
Information and Software Technology 170 (2024) 107448

A
0

V
M
a

b

A

D

K
S
R
V
M
R
D

1

e
d
w
d
c

s
s
a
t
c
(
o

r
a
c
r

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

ALIDATE: A deep dive into vulnerability prediction datasets✩

atteo Esposito a,b,∗, Davide Falessi a

University of Rome Tor Vergata, Via del Politecnico, 1, Rome, 00132, Lazio, Italy
Multitel S.r.l., Via Modigliani, 27, Conversano (BA), 70014, Puglia, Italy

R T I C L E I N F O

ataset link: https://validatetool.org/

eywords:
ecurity
eplicability
ulnerability
achine learning
epository
ataset

A B S T R A C T

Context: Vulnerabilities are an essential issue today, as they cause economic damage to the industry and
endanger our daily life by threatening critical national security infrastructures. Vulnerability prediction
supports software engineers in preventing the use of vulnerabilities by malicious attackers, thus improving the
security and reliability of software. Datasets are vital to vulnerability prediction studies, as machine learning
models require a dataset. Dataset creation is time-consuming, error-prone, and difficult to validate.
Objectives: This study aims to characterise the datasets of prediction studies in terms of availability and
features. Moreover, to support researchers in finding and sharing datasets, we provide the first VulnerAbiLty
predIction DatAseT rEpository (VALIDATE).
Methods: We perform a systematic literature review of the datasets of vulnerability prediction studies.
Results: Our results show that out of 50 primary studies, only 22 studies (i.e., 38%) provide a reachable
dataset. Of these 22 studies, only one study provides a dataset in a stable repository.
Conclusions: Our repository of 31 datasets, 22 reachable plus nine datasets provided by authors via email,
supports researchers in finding datasets of interest, hence avoiding reinventing the wheel; this translates into
less effort, more reliability, and more reproducibility in dataset creation and use.
. Introduction

Our daily life relies on multiple instances of software that perform
veryday tasks [1] such as household [2], autonomous driving [3] and
igital governance [4]. Vulnerabilities are an issue today as they are
idespread across multiple domains. Vulnerabilities cause economic
amage to industry [5,6]; they endanger our daily lives by threatening
ritical security infrastructures [7–9].

The more software spreads across new domains, the wider the attack
urfaces; thus, the need to focus on vulnerability prevention [10]. The
pread of cyber-warfare increases the importance of preventing vulner-
bilities [11]. Vulnerability prediction helps software engineers prevent
he use of vulnerabilities by malicious attackers, thus improving the se-
urity and reliability of software [12]. Vulnerability prediction studies
VPS) support advances in the identification of vulnerabilities in terms
f various performance aspects such as cost and accuracy [13,14].

Datasets are vital to VPS as every Machine Learning (ML) model
equires a dataset. The dataset creation is time-consuming, error-prone
nd difficult to validate [15]. Datasets are also vital to support repli-
ation; many recent studies stressed the issue of replicability and
eproducibility in ML studies [16–20].

✩ Open access funding provided by Università degli Studi di Roma Tor Vergata within the CRUI-CARE Agreement.
∗ Corresponding author at: University of Rome Tor Vergata, Via del Politecnico, 1, Rome, 00132, Lazio, Italy.
E-mail addresses: m.esposito@ing.uniroma2.it (M. Esposito), falessi@ing.uniroma2.it (D. Falessi).

This study aims to characterise VPS datasets, briefly datasets, in
terms of availability and features. Furthermore, to help researchers
find and share datasets, we provide the first VulnerAbiLity predIc-
tion DatAseT rEpository (VALIDATE). Our contributions are as
follows:

• providing the first systematic dataset review (SDR) related to
VPS. Our SDR supports researchers in finding datasets of interest,
hence avoiding reinventing the wheel, i.e., creating a dataset
when a similar one is available. Reusing datasets of interest
results in less effort, more reliability, and more reproducibility
in VPS. Although there are many datasets, no dataset might
meet the researchers’ needs; therefore, researchers can use our
characterisation to provide evidence of the need to create a new
dataset,

• providing VALIDATE, an online tool to search for a dataset with
specific features. VALIDATE supports our characterisation by al-
lowing the users to navigate and retrieve datasets easily, and

• providing a non-exact replica of a VPS. The aim of our non-exact
replica is twofold: (i) it shows how researchers can use VALI-
DATE, and (ii) it improves the body of knowledge of vulnerability
prediction.
vailable online 19 March 2024
950-5849/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.infsof.2024.107448
eceived 20 November 2023; Received in revised form 12 March 2024; Accepted 1
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

4 March 2024

https://www.elsevier.com/locate/infsof
https://www.elsevier.com/locate/infsof
https://validatetool.org/
https://validatetool.org/
https://validatetool.org/
https://validatetool.org/
https://validatetool.org/
https://validatetool.org/
https://validatetool.org/
https://validatetool.org/
https://validatetool.org/
https://validatetool.org/
https://validatetool.org/
https://validatetool.org/
https://validatetool.org/
https://validatetool.org/
https://validatetool.org/
https://validatetool.org/
https://validatetool.org/
https://validatetool.org/
https://validatetool.org/
https://validatetool.org/
https://validatetool.org/
https://validatetool.org/
https://validatetool.org/
https://validatetool.org/
https://validatetool.org/
mailto:m.esposito@ing.uniroma2.it
mailto:falessi@ing.uniroma2.it
https://doi.org/10.1016/j.infsof.2024.107448
https://doi.org/10.1016/j.infsof.2024.107448
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2024.107448&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Information and Software Technology 170 (2024) 107448M. Esposito and D. Falessi

c
T

c

t
a
a
t
o
c
t
2
t
d
s
s

a
p
a
i
d
4
c
m
a
i
u
F

s
m
o
e
b
F
s

2

n
i
i
t
r
d
o
e
e
e
a
p
a
w

M
a
a
a

n
t
p
l
e
m
d
c
a

n
t
o
n
w
d
m
u

a
v
o
p
t
d

h
d
t
v

VALIDATE is available on GitHub Pages.1 We are also open to
ommunity contributions. Researchers may use the Dataset Submission
emplate located in the VALIDATE Community repository2 to submit

new datasets. Moreover, we provide a brief user guide, a YouTube video
tutorial link3 and all the original studies references in the Replication
Package [21].

We performed an SDR which differs significantly in aim from the
conventional SLRs. SLR focuses on reviewing and synthesising previous
studies results [22], whereas our SDR focuses on analysing the datasets
used in previous studies. Our SDR provides a scientific and practical
contribution, showing gaps and availability of datasets types.

In our context, we have a one-to-one relation between a study and
its dataset (if provided); i.e., if a study provided more than one dataset,
these have been merged by the original authors into one repository. Our
results show that of the 50 primary studies, only 22 studies (i.e., 38%)
provide a reachable dataset; only one study provides a dataset in a
stable repository. Out of the 31 gathered datasets, 22 reachable plus
nine datasets provided by authors via email, no datasets have been
manually checked for the absence of any vulnerability in software
entities. Specifically, researchers labelled entities as negative when they
do not have a specific vulnerability; however, the entity might have
other vulnerabilities. Thus, negative labels might actually be positive.
Therefore, VPS might have overestimated the false positive rate [23].

The remainder of this paper is structured as follows. We present the
research background and related work in Section 2. We describe the
study design in Section 3.3. In Section 4, we discuss the SDR results.
In Section 5, we present our non-exact replica of the selected study,
imitating what researchers can do with our tool. We discuss the SDR
results in Section 6. We explain the threats to the validity of our study
in Section 7. We provide our conclusions in Section 8.

2. Background and related work

This section introduces ML for Software Engineering (SE) and dis-
usses related works in VPS, emphasising reproducibility.

ML can support SE in many tasks [24]. Zhang and Tsai [25] defined
he field of SE as a ‘‘fertile ground where many software development
nd maintenance tasks could be formulated as learning problems and
pproached in terms of learning algorithms’’. ML can tackle problems
hat humans usually have a mere grasp or no knowledge at all [25] or
ptimise solutions to otherwise well-known problems but with ineffi-
ient solutions [26,27]. Researchers focus on systematically reviewing
he tasks of SE that benefit from the ML ‘‘unparalleled capabilities’’ [24,
8–30]. For instance, Lyu et al. [31] discuss the development process
hat benefited from emerging AIOps models. Kapur and Sodhi [32]
iscuss the effort estimation based on metrics such as software features
imilarity and developer activity. Durelli et al. [33] conduct a mapping
tudy on ML applications for software testing.

The activity of mining software repositories (MSR) led to ideas
nd challenges for empirical studies in SE [34–36]. Hassan et al. [37]
oint out the effectiveness of MSR in empirically validating new ideas
nd techniques. MSR activity supports the creation of datasets contain-
ng useful information for predictive models [38–42]. Several studies
escribe tools, techniques, and advantages in automatic mining [43–
5]. Bavota [46] presents issues in mining software repositories, in-
luding the lack of meaningful content in commit messages [47],
isclassification of data [48,49] and the missing link between ticket

nd commit [50]. Zhou et al. [51] investigate on how automatically
dentify security patches through commit-related data; Zou et al. [52]
ses ML to protect the return pointer. Finally, Vandehei et al. [53],
alessi et al. [54] highlight the importance, in the data preparation

1 https://validatetool.org/
2 https://go.validatetool.org/template
3

2

https://go.validatetool.org/tutorial e
stage, of correctly labelling the data according to the ticketing system
and the information from the version control system (VCS) platform.

Finally, Ibrahim et al. [55] discuss the significant threat posed by
oftware vulnerabilities in opensource projects, which can compro-
ise system integrity, availability, and confidentiality. Their analysis

f the top 100 PHP opensource projects reveals that 27% of them
xhibit security vulnerabilities. Increasing cyber-warfare [11] and data
reaches [56] threaten critical infrastructure and user privacy [7–9].
urthermore, our recent study [57] reveals that vulnerability default
everity might be inaccurate.

.1. Machine learning for vulnerability prediction studies

ML for VPS led to several studies that approached challenges and
ovel ideas in the field [58,58–63]. Croft et al. [64] conduct an SLR
n the data preparation phase of a VPS study. They show that data
s the crucial component of any data-driven application; nevertheless,
he preparation phase of a dataset is still full of challenges. Our study
elies on Croft et al. [64] study selection as all datasets require the
ata preparation phase. We focus on the entire dataset rather than
nly on the data preparation phase. Thus, our selection of studies
xtends from Croft et al. [64]. We conduct a new SLR adopting Croft
t al. [64] search strings and inclusion and exclusion criteria. We
xpand the search scope by adding two specific keywords, ‘‘dataset’’
nd ‘‘repository’’, and by broadening the time range, including studies
ublished until January 2023. Finally, it is essential to emphasise that
lthough Croft et al. [64] focuses on the data preparation phase of VPS,
e focus on characterising existing VPS datasets across 9 dimensions.

Jabeen et al. [65] experimented on the effectiveness of different
L and statistical techniques for software vulnerability prediction. The

uthors use goodness-of-fit and criteria on prediction capabilities to
ssess the performances. Jabeen et al. [65] show that ML techniques
re more effective than statistical ones.

Zheng et al. [66] investigate the factors that can affect the vul-
erability detection capabilities of ML models. Zheng et al. [66] use
he CountVectorizer4 to extract features from text, to improve the
erformance of conventional ML models. The authors show that deep
earning models can perform better than traditional ML models. Zhu
t al. [67] highlight a ‘‘perception gap’’ between deep learning and hu-
an experts in understanding code semantics. In real-world scenarios,
eep learning-based methods underperform by over 50% compared to
ontrolled experiments, prompting a deep dive into this phenomenon
nd exploring current solutions to narrow the gap.

Partenza et al. [68] assess the capabilities of a periodic neural
etwork called ASTNN. To experiment with ASTNN the authors used
he Juliet test case suite outperforming the authors’ previous research
n project Achilles. However, Partenza et al. [68] show that the same
eural network performance dropped when tested against OWASP real-
orld vulnerabilities. The author’s research highlights that ad hoc
atasets, like Juliet, are unsuitable for ML training due to their asym-
etries in the complexity of vulnerable and non-vulnerable codes and
nconfirmed cases.

Yu et al. [69] discusses the application of active learning for vulner-
bility identification, introducing HARMLESS, an incremental support
ector machine that achieves high recall by inspecting a small portion
f source code files. Despite known challenges such as the high com-
utational and annotation costs for new instances, which may reduce
he anticipated advantages in human-effort cost reduction, HARMLESS
emonstrates effective vulnerability detection.

Jabeen et al. [65], Zheng et al. [66] and Partenza et al. [68]
ighlight the impacts of ML techniques on datasets confirming the fun-
amental idea of VALIDATE, i.e., researchers should focus on ML or sta-
istical techniques aimed at improving previous results rather than rein-
enting the wheel (i.e., creating datasets). More specifically, Partenza

4 https://scikit-learn.org/stable/modules/generated/sklearn.feature_
xtraction.text.CountVectorizer.html

https://validatetool.org/
https://go.validatetool.org/template
https://go.validatetool.org/tutorial
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html

Information and Software Technology 170 (2024) 107448M. Esposito and D. Falessi

e
i
o
g
f
w
i
i
o
P
[
I
A
a
c

t

2

d
r
n
(
t

B
q

et al. [68] reports problems using ad hoc datasets such as Juliet to train
specific ML algorithms. Our SDR reveals that working in the VPS field
frequently employs ad-hoc datasets for their ML training and validation
phases. Researchers may use VALIDATE to address this problem to
identify datasets that align with their innovative ideas and research
goals.

2.2. Replicability and reproducibility

Giray [30] analyses state of the art and challenges in the engineering
of ML systems. They show that the random nature of ML-based systems
hinders SE tasks in engineering; moreover, they discuss the lack of
tools and a well-proven methodology for engineering processes. The
replicability and reproducibility (R&R), are among the challenges in
ngineering ML systems. On a similar topic, Liu et al. [17] focus on R&R
n Deep Learning for SE. They show that 10% of the studies have at least
ne research question about R&R; 62% of the studies do not provide a
ood source code or original data. The PROMISE repository [70] is the
irst repository of freely available datasets for SE. As with VALIDATE,
ith the PROMISE repository, the authors want to support researchers

n new ideas rather than spending effort ’’reinventing the wheel’’,
.e., creating a new dataset that might already exist. PROMISE has been
nline since 2005 and supports all fields of SE. Based on the original
ROMISE idea and the need for reproducibility highlighted in Liu et al.
17], we developed VALIDATE to serve a specific SE domain, i.e., VPS.
t should be noted that PROMISE exists in three distinct versions.5,6,7

t time of writing, there is only one operative version of PROMISE7,
lthough the oldest among the three. The advantages of VALIDATE
ompared to PROMISE are:

• VALIDATE dataset repository includes studies related to each
dataset: Cheikhi and Abran [71] comprehensively overview the
PROMISE and ISBSG dataset repositories. They reveal a lack of
studies associated with specific PROMISE datasets; they note that
70 of 84 PROMISE datasets need more practical usage informa-
tion.

• VALIDATE allows users to search for datasets based on attributes
to improve PROMISE on this aspect: Cheikhi and Abran [71] show
that only 37 of 84 PROMISE datasets comprehensively describe
data and attributes of the dataset. Of course, this search is possible
since VALIDATE is specific to a subdomain of SE.

• Public donated dataset peer review: VALIDATE allows the com-
munity to publicly donate VPS datasets by opening an issue
report8 and filling in the necessary filter values. While PROMISE
allows users to donate their dataset by email, using GitHub issues
allows a public peer review of the candidate dataset.

• Community contributions: VALIDATE users can submit an issue
requesting a change or fix a bug in VALIDATE.

PROMISE has the advantage, compared to VALIDATE, of providing
he only means to share the repository about all SE subdomains.

.3. The impact of datasets and feature selection on the accuracy of ML

To our knowledge, no previous study has investigated optimal
ataset selection. Dataset selection is essential in machine learning-
elated tasks [66]. The dataset characteristics and the representative-
ess and the relevance of the data can impact the feature selection
FS) [72,73], the model accuracy and the generalisation capabili-
ies [64,74]. In this sub-section, we present related work showcasing

5 http://promise.site.uottawa.ca/SERepository/
6 http://code.google.com/p/promisedata/
7 http://openscience.us/repo
8

3

https://go.validatetool.org/community
the importance of the dataset characteristics and selection process in
the overall ML/DL application.

