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ARTICLE INFO ABSTRACT
Dataset link: https://validatetool.org/ Context: Vulnerabilities are an essential issue today, as they cause economic damage to the industry and
endanger our daily life by threatening critical national security infrastructures. Vulnerability prediction
Keywords: . . . [ . . . .
Security supp(?rts softwa¥e e'n.gmeers in preventing the use <?f vulnerablhtlgs .by mah‘cm.us attaclfers, thus 1m.prov1ng Fhe
Replicability security and reliability of software. Datasets are vital to vulnerability prediction studies, as machine learning
Vulnerability models require a dataset. Dataset creation is time-consuming, error-prone, and difficult to validate.
Machine learning Objectives: This study aims to characterise the datasets of prediction studies in terms of availability and
Repository features. Moreover, to support researchers in finding and sharing datasets, we provide the first VulnerAbiLty
Dataset prediction DatAseT rEpository (VALIDATE).
Methods: We perform a systematic literature review of the datasets of vulnerability prediction studies.
Results: Our results show that out of 50 primary studies, only 22 studies (i.e., 38%) provide a reachable
dataset. Of these 22 studies, only one study provides a dataset in a stable repository.
Conclusions: Our repository of 31 datasets, 22 reachable plus nine datasets provided by authors via email,
supports researchers in finding datasets of interest, hence avoiding reinventing the wheel; this translates into
less effort, more reliability, and more reproducibility in dataset creation and use.
1. Introduction This study aims to characterise VPS datasets, briefly datasets, in
terms of availability and features. Furthermore, to help researchers
Our daily life relies on multiple instances of software that perform find and share datas.ets, we provide the first Vulne.rAb.iLity predic-
everyday tasks [1] such as household [2], autonomous driving [3] and tion DatAseT rEpository (VALIDATE). Our contributions are as
digital governance [4]. Vulnerabilities are an issue today as they are follows:
widespread across multiple domains. Vulnerabilities cause economic « providing the first systematic dataset review (SDR) related to
damage to industry [5,6]; they endanger our daily lives by threatening VPS. Our SDR supports researchers in finding datasets of interest,
critical security infrastructures [7-9]. hence avoiding reinventing the wheel, i.e., creating a dataset
The more software spreads across new domains, the wider the attack when a similar one is available. Reusing datasets of interest
surfaces; thus, the need to focus on vulnerability prevention [10]. The results in less effort, more reliability, and more reproducibility
spread of cyber-warfare increases the importance of preventing vulner- in VPS. Although there are many datasets, no dataset might

meet the researchers’ needs; therefore, researchers can use our
characterisation to provide evidence of the need to create a new
dataset,

providing VALIDATE, an online tool to search for a dataset with
specific features. VALIDATE supports our characterisation by al-
lowing the users to navigate and retrieve datasets easily, and
providing a non-exact replica of a VPS. The aim of our non-exact
replica is twofold: (i) it shows how researchers can use VALI-
and difficult to validate [15]. Datasets are also vital to support repli- DATE, and (ii) it improves the body of knowledge of vulnerability
cation; many recent studies stressed the issue of replicability and prediction.

reproducibility in ML studies [16-20].

abilities [11]. Vulnerability prediction helps software engineers prevent
the use of vulnerabilities by malicious attackers, thus improving the se-
curity and reliability of software [12]. Vulnerability prediction studies
(VPS) support advances in the identification of vulnerabilities in terms
of various performance aspects such as cost and accuracy [13,14].
Datasets are vital to VPS as every Machine Learning (ML) model
requires a dataset. The dataset creation is time-consuming, error-prone
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VALIDATE is available on GitHub Pages.! We are also open to
community contributions. Researchers may use the Dataset Submission
Template located in the VALIDATE Community repository* to submit
new datasets. Moreover, we provide a brief user guide, a YouTube video
tutorial link® and all the original studies references in the Replication
Package [21].

We performed an SDR which differs significantly in aim from the
conventional SLRs. SLR focuses on reviewing and synthesising previous
studies results [22], whereas our SDR focuses on analysing the datasets
used in previous studies. Our SDR provides a scientific and practical
contribution, showing gaps and availability of datasets types.

In our context, we have a one-to-one relation between a study and
its dataset (if provided); i.e., if a study provided more than one dataset,
these have been merged by the original authors into one repository. Our
results show that of the 50 primary studies, only 22 studies (i.e., 38%)
provide a reachable dataset; only one study provides a dataset in a
stable repository. Out of the 31 gathered datasets, 22 reachable plus
nine datasets provided by authors via email, no datasets have been
manually checked for the absence of any vulnerability in software
entities. Specifically, researchers labelled entities as negative when they
do not have a specific vulnerability; however, the entity might have
other vulnerabilities. Thus, negative labels might actually be positive.
Therefore, VPS might have overestimated the false positive rate [23].

The remainder of this paper is structured as follows. We present the
research background and related work in Section 2. We describe the
study design in Section 3.3. In Section 4, we discuss the SDR results.
In Section 5, we present our non-exact replica of the selected study,
imitating what researchers can do with our tool. We discuss the SDR
results in Section 6. We explain the threats to the validity of our study
in Section 7. We provide our conclusions in Section 8.

2. Background and related work

This section introduces ML for Software Engineering (SE) and dis-
cusses related works in VPS, emphasising reproducibility.

ML can support SE in many tasks [24]. Zhang and Tsai [25] defined
the field of SE as a “fertile ground where many software development
and maintenance tasks could be formulated as learning problems and
approached in terms of learning algorithms”. ML can tackle problems
that humans usually have a mere grasp or no knowledge at all [25] or
optimise solutions to otherwise well-known problems but with ineffi-
cient solutions [26,27]. Researchers focus on systematically reviewing
the tasks of SE that benefit from the ML “unparalleled capabilities” [24,
28-30]. For instance, Lyu et al. [31] discuss the development process
that benefited from emerging AIOps models. Kapur and Sodhi [32]
discuss the effort estimation based on metrics such as software features
similarity and developer activity. Durelli et al. [33] conduct a mapping
study on ML applications for software testing.

The activity of mining software repositories (MSR) led to ideas
and challenges for empirical studies in SE [34-36]. Hassan et al. [37]
point out the effectiveness of MSR in empirically validating new ideas
and techniques. MSR activity supports the creation of datasets contain-
ing useful information for predictive models [38-42]. Several studies
describe tools, techniques, and advantages in automatic mining [43—
45]. Bavota [46] presents issues in mining software repositories, in-
cluding the lack of meaningful content in commit messages [47],
misclassification of data [48,49] and the missing link between ticket
and commit [50]. Zhou et al. [51] investigate on how automatically
identify security patches through commit-related data; Zou et al. [52]
uses ML to protect the return pointer. Finally, Vandehei et al. [53],
Falessi et al. [54] highlight the importance, in the data preparation

1 https://validatetool.org/
2 https://go.validatetool.org/template
3 https://go.validatetool.org/tutorial
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stage, of correctly labelling the data according to the ticketing system
and the information from the version control system (VCS) platform.

Finally, Ibrahim et al. [55] discuss the significant threat posed by
software vulnerabilities in opensource projects, which can compro-
mise system integrity, availability, and confidentiality. Their analysis
of the top 100 PHP opensource projects reveals that 27% of them
exhibit security vulnerabilities. Increasing cyber-warfare [11] and data
breaches [56] threaten critical infrastructure and user privacy [7-9].
Furthermore, our recent study [57] reveals that vulnerability default
severity might be inaccurate.

2.1. Machine learning for vulnerability prediction studies

ML for VPS led to several studies that approached challenges and
novel ideas in the field [58,58-63]. Croft et al. [64] conduct an SLR
in the data preparation phase of a VPS study. They show that data
is the crucial component of any data-driven application; nevertheless,
the preparation phase of a dataset is still full of challenges. Our study
relies on Croft et al. [64] study selection as all datasets require the
data preparation phase. We focus on the entire dataset rather than
only on the data preparation phase. Thus, our selection of studies
extends from Croft et al. [64]. We conduct a new SLR adopting Croft
et al. [64] search strings and inclusion and exclusion criteria. We
expand the search scope by adding two specific keywords, “dataset”
and “repository”, and by broadening the time range, including studies
published until January 2023. Finally, it is essential to emphasise that
although Croft et al. [64] focuses on the data preparation phase of VPS,
we focus on characterising existing VPS datasets across 9 dimensions.

