrating their predictive role in obesity and the helpful impact of their
adequate replacement therapy [38].
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5. Conclusions

In conclusion, in the present article we found that a natural product composed of highly
bioavailable polyphenols and minerals may help in preventing some cellular processes
associated with obesity, primarily by reducing cellular lipid accumulation and by increasing
fat browning through enhancement of mitochondrial respiration and fatty acid oxidation
(Figure 7). Further studies in this important field are necessary to understand how to
counteract this pandemic disease.

Figure 7. Schematic representation of A5+ effects on adipogenesis and browning. A5+ administration
increased the expression levels of several genes involved in FAO, FA uptake and TCA. Moreover, it
also promoted the activation of the AMPK-ATGL pathway and increased the expression levels of
UCP1, leading to BAT generation and reducing the pro-inflammatory state typical of obesity and
white adipogenesis. Created by Bio-Render.com.
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