Alelyani et al. [72] show how dataset characteristics impact the
stability of FS algorithms. The authors extensively analysed the inner
properties of different datasets to assess how those affect the consis-
tency of the FS algorithm. Furthermore, Oreski et al. [73] focused on
seven characterisation methodologies for datasets and five FS tech-
niques. The author reveals how specific characteristics of a dataset
deeply impact the accuracy and the time complexity of FS techniques.
Thus, the characteristics of datasets are essential in dimensionality
reduction, hence critically influencing the accuracy and generalisation
capabilities of predictive models.

Zheng et al. [66] investigate four factors influencing machine lear-
ning-based vulnerability detection, including data quality and classifi-
cation models. As a result, selecting appropriate datasets impacts the
performance of a classification or neural network. Likewise, [64,66,
74] focusing on the data preparation phase of vulnerability predic-
tion studies, emphasise the importance of carefully selecting appro-
priate datasets for specific research ideas. Nong et al. [74] address
the shortage of systematic research on open science practices within
software engineering, mainly focusing on deep learning-based software
vulnerability detection. The authors performed a comprehensive lit-
erature review on 55 original studies, underscoring the importance
of meticulous dataset selection. Their investigation reveals that the
utilisation of imbalanced or artificially generated datasets resulted in
overly optimistic performance assessments, thereby compromising the
replicability of most techniques.

Finally, regarding the importance of FS algorithm, Zhang et al.
[75] conducted the first extensive empirical study on the correlation
between various application features and vulnerability proliferation.
Seven FS techinques were applied to nine feature subsets selected from
34 collected features, this allowed the authors to discover that appli-
cation complexity alone is not the sole determinant of vulnerability
discovery. More specifically, human-related factors also significantly
explain the proliferation of vulnerabilities.

3. Systematic dataset review

We perform the first SDR in the field of VPS [76,77]. We build our
methodology on findings and observations of Croft et al. [64], Nong
et al. [74].

3.1. Goal and research questions

We formalised the goal of this study according to the Goal Question
Metric (GQM) approach [78] as follows:

Investigate datasets,
for the purpose of characterisation,
with respect to nine dimensions,
from the point of view of researchers,
in the context of VPS.

ased on the aforementioned goal, we defined our main research
uestion, which serves as the primary focus of our investigation: What
are the defining characteristics of state-of-the-art datasets in VPS?’’

3.2. Research methodology

The SDR consist of two phases. Phase 1 gathers studies using
PICO [79]. Phase 2 focuses on filtering the studies according to inclu-
sion and exclusion criteria.

Phase 1 involves the collection of 2802 studies spread across three
different sources. Specifically:

• ACM Digital Library: 69 studies, 67 of which coincide with Croft
et al. [64],

http://promise.site.uottawa.ca/SERepository/
http://code.google.com/p/promisedata/
http://openscience.us/repo
https://go.validatetool.org/community

Information and Software Technology 170 (2024) 107448M. Esposito and D. Falessi

W
L
i
a
T
o
‘
s
s
o

a
t
s
w
Z
W
t
d
e
w

2

T
i

Fig. 1. Workflow for study selection and inclusion.
• IEEEXplorer: 2360 studies, 1118 of which coincide with Croft
et al. [64], and

• Scopus: 373 studies, 357 of which coincide with Croft et al. [64].

e use an SLR procedure based on Zhang et al. [76],Kitchenham [77],
ewowski and Madeyski [80]. Moreover, our primary study selection
s inspired by Croft et al. [64]. Specifically, Croft et al. [64] performed

study selection process in February 2021 and obtained 61 studies.
able 1 describes our PICO enquiry. Croft et al. [64] provides the base
f our query to which we add to the population Category the word

‘repository’’ and ‘‘dataset’’ to expand and accommodate the different
copes of the literature review. Croft et al. [64] limited their research to
tudies published until February 2021. Our query extends the selection
f studies of Croft et al. [64] to those published up to January 2023.

We derive our groups and dimensions from studies highlighting
spects of ML for VPS. For instance, Falessi et al. [81] point out
he importance of preserving the mined data time order. Similarly,
everal studies approached VPS with different grains [82–87]; thus,
e decided to define a dimension on the predicted entity granularity.
hang et al. [88] combined software metrics and text features for VPS.
e acknowledge this idea of combination, and therefore we decide

o focus our attention on different feature sets [89–92] by defining a
imension that analyses the available feature sets of the datasets. Russo
t al. [93] point out the relevance of CVE in VPS [94–97]; therefore,
e focus our attention on the availability of CVE info in the datasets.

Fig. 1 presents our steps in the selection process of studies, i.e., Phase
. We divide phase 2 into three specific steps:

1. Duplicate Removal: we eliminate duplicates in the three distinct
data sources. This resulted in the discarding of 501 studies.

2. Criteria Application: we apply inclusion and exclusion criteria
to the remaining 2301 studies, eliminating an additional 2251
studies. Croft et al. [64] proposed a set of criteria in their
systematic literature review (SLR). We find Croft et al. [64]
inclusion and exclusion criteria to match our aim, so we decided
to avoid reinventing the wheel. Table 2 presents our inclusion
and exclusion criteria inspired from [64].

3. Snowball Sampling: we use the snowball sampling technique [98,
99] to incorporate potentially related studies that the query
may not have captured. This results in the identification of 8
additional studies.

4. Quality Assessment: Table 3 presents the quality checklist in-
spired by the established guidelines by Kitchenham [77]. Ac-
cording to Table 3, we assessed whether the original studies’
authors clearly stated the design’s aims correctly aligned with
them. Furthermore, we evaluated if the metrics used in the
measurement procedures of the original studies were appro-
priate for answering the research questions and if the sample
represented the specific vulnerability type and granularity. We
check whether the authors justified smaller sample sizes and if
they thoroughly described the specific tools used in the study.
At the end of the fourth step in Fig. 1, all the papers selected
satisfied questions one to 12. Finally, Fig. 2 graphically presents
the last quality checks, i.e., Q12 and Q13 (see Section 3.3.1).

he final selection of the studies in this paper consists of 50 studies,
4

ncluding 171 unique projects and seven programming languages.
Table 1
PICO query string.

Category Subject Search Terms

Population Software ‘‘software’’ OR ‘‘code’’ OR
‘‘repository’’ OR ‘‘dataset’’

Intervention Machine
Learning Static
Application

‘‘learn’’ OR ‘‘neuralnetwork’’ OR
‘‘artificial intelligence’’ OR
‘‘AI-based’’ OR ‘‘predict’’ NOT(‘‘fuzz’’
OR ‘‘test’’ OR ‘‘attack’’ OR
‘‘adversarial’’ OR ‘‘malware’’ OR
‘‘description’’)

Comparison – –
Outcomes Software

Vulnerability
Prediction

‘‘vulnerability’’ AND (‘‘predict’’ OR
‘‘detect’’ OR ‘‘classify’’ O ‘‘identify’’
OR ‘‘discover’’ OR ‘‘uncover’’
OR‘‘locate’’)

Table 2
Inclusion and exclusion criterias.

Inclusion Criteria

I1. The study relates to the field of VPS, and informs the practice of
Software Engineering

I2. The study presents a unique VPS process or evaluation.
I3. The study is a full paper longer than six pages.

Exclusion Criteria

E1. Solely a literature review or survey article.
E2. Non peer-reviewed academic literature.
E3. Academic articles other than conference or journal papers, such as

book chapters or dissertations.
E4. Studies not written in English.
E5. Studies whose full-text is unavailable.
E6. Studies published to a venue unrelated to the discipline of Computer

Science.
E7. Studies published to a journal or conference with a CORE ranking of

less than A and H-index less than 40, and that have a citation count
of less than 20.

3.3. Coding

This study systematically characterises datasets by categorising
them into 9 dimensions through thematic synthesis [100]. Each of the
abovementioned dimensions represents a specific characteristic of the
dataset.

3.3.1. Dataset availability
Given the increasing importance of reproducibility and replicability

in SE studies, [16–20], and since the dataset is vital to replicate VPS,
in this dimension, we characterise whether VPS provides a dataset. In
addition, we want to understand the stability of the storage location
used for the dataset. We used Cruzes and Dybå [100] recommendations
for deriving these dimensions and their values. Our dimensions aim to
support researchers in finding a dataset of interest. The existence of
possible overlaps or relations across dimensions does not impact the
aim of the dimensions. To assess the availability of the datasets, we
read the studies and manually checked for any link or reference to the
dataset. Eventually, once we found a reference to a dataset in the form
of an URL, we manually followed the reference and downloaded the

referenced dataset. We note that the type of storage location of datasets

Information and Software Technology 170 (2024) 107448M. Esposito and D. Falessi
Fig. 2. Availability of datasets.
Table 3
Quality checklist.

Design

Q1 Are the aims clearly stated?
Q2 Was the study designed with these questions in mind?
Q3 Do the study measures allow the questions to be answered?
Q4 Is the sample representative of the population to which the results

will generalise?
Q5 Was the sample size justified?
Q6 If the study involves technology assessment, is the technology clearly

defined?
Q7 Are the measures used in the study fully defined?
Q8 Are the measures used in the study the most relevant for answering

the research questions?
Q9 Is the study’s scope (size and length) sufficient to identify changes in

the outcomes of interest?

Analysis

Q10 Were the basic data adequately described?

Conclusions

Q11 Are all study questions answered?

Availability of Datasets

Q12 Was the replication package provided in the paper?
Q13 Is the replication package available?

is an important aspect. We classify the location as Stable Repository if
the authors provide an external reference to the dataset, the dataset
can be downloaded, and the dataset is in a remote stable repository,
e.g. Zenodo. We classify the location as Unstable Repository if the
authors provide an external reference to the dataset, the dataset can
be downloaded, and the dataset is in a remote unstable repository, for
example, GitHub or personal websites. It is important to discriminate
between stable and unstable locations because datasets in unstable
locations can be deleted or permanently moved. Hence, a study might
not be replicable if its dataset is stored in an unstable repository. If
the dataset was unavailable or unavailable, we emailed all authors
requesting such an unavailable dataset. We waited for the answer for
three months and thanked all authors who could provide the dataset.
All dimensions are based on datasets available in their studies or
retrieved via emails; we call these datasets the gathered datasets (GD).

The two authors of the paper acted as coders. We used Microsoft
Forms to input the data and then outputted a spreadsheet; this sup-
ported smooth individual coding. We used the outputted spreadsheet to
compare the answers provided by each coder. In case of disagreement,
we discussed the matter thoroughly to understand the reasons and then
reached a consensus. We analyse our agreements via Cohen’s 𝜅 [101].
When assigning items to different categories, the kappa statistic is
commonly used to evaluate the agreement between raters or classifiers.
In the context of VPS datasets, it can be used to measure the level
5

Table 4
Interpretation of 𝜅 values for measuring agreement.

Value of 𝜅 Interpretation

𝜅 < 0 No agreement
0 ≤ 𝜅 < 0.4 Poor agreement
0.4 ≤ 𝜅 < 0.6 Discrete agreement
0.6 ≤ 𝜅 < 0.8 Good agreement
0.8 ≤ 𝜅 < 1 Excellent agreement

of agreement between two independent authors who categorised the
datasets according to different characteristics. When comparing the
observed level of agreement to the expected level of agreement, Cohen’s
𝜅 provides a metric for the reliability and consistency of the categori-
sations. Both authors characterised the dimensions individually. In the
event of disagreements, we reached a consensus through discussion.
Table 4 presents the interpretation 𝜅 as suggested by Cohen [101], Sim
and Wright [102].

In the following subsections, we present the 9 dimensions along
which we characterise the datasets. We note that all of them are
relevant to vulnerability prediction, whereas some are only for VPS,
e.g., CVE/CWE information. VALIDATE supports researchers in finding
the dataset of interest, and it is independent of the specific decision-
making approach (see Section 2.3).

3.3.2. Dimension 1: Granularity of the labelled entity
Different VPS can focus on entities of different granularity such

as classes and files [103], commits [104], methods [105], code frag-
ments [106], or machine code [107]. Understanding the granularity
is important since Morrison et al. [15], analysing Microsoft prod-
ucts, reports that the granularity of the predicted entity impacts the
accuracy and actionability of the prediction model. Le et al. [104]
and Chakraborty et al. [108] focus on comparing the granularity of
the predicted entity. This dimension aims to characterise the trends
in the granularity of predicted entities. Our methodology consists in
downloading the dataset and manually inspecting it. We also checked
the granularity is defined in the study.

3.3.3. Dimension 2: Nature of the labelled entity
The data in the dataset can be collected from open-source projects

hosted online through VCS like GitHub or the data can be syntheti-
cally created by an authority like NIST [109] with the SARD [110].
Understanding the domain of the data is important since Chakraborty
et al. [108] discuss the domain of the labelled entities and their impact
on the model’s performance. Specifically, synthetic entities might not
fully grasp the complexity of real-world projects, thus harming the
prediction model’s ability to generalise. This dimension aims to charac-
terise the trends in data domain; i.e., synthetic versus open-source. Our
methodology consists of finding details of the source of the collected

data.

Information and Software Technology 170 (2024) 107448M. Esposito and D. Falessi
Fig. 3. Publication and venue distribution over the years.
3.3.4. Dimension 3: Type of labelling
Multiclass VPS aim to determine which code is affected by a vul-

nerability and the type of predicted vulnerability. For instance, Zou
et al. [111] proposed and evaluated the first deep learning-based
system for multiclass vulnerability prediction. This dimension aims to
characterise the trends in the type of prediction: binary or multiclass.
Our methodology consists in looking for details about the class type of
the label.

3.3.5. Dimension 4: Feature sets availability
The features are the input to an ML model [112,113]. Different

features aim to achieve different goals [114]. In SE, we can measure
many aspects of a software entity, such as software or a develop-
ment process. Chidamber and Kemerer [115] introduce object-oriented
software metrics. Moser et al. [116] introduce software development
metrics also known as change metrics that aim to measure the process.
Recent studies focused on the interpretation and use of specific metrics
for VPS [117] and their possible subsets [118]. This dimension char-
acterises the set features in the dataset. Our methodology consists of
analysing the name of the features in the dataset and their definition
in the correlated study.

3.3.6. Dimension 5: Availability of either a CVE or a CWE information
Mann and Christey [119] introduced the concept of Common Vul-

nerability Enumeration (CVE), also known as Common Vulnerabilities
and Exposures. Martin et al. [120] introduced the concept of Com-
mon Weakness Enumeration (CWE), a dictionary of publicly known
vulnerabilities and security hotspots maintained by The MITRE Cor-
poration [121]. The CWE aims to classify a specific vulnerability that
belongs to the release of a project maintained by a specific vendor with
a unique identification number. CVE is fundamental for new vulnera-
bility studies [122]. Therefore, the research community, following this
new trend, made available large-scale datasets of CVE Infos [91,123–
125] and tools to automatically retrieve CVE [126]. This dimension
characterises the trend in the availability of CVE information. Our
methodology involves looking for details about the availability of CVE
info in the collected data.

3.3.7. Dimension 6: Labelling process
Labelling the data is crucial for VPS [64]. Due to automatism or not

considering real-world scenarios, incorrect labelling can lead to model
problems [127]. For example, Tantithamthavorn et al. [49], Eilers et al.
[128], Falessi et al. [54] underlined the impact of mislabelled data on
the performance of ML model. Therefore, the researchers developed
tools and techniques [129,130] to cure software repositories and made
manually curated data repositories available for SVP [91,129–131].
This dimension aims to investigate whether the authors manually cu-
rated the dataset. A dataset is manually curated if researchers checked
at least one aspect during the labelling process; the next dimension
focuses on the specific curated aspect. Our methodology consists in
6

looking for how the data have been labelled.
3.3.8. Dimension 7: Manually curated
The labelling process may contain automatic steps. For example,

a researcher might decide to check if a bug ticket is a bug or a
feature [128] or can check which commit actually fixed the ticket or
which line of code induced a vulnerability [132]; after this check,
a set of automated steps leads to a dataset. This dimension aims to
understand what has been manually curated in a manually curated
dataset. Our methodology seeks details about the labelling phase of the
collected data.

3.3.9. Dimension 8: Ground truth source
Ground truth (GT) source dimension characterise where authors

gained their GT. The GT is an essential component of VPS, as it provides
the basis for evaluating the effectiveness of different techniques. GT
can suffer from issues related to data availability and quality [133].
Researchers often gain vulnerability data from public databases such
as NVD [134–138]. These databases may not be comprehensive, as not
all vulnerabilities are reported or discovered. The data quality can also
vary, as the information may not be standardised or consistent [139].
Our methodology seeks details about the GT source of the collected
data.