Jabeen et al. [65] experimented on the effectiveness of different
ML and statistical techniques for software vulnerability prediction. The
authors use goodness-of-fit and criteria on prediction capabilities to
assess the performances. Jabeen et al. [65] show that ML techniques
are more effective than statistical ones.

Zheng et al. [66] investigate the factors that can affect the vul-
nerability detection capabilities of ML models. Zheng et al. [66] use
the CountVectorizer® to extract features from text, to improve the
performance of conventional ML models. The authors show that deep
learning models can perform better than traditional ML models. Zhu
et al. [67] highlight a “perception gap” between deep learning and hu-
man experts in understanding code semantics. In real-world scenarios,
deep learning-based methods underperform by over 50% compared to
controlled experiments, prompting a deep dive into this phenomenon
and exploring current solutions to narrow the gap.

Partenza et al. [68] assess the capabilities of a periodic neural
network called ASTNN. To experiment with ASTNN the authors used
the Juliet test case suite outperforming the authors’ previous research
on project Achilles. However, Partenza et al. [68] show that the same
neural network performance dropped when tested against OWASP real-
world vulnerabilities. The author’s research highlights that ad hoc
datasets, like Juliet, are unsuitable for ML training due to their asym-
metries in the complexity of vulnerable and non-vulnerable codes and
unconfirmed cases.

Yu et al. [69] discusses the application of active learning for vulner-
ability identification, introducing HARMLESS, an incremental support
vector machine that achieves high recall by inspecting a small portion
of source code files. Despite known challenges such as the high com-
putational and annotation costs for new instances, which may reduce
the anticipated advantages in human-effort cost reduction, HARMLESS
demonstrates effective vulnerability detection.

Jabeen et al. [65], Zheng et al. [66] and Partenza et al. [68]
highlight the impacts of ML techniques on datasets confirming the fun-
damental idea of VALIDATE, i.e., researchers should focus on ML or sta-
tistical techniques aimed at improving previous results rather than rein-
venting the wheel (i.e., creating datasets). More specifically, Partenza

4 https://scikit-learn.org/stable/modules/generated/sklearn.feature_
extraction.text.CountVectorizer.html
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et al. [68] reports problems using ad hoc datasets such as Juliet to train
specific ML algorithms. Our SDR reveals that working in the VPS field
frequently employs ad-hoc datasets for their ML training and validation
phases. Researchers may use VALIDATE to address this problem to
identify datasets that align with their innovative ideas and research
goals.

2.2. Replicability and reproducibility

Giray [30] analyses state of the art and challenges in the engineering
of ML systems. They show that the random nature of ML-based systems
hinders SE tasks in engineering; moreover, they discuss the lack of
tools and a well-proven methodology for engineering processes. The
replicability and reproducibility (R&R), are among the challenges in
engineering ML systems. On a similar topic, Liu et al. [17] focus on R&R
in Deep Learning for SE. They show that 10% of the studies have at least
one research question about R&R; 62% of the studies do not provide a
good source code or original data. The PROMISE repository [70] is the
first repository of freely available datasets for SE. As with VALIDATE,
with the PROMISE repository, the authors want to support researchers
in new ideas rather than spending effort “reinventing the wheel”,
i.e., creating a new dataset that might already exist. PROMISE has been
online since 2005 and supports all fields of SE. Based on the original
PROMISE idea and the need for reproducibility highlighted in Liu et al.
[17], we developed VALIDATE to serve a specific SE domain, i.e., VPS.
It should be noted that PROMISE exists in three distinct versions.” ¢’
At time of writing, there is only one operative version of PROMISE’,
although the oldest among the three. The advantages of VALIDATE
compared to PROMISE are:

» VALIDATE dataset repository includes studies related to each
dataset: Cheikhi and Abran [71] comprehensively overview the
PROMISE and ISBSG dataset repositories. They reveal a lack of
studies associated with specific PROMISE datasets; they note that
70 of 84 PROMISE datasets need more practical usage informa-
tion.

VALIDATE allows users to search for datasets based on attributes
to improve PROMISE on this aspect: Cheikhi and Abran [71] show
that only 37 of 84 PROMISE datasets comprehensively describe
data and attributes of the dataset. Of course, this search is possible
since VALIDATE is specific to a subdomain of SE.

Public donated dataset peer review: VALIDATE allows the com-
munity to publicly donate VPS datasets by opening an issue
report® and filling in the necessary filter values. While PROMISE
allows users to donate their dataset by email, using GitHub issues
allows a public peer review of the candidate dataset.
Community contributions: VALIDATE users can submit an issue
requesting a change or fix a bug in VALIDATE.

PROMISE has the advantage, compared to VALIDATE, of providing
the only means to share the repository about all SE subdomains.

2.3. The impact of datasets and feature selection on the accuracy of ML

To our knowledge, no previous study has investigated optimal
dataset selection. Dataset selection is essential in machine learning-
related tasks [66]. The dataset characteristics and the representative-
ness and the relevance of the data can impact the feature selection
(FS) [72,73], the model accuracy and the generalisation capabili-
ties [64,74]. In this sub-section, we present related work showcasing

http://promise.site.uottawa.ca/SERepository/
http://code.google.com/p/promisedata/
http://openscience.us/repo
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the importance of the dataset characteristics and selection process in
the overall ML/DL application.

Alelyani et al. [72] show how dataset characteristics impact the
stability of FS algorithms. The authors extensively analysed the inner
properties of different datasets to assess how those affect the consis-
tency of the FS algorithm. Furthermore, Oreski et al. [73] focused on
seven characterisation methodologies for datasets and five FS tech-
niques. The author reveals how specific characteristics of a dataset
deeply impact the accuracy and the time complexity of FS techniques.
Thus, the characteristics of datasets are essential in dimensionality
reduction, hence critically influencing the accuracy and generalisation
capabilities of predictive models.

Zheng et al. [66] investigate four factors influencing machine lear-
ning-based vulnerability detection, including data quality and classifi-
cation models. As a result, selecting appropriate datasets impacts the
performance of a classification or neural network. Likewise, [64,66,
74] focusing on the data preparation phase of vulnerability predic-
tion studies, emphasise the importance of carefully selecting appro-
priate datasets for specific research ideas. Nong et al. [74] address
the shortage of systematic research on open science practices within
software engineering, mainly focusing on deep learning-based software
vulnerability detection. The authors performed a comprehensive lit-
erature review on 55 original studies, underscoring the importance
of meticulous dataset selection. Their investigation reveals that the
utilisation of imbalanced or artificially generated datasets resulted in
overly optimistic performance assessments, thereby compromising the
replicability of most techniques.

Finally, regarding the importance of FS algorithm, Zhang et al.
[75] conducted the first extensive empirical study on the correlation
between various application features and vulnerability proliferation.
Seven FS techinques were applied to nine feature subsets selected from
34 collected features, this allowed the authors to discover that appli-
cation complexity alone is not the sole determinant of vulnerability
discovery. More specifically, human-related factors also significantly
explain the proliferation of vulnerabilities.

3. Systematic dataset review

We perform the first SDR in the field of VPS [76,77]. We build our
methodology on findings and observations of Croft et al. [64], Nong
et al. [74].

3.1. Goal and research questions

We formalised the goal of this study according to the Goal Question
Metric (GQM) approach [78] as follows:

Investigate datasets,

for the purpose of characterisation,
with respect to nine dimensions,
from the point of view of researchers,

in the context of VPS.

Based on the aforementioned goal, we defined our main research
question, which serves as the primary focus of our investigation: What
are the defining characteristics of state-of-the-art datasets in VPS?”