3.3.10. Dimension 9: Negatives assessed
As already said, mislabelling can impact the performance of pre-

diction models [49,54,128]. There are two possible types of misla-
belling: false positive or false negative. In the false positive case, a
non-vulnerable code is labelled as vulnerable; in the false negative
case, a vulnerable code is labelled as non-vulnerable. In the absence of
evidence, we must assume that both mislabelling types impact predic-
tion models’ performance. This dimension aims to investigate whether
researchers manually assessed both vulnerable and nonvulnerable code
or if researchers assessed only the vulnerable code and labelled the re-
maining code as non-vulnerable. Our methodology consists of carefully
checking if the study’s authors manually checked if the code labelled
as negative has no vulnerability.

4. Results

In this section, we discuss the results of the characterisation of our
groups. However, before analysing the results, we analyse the level
of agreement of the authors in characterising the dataset over the
9 dimensions. Regarding the author’s agreement on each dimension:
While we fully agreed (i.e., 100%) on over 80% of the dimensions, it is
important to note instances of divergence. Notably, we found a variance
in opinions, with an 80% agreement on Dimension 1 (Granularity of
the labelled entity) and a 93% agreement on Dimension 4 (Feature sets

availability).

Information and Software Technology 170 (2024) 107448M. Esposito and D. Falessi

s
o
a
r
b
(

t
i
g
m
h
t
a
o

p
t
o
i
m
c
y
i

o
N

4

s

F
e

4

e

4

o

F

4.1. Dataset availability

In this group, we assess whether primary studies provide a means
of reproducing the results. The values of the current dimension are:

• Provided: the authors provide an external reference to the dataset.
• Not Provided: the authors do not provide an external reference

to the dataset.
• Reachable: the authors provide an external reference to the

dataset, and the dataset can be downloaded.
• Not Reachable: the authors provide an external reference to the

dataset, and the dataset cannot be downloaded, i.e., the provided
reference is broken.

• Retrieved: the authors do not provide an external reference to the
dataset, and the authors provide the dataset to us after an e-mail
request.

• Not Retrieved: (the authors do not provide the dataset to us after
an email request) AND (the authors do not provide an external
reference to the dataset) OR [(the dataset was provided) AND (it
was unreacheable)].

• Stable Repository: the authors provide an external reference to
the dataset, the dataset can be downloaded and the dataset is in
a remote stable repository, e.g., Zenodo [140].

• Unstable Repository: the authors provide an external reference
to the dataset, the dataset can be downloaded, and the dataset is
in a remote unstable repository, e.g., GitHub [141] without DOI
commits [142].

Fig. 2, reports the availability of the datasets in our 50 primary
tudies according to the options mentioned above. According to Fig. 2
nly 25 of the 50 studies provide their dataset but three of these
re currently not reachable. Thus, only 44% of the studies provide a
eachable dataset. Finally, 21 studies are currently hosted in an unsta-
le repository; thus, only one dataset is hosted in a stable repository
i.e. Zenodo).

To obtain datasets that were not publicly available, we contacted
he corresponding author of each respective dataset. If no correspond-
ng author was specified, we contacted all authors. Three months were
iven to the authors to provide us with the datasets. After the three
onths had elapsed, we expressed our gratitude to the authors who
ad provided us with their datasets. We also sent a follow-up email to
he authors who had not replied to the initial email, giving them an
dditional week to respond. After a total period of three months and
ne week, we began the process of classifying the datasets.

Fig. 3 presents the year of publication distribution of the 50 GDs
ublished between 2007 and 2022 and their publication venue distribu-
ion. Notably, there is a spike in publications during 2020, with 16 out
f the 50 datasets published during that year. Moreover we note a gap
n 2009 and 2012. It is noteworthy that, despite conferences being the
ost preferred venue in the early 2010s, there has been a shift in the

ommunity’s interest towards publishing in journals in the following
ears. In particular, in 2022, all of the studies that met our criteria for
nclusion came from journal venues.

In conclusion, in this work, according to Table 3 we gathered a total
f 31 datasets (GDs): 22 Reachable, 1 Not Reachable Retrieved, and 8
ot Provided Retrieved, which resulted in 21 unique datasets.

.2. Dimensions

In this subsection, we characterise the 31 GDs along the 9 dimen-
7

ions.
4.2.1. Dimension 1: Granularity of the labelled entity
In this dimension, we characterise the types of entities involved in

the prediction. Studies can predict the following types of entity, ordered
from the coarsest to the finest-grained.

• Class or File: in Object Oriented Programming (OOP) [143] a
class is an extensible code template for object creation. Pro-
vides initial values for its state and implementations of its be-
haviour [144]. Usually, a class corresponds to a single file; nev-
ertheless, in OOP it is possible to have multiple classes inside a
single file. In non-OOP, a file contains only functions [145].

• Commit: the study predicts commits on the Version Control
System (VCS) [137].

• Fragment: the study predicts only a fragment of the code (i.e., a
specific line of a method/function) [82].

• Machine Code : instruction and data expressed in a form di-
rectly recognisable by the CPU [111]. The study predicts the
representation of the source code by machine code [107].

• Method: the study predicts a method (e.g., Java) or a function
(e.g., C) [146]

ig. 4a reports the distribution of the granularity of the predicted
ntities. We note that:

• the most predicted entity is Class or File (17),
• methods are predicted less than Class or File (10) but more than

the other types, and
• the least predicted entity is the commit, with only one study

predicting it.

.2.2. Dimension 2: Nature of the labelled entity
In this dimension, we characterise the nature of the predicted

ntities. The predicted entities can be of the following types:

• Artificial: The predicted entities are created manually for testing
and evaluation purposes; examples include the Juliet Test Case
from NIST/SARD. The main disadvantage of this type of entity is
that it might not represent the industrial code [135].

• Real: The predicted entities are derived from open-source projects
and online VCS. The main disadvantage of this nature of entities
is that it may not be related to all types of vulnerability [147].

• Mixed: a combination of the above options [148].

Fig. 5d reports the nature of the entities. We can observe that:

• the most chosen nature is Real with 23 datasets,
• artificial data is a minority, with only six datasets, and
• only two datasets use a mixed data source.

.2.3. Dimension 3: Type of labelling
In this dimension, we characterise the class of the label. The class

f the label of the predicted entities can be of the following types:

• Binary: the label can only be true or false, i.e., the presence or
absence of vulnerabilities [149].

• Multiclass: the label can have more than two values and repre-
sents the absence of a specific vulnerability, e.g., CWE-23: Rel-
ative Path Traversal, CWE-79: Improper Neutralisation of Input
During Web Page Generation [111].

ig. 5a reports the class of the label. We note that:

• 87% of the gathered dataset uses binary labelling, and
• 13% of the gathered datasets uses a multi-class label, using MITRE
classification to label the entity.

Information and Software Technology 170 (2024) 107448M. Esposito and D. Falessi
Fig. 4. Granularity of the labelled entity and Feature sets availability.
Fig. 5. Type of labelling, Nature of the labelled entity, and Availability of either a CVE or a CWE information.
4.2.4. Dimension 4: Feature sets availability
In this dimension, we analyse the feature sets in GDs. The possible

feature sets can be of the following types:

• String: the feature set consists of strings derived from string oper-
ations in the source code or in the compiled machine code [150].

• P/C Metric: [115,151,152]: The feature set consists of process
and complexity metrics [94].

• CVE-Commit: the feature set consists of characteristics of a CVE
and its related commit [137].

Fig. 4b reports the feature sets available in GDs. We note that:

• the majority of GDs has string features, and
• the minority of GDs has CVE-commit.

4.2.5. Dimension 5: Availability of either a CVE or a CWE information
In this dimension, we analyse the information in the GD related to

the vulnerable code. The values of the current dimension are:

• CVE∖CWE Info available: the dataset reports either a CVE or a
CWE information for each positive entity [89].

• No CVE∖CWE Info available: the dataset reports neither a CVE
nor a CWE information for each positive entity [135].

Fig. 5b reports how many GDs provide a CVE or a CWE information
for each positive entity. We note that 26 GDs (84%) provide a CVE or
a CWE.

4.2.6. Dimension 6: Labelling process
In this dimension, we characterise the process of labelling entities.

The values of the current dimension are:

• Automated: the authors generated the dataset via a script [136].
• Given: the authors used the dataset as provided by some sort of

official entity (e.g., the Juliet test case provided by NIST) [153].
• Manual: the authors manually curated at least one aspect of the

dataset (e.g., SAP Dataset [91]).
• Reused: the authors reused the dataset from another study [154]

reused their own datasets in Alves et al. [155].

Fig. 6c reports the type of labelling process. According to Fig. 6c:
8

• 15 out of the 31 GDs (48%) have at least one entity that is
manually curated in the process, and

• only one out of the 31 GDs (3%) are reused from a previous study.

4.2.7. Dimension 7: Manually curated
This dimension investigates what is manually curated during the

labelling process. We note that manual curation may only be done
on a sample rather than the entire dataset, and a mixed dataset may
only have a partial amount of entries containing CVE information.
Researchers should analyse the datasets to understand whether the
amount and type of curation fit their needs. The values of the current
dimension are:

• Code: the author manually reviews the project’s source code
(code) or a fragment (slice) of it [133].

• Commit: the commit was manually reviewed [156].
• Ticket: the Jira ticket/NVD’s CVE was manually reviewed [58].
• Nothing: nothing was manually curated [108].

Fig. 6a reports what is manually curated during labelling. According
to Fig. 6a:

• most of the gathered datasets (i.e., 15 out of 31 GDs) have nothing
manually curated, and

• the least curated entity is the commit with only 5 out of the 31
GDs.

4.2.8. Dimension 8: Ground truth source
In this dimension, we characterise the source of the GT. The authors

used the following sources to obtain the GT:

• Bugzilla: GT from Bugzilla [12],
• Fortify SCA: GT from Fortify SCA tool [133],
• Human Expert: GT from human expert knowledge [69],
• NVD: GT from CVE information extracted from NVD [145],
• SARD: GT from ad-hoc test suites [157], and
• SQLI-LABS: GT from SQLI-LABS published data [96].

Fig. 6b presents the distribution of sources for the GT in VPS. We
note that the NVD is the most prevalent source of the ground truth,
i.e., 77% GDs used NVD. Additionally, human experts are the second

Information and Software Technology 170 (2024) 107448M. Esposito and D. Falessi
Fig. 6. Manually Curated, Negatives Assessed and, Labelling Process.
most effective source of the ground truth. Notably, in the single in-
stance where a tool was employed, Fortify SCA was a static application
security testing tool, no one used a dynamic security testing tool.

4.2.9. Dimension 9: Negatives assessed
In this dimension, we characterise the nature of negative entities.

The values of the current dimension are:

• Negatives Assessed: what is labelled as not vulnerable results
from an expert decision assessing the absence of vulnerabil-
ity [95].

• No Negatives Assessed: what is labelled as not vulnerable is
the complement of what experts assessed as the presence of
vulnerability [12].

According to our findings:

• 71% of GDs do not assess negatives, and
• 29% of GDs do assess negatives.

We note that the 29% of GDs assessing negatives consider only one
CWE at a time. In other words, a fragment of code deemed negative
means that that fragment does not have a specific CWE, rather than that
that fragment does not have any CWE. Therefore, no study assessed the
absence of vulnerabilities in a code fragment.

5. Replication study

In this section, we show how VALIDATE can be used for conducting
a non-exact replica study, thus replicating the use of VALIDATE by
researchers.

5.1. Dataset selection

Among the possible datasets in VALIDATE, we were interested
in finding an ’’ML-ready’’ dataset with software product and process
metrics as features. As an ML toolbox, we chose WEKA due to our
successful research experience [53,54,81,158]. Thus, we selected the
work of Tang et al. [84]; they evaluated three open-source projects,
namely Moodle [159], PhpMyAdmin [160], Drupal [161]. Combining
the information from the security advisors and the NVD, they created
a dataset containing 223 vulnerabilities. They used such a dataset to
investigate whether text mining prediction produces more accurate
results than software features. Their results show that the text mining
features delivered better performance than the software metrics.

5.2. Design

In this section, we explain the key design concept of our non-exact
replica.

Table 5 reports the design elements of the original study and our
non-exact replica. Our non-exact replica shares many design elements
with the original study. We use the same six datasets of the original
study based on the authors’ open-source projects (i.e., Drupal, Moodle
and PhpMyAdmin). As an ML tool, we use Weka [162] as the original
9

paper. As per the independent variable (IV), we choose the same
Metrics/Token. As accuracy metrics, we chose to use the same ones as
in the original study: Inspection Ratio [84] (= 𝑇𝑃+𝐹𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁) and
Recall [163–166] (= 𝑇𝑃

𝑇𝑃+𝐹𝑁).
Our non-exact replica improves the original study on many design

elements [167–172]. As a validation procedure, we use the same three-
fold cross-validation of the original study. To avoid randomness in
the split procedure that affects our results, we repeated the three-fold
cross-validation 100 times instead of the three times in the original
study. In VPS, feature selection is crucial as it allows researchers
to identify and prioritise the most influential factors contributing to
system vulnerabilities. Researchers can streamline their analysis and
improve the accuracy of ML models [169]. Hence, as a feature selec-
tion, we use symmetric uncertainty (SU) as suggested by Zhao et al.
[169]. Moreover, defect prediction and VPS datasets often exhibit
imbalance [86]. We employ class balancing techniques to mitigate
biases favouring majority classes in ML models. Notably, SMOTE [173]
proves advantageous compared to other methods like oversampling and
undersampling. SMOTE effectively tackles class imbalance by creating
synthetic instances for the minority class, offering a robust solution
without sacrificing data from the majority class to achieve dataset
balance [170]. Finally, tuning ML models is essential in VPS because it
allows for the optimisation of hyperparameters, enhancing the models
performance and predictive accuracy [174]. Manual tuning involves
adjusting parameters based on domain knowledge and experimentation
to find the best configuration for a given dataset. In the context of VPS,
where the nature of vulnerabilities and their manifestations in code
can vary widely, manual tuning is particularly tedious and challenging.
Auto-tuning models, such as AutoWeka [174], automate the hyperpa-
rameter tuning process, systematically exploring the parameter space
to find the optimal configuration. The output of Auto-WEKA is the best
classifier and the related best parameters given the provided dataset.
Table 5 reports the resulting classifier and parameters for each project.

Our analysis procedure includes a statistical test to reject the null
hypothesis of no difference between and in defect prediction
provided by using Metrics or Tokens. Since our data strongly deviate
from normality, we use the Wilcoxon signed-rank test [175] to test our
null hypothesis.

5.3. Results

Fig. 7 reports the accuracy of text-mining-based models and soft-
ware-metrics-based models. According to Fig. 7 the use of tokens
provides higher and than the metrics. The results of the statistical
test show a 𝑝-value lower than 0.0001 in the three datasets and two ac-
curacy metrics. Therefore, our non-exact replica confirms the results of
the original study even with a more sophisticated empirical procedure:
text mining models have higher accuracy than software metrics-based
models [84].

All experiments took about a week on one McAffee server model
BG5500 running Windows Server 2022. The server has two Intel Xeon
(R) CPU X5660, a base clock speed of 2.79 GHz and 72.0 GB of RAM
with a clock speed of 1067 MHz.

Information and Software Technology 170 (2024) 107448M. Esposito and D. Falessi
Table 5
Study comparison.

Original Replica

Datasets Drupal, PhpMyAdmin, Moodle

Machine Learning Tool Weka

Independent Variable Metrics/Token

Accuracy Metrics Inspection | Recall

Validation Techniques 1 time 3-fold cv 100 times 3-fold cv

Feature Selections None Symmetrical Uncertainty

Class Balancing None SMOTE

Hyperparameters Tuning None AutoWEKA

Statistical Test None Wilcoxon signed-rank

Classifiers Random Forest

Drupal

Metrics: RandomSubSpace + Random Forest

Tokens: SGD

Moodle

Metrics: AdaBoostM1 + DecisionTable

Tokens: SMO + NormalizedPolyKernel

PhpMyAdmin

Metrics: RandomForest

Tokens: SMO + NormalizedPolyKernel
Fig. 7. Accuracy of text-mining-based models and software-metrics-based models.

6. Discussion

Our systematic review of the VPS datasets shows that 50% of the
studies provide a dataset. This result is in line with Liu et al. [17], so
it is necessary to enforce a replicability package for ML studies. Liem
and Panichella [176] discuss the replicability and randomness in using
ML in empirical SE studies. Specifically, they note a high variability in
using ML techniques and tools with small to non-existent discussions
on the randomicity of the specific ML technique or tool. Fig. 2 shows
that out of the 22 studies that provide a reachable dataset (44% of the
total), only one dataset is currently hosted in a stable repository. The
main issue with unstable repositories lies in the volatility of the archive,
which is due to their intrinsic non-trackable nature. For example,
a GitHub repository can be archived without prior notice from the
author; similarly, the central administration can update a personal
website of an academic website. The issue of historical and locational
traceability of digital objects leads GitHub to add academic features
to its repositories [142]. Similarly to Mozilla Science Labs [177],
Figshare [178], and Zenodo [140], GitHub allows users to generate
DOI commits and integrate their repository with external archiving
platforms. We encourage researchers to provide a reachable replication
package and host it in a stable repository.
10
Regarding Dimension 1, Fig. 4 shows a majority of coarse-grained
entities, that is, class or file; this result is in line with Morrison et al.
[15],Arisholm and Briand [179].

Regarding Dimension 2, Fig. 5b shows that the majority (70% of
the 31 GD) use real data (i.e., open-source projects) that are easier
to analyse through their coarser grain than to build the project and
analyse the byte-code, thus inducing the focus towards class or files.
It should be noted that 85% of the GD uses a binary classification;
therefore, many studies can use a large body of knowledge on classi-
fiers. Although only 15% of the studies use multi-class classification,
recently, the VPS community seems to be focussing on this kind of
classification [111,180]. Regarding Dimension 6, Fig. 6c shows that
the most used labelling process involves manually curating at least
one aspect of the labelling process; nonetheless, it represents only 42%
of the GD. We note that curating at least one aspect of the labelling
process provides a more refined dataset; in the same vein, Ponta et al.
[91] propose a five-year manually-reviewed dataset.

Our SDR shows that only 33% of the 31 GD assess the entity labelled
negative (see Dimension 8, Fig. 6b). Furthermore, no study manually
checked the absence of any vulnerability; i.e., what is labelled as nega-
tive is the absence of a particular vulnerability rather than all vulnera-
bilities. For instance, in the Juliet Test Case, ‘‘CWE321_Hard_Coded_
Cryptographic_Key__ basic_81_goodG2B’’ is labelled as negative for
CWE321 rather than for any CWE. Therefore, we can argue that what
has been labelled as negative for a vulnerability might be positive for
another vulnerability. Thus, past ML studies might have overestimated
the false positive rate [23]. In conclusion, the labelling process is not
yet standardised [64], and it is essential to assess the negative labels
better.

Finally, on the possibility of reusing datasets according to their
content, according to Dimension 4, Fig. 4b, the scientific community
is driving its attention on the chance given by the NLP-alike technique
for feature extraction directly from the source code or the machine
code we call ’’string feature’’. As discussed in Section 3.3, the presence
of a standardised vulnerability nomenclature, that is, CVE/CWE infor-
mation, helps researchers focus on a specific family of vulnerabilities
or gain more knowledge of their existence and interaction. Therefore,
according to Fig. 5c, the scientific community appears to be aware of
the issue since most GD, i.e., 71%, provide the CVE/CWE info.

Regarding Dimension 8, the findings from Fig. 6b have several

implications for VPS. The first implication is that the prevalence of NVD

Information and Software Technology 170 (2024) 107448M. Esposito and D. Falessi

T
w
l

7

p
n

r
u
b
t
d
t
r
r
u
o
d
t
o
d
d

as the most prolific source of ground truth suggests that it is the most
accessible. Moreover, Fig. 6b suggests that utilising multiple sources
to establish the ground truth or a combination of different sources,
such as automated tools and human expertise, can provide a more
comprehensive understanding of the potential vulnerability landscape,
which is crucial for developing effective security measures.

According to Dimension 9, only 9% of the GD provides datasets
compliant with this demand.

To understand coverage across multiple dimensions, we use a Burt
table [181] which is a contingency table that displays the frequency
of cases for two categorical variables in a suitable format for analysis.
The Burt table helps identify the association patterns between two
variables and provides an easy visual overview of the relationship
between categorical variables. To interpret a Burt table, we should
look for cells with high or low frequencies relative to the total number
of cases. These indicate solid or weak associations between the two
variables. Table 6 reports the Burt table values for each combination
of categories in the MCA analysis.

To better understand Table 6, and specifically to facilitate the
identification of unavailable datasets, we counted in Table 6, for each
dimension value, the number of unavailable datasets in combination
with all other dimensions values. For instance, if the number of missing
combinations of a cell is zero, there is at least a dataset with that
dimension value and all values of the other dimensions. A dimension
with all zeros indicates the presence of at least a dataset with all values
of that dimension and all the values of the other dimensions. A cell with
many missing combinations indicates a low availability of datasets with
that dimension value and all values of the other dimensions. Table 7
reports the number of missing combinations. According to Table 7:

• ‘‘CVE Info’’ and ‘‘Binary’’ are the two values with only one missing
combinations. This means that datasets with ‘‘CVE Info’’ and
‘‘Cross Project’’ are available with all but one values of other
dimensions.

• The value ‘‘Reused’’ of the dimension Labelling Process show the
highest number of missing combinations, i.e., 25. This means
there is a scarce availability of datasets with those values and
values of other dimensions.

• The value ‘‘Human Expert’’ of the dimension Ground Truth Source
show 22 missing combinations. Thus, too few studies involves
human expert to curate or validate the ground truth

he above result implies that researchers can leverage existing datasets
hen in need of ‘‘CVE Info’’ and ‘‘Binary’’ features. In contrast, they will

ikely build their own when needing other features.

. Threats to validity

This section discusses different threats to the validity [182] of the
resent study. We organise the discussion on two topics: SDR and
on-exact replica.

Regarding SDR, our classification of datasets is driven by our expe-
ience in supporting SE through ML [167–172,183–186]. We did not
se card sorting in our workflow as done in previous studies [187],
ecause we felt that spreadsheets and comparisons proved more suited
o our specific context as characterised by a relatively small number of
imensions, values, and coders. If on the one side, we are confident
hat our classification, and hence the filters in VALIDATE, can help
esearchers find useful datasets, on the other side there is a chance that
esearchers would like to search the datasets in VALIDATE according to
navailable filters. Researchers might require filters that differ in topic
r granularity from the current ones. Therefore, we plan to accommo-
ate future requests in changing the datasets classifications according
o researchers’ needs. The dataset provided by the researchers via email
r through the repository referenced in the paper is assumed to be the
ata set used in the study. To mitigate this issue, we checked that the
11

ataset was in accordance with the description in the paper of the data.
The authors of this paper manually performed the classification;
therefore, there is the possibility that the classification is not reliable.
We mitigated this threat to validity by:

• removing intrinsically subjective categories such as the ease of
use or the ease of retrieving the datasets, and

• classifying each dataset in each category independently across
researchers. Subsequently, we calculated Cohen [101] Kappa and
checked a high level of agreement (see Section 4).

The exclusion criteria E7, i.e., citation count of less than 20, can
hinder the validity of the work by excluding valuable studies that
have not yet gained significant recognition in the academic community.
For instance, the low number of studies in 2022 could be due to the
exclusion criteria E7; i.e., recent relevant papers need more time to
gain 20 citations. However, in light of the replicability principle, we
have used the exclusion criteria in Croft et al. [64].

Regarding the non-exact replica, we use classifiers suggested by
Auto-Weka. Auto-Weka has different parameters, including the running
time and the optimised accuracy metric. We set the running time to two
hours per dataset; we selected the proportion of accurate classifications
as an optimised accuracy metric. There is a chance that with different
parameters, auto-weka would find a better classifier that would lead to
a different result from the current ones. Unfortunately, this is a common
issue with tuning. To mitigate this issue, we tried different classifiers
such as Random Forest [188] and IBK [189], and the current results
still hold.

The ongoing evolution of vulnerability datasets, driven by the inclu-
sion of undisclosed vulnerabilities, can potentially change our ground
truth. Moreover, interpretability is essential in VPS as it facilitates
model improvement and enables effective decision-making by clearly
understanding how and why vulnerabilities are identified, thus promot-
ing overall cybersecurity resilience. For instance, authors can revise a
published dataset by changing a few values. We aim to keep VALIDATE
up to date with researchers’ changes.

We decided not to include size as a dimension to differentiate
datasets because our datasets are highly heterogeneous in type. For in-
stance, no single metric can characterise the size of datasets containing
code and datasets containing project characteristics.

8. Conclusion

In this study, we analysed the availability and characteristics of the
prediction studies’ datasets. We performed an SDR of VPS datasets. Our
results show that of the 50 primary studies, only 22 studies provide a
reachable dataset. Of these 22 studies, only one study provides a dataset
in a stable repository. Therefore, researchers should focus on where to
publish their datasets.

We provide the first repository for VPS datasets to support re-
searchers in finding and sharing datasets (VALIDATE). Our repository
of datasets supports researchers in finding datasets of interest, hence
avoiding reinventing the wheel; this translates into less effort, more
reliability, and more reproducibility in dataset creation and use. Al-
though there are many datasets, no dataset might meet the needs of
a researcher. Therefore, our repository provides evidence of the need
to create a new dataset. An exciting result of our SDR is that no study
manually verified the absence of any vulnerability, i.e., negative labels
were not adequately evaluated. Therefore, previous studies may have
overestimated false negatives.

We show how VALIDATE can be used by performing a non-exact
replica featuring a more sophisticated design. Our non-exact replica
confirms the original study’s results: text-mining-based models have
higher accuracy than software-metrics-based models. Therefore, the
availability of ready-to-use datasets helps in replication.

We provide a replication package that contains all the data used to
generate graphs, statistical analysis, VALIDATE user guide, and all the
references to the original studies [21].

In the future, we plan to improve the knowledge of our field in the

following key areas:

Information and Software Technology 170 (2024) 107448M. Esposito and D. Falessi
Table 6
Burt table.

(continued on next page)
• Security by design: Since many security vulnerabilities are at
the design level [190], we plan to investigate how to codify
architectural styles and patterns into datasets ready to use for
vulnerability prediction.

• Analyse study replicability. Recent studies [16,17,191–198]
focused on the replicability of empirical SE experiments, while
other studies, such as the one conducted by Neto [199] focused
on strategies to help researchers create replicability packages.
12
We envision a model to automatically analyse the replicability of
studies and to support researchers in facilitating the replicability
of future studies.

• Automated characterisation of the studies and their datasets.
In this study, we manually curated the content of VALIDATE. In
the future, we plan to automate the categorisation process by cre-
ating an ML/DL model to categorise new datasets automatically.

Information and Software Technology 170 (2024) 107448M. Esposito and D. Falessi

d
D
e
S
c

Table 6 (continued).
Table 7
Burt table summary.

Dimension Values No. of missing combinations
Automated 14
Given 17
Manual 6Labelling Process

Reused 25
Class or File 7
Commit 22
Fragment 14
Machine Code 24

Granularity

Method 14
Code 9
Commit 14
Nothing 11Manually Curated

Ticket 13
Assessed Negatives 10

CVE Info 1
Artificial 14
Mixed 21Source Type
Real 6
Binary 1Label Type Multiclass 15
String 22
CVE - Commit 22
P/C Metrics 8Feature Set

String 5
BugZilla 18
Fortify SCA 21
HumanExpert 22
NVD 5
SARD 11

Ground Truth Source

SQLI-LABS 23

CRediT authorship contribution statement

Matteo Esposito: Writing – review & editing, Writing – original
raft, Visualization, Software, Resources, Methodology, Investigation,
ata curation, Conceptualization. Davide Falessi: Writing – review &
diting, Writing – original draft, Visualization, Validation, Supervision,
oftware, Resources, Methodology, Investigation, Formal analysis, Data
uration, Conceptualization.
13
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

https://validatetool.org/.

References

[1] Y. Yoo, Computing in everyday life: A call for research on experiential
computing, MIS Q. 34 (2010) 213–231, URL: http://misq.org/computing-in-
everyday-live-a-call-for-research-on-experiential-computing.html.

[2] T. Beauvisage, Computer usage in daily life, in: D.R.O. Jr., R.B. Arthur, K.
Hinckley, M.R. Morris, S.E. Hudson, S. Greenberg (Eds.), Proceedings of the
27th International Conference on Human Factors in Computing Systems, CHI
2009, Boston, MA, USA, April 4–9, 2009, ACM, 2009, pp. 575–584, http:
//dx.doi.org/10.1145/1518701.1518791.

[3] M.A. Khan, H. El-Sayed, S. Malik, M.T. Zia, J. Khan, N. Alkaabi, H.A. Ignatious,
Level-5 autonomous driving - are we there yet? A review of research literature,
ACM Comput. Surv. 55 (2023) 27:1–27:38, http://dx.doi.org/10.1145/3485767.

[4] Y. Charalabidis, Z. Lachana, On the science foundation of digital governance
and transformation, in: Y. Charalabidis, M.A. Cunha, D. Sarantis (Eds.), ICEGOV
2020: 13th International Conference on Theory and Practice of Electronic
Governance, Athens, Greece, 23–25 September, 2020, ACM, 2020, pp. 214–221,
http://dx.doi.org/10.1145/3428502.3428532.

[5] R. Telang, S. Wattal, An empirical analysis of the impact of software vulnera-
bility announcements on firm stock price, IEEE Trans. Softw. Eng. 33 (2007)
544–557, http://dx.doi.org/10.1109/TSE.2007.70712.

[6] G. Tassey, The economic impacts of inadequate infrastructure for software
testing, 2002.

[7] C. Ten, G. Manimaran, C. Liu, Cybersecurity for critical infrastructures: Attack
and defense modeling, IEEE Trans. Syst. Man Cybern. A 40 (2010) 853–865.

[8] J. Jang-Jaccard, S. Nepal, A survey of emerging threats in cybersecurity, J.
Comput. System Sci. 80 (2014) 973–993.

[9] Y. Li, Q. Liu, A comprehensive review study of cyber-attacks and cyber security;
emerging trends and recent developments, Energy Rep. 7 (2021) 8176–8186,
http://dx.doi.org/10.1016/j.egyr.2021.08.126, URL: https://www.sciencedirect.
com/science/article/pii/S2352484721007289.

https://validatetool.org/
http://misq.org/computing-in-everyday-live-a-call-for-research-on-experiential-computing.html
http://misq.org/computing-in-everyday-live-a-call-for-research-on-experiential-computing.html
http://misq.org/computing-in-everyday-live-a-call-for-research-on-experiential-computing.html
http://dx.doi.org/10.1145/1518701.1518791
http://dx.doi.org/10.1145/1518701.1518791
http://dx.doi.org/10.1145/1518701.1518791
http://dx.doi.org/10.1145/3485767
http://dx.doi.org/10.1145/3428502.3428532
http://dx.doi.org/10.1109/TSE.2007.70712
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb6
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb6
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb6
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb7
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb7
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb7
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb8
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb8
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb8
http://dx.doi.org/10.1016/j.egyr.2021.08.126
https://www.sciencedirect.com/science/article/pii/S2352484721007289
https://www.sciencedirect.com/science/article/pii/S2352484721007289
https://www.sciencedirect.com/science/article/pii/S2352484721007289

Information and Software Technology 170 (2024) 107448M. Esposito and D. Falessi
[10] H. Hanif, M.H.N.B.M. Nasir, M.F.A. Razak, A. Firdaus, N.B. Anuar, The rise
of software vulnerability: Taxonomy of software vulnerabilities detection and
machine learning approaches, J. Netw. Comput. Appl. 179 (2021) 103009,
http://dx.doi.org/10.1016/j.jnca.2021.103009.

[11] V.A.F. Almeida, D. Doneda, J. de Souza Abreu, Cyberwarfare and digital
governance, IEEE Internet Comput. 21 (2017) 68–71, http://dx.doi.org/10.
1109/MIC.2017.23.

[12] Y. Shin, L.A. Williams, Can traditional fault prediction models be used for
vulnerability prediction? Empir. Softw. Eng. 18 (2013) 25–59, http://dx.doi.
org/10.1007/s10664-011-9190-8.

[13] T. Zimmermann, N. Nagappan, L.A. Williams, Searching for a needle in a
haystack: Predicting security vulnerabilities for windows vista, in: ICST, IEEE
Computer Society, 2010, pp. 421–428.

[14] T.L. Graves, A.F. Karr, J.S. Marron, H.P. Siy, Predicting fault incidence using
software change history, IEEE Trans. Softw. Eng. 26 (2000) 653–661.

[15] P. Morrison, K. Herzig, B. Murphy, L.A. Williams, Challenges with applying
vulnerability prediction models, in: D.M. Nicol (Ed.), Proceedings of the 2015
Symposium and Bootcamp on the Science of Security, HotSoS 2015, Urbana, IL,
USA, April 21–22, 2015, ACM, 2015, pp. 4:1–4:9, http://dx.doi.org/10.1145/
2746194.2746198.