3.2. Research methodology

The SDR consist of two phases. Phase 1 gathers studies using
PICO [79]. Phase 2 focuses on filtering the studies according to inclu-
sion and exclusion criteria.

Phase 1 involves the collection of 2802 studies spread across three
different sources. Specifically:

+ ACM Digital Library: 69 studies, 67 of which coincide with Croft
et al. [64],
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Raw Database Entries Database Entries
2802 2301

2. Criteria Application
8| > 18 >
4. Quality Checks

Fig. 1. Workflow for study selection and inclusion.

» [EEEXplorer: 2360 studies, 1118 of which coincide with Croft
et al. [64], and
» Scopus: 373 studies, 357 of which coincide with Croft et al. [64].

We use an SLR procedure based on Zhang et al. [76],Kitchenham [77],
Lewowski and Madeyski [80]. Moreover, our primary study selection
is inspired by Croft et al. [64]. Specifically, Croft et al. [64] performed
a study selection process in February 2021 and obtained 61 studies.
Table 1 describes our PICO enquiry. Croft et al. [64] provides the base
of our query to which we add to the population Category the word
“repository” and “dataset” to expand and accommodate the different
scopes of the literature review. Croft et al. [64] limited their research to
studies published until February 2021. Our query extends the selection
of studies of Croft et al. [64] to those published up to January 2023.

We derive our groups and dimensions from studies highlighting
aspects of ML for VPS. For instance, Falessi et al. [81] point out
the importance of preserving the mined data time order. Similarly,
several studies approached VPS with different grains [82-87]; thus,
we decided to define a dimension on the predicted entity granularity.
Zhang et al. [88] combined software metrics and text features for VPS.
We acknowledge this idea of combination, and therefore we decide
to focus our attention on different feature sets [89-92] by defining a
dimension that analyses the available feature sets of the datasets. Russo
et al. [93] point out the relevance of CVE in VPS [94-97]; therefore,
we focus our attention on the availability of CVE info in the datasets.

Fig. 1 presents our steps in the selection process of studies, i.e., Phase
2. We divide phase 2 into three specific steps:

1. Duplicate Removal: we eliminate duplicates in the three distinct
data sources. This resulted in the discarding of 501 studies.

2. Criteria Application: we apply inclusion and exclusion criteria
to the remaining 2301 studies, eliminating an additional 2251
studies. Croft et al. [64] proposed a set of criteria in their
systematic literature review (SLR). We find Croft et al. [64]
inclusion and exclusion criteria to match our aim, so we decided
to avoid reinventing the wheel. Table 2 presents our inclusion
and exclusion criteria inspired from [64].

3. Snowball Sampling: we use the snowball sampling technique [98,
99] to incorporate potentially related studies that the query
may not have captured. This results in the identification of 8
additional studies.

4. Quality Assessment: Table 3 presents the quality checklist in-
spired by the established guidelines by Kitchenham [77]. Ac-
cording to Table 3, we assessed whether the original studies’
authors clearly stated the design’s aims correctly aligned with
them. Furthermore, we evaluated if the metrics used in the
measurement procedures of the original studies were appro-
priate for answering the research questions and if the sample
represented the specific vulnerability type and granularity. We
check whether the authors justified smaller sample sizes and if
they thoroughly described the specific tools used in the study.
At the end of the fourth step in Fig. 1, all the papers selected
satisfied questions one to 12. Finally, Fig. 2 graphically presents
the last quality checks, i.e., Q12 and Q13 (see Section 3.3.1).

The final selection of the studies in this paper consists of 50 studies,
including 171 unique projects and seven programming languages.

3. Snowballing
) (Q1-Q11) X .
Database Entries Final Database Entries
42 50
Table 1
PICO query string.
Category Subject Search Terms
Population Software “software” OR “code” OR
“repository” OR “dataset”
Intervention Machine “learn” OR “neuralnetwork” OR
Learning Static “artificial intelligence” OR
Application “Al-based” OR “predict” NOT(“fuzz”
OR “test” OR “attack” OR
“adversarial” OR “malware” OR
“description”)
Comparison - -
Outcomes Software “vulnerability” AND (“predict” OR
Vulnerability “detect” OR “classify” O “identify”
Prediction OR “discover” OR “uncover”
OR“locate”)
Table 2
Inclusion and exclusion criterias.
Inclusion Criteria
11. The study relates to the field of VPS, and informs the practice of
Software Engineering
12. The study presents a unique VPS process or evaluation.
13. The study is a full paper longer than six pages.
Exclusion Criteria
El. Solely a literature review or survey article.
E2. Non peer-reviewed academic literature.
E3. Academic articles other than conference or journal papers, such as
book chapters or dissertations.
E4. Studies not written in English.
E5. Studies whose full-text is unavailable.
E6. Studies published to a venue unrelated to the discipline of Computer
Science.
E7. Studies published to a journal or conference with a CORE ranking of

less than A and H-index less than 40, and that have a citation count
of less than 20.

3.3. Coding

This study systematically characterises datasets by categorising
them into 9 dimensions through thematic synthesis [100]. Each of the
abovementioned dimensions represents a specific characteristic of the
dataset.

3.3.1. Dataset availability

Given the increasing importance of reproducibility and replicability
in SE studies, [16-20], and since the dataset is vital to replicate VPS,
in this dimension, we characterise whether VPS provides a dataset. In
addition, we want to understand the stability of the storage location
used for the dataset. We used Cruzes and Dyba [100] recommendations
for deriving these dimensions and their values. Our dimensions aim to
support researchers in finding a dataset of interest. The existence of
possible overlaps or relations across dimensions does not impact the
aim of the dimensions. To assess the availability of the datasets, we
read the studies and manually checked for any link or reference to the
dataset. Eventually, once we found a reference to a dataset in the form
of an URL, we manually followed the reference and downloaded the
referenced dataset. We note that the type of storage location of datasets
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Fig. 2. Availability of datasets.

Table 3
Quality checklist.

Design

Q1 Are the aims clearly stated?

Q2 Was the study designed with these questions in mind?

Q3 Do the study measures allow the questions to be answered?

Q4 Is the sample representative of the population to which the results
will generalise?

Q5 Was the sample size justified?

Q6 If the study involves technology assessment, is the technology clearly
defined?

Q7 Are the measures used in the study fully defined?

Q8 Are the measures used in the study the most relevant for answering
the research questions?

Q9 Is the study’s scope (size and length) sufficient to identify changes in
the outcomes of interest?

Analysis

Q10 Were the basic data adequately described?

Conclusions

Q11 Are all study questions answered?

Availability of Datasets

Q12 Was the replication package provided in the paper?

Q13 Is the replication package available?

is an important aspect. We classify the location as Stable Repository if
the authors provide an external reference to the dataset, the dataset
can be downloaded, and the dataset is in a remote stable repository,
e.g. Zenodo. We classify the location as Unstable Repository if the
authors provide an external reference to the dataset, the dataset can
be downloaded, and the dataset is in a remote unstable repository, for
example, GitHub or personal websites. It is important to discriminate
between stable and unstable locations because datasets in unstable
locations can be deleted or permanently moved. Hence, a study might
not be replicable if its dataset is stored in an unstable repository. If
the dataset was unavailable or unavailable, we emailed all authors
requesting such an unavailable dataset. We waited for the answer for
three months and thanked all authors who could provide the dataset.
All dimensions are based on datasets available in their studies or
retrieved via emails; we call these datasets the gathered datasets (GD).