[16] J.M. González-Barahona, G. Robles, On the reproducibility of empirical software
engineering studies based on data retrieved from development repositories,
Empir. Softw. Eng. 17 (2012) 75–89.

[17] C. Liu, C. Gao, X. Xia, D. Lo, J.C. Grundy, X. Yang, On the reproducibility and
replicability of deep learning in software engineering, ACM Trans. Softw. Eng.
Methodol. 31 (2022) 15:1–15:46.

[18] C. Drummond, Replicability is not reproducibility: Nor is it good science, in:
Proceedings of the Evaluation Methods for Machine Learning Workshop at the
26th ICML, 2009.

[19] S. Kapoor, A. Narayanan, Leakage and the reproducibility crisis in ml-based
science, 2022, http://dx.doi.org/10.48550/ARXIV.2207.07048, URL: https://
arxiv.org/abs/2207.07048.

[20] R. Pan, M. Bagherzadeh, T.A. Ghaleb, L.C. Briand, Test case selection and
prioritization using machine learning: a systematic literature review, Empir.
Softw. Eng. 27 (2022) 29, http://dx.doi.org/10.1007/s10664-021-10066-6.

[21] M. Esposito, D. Falessi, Replication package for ‘‘VALIDATE: A deep dive into
vulnerability prediction datasets’’, 2023, http://dx.doi.org/10.5281/zenodo.
10135002.

[22] B.A. Kitchenham, P. Brereton, D. Budgen, M. Turner, J. Bailey, S.G. Linkman,
Systematic literature reviews in software engineering - A systematic literature
review, Inf. Softw. Technol. 51 (2009) 7–15, http://dx.doi.org/10.1016/j.infsof.
2008.09.009.

[23] F. Cheirdari, G. Karabatis, Analyzing false positive source code vulnerabilities
using static analysis tools, in: N. Abe, H. Liu, C. Pu, X. Hu, N.K. Ahmed, M.
Qiao, Y. Song, D. Kossmann, B. Liu, K. Lee, J. Tang, J. He, J.S. Saltz (Eds.),
IEEE International Conference on Big Data, IEEE BigData 2018, Seattle, WA,
USA, December 10–13, 2018, IEEE, 2018, pp. 4782–4788, http://dx.doi.org/
10.1109/BigData.2018.8622456.

[24] D. Zhang, J.J.P. Tsai, Machine Learning Applications in Software Engineering,
in: Series on Software Engineering and Knowledge Engineering, World Scientific
Publishing Co. Inc., USA, 2005.

[25] D. Zhang, J.J.P. Tsai, Machine learning and software engineering, Softw. Qual.
J. 11 (2003) 87–119, http://dx.doi.org/10.1023/A:1023760326768.

[26] R.W. Schwanke, S.J. Hanson, Using neural networks to modularize software,
Mach. Learn. 15 (1994) 137–168, http://dx.doi.org/10.1007/BF00993275.

[27] C. Ryan, Automatic re-engineering of software using genetic programming,
2000, http://dx.doi.org/10.1007/978-1-4615-4631-3.

[28] Y. Yang, X. Xia, D. Lo, T. Bi, J. Grundy, X. Yang, Predictive models in software
engineering: Challenges and opportunities, ACM Trans. Softw. Eng. Methodol.
31 (2022) http://dx.doi.org/10.1145/3503509.

[29] S. Martínez-Fernández, J. Bogner, X. Franch, M. Oriol, J. Siebert, A. Trendowicz,
A.M. Vollmer, S. Wagner, Software engineering for AI-based systems: A sur-
vey, ACM Trans. Softw. Eng. Methodol. 31 (2022) http://dx.doi.org/10.1145/
3487043.

[30] G. Giray, A software engineering perspective on engineering machine learning
systems: State of the art and challenges, J. Syst. Softw. 180 (2021) 111031.

[31] Y. Lyu, G.K. Rajbahadur, D. Lin, B. Chen, Z.M.J. Jiang, Towards a consistent
interpretation of aiops models, ACM Trans. Softw. Eng. Methodol. 31 (2022)
16:1–16:38.

[32] R. Kapur, B. Sodhi, Oss effort estimation using software features similarity and
developer activity-based metrics, ACM Trans. Softw. Eng. Methodol. 31 (2022)
http://dx.doi.org/10.1145/3485819.

[33] V.H.S. Durelli, R.S. Durelli, S.S. Borges, A.T. Endo, M.M. Eler, D.R.C. Dias, M.
de Paiva Guimarães, Machine learning applied to software testing: A systematic
mapping study, IEEE Trans. Reliab. 68 (2019) 1189–1212.

[34] C. Ayala, B. Turhan, X. Franch, N. Juristo, Use and misuse of the term
experiment in mining software repositories research, IEEE Trans. Softw. Eng.
(2021) 1, http://dx.doi.org/10.1109/TSE.2021.3113558.

[35] Z. Wan, X. Xia, D. Lo, G.C. Murphy, How does machine learning change
software development practices? IEEE Trans. Softw. Eng. 47 (2021) 1857–1871.
14
[36] A. Mashkoor, T. Menzies, A. Egyed, R. Ramler, Artificial intelligence and
software engineering: Are we ready? Computer 55 (2022) 24–28.

[37] A.E. Hassan, A. Mockus, R.C. Holt, P.M. Johnson, Guest editor’s introduction:
Special issue on mining software repositories, IEEE Trans. Softw. Eng. 31 (2005)
426–428.

[38] O. Vandecruys, D. Martens, B. Baesens, C. Mues, M.D. Backer, R. Haesen,
Mining software repositories for comprehensible software fault prediction
models, J. Syst. Softw. 81 (2008) 823–839.

[39] R. Abdalkareem, S. Mujahid, E. Shihab, A machine learning approach to
improve the detection of ci skip commits, IEEE Trans. Softw. Eng. (2020).

[40] K. Moran, C. Bernal-Cárdenas, M. Curcio, R. Bonett, D. Poshyvanyk, Machine
learning-based prototyping of graphical user interfaces for mobile apps, IEEE
Trans. Softw. Eng. 46 (2018) 196–221.

[41] S. Kim, E.J. Whitehead, Y. Zhang, Classifying software changes: Clean or
buggy? IEEE Trans. Softw. Eng. 34 (2008) 181–196.

[42] V.B. Livshits, T. Zimmermann, Dynamine: finding common error patterns by
mining software revision histories, in: ESEC/SIGSOFT FSE, ACM, 2005, pp.
296–305.

[43] L. Neil, S. Mittal, A. Joshi, Mining threat intelligence about open-source projects
and libraries from code repository issues and bug reports, in: 2018 IEEE
International Conference on Intelligence and Security Informatics, ISI 2018,
Miami, FL, USA, November 9–11, 2018, IEEE, 2018, pp. 7–12, http://dx.doi.
org/10.1109/ISI.2018.8587375.

[44] J. Liang, O. Mizuno, Analyzing involvements of reviewers through mining a
code review repository, in: K. Matsuda, K. Matsumoto, A. Monden (Eds.), 2011
Joint Conf of 21st Int’l Workshop on Software Measurement and the 6th Int’l
Conference on Software Process and Product Measurement, IWSM/Mensura
2011, Nara, Japan, November 3–4, 2011, IEEE Computer Society, 2011, pp.
126–132, http://dx.doi.org/10.1109/IWSM-MENSURA.2011.33.

[45] C.C. Williams, J.K. Hollingsworth, Automatic mining of source code repositories
to improve bug finding techniques, IEEE Trans. Softw. Eng. 31 (2005) 466–480,
http://dx.doi.org/10.1109/TSE.2005.63.

[46] G. Bavota, Mining unstructured data in software repositories: Current and future
trends, in: Leaders of Tomorrow Symposium: Future of Software Engineering,
FOSE@SANER 2016, Osaka, Japan, March 14, 2016, IEEE Computer Society,
2016, pp. 1–12, http://dx.doi.org/10.1109/SANER.2016.47.

[47] K. Herzig, S. Just, A. Zeller, The impact of tangled code changes on defect
prediction models, Empir. Softw. Eng. 21 (2016) 303–336, http://dx.doi.org/
10.1007/s10664-015-9376-6.

[48] G. Antoniol, K. Ayari, M.D. Penta, F. Khomh, Y. Guéhéneuc, Is it a bug or
an enhancement?: a text-based approach to classify change requests, in: I.
Onut, A. Jaramillo, G. Jourdan, D.C. Petriu, W. Chen (Eds.), Proceedings of
the 28th Annual International Conference on Computer Science and Software
Engineering, CASCON 2018, Markham, Ontario, Canada, October 29–31, 2018,
ACM, 2018, pp. 2–16, URL: https://dl.acm.org/citation.cfm?id=3291293.

[49] C. Tantithamthavorn, S. McIntosh, A.E. Hassan, A. Ihara, K. Matsumoto,
The impact of mislabelling on the performance and interpretation of defect
prediction models, in: A. Bertolino, G. Canfora, S.G. Elbaum (Eds.), 37th
IEEE/ACM International Conference on Software Engineering, Vol. 1, ICSE
2015, Florence, Italy, May 16–24, 2015, IEEE Computer Society, 2015, pp.
812–823, http://dx.doi.org/10.1109/ICSE.2015.93.

[50] A. Bachmann, C. Bird, F. Rahman, P.T. Devanbu, A. Bernstein, The missing
links: bugs and bug-fix commits, in: G. Roman, A. van der Hoek (Eds.),
Proceedings of the 18th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2010, Santa Fe, NM, USA, November 7–11, 2010,
ACM, 2010, pp. 97–106, http://dx.doi.org/10.1145/1882291.1882308.

[51] Y. Zhou, J.K. Siow, C. Wang, S. Liu, Y. Liu, SPI: automated identification of
security patches via commits, ACM Trans. Softw. Eng. Methodol. 31 (2022)
13:1–13:27.

[52] C. Zou, X. Wang, Y. Gao, J. Xue, Buddy stacks: Protecting return addresses with
efficient thread-local storage and runtime re-randomization, ACM Trans. Softw.
Eng. Methodol. 31 (2022) http://dx.doi.org/10.1145/3494516.

[53] B. Vandehei, D.A. da Costa, D. Falessi, Leveraging the defects life cycle to label
affected versions and defective classes, ACM Trans. Softw. Eng. Methodol. 30
(2021) 24:1–24:35.

[54] D. Falessi, A. Ahluwalia, M.D. Penta, The impact of dormant defects on defect
prediction: A study of 19 apache projects, ACM Trans. Softw. Eng. Methodol.
31 (2022) 4:1–4:26.

[55] A. Ibrahim, M. El-Ramly, A. Badr, Beware of the vulnerability! how vulnerable
are github’s most popular php applications? in: 2019 IEEE/ACS 16th Interna-
tional Conference on Computer Systems and Applications, AICCSA, 2019, pp.
1–7, http://dx.doi.org/10.1109/AICCSA47632.2019.9035265.

[56] S. Khan, I. Kabanov, Y. Hua, S.E. Madnick, A systematic analysis of the capital
one data breach: Critical lessons learned, ACM Trans. Priv. Secur. 26 (2023)
3:1–3:29.

[57] M. Esposito, S. Moreschini, V. Lenarduzzi, D. Hästbacka, D. Falessi, Can we
trust the default vulnerabilities severity? in: 2023 IEEE 23rd International
Working Conference on Source Code Analysis and Manipulation, SCAM, 2023,
pp. 265–270, http://dx.doi.org/10.1109/SCAM59687.2023.00037.

http://dx.doi.org/10.1016/j.jnca.2021.103009
http://dx.doi.org/10.1109/MIC.2017.23
http://dx.doi.org/10.1109/MIC.2017.23
http://dx.doi.org/10.1109/MIC.2017.23
http://dx.doi.org/10.1007/s10664-011-9190-8
http://dx.doi.org/10.1007/s10664-011-9190-8
http://dx.doi.org/10.1007/s10664-011-9190-8
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb13
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb13
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb13
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb13
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb13
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb14
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb14
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb14
http://dx.doi.org/10.1145/2746194.2746198
http://dx.doi.org/10.1145/2746194.2746198
http://dx.doi.org/10.1145/2746194.2746198
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb16
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb16
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb16
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb16
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb16
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb17
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb17
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb17
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb17
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb17
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb18
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb18
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb18
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb18
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb18
http://dx.doi.org/10.48550/ARXIV.2207.07048
https://arxiv.org/abs/2207.07048
https://arxiv.org/abs/2207.07048
https://arxiv.org/abs/2207.07048
http://dx.doi.org/10.1007/s10664-021-10066-6
http://dx.doi.org/10.5281/zenodo.10135002
http://dx.doi.org/10.5281/zenodo.10135002
http://dx.doi.org/10.5281/zenodo.10135002
http://dx.doi.org/10.1016/j.infsof.2008.09.009
http://dx.doi.org/10.1016/j.infsof.2008.09.009
http://dx.doi.org/10.1016/j.infsof.2008.09.009
http://dx.doi.org/10.1109/BigData.2018.8622456
http://dx.doi.org/10.1109/BigData.2018.8622456
http://dx.doi.org/10.1109/BigData.2018.8622456
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb24
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb24
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb24
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb24
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb24
http://dx.doi.org/10.1023/A:1023760326768
http://dx.doi.org/10.1007/BF00993275
http://dx.doi.org/10.1007/978-1-4615-4631-3
http://dx.doi.org/10.1145/3503509
http://dx.doi.org/10.1145/3487043
http://dx.doi.org/10.1145/3487043
http://dx.doi.org/10.1145/3487043
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb30
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb30
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb30
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb31
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb31
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb31
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb31
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb31
http://dx.doi.org/10.1145/3485819
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb33
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb33
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb33
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb33
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb33
http://dx.doi.org/10.1109/TSE.2021.3113558
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb35
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb35
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb35
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb36
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb36
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb36
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb37
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb37
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb37
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb37
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb37
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb38
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb38
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb38
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb38
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb38
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb39
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb39
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb39
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb40
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb40
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb40
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb40
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb40
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb41
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb41
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb41
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb42
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb42
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb42
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb42
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb42
http://dx.doi.org/10.1109/ISI.2018.8587375
http://dx.doi.org/10.1109/ISI.2018.8587375
http://dx.doi.org/10.1109/ISI.2018.8587375
http://dx.doi.org/10.1109/IWSM-MENSURA.2011.33
http://dx.doi.org/10.1109/TSE.2005.63
http://dx.doi.org/10.1109/SANER.2016.47
http://dx.doi.org/10.1007/s10664-015-9376-6
http://dx.doi.org/10.1007/s10664-015-9376-6
http://dx.doi.org/10.1007/s10664-015-9376-6
https://dl.acm.org/citation.cfm?id=3291293
http://dx.doi.org/10.1109/ICSE.2015.93
http://dx.doi.org/10.1145/1882291.1882308
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb51
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb51
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb51
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb51
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb51
http://dx.doi.org/10.1145/3494516
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb53
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb53
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb53
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb53
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb53
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb54
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb54
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb54
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb54
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb54
http://dx.doi.org/10.1109/AICCSA47632.2019.9035265
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb56
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb56
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb56
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb56
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb56
http://dx.doi.org/10.1109/SCAM59687.2023.00037

Information and Software Technology 170 (2024) 107448M. Esposito and D. Falessi
[58] J. Stuckman, J. Walden, R. Scandariato, The effect of dimensionality reduction
on software vulnerability prediction models, IEEE Trans. Reliab. 66 (2016)
17–37.

[59] L.K. Shar, L.C. Briand, H.B.K. Tan, Web application vulnerability prediction
using hybrid program analysis and machine learning, IEEE Trans. Dependable
Secur. Comput. 12 (2014) 688–707.

[60] Y. Li, S. Ji, C. Lyu, Y. Chen, J. Chen, Q. Gu, C. Wu, R. Beyah, V-fuzz:
Vulnerability prediction-assisted evolutionary fuzzing for binary programs, IEEE
Trans. Cybern. (2020).

[61] W.E. Wong, Within-project and cross-project defect prediction’’ r ‘‘damba:
Detecting android malware by orgb analysis’’ r ‘‘large-scale empirical studies on
effort-aware security vulnerability prediction methods’’ r ‘‘learning code context
information to predict comment, IEEE Trans. Reliab. 69 (2020).

[62] P. Oser, R.W. van der Heijden, S. Lüders, F. Kargl, Risk prediction of iot devices
based on vulnerability analysis, ACM Trans. Priv. Secur. 25 (2022) 1–36.

[63] S. Rahimi, M. Zargham, Vulnerability scrying method for software vulnerability
discovery prediction without a vulnerability database, IEEE Trans. Reliab. 62
(2013) 395–407.