The two authors of the paper acted as coders. We used Microsoft
Forms to input the data and then outputted a spreadsheet; this sup-
ported smooth individual coding. We used the outputted spreadsheet to
compare the answers provided by each coder. In case of disagreement,
we discussed the matter thoroughly to understand the reasons and then
reached a consensus. We analyse our agreements via Cohen’s « [101].
When assigning items to different categories, the kappa statistic is
commonly used to evaluate the agreement between raters or classifiers.
In the context of VPS datasets, it can be used to measure the level

Table 4

Interpretation of x values for measuring agreement.
Value of « Interpretation
k<0 No agreement
0<k<04 Poor agreement
04<k<06 Discrete agreement
0.6<k<038 Good agreement
08<k<l1 Excellent agreement

of agreement between two independent authors who categorised the
datasets according to different characteristics. When comparing the
observed level of agreement to the expected level of agreement, Cohen’s
x provides a metric for the reliability and consistency of the categori-
sations. Both authors characterised the dimensions individually. In the
event of disagreements, we reached a consensus through discussion.
Table 4 presents the interpretation « as suggested by Cohen [101], Sim
and Wright [102].

In the following subsections, we present the 9 dimensions along
which we characterise the datasets. We note that all of them are
relevant to vulnerability prediction, whereas some are only for VPS,
e.g., CVE/CWE information. VALIDATE supports researchers in finding
the dataset of interest, and it is independent of the specific decision-
making approach (see Section 2.3).

3.3.2. Dimension 1: Granularity of the labelled entity

Different VPS can focus on entities of different granularity such
as classes and files [103], commits [104], methods [105], code frag-
ments [106], or machine code [107]. Understanding the granularity
is important since Morrison et al. [15], analysing Microsoft prod-
ucts, reports that the granularity of the predicted entity impacts the
accuracy and actionability of the prediction model. Le et al. [104]
and Chakraborty et al. [108] focus on comparing the granularity of
the predicted entity. This dimension aims to characterise the trends
in the granularity of predicted entities. Our methodology consists in
downloading the dataset and manually inspecting it. We also checked
the granularity is defined in the study.

3.3.3. Dimension 2: Nature of the labelled entity

The data in the dataset can be collected from open-source projects
hosted online through VCS like GitHub or the data can be syntheti-
cally created by an authority like NIST [109] with the SARD [110].
Understanding the domain of the data is important since Chakraborty
et al. [108] discuss the domain of the labelled entities and their impact
on the model’s performance. Specifically, synthetic entities might not
fully grasp the complexity of real-world projects, thus harming the
prediction model’s ability to generalise. This dimension aims to charac-
terise the trends in data domain; i.e., synthetic versus open-source. Our
methodology consists of finding details of the source of the collected
data.
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Fig. 3. Publication and venue distribution over the years.

3.3.4. Dimension 3: Type of labelling

Multiclass VPS aim to determine which code is affected by a vul-
nerability and the type of predicted vulnerability. For instance, Zou
et al. [111] proposed and evaluated the first deep learning-based
system for multiclass vulnerability prediction. This dimension aims to
characterise the trends in the type of prediction: binary or multiclass.
Our methodology consists in looking for details about the class type of
the label.

3.3.5. Dimension 4: Feature sets availability

The features are the input to an ML model [112,113]. Different
features aim to achieve different goals [114]. In SE, we can measure
many aspects of a software entity, such as software or a develop-
ment process. Chidamber and Kemerer [115] introduce object-oriented
software metrics. Moser et al. [116] introduce software development
metrics also known as change metrics that aim to measure the process.
Recent studies focused on the interpretation and use of specific metrics
for VPS [117] and their possible subsets [118]. This dimension char-
acterises the set features in the dataset. Our methodology consists of
analysing the name of the features in the dataset and their definition
in the correlated study.

3.3.6. Dimension 5: Availability of either a CVE or a CWE information

Mann and Christey [119] introduced the concept of Common Vul-
nerability Enumeration (CVE), also known as Common Vulnerabilities
and Exposures. Martin et al. [120] introduced the concept of Com-
mon Weakness Enumeration (CWE), a dictionary of publicly known
vulnerabilities and security hotspots maintained by The MITRE Cor-
poration [121]. The CWE aims to classify a specific vulnerability that
belongs to the release of a project maintained by a specific vendor with
a unique identification number. CVE is fundamental for new vulnera-
bility studies [122]. Therefore, the research community, following this
new trend, made available large-scale datasets of CVE Infos [91,123—
125] and tools to automatically retrieve CVE [126]. This dimension
characterises the trend in the availability of CVE information. Our
methodology involves looking for details about the availability of CVE
info in the collected data.

3.3.7. Dimension 6: Labelling process

Labelling the data is crucial for VPS [64]. Due to automatism or not
considering real-world scenarios, incorrect labelling can lead to model
problems [127]. For example, Tantithamthavorn et al. [49], Eilers et al.
[128], Falessi et al. [54] underlined the impact of mislabelled data on
the performance of ML model. Therefore, the researchers developed
tools and techniques [129,130] to cure software repositories and made
manually curated data repositories available for SVP [91,129-131].
This dimension aims to investigate whether the authors manually cu-
rated the dataset. A dataset is manually curated if researchers checked
at least one aspect during the labelling process; the next dimension
focuses on the specific curated aspect. Our methodology consists in
looking for how the data have been labelled.

3.3.8. Dimension 7: Manually curated

The labelling process may contain automatic steps. For example,
a researcher might decide to check if a bug ticket is a bug or a
feature [128] or can check which commit actually fixed the ticket or
which line of code induced a vulnerability [132]; after this check,
a set of automated steps leads to a dataset. This dimension aims to
understand what has been manually curated in a manually curated
dataset. Our methodology seeks details about the labelling phase of the
collected data.

3.3.9. Dimension 8: Ground truth source

Ground truth (GT) source dimension characterise where authors
gained their GT. The GT is an essential component of VPS, as it provides
the basis for evaluating the effectiveness of different techniques. GT
can suffer from issues related to data availability and quality [133].
Researchers often gain vulnerability data from public databases such
as NVD [134-138]. These databases may not be comprehensive, as not
all vulnerabilities are reported or discovered. The data quality can also
vary, as the information may not be standardised or consistent [139].
Our methodology seeks details about the GT source of the collected
data.

3.3.10. Dimension 9: Negatives assessed

As already said, mislabelling can impact the performance of pre-
diction models [49,54,128]. There are two possible types of misla-
belling: false positive or false negative. In the false positive case, a
non-vulnerable code is labelled as vulnerable; in the false negative
case, a vulnerable code is labelled as non-vulnerable. In the absence of
evidence, we must assume that both mislabelling types impact predic-
tion models’ performance. This dimension aims to investigate whether
researchers manually assessed both vulnerable and nonvulnerable code
or if researchers assessed only the vulnerable code and labelled the re-
maining code as non-vulnerable. Our methodology consists of carefully
checking if the study’s authors manually checked if the code labelled
as negative has no vulnerability.

4. Results

In this section, we discuss the results of the characterisation of our
groups. However, before analysing the results, we analyse the level
of agreement of the authors in characterising the dataset over the
9 dimensions. Regarding the author’s agreement on each dimension:
While we fully agreed (i.e., 100%) on over 80% of the dimensions, it is
important to note instances of divergence. Notably, we found a variance
in opinions, with an 80% agreement on Dimension 1 (Granularity of
the labelled entity) and a 93% agreement on Dimension 4 (Feature sets
availability).
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4.1. Dataset availability

In this group, we assess whether primary studies provide a means
of reproducing the results. The values of the current dimension are:

Not Provided: the authors do not provide an external reference
to the dataset.

Reachable: the authors provide an external reference to the
dataset, and the dataset can be downloaded.

Not Reachable: the authors provide an external reference to the
dataset, and the dataset cannot be downloaded, i.e., the provided
reference is broken.

Retrieved: the authors do not provide an external reference to the
dataset, and the authors provide the dataset to us after an e-mail
request.

Not Retrieved: (the authors do not provide the dataset to us after
an email request) AND (the authors do not provide an external
reference to the dataset) OR [(the dataset was provided) AND (it
was unreacheable)].

Stable Repository: the authors provide an external reference to
the dataset, the dataset can be downloaded and the dataset is in
a remote stable repository, e.g., Zenodo [140].

Unstable Repository: the authors provide an external reference
to the dataset, the dataset can be downloaded, and the dataset is
in a remote unstable repository, e.g., GitHub [141] without DOI
commits [142].

Fig. 2, reports the availability of the datasets in our 50 primary
studies according to the options mentioned above. According to Fig. 2
only 25 of the 50 studies provide their dataset but three of these
are currently not reachable. Thus, only 44% of the studies provide a
reachable dataset. Finally, 21 studies are currently hosted in an unsta-
ble repository; thus, only one dataset is hosted in a stable repository
(i.e. Zenodo).

To obtain datasets that were not publicly available, we contacted
the corresponding author of each respective dataset. If no correspond-
ing author was specified, we contacted all authors. Three months were
given to the authors to provide us with the datasets. After the three
months had elapsed, we expressed our gratitude to the authors who
had provided us with their datasets. We also sent a follow-up email to
the authors who had not replied to the initial email, giving them an
additional week to respond. After a total period of three months and
one week, we began the process of classifying the datasets.

Fig. 3 presents the year of publication distribution of the 50 GDs
published between 2007 and 2022 and their publication venue distribu-
tion. Notably, there is a spike in publications during 2020, with 16 out
of the 50 datasets published during that year. Moreover we note a gap
in 2009 and 2012. It is noteworthy that, despite conferences being the
most preferred venue in the early 2010s, there has been a shift in the
community’s interest towards publishing in journals in the following
years. In particular, in 2022, all of the studies that met our criteria for
inclusion came from journal venues.

In conclusion, in this work, according to Table 3 we gathered a total
of 31 datasets (GDs): 22 Reachable, 1 Not Reachable Retrieved, and 8
Not Provided Retrieved, which resulted in 21 unique datasets.

4.2. Dimensions

In this subsection, we characterise the 31 GDs along the 9 dimen-
sions.

Provided: the authors provide an external reference to the dataset.
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4.2.1. Dimension 1: Granularity of the labelled entity

In this dimension, we characterise the types of entities involved in
the prediction. Studies can predict the following types of entity, ordered
from the coarsest to the finest-grained.

Class or File: in Object Oriented Programming (OOP) [143] a
class is an extensible code template for object creation. Pro-
vides initial values for its state and implementations of its be-
haviour [144]. Usually, a class corresponds to a single file; nev-
ertheless, in OOP it is possible to have multiple classes inside a
single file. In non-OOP, a file contains only functions [145].
Commit: the study predicts commits on the Version Control
System (VCS) [137].

Fragment: the study predicts only a fragment of the code (i.e., a
specific line of a method/function) [82].

Machine Code : instruction and data expressed in a form di-
rectly recognisable by the CPU [111]. The study predicts the
representation of the source code by machine code [107].
Method: the study predicts a method (e.g., Java) or a function
(e.g., C) [146]

Fig. 4a reports the distribution of the granularity of the predicted
entities. We note that:

+ the most predicted entity is Class or File (17),

» methods are predicted less than Class or File (10) but more than
the other types, and

+ the least predicted entity is the commit, with only one study
predicting it.

4.2.2. Dimension 2: Nature of the labelled entity
In this dimension, we characterise the nature of the predicted
entities. The predicted entities can be of the following types:

« Artificial: The predicted entities are created manually for testing
and evaluation purposes; examples include the Juliet Test Case
from NIST/SARD. The main disadvantage of this type of entity is
that it might not represent the industrial code [135].

+ Real: The predicted entities are derived from open-source projects
and online VCS. The main disadvantage of this nature of entities
is that it may not be related to all types of vulnerability [147].

» Mixed: a combination of the above options [148].

Fig. 5d reports the nature of the entities. We can observe that:

« the most chosen nature is Real with 23 datasets,
« artificial data is a minority, with only six datasets, and
+ only two datasets use a mixed data source.

4.2.3. Dimension 3: Type of labelling
In this dimension, we characterise the class of the label. The class
of the label of the predicted entities can be of the following types:

+ Binary: the label can only be true or false, i.e., the presence or
absence of vulnerabilities [149].

» Multiclass: the label can have more than two values and repre-
sents the absence of a specific vulnerability, e.g., CWE-23: Rel-
ative Path Traversal, CWE-79: Improper Neutralisation of Input
During Web Page Generation [111].

Fig. 5a reports the class of the label. We note that:

+ 87% of the gathered dataset uses binary labelling, and
+ 13% of the gathered datasets uses a multi-class label, using MITRE
classification to label the entity.
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4.2.4. Dimension 4: Feature sets availability
In this dimension, we analyse the feature sets in GDs. The possible
feature sets can be of the following types:

« String: the feature set consists of strings derived from string oper-
ations in the source code or in the compiled machine code [150].

» P/C Metric: [115,151,152]: The feature set consists of process
and complexity metrics [94].

+ CVE-Commit: the feature set consists of characteristics of a CVE
and its related commit [137].

Fig. 4b reports the feature sets available in GDs. We note that:

+ the majority of GDs has string features, and
+ the minority of GDs has CVE-commit.

4.2.5. Dimension 5: Availability of either a CVE or a CWE information
In this dimension, we analyse the information in the GD related to
the vulnerable code. The values of the current dimension are:

+ CVE\CWE Info available: the dataset reports either a CVE or a
CWE information for each positive entity [89].

» No CVE\CWE Info available: the dataset reports neither a CVE
nor a CWE information for each positive entity [135].

Fig. 5b reports how many GDs provide a CVE or a CWE information
for each positive entity. We note that 26 GDs (84%) provide a CVE or
a CWE.

4.2.6. Dimension 6: Labelling process
In this dimension, we characterise the process of labelling entities.
The values of the current dimension are:

Automated: the authors generated the dataset via a script [136].
Given: the authors used the dataset as provided by some sort of
official entity (e.g., the Juliet test case provided by NIST) [153].
Manual: the authors manually curated at least one aspect of the
dataset (e.g., SAP Dataset [91]).

Reused: the authors reused the dataset from another study [154]
reused their own datasets in Alves et al. [155].

Fig. 6¢ reports the type of labelling process. According to Fig. 6c¢:

» 15 out of the 31 GDs (48%) have at least one entity that is
manually curated in the process, and
+ only one out of the 31 GDs (3%) are reused from a previous study.

4.2.7. Dimension 7: Manually curated

This dimension investigates what is manually curated during the
labelling process. We note that manual curation may only be done
on a sample rather than the entire dataset, and a mixed dataset may
only have a partial amount of entries containing CVE information.
Researchers should analyse the datasets to understand whether the
amount and type of curation fit their needs. The values of the current
dimension are:

» Code: the author manually reviews the project’s source code
(code) or a fragment (slice) of it [133].

» Commit: the commit was manually reviewed [156].

+ Ticket: the Jira ticket/NVD’s CVE was manually reviewed [58].

» Nothing: nothing was manually curated [108].

Fig. 6a reports what is manually curated during labelling. According
to Fig. 6a:

» most of the gathered datasets (i.e., 15 out of 31 GDs) have nothing
manually curated, and

« the least curated entity is the commit with only 5 out of the 31
GDs.

4.2.8. Dimension 8: Ground truth source
In this dimension, we characterise the source of the GT. The authors
used the following sources to obtain the GT:

+ Bugzilla: GT from Bugzilla [12],

+ Fortify SCA: GT from Fortify SCA tool [133],

* Human Expert: GT from human expert knowledge [69],

* NVD: GT from CVE information extracted from NVD [145],
* SARD: GT from ad-hoc test suites [157], and

* SQLI-LABS: GT from SQLI-LABS published data [96].