[64] R. Croft, Y. Xie, M.A. Babar, Data preparation for software vulnerability
prediction: A systematic literature review, IEEE Trans. Softw. Eng. (2022) 1,
http://dx.doi.org/10.1109/TSE.2022.3171202.

[65] G. Jabeen, S. Rahim, W. Afzal, D. Khan, A.A. Khan, Z. Hussain, T. Bibi, Machine
learning techniques for software vulnerability prediction: a comparative study,
Appl. Intell. 52 (2022) 17614–17635.

[66] W. Zheng, J. Gao, X. Wu, F. Liu, Y. Xun, G. Liu, X. Chen, The impact
factors on the performance of machine learning-based vulnerability detection:
A comparative study, J. Syst. Softw. 168 (2020) 110659.

[67] Y. Zhu, G. Lin, L. Song, J. Zhang, The application of neural network for software
vulnerability detection: a review, Neural Comput. Appl. 35 (2023) 1279–1301,
http://dx.doi.org/10.1007/s00521-022-08046-y.

[68] G. Partenza, T. Amburgey, L. Deng, J. Dehlinger, S. Chakraborty, Automatic
identification of vulnerable code: Investigations with an ast-based neural
network, in: COMPSAC, IEEE, 2021, pp. 1475–1482.

[69] Z. Yu, C. Theisen, L.A. Williams, T. Menzies, Improving vulnerability inspection
efficiency using active learning, IEEE Trans. Softw. Eng. 47 (2021) 2401–2420,
http://dx.doi.org/10.1109/TSE.2019.2949275.

[70] J. Sayyad Shirabad, T. Menzies, The PROMISE repository of software engineer-
ing databases, in: School of Information Technology and Engineering, University
of Ottawa, Canada, 2005, URL: http://promise.site.uottawa.ca/SERepository.

[71] L. Cheikhi, A. Abran, Promise and ISBSG software engineering data repositories:
A survey, in: 2013 Joint Conference of the 23rd International Workshop
on Software Measurement and the 8th International Conference on Software
Process and Product Measurement, Ankara, Turkey, October 23–26, 2013,
IEEE Computer Society, 2013, pp. 17–24, http://dx.doi.org/10.1109/IWSM-
Mensura.2013.13.

[72] S. Alelyani, H. Liu, L. Wang, The effect of the characteristics of the dataset
on the selection stability, in: IEEE 23rd International Conference on Tools with
Artificial Intelligence, ICTAI 2011, Boca Raton, FL, USA, November 7–9, 2011,
IEEE Computer Society, 2011, pp. 970–977, http://dx.doi.org/10.1109/ICTAI.
2011.167.

[73] D. Oreski, S. Oreski, B. Klicek, Effects of dataset characteristics on the
performance of feature selection techniques, Appl. Soft Comput. 52 (2017)
109–119, http://dx.doi.org/10.1016/j.asoc.2016.12.023.

[74] Y. Nong, R. Sharma, A. Hamou-Lhadj, X. Luo, H. Cai, Open science in software
engineering: A study on deep learning-based vulnerability detection, IEEE
Trans. Softw. Eng. 49 (2023) 1983–2005, http://dx.doi.org/10.1109/TSE.2022.
3207149.

[75] M. Zhang, X. de Carné de Carnavalet, L. Wang, A. Ragab, Large-scale empirical
study of important features indicative of discovered vulnerabilities to assess
application security, IEEE Trans. Inf. Forensics Secur. 14 (2019) 2315–2330,
http://dx.doi.org/10.1109/TIFS.2019.2895963.

[76] H. Zhang, M.A. Babar, P. Tell, Identifying relevant studies in software
engineering, Inf. Softw. Technol. 53 (2011) 625–637.

[77] B. Kitchenham, Procedures for Performing Systematic Reviews, Technical Report
2004, 2004.

[78] V.R. Basili, G. Caldiera, H.D. Rombach, The goal question metric approach,
Encycl. Softw. Eng. (1994).

[79] A.R. Henderson, Evidence-Based Medicine—How to Practice and Teach EBM.
D. L. Sackett, W. S. Richardson, W. Rosenberg, and R. B. Haynes. New York:
Churchill Livingstone, 1997 250pp. Paperback, 24.99. ISBN 0-443-05686-2,
Clin. Chem. 43 (1997) 2014, http://dx.doi.org/10.1093/clinchem/43.10.2014.

[80] T. Lewowski, L. Madeyski, How far are we from reproducible research on code
smell detection? A systematic literature review, Inf. Softw. Technol. 144 (2022)
106783, http://dx.doi.org/10.1016/j.infsof.2021.106783.

[81] D. Falessi, J. Huang, L. Narayana, J.F. Thai, B. Turhan, On the need of
preserving order of data when validating within-project defect classifiers, Empir.
Softw. Eng. 25 (2020) 4805–4830.

[82] M. Zagane, M.K. Abdi, M. Alenezi, Deep learning for software vulnerabilities
detection using code metrics, IEEE Access 8 (2020) 74562–74570, http://dx.
doi.org/10.1109/ACCESS.2020.2988557.
15
[83] M.A. Albahar, A modified maximal divergence sequential auto-encoder and time
delay neural network models for vulnerable binary codes detection, IEEE Access
8 (2020) 14999–15006, http://dx.doi.org/10.1109/ACCESS.2020.2965726.

[84] Y. Tang, F. Zhao, Y. Yang, H. Lu, Y. Zhou, B. Xu, Predicting vulnerable
components via text mining or software metrics? an effort-aware perspective,
in: 2015 IEEE International Conference on Software Quality, Reliability and
Security, QRS 2015, Vancouver, BC, Canada, August 3–5, 2015, IEEE, 2015,
pp. 27–36, http://dx.doi.org/10.1109/QRS.2015.15.

[85] T. Nguyen, T. Le, K. Nguyen, O.Y. de Vel, P. Montague, J.C. Grundy, D. Phung,
Deep cost-sensitive kernel machine for binary software vulnerability detection,
in: PAKDD (2), in: Lecture Notes in Computer Science, vol. 12085, Springer,
2020, pp. 164–177.

[86] M. Esposito, D. Falessi, Uncovering the hidden risks: The importance of
predicting bugginess in untouched methods, in: 2023 IEEE 23rd International
Working Conference on Source Code Analysis and Manipulation, SCAM, 2023,
pp. 277–282, http://dx.doi.org/10.1109/SCAM59687.2023.00039.

[87] D. Falessi, S.M. Laureani, J. Çarka, M. Esposito, D.A. da Costa, Enhancing the
defectiveness prediction of methods and classes via JIT, Empir. Softw. Eng. 28
(2023) 37, http://dx.doi.org/10.1007/s10664-022-10261-z.

[88] Y. Zhang, D. Lo, X. Xia, B. Xu, J. Sun, S. Li, Combining software metrics and
text features for vulnerable file prediction, in: ICECCS, IEEE Computer Society,
2015, pp. 40–49.

[89] H. Wang, G. Ye, Z. Tang, S.H. Tan, S. Huang, D. Fang, Y. Feng, L. Bian, Z.
Wang, Combining graph-based learning with automated data collection for code
vulnerability detection, IEEE Trans. Inf. Forensics Secur. 16 (2021) 1943–1958,
http://dx.doi.org/10.1109/TIFS.2020.3044773.

[90] G. Lin, J. Zhang, W. Luo, L. Pan, Y. Xiang, O.Y. de Vel, P. Montague, Cross-
project transfer representation learning for vulnerable function discovery, IEEE
Trans. Ind. Inform. 14 (2018) 3289–3297, http://dx.doi.org/10.1109/TII.2018.
2821768.

[91] S.E. Ponta, H. Plate, A. Sabetta, M. Bezzi, C. Dangremont, A manually-curated
dataset of fixes to vulnerabilities of open-source software, in: M.D. Storey, B.
Adams, S. Haiduc (Eds.), Proceedings of the 16th International Conference on
Mining Software Repositories, MSR 2019, 26-27 May 2019, Montreal, Canada,
IEEE / ACM, 2019, pp. 383–387, http://dx.doi.org/10.1109/MSR.2019.00064.

[92] R. Li, C. Feng, X. Zhang, C. Tang, A lightweight assisted vulnerability discovery
method using deep neural networks, IEEE Access 7 (2019) 80079–80092.

[93] E.R. Russo, A.D. Sorbo, C.A. Visaggio, G. Canfora, Summarizing vulnerabilities’
descriptions to support experts during vulnerability assessment activities, J.
Syst. Softw. 156 (2019) 84–99.

[94] X. Chen, Y. Zhao, Z. Cui, G. Meng, Y. Liu, Z. Wang, Large-scale empirical studies
on effort-aware security vulnerability prediction methods, IEEE Trans. Reliab.
69 (2020) 70–87, http://dx.doi.org/10.1109/TR.2019.2924932.

[95] N.P.D.S. Medeiros, N.R. Ivaki, P. Costa, M. Vieira, Software metrics as indicators
of security vulnerabilities, in: 28th IEEE International Symposium on Software
Reliability Engineering, ISSRE 2017, Toulouse, France, October 23–26, 2017,
IEEE Computer Society, 2017, pp. 216–227, http://dx.doi.org/10.1109/ISSRE.
2017.11.

[96] Y. Fang, S. Han, C. Huang, R. Wu, Tap: A static analysis model for php
vulnerabilities based on token and deep learning technology, PLoS One 14
(2019) e0225196.

[97] D. Mitropoulos, G. Gousios, P. Papadopoulos, V. Karakoidas, P. Louridas,
D. Spinellis, The vulnerability dataset of a large software ecosystem, in:
BADGERS@ESORICS, IEEE, 2014, pp. 69–74.

[98] K.R. Felizardo, E. Mendes, M. Kalinowski, É.F. de Souza, N.L. Vijaykumar, Using
forward snowballing to update systematic reviews in software engineering, in:
ESEM, ACM, 2016, pp. 53:1–53:6.

[99] C. Wohlin, Guidelines for snowballing in systematic literature studies and a
replication in software engineering, in: EASE, ACM, 2014, pp. 38:1–38:10.

[100] D.S. Cruzes, T. Dybå, Recommended steps for thematic synthesis in software
engineering, in: Proceedings of the 5th International Symposium on Empirical
Software Engineering and Measurement, ESEM 2011, Banff, AB, Canada,
September 22–23, 2011, IEEE Computer Society, 2011, pp. 275–284, http:
//dx.doi.org/10.1109/ESEM.2011.36.

[101] J. Cohen, A coefficient of agreement for nominal scales, Educ. Psychol. Meas.
20 (1960) 37–46.

[102] J. Sim, C.C. Wright, The kappa statistic in reliability studies: Use, interpretation,
and sample size requirements, Phys. Ther. 85 (2005) 257–268, http://dx.doi.
org/10.1093/ptj/85.3.257.

[103] G. Lin, J. Zhang, W. Luo, L. Pan, O.Y. de Vel, P. Montague, Y. Xiang, Software
vulnerability discovery via learning multi-domain knowledge bases, IEEE Trans.
Dependable Secur. Comput. 18 (2021) 2469–2485, http://dx.doi.org/10.1109/
TDSC.2019.2954088.

[104] T.H.M. Le, D. Hin, R. Croft, M.A. Babar, Deepcva: Automated commit-level
vulnerability assessment with deep multi-task learning, in: 36th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2021, Mel-
bourne, Australia, November 15–19, 2021, IEEE, 2021, pp. 717–729, http:
//dx.doi.org/10.1109/ASE51524.2021.9678622.

[105] L. Pascarella, F. Palomba, A. Bacchelli, On the performance of method-level
bug prediction: A negative result, J. Syst. Softw. 161 (2020) http://dx.doi.org/
10.1016/j.jss.2019.110493.

http://refhub.elsevier.com/S0950-5849(24)00053-3/sb58
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb58
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb58
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb58
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb58
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb59
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb59
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb59
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb59
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb59
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb60
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb60
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb60
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb60
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb60
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb61
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb61
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb61
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb61
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb61
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb61
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb61
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb62
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb62
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb62
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb63
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb63
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb63
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb63
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb63
http://dx.doi.org/10.1109/TSE.2022.3171202
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb65
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb65
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb65
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb65
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb65
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb66
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb66
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb66
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb66
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb66
http://dx.doi.org/10.1007/s00521-022-08046-y
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb68
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb68
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb68
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb68
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb68
http://dx.doi.org/10.1109/TSE.2019.2949275
http://promise.site.uottawa.ca/SERepository
http://dx.doi.org/10.1109/IWSM-Mensura.2013.13
http://dx.doi.org/10.1109/IWSM-Mensura.2013.13
http://dx.doi.org/10.1109/IWSM-Mensura.2013.13
http://dx.doi.org/10.1109/ICTAI.2011.167
http://dx.doi.org/10.1109/ICTAI.2011.167
http://dx.doi.org/10.1109/ICTAI.2011.167
http://dx.doi.org/10.1016/j.asoc.2016.12.023
http://dx.doi.org/10.1109/TSE.2022.3207149
http://dx.doi.org/10.1109/TSE.2022.3207149
http://dx.doi.org/10.1109/TSE.2022.3207149
http://dx.doi.org/10.1109/TIFS.2019.2895963
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb76
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb76
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb76
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb77
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb77
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb77
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb78
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb78
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb78
http://dx.doi.org/10.1093/clinchem/43.10.2014
http://dx.doi.org/10.1016/j.infsof.2021.106783
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb81
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb81
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb81
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb81
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb81
http://dx.doi.org/10.1109/ACCESS.2020.2988557
http://dx.doi.org/10.1109/ACCESS.2020.2988557
http://dx.doi.org/10.1109/ACCESS.2020.2988557
http://dx.doi.org/10.1109/ACCESS.2020.2965726
http://dx.doi.org/10.1109/QRS.2015.15
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb85
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb85
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb85
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb85
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb85
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb85
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb85
http://dx.doi.org/10.1109/SCAM59687.2023.00039
http://dx.doi.org/10.1007/s10664-022-10261-z
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb88
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb88
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb88
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb88
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb88
http://dx.doi.org/10.1109/TIFS.2020.3044773
http://dx.doi.org/10.1109/TII.2018.2821768
http://dx.doi.org/10.1109/TII.2018.2821768
http://dx.doi.org/10.1109/TII.2018.2821768
http://dx.doi.org/10.1109/MSR.2019.00064
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb92
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb92
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb92
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb93
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb93
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb93
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb93
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb93
http://dx.doi.org/10.1109/TR.2019.2924932
http://dx.doi.org/10.1109/ISSRE.2017.11
http://dx.doi.org/10.1109/ISSRE.2017.11
http://dx.doi.org/10.1109/ISSRE.2017.11
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb96
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb96
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb96
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb96
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb96
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb97
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb97
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb97
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb97
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb97
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb98
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb98
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb98
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb98
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb98
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb99
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb99
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb99
http://dx.doi.org/10.1109/ESEM.2011.36
http://dx.doi.org/10.1109/ESEM.2011.36
http://dx.doi.org/10.1109/ESEM.2011.36
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb101
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb101
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb101
http://dx.doi.org/10.1093/ptj/85.3.257
http://dx.doi.org/10.1093/ptj/85.3.257
http://dx.doi.org/10.1093/ptj/85.3.257
http://dx.doi.org/10.1109/TDSC.2019.2954088
http://dx.doi.org/10.1109/TDSC.2019.2954088
http://dx.doi.org/10.1109/TDSC.2019.2954088
http://dx.doi.org/10.1109/ASE51524.2021.9678622
http://dx.doi.org/10.1109/ASE51524.2021.9678622
http://dx.doi.org/10.1109/ASE51524.2021.9678622
http://dx.doi.org/10.1016/j.jss.2019.110493
http://dx.doi.org/10.1016/j.jss.2019.110493
http://dx.doi.org/10.1016/j.jss.2019.110493

Information and Software Technology 170 (2024) 107448M. Esposito and D. Falessi
[106] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, Z. Chen, Sysevr: A framework for
using deep learning to detect software vulnerabilities, IEEE Trans. Dependable
Secur. Comput. 19 (2022) 2244–2258, http://dx.doi.org/10.1109/TDSC.2021.
3051525.

[107] S. Liu, M. Dibaei, Y. Tai, C. Chen, J. Zhang, Y. Xiang, Cyber vulnerability
intelligence for internet of things binary, IEEE Trans. Ind. Inform. 16 (2020)
2154–2163, http://dx.doi.org/10.1109/TII.2019.2942800.