Fig. 6b presents the distribution of sources for the GT in VPS. We
note that the NVD is the most prevalent source of the ground truth,
i.e., 77% GDs used NVD. Additionally, human experts are the second



M. Esposito and D. Falessi

% w
5 S
o 27777 I

Ticket BugZilla  Fortify SCA HumanExpert

it Nothing

a) Manually Curated
NCode ZACommit [INothing ETicket

b) Ground Truth Source
NBugzilla HFortify SCA [MHumanExpert ENVD [ESARD EASQLI-LABS

Information and Software Technology 170 (2024) 107448

==
Reused

Z

5 » Z
SQLI-LABS Automated Given Manual

NVD

SARD

) Labelling Process
HAutomated Given [MIManual EReused

Fig. 6. Manually Curated, Negatives Assessed and, Labelling Process.

most effective source of the ground truth. Notably, in the single in-
stance where a tool was employed, Fortify SCA was a static application
security testing tool, no one used a dynamic security testing tool.

4.2.9. Dimension 9: Negatives assessed
In this dimension, we characterise the nature of negative entities.
The values of the current dimension are:

» Negatives Assessed: what is labelled as not vulnerable results
from an expert decision assessing the absence of vulnerabil-
ity [95].

» No Negatives Assessed: what is labelled as not vulnerable is
the complement of what experts assessed as the presence of
vulnerability [12].

According to our findings:

» 71% of GDs do not assess negatives, and
* 29% of GDs do assess negatives.

We note that the 29% of GDs assessing negatives consider only one
CWE at a time. In other words, a fragment of code deemed negative
means that that fragment does not have a specific CWE, rather than that
that fragment does not have any CWE. Therefore, no study assessed the
absence of vulnerabilities in a code fragment.

5. Replication study

In this section, we show how VALIDATE can be used for conducting
a non-exact replica study, thus replicating the use of VALIDATE by
researchers.

5.1. Dataset selection

Among the possible datasets in VALIDATE, we were interested
in finding an ”"ML-ready” dataset with software product and process
metrics as features. As an ML toolbox, we chose WEKA due to our
successful research experience [53,54,81,158]. Thus, we selected the
work of Tang et al. [84]; they evaluated three open-source projects,
namely Moodle [159], PhpMyAdmin [160], Drupal [161]. Combining
the information from the security advisors and the NVD, they created
a dataset containing 223 vulnerabilities. They used such a dataset to
investigate whether text mining prediction produces more accurate
results than software features. Their results show that the text mining
features delivered better performance than the software metrics.

5.2. Design

In this section, we explain the key design concept of our non-exact
replica.

Table 5 reports the design elements of the original study and our
non-exact replica. Our non-exact replica shares many design elements
with the original study. We use the same six datasets of the original
study based on the authors’ open-source projects (i.e., Drupal, Moodle
and PhpMyAdmin). As an ML tool, we use Weka [162] as the original

paper. As per the independent variable (IV), we choose the same
Metrics/Token. As accuracy metrics, we chose to use the same ones as
in the original study: Inspection Ratio [84] (I = %) and
Recall [163-166] (R = 7=22).

Our non-exact replica improves the original study on many design
elements [167-172]. As a validation procedure, we use the same three-
fold cross-validation of the original study. To avoid randomness in
the split procedure that affects our results, we repeated the three-fold
cross-validation 100 times instead of the three times in the original
study. In VPS, feature selection is crucial as it allows researchers
to identify and prioritise the most influential factors contributing to
system vulnerabilities. Researchers can streamline their analysis and
improve the accuracy of ML models [169]. Hence, as a feature selec-
tion, we use symmetric uncertainty (SU) as suggested by Zhao et al.
[169]. Moreover, defect prediction and VPS datasets often exhibit
imbalance [86]. We employ class balancing techniques to mitigate
biases favouring majority classes in ML models. Notably, SMOTE [173]
proves advantageous compared to other methods like oversampling and
undersampling. SMOTE effectively tackles class imbalance by creating
synthetic instances for the minority class, offering a robust solution
without sacrificing data from the majority class to achieve dataset
balance [170]. Finally, tuning ML models is essential in VPS because it
allows for the optimisation of hyperparameters, enhancing the models
performance and predictive accuracy [174]. Manual tuning involves
adjusting parameters based on domain knowledge and experimentation
to find the best configuration for a given dataset. In the context of VPS,
where the nature of vulnerabilities and their manifestations in code
can vary widely, manual tuning is particularly tedious and challenging.
Auto-tuning models, such as AutoWeka [174], automate the hyperpa-
rameter tuning process, systematically exploring the parameter space
to find the optimal configuration. The output of Auto-WEKA is the best
classifier and the related best parameters given the provided dataset.
Table 5 reports the resulting classifier and parameters for each project.

Our analysis procedure includes a statistical test to reject the null
hypothesis of no difference between 7 and R in defect prediction
provided by using Metrics or Tokens. Since our data strongly deviate
from normality, we use the Wilcoxon signed-rank test [175] to test our
null hypothesis.

5.3. Results

Fig. 7 reports the accuracy of text-mining-based models and soft-
ware-metrics-based models. According to Fig. 7 the use of tokens
provides higher 7 and R than the metrics. The results of the statistical
test show a p-value lower than 0.0001 in the three datasets and two ac-
curacy metrics. Therefore, our non-exact replica confirms the results of
the original study even with a more sophisticated empirical procedure:
text mining models have higher accuracy than software metrics-based
models [84].

All experiments took about a week on one McAffee server model
BG5500 running Windows Server 2022. The server has two Intel Xeon
(R) CPU X5660, a base clock speed of 2.79 GHz and 72.0 GB of RAM
with a clock speed of 1067 MHz.



M. Esposito and D. Falessi

Information and Software Technology 170 (2024) 107448

Table 5
Study comparison.
Original Replica
Datasets Drupal, PhpMyAdmin, Moodle
Machine Learning Tool Weka
Independent Variable Metrics/Token

Accuracy Metrics

Inspection | Recall

Validation Techniques 1 time 3-fold cv

100 times 3-fold cv

Feature Selections None Symmetrical Uncertainty
Class Balancing None SMOTE
Hyperparameters Tuning None AutoWEKA

Statistical Test None Wilcoxon signed-rank

Classifiers Random Forest

Drupal

Metrics: RandomSubSpace + Random Forest

Tokens: SGD

Moodle

Metrics: AdaBoostM1 + DecisionTable

Tokens: SMO + NormalizedPolyKernel
PhpMyAdmin

Metrics: RandomForest

Tokens: SMO + NormalizedPolyKernel

5T
& 7

Drupal

Inspection Ratio
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Fig. 7. Accuracy of text-mining-based models and software-metrics-based models.

6. Discussion

Our systematic review of the VPS datasets shows that 50% of the
studies provide a dataset. This result is in line with Liu et al. [17], so
it is necessary to enforce a replicability package for ML studies. Liem
and Panichella [176] discuss the replicability and randomness in using
ML in empirical SE studies. Specifically, they note a high variability in
using ML techniques and tools with small to non-existent discussions
on the randomicity of the specific ML technique or tool. Fig. 2 shows
that out of the 22 studies that provide a reachable dataset (44% of the
total), only one dataset is currently hosted in a stable repository. The
main issue with unstable repositories lies in the volatility of the archive,
which is due to their intrinsic non-trackable nature. For example,
a GitHub repository can be archived without prior notice from the
author; similarly, the central administration can update a personal
website of an academic website. The issue of historical and locational
traceability of digital objects leads GitHub to add academic features
to its repositories [142]. Similarly to Mozilla Science Labs [177],
Figshare [178], and Zenodo [140], GitHub allows users to generate
DOI commits and integrate their repository with external archiving
platforms. We encourage researchers to provide a reachable replication
package and host it in a stable repository.

10

Regarding Dimension 1, Fig. 4 shows a majority of coarse-grained
entities, that is, class or file; this result is in line with Morrison et al.
[15],Arisholm and Briand [179].

Regarding Dimension 2, Fig. 5b shows that the majority (70% of
the 31 GD) use real data (i.e., open-source projects) that are easier
to analyse through their coarser grain than to build the project and
analyse the byte-code, thus inducing the focus towards class or files.
It should be noted that 85% of the GD uses a binary classification;
therefore, many studies can use a large body of knowledge on classi-
fiers. Although only 15% of the studies use multi-class classification,
recently, the VPS community seems to be focussing on this kind of
classification [111,180]. Regarding Dimension 6, Fig. 6¢ shows that
the most used labelling process involves manually curating at least
one aspect of the labelling process; nonetheless, it represents only 42%
of the GD. We note that curating at least one aspect of the labelling
process provides a more refined dataset; in the same vein, Ponta et al.
[91] propose a five-year manually-reviewed dataset.

Our SDR shows that only 33% of the 31 GD assess the entity labelled
negative (see Dimension 8, Fig. 6b). Furthermore, no study manually
checked the absence of any vulnerability; i.e., what is labelled as nega-
tive is the absence of a particular vulnerability rather than all vulnera-
bilities. For instance, in the Juliet Test Case, “CWE321_Hard_Coded_
Cryptographic_Key__ basic_81_goodG2B” is labelled as negative for
CWE321 rather than for any CWE. Therefore, we can argue that what
has been labelled as negative for a vulnerability might be positive for
another vulnerability. Thus, past ML studies might have overestimated
the false positive rate [23]. In conclusion, the labelling process is not
yet standardised [64], and it is essential to assess the negative labels
better.

Finally, on the possibility of reusing datasets according to their
content, according to Dimension 4, Fig. 4b, the scientific community
is driving its attention on the chance given by the NLP-alike technique
for feature extraction directly from the source code or the machine
code we call ”string feature”. As discussed in Section 3.3, the presence
of a standardised vulnerability nomenclature, that is, CVE/CWE infor-
mation, helps researchers focus on a specific family of vulnerabilities
or gain more knowledge of their existence and interaction. Therefore,
according to Fig. 5¢, the scientific community appears to be aware of
the issue since most GD, i.e., 71%, provide the CVE/CWE info.

Regarding Dimension 8, the findings from Fig. 6b have several
implications for VPS. The first implication is that the prevalence of NVD
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as the most prolific source of ground truth suggests that it is the most
accessible. Moreover, Fig. 6b suggests that utilising multiple sources
to establish the ground truth or a combination of different sources,
such as automated tools and human expertise, can provide a more
comprehensive understanding of the potential vulnerability landscape,
which is crucial for developing effective security measures.

According to Dimension 9, only 9% of the GD provides datasets
compliant with this demand.

To understand coverage across multiple dimensions, we use a Burt
table [181] which is a contingency table that displays the frequency
of cases for two categorical variables in a suitable format for analysis.
The Burt table helps identify the association patterns between two
variables and provides an easy visual overview of the relationship
between categorical variables. To interpret a Burt table, we should
look for cells with high or low frequencies relative to the total number
of cases. These indicate solid or weak associations between the two
variables. Table 6 reports the Burt table values for each combination
of categories in the MCA analysis.

To better understand Table 6, and specifically to facilitate the
identification of unavailable datasets, we counted in Table 6, for each
dimension value, the number of unavailable datasets in combination
with all other dimensions values. For instance, if the number of missing
combinations of a cell is zero, there is at least a dataset with that
dimension value and all values of the other dimensions. A dimension
with all zeros indicates the presence of at least a dataset with all values
of that dimension and all the values of the other dimensions. A cell with
many missing combinations indicates a low availability of datasets with
that dimension value and all values of the other dimensions. Table 7
reports the number of missing combinations. According to Table 7:

» “CVE Info” and “Binary” are the two values with only one missing
combinations. This means that datasets with “CVE Info” and
“Cross Project” are available with all but one values of other
dimensions.

The value “Reused” of the dimension Labelling Process show the
highest number of missing combinations, i.e., 25. This means
there is a scarce availability of datasets with those values and
values of other dimensions.

The value “Human Expert” of the dimension Ground Truth Source
show 22 missing combinations. Thus, too few studies involves
human expert to curate or validate the ground truth

The above result implies that researchers can leverage existing datasets
when in need of “CVE Info” and “Binary” features. In contrast, they will
likely build their own when needing other features.

7. Threats to validity

This section discusses different threats to the validity [182] of the
present study. We organise the discussion on two topics: SDR and
non-exact replica.

Regarding SDR, our classification of datasets is driven by our expe-
rience in supporting SE through ML [167-172,183-186]. We did not
use card sorting in our workflow as done in previous studies [187],
because we felt that spreadsheets and comparisons proved more suited
to our specific context as characterised by a relatively small number of
dimensions, values, and coders. If on the one side, we are confident
that our classification, and hence the filters in VALIDATE, can help
researchers find useful datasets, on the other side there is a chance that
researchers would like to search the datasets in VALIDATE according to
unavailable filters. Researchers might require filters that differ in topic
or granularity from the current ones. Therefore, we plan to accommo-
date future requests in changing the datasets classifications according
to researchers’ needs. The dataset provided by the researchers via email
or through the repository referenced in the paper is assumed to be the
data set used in the study. To mitigate this issue, we checked that the
dataset was in accordance with the description in the paper of the data.
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The authors of this paper manually performed the classification;
therefore, there is the possibility that the classification is not reliable.
We mitigated this threat to validity by:

» removing intrinsically subjective categories such as the ease of
use or the ease of retrieving the datasets, and

« classifying each dataset in each category independently across
researchers. Subsequently, we calculated Cohen [101] Kappa and
checked a high level of agreement (see Section 4).

The exclusion criteria E7, i.e., citation count of less than 20, can
hinder the validity of the work by excluding valuable studies that
have not yet gained significant recognition in the academic community.
For instance, the low number of studies in 2022 could be due to the
exclusion criteria E7; i.e., recent relevant papers need more time to
gain 20 citations. However, in light of the replicability principle, we
have used the exclusion criteria in Croft et al. [64].

Regarding the non-exact replica, we use classifiers suggested by
Auto-Weka. Auto-Weka has different parameters, including the running
time and the optimised accuracy metric. We set the running time to two
hours per dataset; we selected the proportion of accurate classifications
as an optimised accuracy metric. There is a chance that with different
parameters, auto-weka would find a better classifier that would lead to
a different result from the current ones. Unfortunately, this is a common
issue with tuning. To mitigate this issue, we tried different classifiers
such as Random Forest [188] and IBK [189], and the current results
still hold.

The ongoing evolution of vulnerability datasets, driven by the inclu-
sion of undisclosed vulnerabilities, can potentially change our ground
truth. Moreover, interpretability is essential in VPS as it facilitates
model improvement and enables effective decision-making by clearly
understanding how and why vulnerabilities are identified, thus promot-
ing overall cybersecurity resilience. For instance, authors can revise a
published dataset by changing a few values. We aim to keep VALIDATE
up to date with researchers’ changes.

We decided not to include size as a dimension to differentiate
datasets because our datasets are highly heterogeneous in type. For in-
stance, no single metric can characterise the size of datasets containing
code and datasets containing project characteristics.

8. Conclusion

In this study, we analysed the availability and characteristics of the
prediction studies’ datasets. We performed an SDR of VPS datasets. Our
results show that of the 50 primary studies, only 22 studies provide a
reachable dataset. Of these 22 studies, only one study provides a dataset
in a stable repository. Therefore, researchers should focus on where to
publish their datasets.

We provide the first repository for VPS datasets to support re-
searchers in finding and sharing datasets (VALIDATE). Our repository
of datasets supports researchers in finding datasets of interest, hence
avoiding reinventing the wheel; this translates into less effort, more
reliability, and more reproducibility in dataset creation and use. Al-
though there are many datasets, no dataset might meet the needs of
a researcher. Therefore, our repository provides evidence of the need
to create a new dataset. An exciting result of our SDR is that no study
manually verified the absence of any vulnerability, i.e., negative labels
were not adequately evaluated. Therefore, previous studies may have
overestimated false negatives.

We show how VALIDATE can be used by performing a non-exact
replica featuring a more sophisticated design. Our non-exact replica
confirms the original study’s results: text-mining-based models have
higher accuracy than software-metrics-based models. Therefore, the
availability of ready-to-use datasets helps in replication.