[108] S. Chakraborty, R. Krishna, Y. Ding, B. Ray, Deep learning based vulnerability
detection: Are we there yet, IEEE Trans. Softw. Eng. (2021).

[109] U.S. Congress, National institute of standards and technology, 1901, URL:
https://www.nist.gov/.

[110] P. Black, A software assurance reference dataset: Thousands of programs with
known bugs, J. Res. Natl. Inst. Stand. Technol. 123 (2018) http://dx.doi.org/
10.6028/jres.123.005.

[111] D. Zou, S. Wang, S. Xu, Z. Li, H. Jin, 𝜇vuldeepecker: A deep learning-
based system for multiclass vulnerability detection, IEEE Trans. Dependable
Secur. Comput. 18 (2021) 2224–2236, http://dx.doi.org/10.1109/TDSC.2019.
2942930.

[112] E. Frank, M.A. Hall, G. Holmes, R.B. Kirkby, B. Pfahringer, I.H. Witten, Weka: A
machine learning workbench for data mining, in: Data Mining and Knowledge
Discovery Handbook, Springer, 2005, pp. 1305–1314, http://dx.doi.org/10.
1007/0-387-25465-X_62, URL: https://hdl.handle.net/10289/1497 [62].

[113] R. Roscher, B. Bohn, M.F. Duarte, J. Garcke, Explainable machine learning
for scientific insights and discoveries, IEEE Access 8 (2020) 42200–42216,
http://dx.doi.org/10.1109/ACCESS.2020.2976199.

[114] Meiliana, S. Karim, H.L.H.S. Warnars, F.L. Gaol, E. Abdurachman, B. Soewito,
Software metrics for fault prediction using machine learning approaches: A
literature review with promise repository dataset, in: 2017 IEEE International
Conference on Cybernetics and Computational Intelligence, CyberneticsCom,
2017, pp. 19–23, http://dx.doi.org/10.1109/CYBERNETICSCOM.2017.8311708.

[115] S.R. Chidamber, C.F. Kemerer, A metrics suite for object oriented design, IEEE
Trans. Softw. Eng. 20 (1994) 476–493.

[116] R. Moser, W. Pedrycz, G. Succi, A comparative analysis of the efficiency of
change metrics and static code attributes for defect prediction, in: ICSE, ACM,
2008, pp. 181–190.

[117] K.K. Aggarwal, Y. Singh, A. Kaur, R. Malhotra, Investigating effect of design
metrics on fault proneness in object-oriented systems, J. Object Technol. 6
(2007) 127–141.

[118] H. Wang, T.M. Khoshgoftaar, N. Seliya, How many software metrics should be
selected for defect prediction? in: FLAIRS Conference, AAAI Press, 2011.

[119] D.E. Mann, S.M. Christey, Towards a common enumeration of vulnerabilities,
in: 2nd Workshop on Research with Security Vulnerability Databases, Purdue
University, West Lafayette, Indiana, 1999.

[120] B. Martin, M. Brown, A. Paller, D. Kirby, Common Weakness Emunaration, first
ed., MITRE Corporation, 2011, URL: http://cwe.mire.org/top25/.

[121] MIT, 1958. URL: https://www.mitre.org.
[122] Yanming Yang, Xin Xia, David Lo, John Grundy, A survey on deep learning for

software engineering, ACM Comput. Surv. (ISSN: 0360-0300) 54 (10s) (2022)
http://dx.doi.org/10.1145/3505243.

[123] S. Reis, R. Abreu, A ground-truth dataset of real security patches, 2021, CoRR
abs/2110.09635, URL: https://arxiv.org/abs/2110.09635.

[124] X. Wu, W. Zheng, X. Chen, F. Wang, D. Mu, Cve-assisted large-scale security
bug report dataset construction method, J. Syst. Softw. 160 (2020) http://dx.
doi.org/10.1016/j.jss.2019.110456.

[125] J. Fan, Y. Li, S. Wang, T.N. Nguyen, A C/C++ code vulnerability dataset
with code changes and CVE summaries, in: S. Kim, G. Gousios, S. Nadi, J.
Hejderup (Eds.), MSR ’20: 17th International Conference on Mining Software
Repositories, Seoul, Republic of Korea, 29–30 June, 2020, ACM, 2020, pp.
508–512, http://dx.doi.org/10.1145/3379597.3387501.

[126] G.P. Bhandari, A. Naseer, L. Moonen, Cvefixes: automated collection of vulner-
abilities and their fixes from open-source software, in: S. McIntosh, X. Xia, S.
Amasaki (Eds.), PROMISE ’21: 17th International Conference on Predictive Mod-
els and Data Analytics in Software Engineering, Athens Greece, August 19–20,
2021, ACM, 2021, pp. 30–39, http://dx.doi.org/10.1145/3475960.3475985.

[127] M. Jimenez, R. Rwemalika, M. Papadakis, F. Sarro, Y.L. Traon, M. Harman,
The importance of accounting for real-world labelling when predicting software
vulnerabilities, in: M. Dumas, D. Pfahl, S. Apel, A. Russo (Eds.), Proceedings
of the ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE
2019, Tallinn, Estonia, August 26–30, 2019, ACM, 2019, pp. 695–705, http:
//dx.doi.org/10.1145/3338906.3338941.

[128] D. Eilers, C. Köpp, C. Gleue, M.H. Breitner, It’s not a bug, it’s a feature: How
visual model evaluation can help to incorporate human domain knowledge
in data science, in: Y.J. Kim, R. Agarwal, J.K. Lee (Eds.), Proceedings of
the International Conference on Information Systems - Transforming Society
with Digital Innovation, ICIS 2017, Seoul, South Korea, December 10–13,
2017, Association for Information Systems, 2017, URL: http://aisel.aisnet.org/
icis2017/DataScience/Presentations/15.
16
[129] P. Pickerill, H.J. Jungen, M. Ochodek, M. Mackowiak, M. Staron, PHANTOM:
curating github for engineered software projects using time-series clustering,
Empir. Softw. Eng. 25 (2020) 2897–2929, http://dx.doi.org/10.1007/s10664-
020-09825-8.

[130] C. Sas, A. Capiluppi, Labelgit: A dataset for software repositories classification
using attributed dependency graphs, 2021, CoRR abs/2103.08890, URL: https:
//arxiv.org/abs/2103.08890.

[131] R. Widyasari, S.Q. Sim, C. Lok, H. Qi, J. Phan, Q. Tay, C. Tan, F. Wee, J.E. Tan,
Y. Yieh, B. Goh, F. Thung, H.J. Kang, T. Hoang, D. Lo, E.L. Ouh, Bugsinpy:
a database of existing bugs in python programs to enable controlled testing
and debugging studies, in: P. Devanbu, M.B. Cohen, T. Zimmermann (Eds.),
ESEC/FSE ’20: 28th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Virtual Event, USA,
November 8–13, 2020, ACM, 2020, pp. 1556–1560, http://dx.doi.org/10.1145/
3368089.3417943.

[132] C. Pornprasit, C. Tantithamthavorn, Deeplinedp: Towards a deep learning
approach for line-level defect prediction, IEEE Trans. Softw. Eng. (2023) 1,
http://dx.doi.org/10.1109/TSE.2022.3144348.

[133] R. Scandariato, J. Walden, A. Hovsepyan, W. Joosen, Predicting vulnerable
software components via text mining, IEEE Trans. Softw. Eng. 40 (2014)
993–1006, http://dx.doi.org/10.1109/TSE.2014.2340398.

[134] J. Stuckman, J. Walden, R. Scandariato, The effect of dimensionality reduction
on software vulnerability prediction models, IEEE Trans. Reliab. 66 (2017)
17–37, http://dx.doi.org/10.1109/TR.2016.2630503.

[135] R. Li, C. Feng, X. Zhang, C. Tang, A lightweight assisted vulnerability discovery
method using deep neural networks, IEEE Access 7 (2019) 80079–80092,
http://dx.doi.org/10.1109/ACCESS.2019.2923227.

[136] J. Fan, Y. Li, S. Wang, T.N. Nguyen, A C/C++ code vulnerability dataset
with code changes and CVE summaries, in: S. Kim, G. Gousios, S. Nadi, J.
Hejderup (Eds.), MSR 20: 17th International Conference on Mining Software
Repositories, Seoul, Republic of Korea, 29–30 June, 2020, ACM, 2020, pp.
508–512, http://dx.doi.org/10.1145/3379597.3387501.

[137] S.E. Ponta, H. Plate, A. Sabetta, M. Bezzi, C. Dangremont, A manually-curated
dataset of fixes to vulnerabilities of open-source software, in: M.D. Storey, B.
Adams, S. Haiduc (Eds.), Proceedings of the 16th International Conference on
Mining Software Repositories, MSR 2019, 26–27 May 2019, Montreal, Canada,
IEEE / ACM, 2019, pp. 383–387, http://dx.doi.org/10.1109/MSR.2019.00064.

[138] G. Nikitopoulos, K. Dritsa, P. Louridas, D. Mitropoulos, Crossvul: a cross-
language vulnerability dataset with commit data, in: D. Spinellis, G. Gousios,
M. Chechik, M.D. Penta (Eds.), ESEC/FSE ’21: 29th ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering, Athens, Greece, August 23–28, 2021, ACM, 2021, pp. 1565–1569,
http://dx.doi.org/10.1145/3468264.3473122.

[139] A. Dann, H. Plate, B. Hermann, S.E. Ponta, E. Bodden, Identifying challenges
for OSS vulnerability scanners - A study & test suite, IEEE Trans. Softw. Eng.
48 (2022) 3613–3625, http://dx.doi.org/10.1109/TSE.2021.3101739.

[140] European Organization For Nuclear Research, OpenAIRE, Zenodo, 2013, http:
//dx.doi.org/10.25495/7GXK-RD71, URL: https://www.zenodo.org/.

[141] M. GitHub Inc. (2007), Github, 2007, URL: https://github.com/.
[142] A. Smith, Improving github for science | the github blog, 2014, URL: https:

//github.blog/2014-05-14-improving-github-for-science/.
[143] B. Stroustrup, What is object-oriented programming? in: ECOOP, in: Lecture

Notes in Computer Science, vol. 276, Springer, 1987, pp. 51–70.
[144] E. Gamma, R. Helm, R.E. Johnson, J.M. Vlissides, Design patterns: Abstraction

and reuse of object-oriented design, in: ECOOP, in: Lecture Notes in Computer
Science, vol. 707, Springer, 1993, pp. 406–431.

[145] J. Walden, J. Stuckman, R. Scandariato, Predicting vulnerable components:
Software metrics vs text mining, in: 25th IEEE International Symposium on
Software Reliability Engineering, ISSRE 2014, Naples, Italy, November 3–6,
2014, IEEE Computer Society, 2014, pp. 23–33, http://dx.doi.org/10.1109/
ISSRE.2014.32.

[146] X. Cheng, H. Wang, J. Hua, M. Zhang, G. Xu, L. Yi, Y. Sui, Static detection
of control-flow-related vulnerabilities using graph embedding, in: J. Pang, J.
Sun (Eds.), 24th International Conference on Engineering of Complex Computer
Systems, ICECCS 2019, Guangzhou, China, November 10–13, 2019, IEEE, 2019,
pp. 41–50, http://dx.doi.org/10.1109/ICECCS.2019.00012.

[147] S. Liu, G. Lin, Q. Han, S. Wen, J. Zhang, Y. Xiang, Deepbalance: Deep-learning
and fuzzy oversampling for vulnerability detection, IEEE Trans. Fuzzy Syst. 28
(2020) 1329–1343, http://dx.doi.org/10.1109/TFUZZ.2019.2958558.

[148] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, Y. Zhong,
Vuldeepecker: A deep learning-based system for vulnerability detection, in:
25th Annual Network and Distributed System Security Symposium, NDSS
2018, San Diego, California, USA, February 18–21, 2018, The Internet Soci-
ety, 2018, URL: http://wp.internetsociety.org/ndss/wp-content/uploads/sites/
25/2018/02/ndss2018_03A-2_Li_paper.pdf.

[149] M. Jimenez, R. Rwemalika, M. Papadakis, F. Sarro, Y.L. Traon, M. Harman,
The importance of accounting for real-world labelling when predicting software
vulnerabilities, in: M. Dumas, D. Pfahl, S. Apel, A. Russo (Eds.), Proceedings
of the ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE
2019, Tallinn, Estonia, August 26–30, 2019, ACM, 2019, pp. 695–705, http:
//dx.doi.org/10.1145/3338906.3338941.

http://dx.doi.org/10.1109/TDSC.2021.3051525
http://dx.doi.org/10.1109/TDSC.2021.3051525
http://dx.doi.org/10.1109/TDSC.2021.3051525
http://dx.doi.org/10.1109/TII.2019.2942800
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb108
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb108
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb108
https://www.nist.gov/
http://dx.doi.org/10.6028/jres.123.005
http://dx.doi.org/10.6028/jres.123.005
http://dx.doi.org/10.6028/jres.123.005
http://dx.doi.org/10.1109/TDSC.2019.2942930
http://dx.doi.org/10.1109/TDSC.2019.2942930
http://dx.doi.org/10.1109/TDSC.2019.2942930
http://dx.doi.org/10.1007/0-387-25465-X_62
http://dx.doi.org/10.1007/0-387-25465-X_62
http://dx.doi.org/10.1007/0-387-25465-X_62
https://hdl.handle.net/10289/1497
http://dx.doi.org/10.1109/ACCESS.2020.2976199
http://dx.doi.org/10.1109/CYBERNETICSCOM.2017.8311708
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb115
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb115
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb115
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb116
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb116
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb116
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb116
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb116
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb117
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb117
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb117
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb117
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb117
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb118
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb118
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb118
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb119
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb119
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb119
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb119
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb119
http://cwe.mire.org/top25/
https://www.mitre.org
http://dx.doi.org/10.1145/3505243
https://arxiv.org/abs/2110.09635
http://dx.doi.org/10.1016/j.jss.2019.110456
http://dx.doi.org/10.1016/j.jss.2019.110456
http://dx.doi.org/10.1016/j.jss.2019.110456
http://dx.doi.org/10.1145/3379597.3387501
http://dx.doi.org/10.1145/3475960.3475985
http://dx.doi.org/10.1145/3338906.3338941
http://dx.doi.org/10.1145/3338906.3338941
http://dx.doi.org/10.1145/3338906.3338941
http://aisel.aisnet.org/icis2017/DataScience/Presentations/15
http://aisel.aisnet.org/icis2017/DataScience/Presentations/15
http://aisel.aisnet.org/icis2017/DataScience/Presentations/15
http://dx.doi.org/10.1007/s10664-020-09825-8
http://dx.doi.org/10.1007/s10664-020-09825-8
http://dx.doi.org/10.1007/s10664-020-09825-8
https://arxiv.org/abs/2103.08890
https://arxiv.org/abs/2103.08890
https://arxiv.org/abs/2103.08890
http://dx.doi.org/10.1145/3368089.3417943
http://dx.doi.org/10.1145/3368089.3417943
http://dx.doi.org/10.1145/3368089.3417943
http://dx.doi.org/10.1109/TSE.2022.3144348
http://dx.doi.org/10.1109/TSE.2014.2340398
http://dx.doi.org/10.1109/TR.2016.2630503
http://dx.doi.org/10.1109/ACCESS.2019.2923227
http://dx.doi.org/10.1145/3379597.3387501
http://dx.doi.org/10.1109/MSR.2019.00064
http://dx.doi.org/10.1145/3468264.3473122
http://dx.doi.org/10.1109/TSE.2021.3101739
http://dx.doi.org/10.25495/7GXK-RD71
http://dx.doi.org/10.25495/7GXK-RD71
http://dx.doi.org/10.25495/7GXK-RD71
https://www.zenodo.org/
https://github.com/
https://github.blog/2014-05-14-improving-github-for-science/
https://github.blog/2014-05-14-improving-github-for-science/
https://github.blog/2014-05-14-improving-github-for-science/
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb143
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb143
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb143
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb144
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb144
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb144
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb144
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb144
http://dx.doi.org/10.1109/ISSRE.2014.32
http://dx.doi.org/10.1109/ISSRE.2014.32
http://dx.doi.org/10.1109/ISSRE.2014.32
http://dx.doi.org/10.1109/ICECCS.2019.00012
http://dx.doi.org/10.1109/TFUZZ.2019.2958558
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-2_Li_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-2_Li_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-2_Li_paper.pdf
http://dx.doi.org/10.1145/3338906.3338941
http://dx.doi.org/10.1145/3338906.3338941
http://dx.doi.org/10.1145/3338906.3338941

Information and Software Technology 170 (2024) 107448M. Esposito and D. Falessi
[150] V. Nguyen, T. Le, O.Y. de Vel, P. Montague, J.C. Grundy, D. Phung, H.W.
Lauw and R.C. Wong and A. Ntoulas and E. Lim and S. Ng and S.J. Pan, Dual-
component deep domain adaptation: A new approach for cross project software
vulnerability detection, in: Advances in Knowledge Discovery and Data Mining
- 24th Pacific-Asia Conference, PAKDD 2020, Singapore, May 11–14, 2020,
Proceedings, Part I, in: Lecture Notes in Computer Science, vol. 12084, Springer,
2020, pp. 699–711, http://dx.doi.org/10.1007/978-3-030-47426-3_54.