We provide a replication package that contains all the data used to
generate graphs, statistical analysis, VALIDATE user guide, and all the
references to the original studies [21].

In the future, we plan to improve the knowledge of our field in the
following key areas:
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Table 6
Burt table.
Dimension Labelling Process Granularity
Values Automated | Given | Manual | Reused | Class or File | Commit | Fragment | Machine Code | Method
Automated 28 0 0 0 15 0 2 0 11
Labelling Given 0 10 0 0 5 0 5 0 0
Process Manual 0 0 38 0 24 2 2 1 9
Reused 0 0 0 1 0 0 1 0 0
Class or File 15 5 24 0 44 0 0 0 0
Commit 0 0 2 0 0 2 0 0 0
Granularity (Fragment 2 5 2 1 0 0 10 0 0
Machine Code 0 0 0 0 0 0 1 0
Method 11 0 9 0 0 0 0 0 20
Code 2 2 18 0 10 0 6 1 5
Manually Commit 0 0 9 0 6 1 0 0 2
Curated Nothing 26 8 0 1 20 0 4 0 11
Ticket 0 0 11 0 8 1 0 0 2
Assessed Negatives 0 8 11 0 7 0 5 0 7
CVE Info 23 10 36 0 40 2 9 1 17
Artificial 2 10 0 1 5 0 8 0 0
Source Type (Mixed 0 0 3 0 0 0 2 0 1
Real 26 0 35 0 39 2 0 1 19
Label Type Binal:y 24 6 36 1 39 2 S| 1 20
Multiclass 4 4 2 0 5 0 5 0 0
String 0 0 3 0 3 0 0 0 0
CVE - Commit 0 0 2 0 0 2 0 0 0
Feature Set
P/C Metrics 13 0 15 1 22 0 1 0 6
String 15 10 18 0 19 0 9 1 14
BugzZilla 7 0 3 0 6 0 0 0 4
Fortify SCA 0 0 6 0 6 0 0 0 0
Ground HumanExpert 0 0 4 0 4 0 0 0 0
Truth Source [NVD 17 3 21 1 22 2 6 1 11
SARD 4 6 4 0 5] 0 4 0 5)
SQLI-LABS 0 1 0 0 1 0 0 0 0
Dil i Curated " Source Type Label Type
Values Code Commit Nothing Ticket | Negatives CVE Info Artificial Mixed | Real | Binary | Multiclass
Automated 2 0 26 0 0 23 2 0 26 24 4
Labelling Given 2 0 8 0 8 10 10 0 0 6 4
Process 18 9 0 11 11 36 0 3 35 36 2
Reused 0 0 1 0 0 0 1 0 0 1 0
Class or File 10 6 20 8 7 40 5 0 39 39 5
Commit 0 1 0 1 0 2 0 0 2 2 0
Granularity (Fragment 6 0 4 0 5 9 8 2 0 5 8
Machine Code 1 0 0 0 0 1 0 0 1 1 0
Method 5 2 11 2 7 17 0 1 19 | 20 0
Code 22 0 0 0 7 22 4 3 15 | 16 6
Manually Commit 0 9 0 0 2 9 0 0 9 9 0
Curated Nothing 0 0 35 0 8 29 9 0 26 31 4
Ticket 0 0 0 11 2 9 0 0 1 [ 11 0
Assessed Negatives 7 2 8 2 19 19 8 2 9 15 4
CVE Info 22 9 29 9 19 69 12 3 54 59 10
Artificial 4 0 9 0 12 13 0 0 7 6
Source Type |Mixed 3 0 0 0 2 3 0 3 0 3 0
Real 15 9 26 11 9 54 0 0 61 57 4
Binary 16 9 31 11 15 59 7 3 57 67 0
Label Type -
Multiclass 6 0 4 0 4 10 6 0 4 0 10
String 1 1 0 1 0 3 0 0 3 3 0
Feature Set CVE - Cor14|mit 0 1 0 1 0 2 0 0 2 2 0
P/C Metrics 6 3 14 6 2 25 1 0 28 27 2
String 15 4 21 3 17 39 12 3 28 | 35 8
BugZilla 1 0 7 2 0 8 0 0 10 | 10 0
Fortify SCA 2 2 0 2 0 6 0 0 6 6 0
Ground [ t 2 0 0 2 0 3 0 0 4 4 0
Truth Source [NVD 14 6 18 4 10 37 6 1 35| 35 7
SARD 3 1 9 1 8 14 6 2 6 11 3
SQLI-LABS 0 0 1 0 1 1 1 0 0 1 0
(continued on next page
+ Security by design: Since many security vulnerabilities are at We envision a model to automatically analyse the replicability of
the design level [190], we plan to investigate how to codify studies and to support researchers in facilitating the replicability

architectural styles and patterns into datasets ready to use for
vulnerability prediction.

+ Analyse study replicability. Recent studies [16,17,191-198]
focused on the replicability of empirical SE experiments, while
other studies, such as the one conducted by Neto [199] focused the future, we plan to automate the categorisation process by cre-
on strategies to help researchers create replicability packages. ating an ML/DL model to categorise new datasets automatically.

of future studies.
» Automated characterisation of the studies and their datasets.
In this study, we manually curated the content of VALIDATE. In
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Dimension Feature Set Ground Truth Source
Values String | CVE - Commit | P/C Metrics | String | BugZilla | Fortify SCA | HumanExpert | NVD | SARD | SQLI-LABS
Automated 0 0 13 15 7 0 0 17 4 0
Labelling Given 0 0 0 10 0 0 0 3 6 1
Process Manual 3) 2 15 18 3 6 4 21 4 0
d 0 0 1 0 0 0 0 1 0 0
Class or File 3 0 22 19 6 6 4 22 5 1
Commit 0 2 0 0 0 0 0 2 0 0
Granularity |Fragment 0 0 1 9 0 0 0 6 4 0
Machine Code 0 0 0 1 0 0 0 1 0 0
Method 0 0 6 14 4 0 0 11 5 0
Code 1 0 6 15 1 2 2 14 3 0
Manually Commit 1 1 3 4 0 2 0 6 1 0
Curated Nothing 0 0 14 21 7 0 0 18 9 1
Ticket 1 1 6 3 2 2 2 4 1 0
Assessed Negatives 0 0 2 17 0 0 0 10 8 1
CVE Info 3 2 25 39 8 6 3 37 14 1
Artificial 0 0 1 12 0 0 0 6 6 1
Source Type [Mixed 0 0 0 3 0 0 0 1 2 0
Real 3 2 28 28 10 6 4 35 6 0
Label Type Binalty 3 2 27 35 10 6 4 35 11 1
Multiclass 0 0 2 8 0 0 0 7 3 0
String 3 0 0 0 0 0 0 3 0 0
CVE - Commit 0 2 0 0 0 0 0 2 0 0
Feature Set —
P/C Metrics 0 0 29 0 7 3 3 14 2 0
String 0 0 0 43 3 3 1 23 12 1
BugZilla 0 0 7 3 10 0 0 0 0 0
Fortify SCA 0 0 3 3 0 6 0 0 0 0
Ground HumanExpert 0 0 3 1 0 0 4 0 0 0
Truth Source|NVD 3 2 14 23 0 0 0 42 0 0
SARD 0 0 2 12 0 0 0 0 14 0
SQLI-LABS 0 0 0 1 0 0 0 0 0 1
Table 7 Declaration of competing interest
Burt table summary.
Dimension Values No. of missing combinations
Automated 14 The authors declare that they have no known competing finan-
Labelling Process I\G/Ii;szal 167 cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
Reused 25
Class or File 7
Commit 22 Data availability
Granularity Fragment 14
Machine Code 24
Method 14 https://validatetool.org/.
Code 9
Commit 14
Manually Curated Nothing 1 References
Ticket 13
Assessed Negatives 10 [1] Y. Yoo, Computing in everyday life: A call for research on experiential
CVE Info 1 computing, MIS Q. 34 (2010) 213-231, URL: http://misq.org/computing-in-
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