[151] T. McCabe, A complexity measure, IEEE Trans. Softw. Eng. SE-2 (1976)
308–320, http://dx.doi.org/10.1109/TSE.1976.233837.

[152] S.D. Palma, D.D. Nucci, F. Palomba, D.A. Tamburri, Within-project defect
prediction of infrastructure-as-code using product and process metrics, IEEE
Trans. Softw. Eng. 48 (2022) 2086–2104.

[153] N. Saccente, J. Dehlinger, L. Deng, S. Chakraborty, Y. Xiong, Project achilles: A
prototype tool for static method-level vulnerability detection of java source code
using a recurrent neural network, in: 34th IEEE/ACM International Conference
on Automated Software Engineering Workshops, ASE Workshops 2019, San
Diego, CA, USA, November 11–15, 2019, IEEE, 2019, pp. 114–121, http:
//dx.doi.org/10.1109/ASEW.2019.00040.

[154] H. Alves, B. Fonseca, N. Antunes, Software metrics and security vulnerabilities:
Dataset and exploratory study, in: 12th European Dependable Computing
Conference, EDCC 2016, Gothenburg, Sweden, September 5–9, 2016, IEEE
Computer Society, 2016, pp. 37–44, http://dx.doi.org/10.1109/EDCC.2016.34.

[155] H. Alves, B. Fonseca, N. Antunes, Experimenting machine learning techniques
to predict vulnerabilities, in: 2016 Seventh Latin-American Symposium on
Dependable Computing, LADC 2016, Cali, Colombia, October 19–21, 2016, IEEE
Computer Society, 2016, pp. 151–156, http://dx.doi.org/10.1109/LADC.2016.
32.

[156] A. Gkortzis, D. Mitropoulos, D. Spinellis, Vulinoss: a dataset of security
vulnerabilities in open-source systems, in: A. Zaidman, Y. Kamei, E. Hill
(Eds.), Proceedings of the 15th International Conference on Mining Software
Repositories, MSR 2018, Gothenburg, Sweden, May 28–29, 2018, ACM, 2018,
pp. 18–21, http://dx.doi.org/10.1145/3196398.3196454.

[157] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, Z. Chen, Sysevr: A framework for
using deep learning to detect software vulnerabilities, IEEE Trans. Dependable
Secur. Comput. 19 (2022) 2244–2258, http://dx.doi.org/10.1109/TDSC.2021.
3051525.

[158] D. Falessi, J. Roll, J.L.C. Guo, J. Cleland-Huang, Leveraging historical associa-
tions between requirements and source code to identify impacted classes, IEEE
Trans. Softw. Eng. 46 (2020) 420–441.

[159] M. Dougiamas, Moodle - open-source learning platform, 2002, URL: https:
//moodle.org/.

[160] T. phpMyAdmin Project, Phpmyadmin, 1998, URL: https://www.phpmyadmin.
net/.

[161] D. community, Drupal - open source cms, 2001, URL: https://www.drupal.org/.
[162] I.H. Witten, E. Frank, M.A. Hall, Data Mining: Practical Machine Learning

Tools and Techniques, third ed., Morgan Kaufmann, Elsevier, 2011, URL:
https://www.worldcat.org/oclc/262433473.

[163] J. Yerushalmy, Statistical problems in assessing methods of medical diagnosis,
with special reference to X-ray techniques, Public Health Rep. (1896-1970) 62
(1947) 1432–1449, URL: http://www.jstor.org/stable/4586294.

[164] D.G. Altman, J.M. Bland, Statistics notes: Diagnostic tests 1: sensitivity
and specificity, BMJ 308 (1994) 1552, http://dx.doi.org/10.1136/bmj.308.
6943.1552, URL: https://www.bmj.com/content/308/6943/1552, arXiv:https:
//www.bmj.com/content/308/6943/1552.full.pdf.

[165] T. Fawcett, An introduction to ROC analysis, Pattern Recognit. Lett. 27 (2006)
861–874.

[166] D.M.W. Powers, Evaluation: from precision, recall and f-measure to roc,
informedness, markedness and correlation, 2020, CoRR abs/2010.16061.

[167] J. Jiarpakdee, C. Tantithamthavorn, C. Treude, The impact of automated feature
selection techniques on the interpretation of defect models, Empir. Softw. Eng.
25 (2020) 3590–3638, http://dx.doi.org/10.1007/s10664-020-09848-1.

[168] G.K. Rajbahadur, S. Wang, Y. Kamei, A.E. Hassan, The impact of feature
importance methods on the interpretation of defect classifiers, 2022, CoRR
abs/2202.02389, URL: https://arxiv.org/abs/2202.02389.

[169] K. Zhao, Z. Xu, M. Yan, T. Zhang, D. Yang, W. Li, A comprehensive investigation
of the impact of feature selection techniques on crashing fault residence
prediction models, Inf. Softw. Technol. 139 (2021) 106652, http://dx.doi.org/
10.1016/j.infsof.2021.106652.

[170] C. Tantithamthavorn, A.E. Hassan, K. Matsumoto, The impact of class rebal-
ancing techniques on the performance and interpretation of defect prediction
models, IEEE Trans. Softw. Eng. 46 (2020) 1200–1219, http://dx.doi.org/10.
1109/TSE.2018.2876537.

[171] W. Fu, T. Menzies, X. Shen, Tuning for software analytics: Is it really
necessary? Inf. Softw. Technol. 76 (2016) 135–146, http://dx.doi.org/10.1016/
j.infsof.2016.04.017.

[172] C. Tantithamthavorn, S. McIntosh, A.E. Hassan, K. Matsumoto, The impact of
automated parameter optimization on defect prediction models, IEEE Trans.
Softw. Eng. 45 (2019) 683–711, http://dx.doi.org/10.1109/TSE.2018.2794977.

[173] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: synthetic
minority over-sampling technique, J. Artificial Intelligence Res. 16 (2002)
321–357.
17
[174] C. Thornton, F. Hutter, H.H. Hoos, K. Leyton-Brown, Auto-weka: combined
selection and hyperparameter optimization of classification algorithms, in: KDD,
ACM, 2013, pp. 847–855.

[175] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics 1
(1945) 80, http://dx.doi.org/10.2307/3001968, URL: https://app.dimensions.
ai/details/publication/pub.1102728208.

[176] C.C.S. Liem, A. Panichella, Run, forest, run? on randomization and re-
producibility in predictive software engineering, 2020, CoRR abs/2012.
08387.

[177] T.M. Foundation, Mozilla labs, 1998, URL: https://labs.mozilla.org/.
[178] D. Science, Figshare, 2011, URL: https://figshare.com/.
[179] E. Arisholm, L.C. Briand, Predicting fault-prone components in a java legacy

system, in: ISESE, ACM, 2006, pp. 8–17.
[180] H. Kekül, B. Ergen, H. Arslan, A multiclass hybrid approach to estimating

software vulnerability vectors and severity score, J. Inf. Secur. Appl. 63 (2021)
103028.

[181] D. Karlis, M. greenacre (2007) correspondence analysis in practice, 2009.
[182] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, Experimentation

in Software Engineering, Springer, 2012, http://dx.doi.org/10.1007/978-3-642-
29044-2.

[183] S. Bayley, D. Falessi, Optimizing prediction intervals by tuning random forest
via meta-validation, 2018, CoRR abs/1801.07194.

[184] D. Falessi, G. Cantone, The effort savings from using NLP to classify equivalent
requirements, IEEE Softw. 36 (2019) 48–55.

[185] A. Ahluwalia, M.D. Penta, D. Falessi, On the need of removing last releases of
data when using or validating defect prediction models, 2020, CoRR abs/2003.
14376.

[186] A.D. Rodriguez, J. Cleland-Huang, D. Falessi, Leveraging intermediate artifacts
to improve automated trace link retrieval, in: ICSME, IEEE, 2021, pp. 81–92.

[187] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schröter, C. Weiss,
What makes a good bug report? IEEE Trans. Softw. Eng. 36 (2010) 618–643,
http://dx.doi.org/10.1109/TSE.2010.63.

[188] L. Breiman, Random forests, Mach. Learn. 45 (2001) 5–32.
[189] D. Aha, D. Kibler, Instance-based learning algorithms, Mach. Learn. 6 (1991)

37–66.
[190] S. Rehman, K. Mustafa, Research on software design level security vulnerabil-

ities, ACM SIGSOFT Softw. Eng. Notes 34 (2009) 1–5, http://dx.doi.org/10.
1145/1640162.1640171.

[191] G. Rodríguez-Pérez, G. Robles, J.M. González-Barahona, Reproducibility and
credibility in empirical software engineering: A case study based on a systematic
literature review of the use of the SZZ algorithm, Inf. Softw. Technol. 99 (2018)
164–176, http://dx.doi.org/10.1016/j.infsof.2018.03.009.

[192] C.V.C. de Magalhães, F.Q.B. da Silva, R.E.S. Santos, M. Suassuna, Investigations
about replication of empirical studies in software engineering: A systematic
mapping study, Inf. Softw. Technol. 64 (2015) 76–101, http://dx.doi.org/10.
1016/j.infsof.2015.02.001.

[193] J.C. Carver, N.J. Juzgado, M.T. Baldassarre, S. Vegas, Replications of software
engineering experiments, Empir. Softw. Eng. 19 (2014) 267–276, http://dx.doi.
org/10.1007/s10664-013-9290-8.

[194] N.J. Juzgado, Towards understanding replication of software engineering exper-
iments, in: 2013 ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement, Baltimore, Maryland, USA, October 10–11,
2013, IEEE Computer Society, 2013, p. 4, http://dx.doi.org/10.1109/ESEM.
2013.64.

[195] M. Cruz, B. Bernárdez, A. Durán, J.A. Galindo, A. Ruiz-Cortés, Replication of
studies in empirical software engineering: A systematic mapping study, from
2013 to 2018, IEEE Access 8 (2020) 26773–26791, http://dx.doi.org/10.1109/
ACCESS.2019.2952191.

[196] S. Amann, S. Beyer, K. Kevic, H.C. Gall, Software mining studies: Goals,
approaches, artifacts, and replicability, in: B. Meyer, M. Nordio (Eds.), Software
Engineering - International Summer Schools, LASER 2013-2014, Elba, Italy,
Revised Tutorial Lectures, in: Lecture Notes in Computer Science, vol. 8987,
Springer, 2014, pp. 121–158, http://dx.doi.org/10.1007/978-3-319-28406-4_5.

[197] G. Robles, Replicating MSR: A study of the potential replicability of papers
published in the mining software repositories proceedings, in: J. Whitehead, T.
Zimmermann (Eds.), Proceedings of the 7th International Working Conference
on Mining Software Repositories, MSR 2010 (Co-Located with ICSE), Cape
Town, South Africa, May 2–3, 2010, Proceedings, IEEE Computer Society, 2010,
pp. 171–180, http://dx.doi.org/10.1109/MSR.2010.5463348.

[198] R. Dror, G. Baumer, M. Bogomolov, R. Reichart, Replicability analysis for
natural language processing: Testing significance with multiple datasets, Trans.
Assoc. Comput. Linguist. 5 (2017) 471–486, http://dx.doi.org/10.1162/tacl_a_
00074.

[199] A.A. Neto, A strategy to support replications of controlled experiments in
software engineering, ACM SIGSOFT Softw. Eng. Notes 44 (2019) 23, http:
//dx.doi.org/10.1145/3356773.3356796.

http://dx.doi.org/10.1007/978-3-030-47426-3_54
http://dx.doi.org/10.1109/TSE.1976.233837
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb152
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb152
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb152
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb152
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb152
http://dx.doi.org/10.1109/ASEW.2019.00040
http://dx.doi.org/10.1109/ASEW.2019.00040
http://dx.doi.org/10.1109/ASEW.2019.00040
http://dx.doi.org/10.1109/EDCC.2016.34
http://dx.doi.org/10.1109/LADC.2016.32
http://dx.doi.org/10.1109/LADC.2016.32
http://dx.doi.org/10.1109/LADC.2016.32
http://dx.doi.org/10.1145/3196398.3196454
http://dx.doi.org/10.1109/TDSC.2021.3051525
http://dx.doi.org/10.1109/TDSC.2021.3051525
http://dx.doi.org/10.1109/TDSC.2021.3051525
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb158
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb158
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb158
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb158
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb158
https://moodle.org/
https://moodle.org/
https://moodle.org/
https://www.phpmyadmin.net/
https://www.phpmyadmin.net/
https://www.phpmyadmin.net/
https://www.drupal.org/
https://www.worldcat.org/oclc/262433473
http://www.jstor.org/stable/4586294
http://dx.doi.org/10.1136/bmj.308.6943.1552
http://dx.doi.org/10.1136/bmj.308.6943.1552
http://dx.doi.org/10.1136/bmj.308.6943.1552
https://www.bmj.com/content/308/6943/1552
http://arxiv.org/abs/https://www.bmj.com/content/308/6943/1552.full.pdf
http://arxiv.org/abs/https://www.bmj.com/content/308/6943/1552.full.pdf
http://arxiv.org/abs/https://www.bmj.com/content/308/6943/1552.full.pdf
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb165
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb165
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb165
https://arxiv.org/abs/2010.16061
http://dx.doi.org/10.1007/s10664-020-09848-1
https://arxiv.org/abs/2202.02389
http://dx.doi.org/10.1016/j.infsof.2021.106652
http://dx.doi.org/10.1016/j.infsof.2021.106652
http://dx.doi.org/10.1016/j.infsof.2021.106652
http://dx.doi.org/10.1109/TSE.2018.2876537
http://dx.doi.org/10.1109/TSE.2018.2876537
http://dx.doi.org/10.1109/TSE.2018.2876537
http://dx.doi.org/10.1016/j.infsof.2016.04.017
http://dx.doi.org/10.1016/j.infsof.2016.04.017
http://dx.doi.org/10.1016/j.infsof.2016.04.017
http://dx.doi.org/10.1109/TSE.2018.2794977
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb173
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb173
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb173
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb173
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb173
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb174
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb174
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb174
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb174
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb174
http://dx.doi.org/10.2307/3001968
https://app.dimensions.ai/details/publication/pub.1102728208
https://app.dimensions.ai/details/publication/pub.1102728208
https://app.dimensions.ai/details/publication/pub.1102728208
https://arxiv.org/abs/2012.08387
https://arxiv.org/abs/2012.08387
https://arxiv.org/abs/2012.08387
https://labs.mozilla.org/
https://figshare.com/
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb179
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb179
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb179
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb180
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb180
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb180
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb180
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb180
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb181
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/978-3-642-29044-2
https://arxiv.org/abs/1801.07194
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb184
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb184
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb184
https://arxiv.org/abs/2003.14376
https://arxiv.org/abs/2003.14376
https://arxiv.org/abs/2003.14376
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb186
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb186
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb186
http://dx.doi.org/10.1109/TSE.2010.63
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb188
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb189
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb189
http://refhub.elsevier.com/S0950-5849(24)00053-3/sb189
http://dx.doi.org/10.1145/1640162.1640171
http://dx.doi.org/10.1145/1640162.1640171
http://dx.doi.org/10.1145/1640162.1640171
http://dx.doi.org/10.1016/j.infsof.2018.03.009
http://dx.doi.org/10.1016/j.infsof.2015.02.001
http://dx.doi.org/10.1016/j.infsof.2015.02.001
http://dx.doi.org/10.1016/j.infsof.2015.02.001
http://dx.doi.org/10.1007/s10664-013-9290-8
http://dx.doi.org/10.1007/s10664-013-9290-8
http://dx.doi.org/10.1007/s10664-013-9290-8
http://dx.doi.org/10.1109/ESEM.2013.64
http://dx.doi.org/10.1109/ESEM.2013.64
http://dx.doi.org/10.1109/ESEM.2013.64
http://dx.doi.org/10.1109/ACCESS.2019.2952191
http://dx.doi.org/10.1109/ACCESS.2019.2952191
http://dx.doi.org/10.1109/ACCESS.2019.2952191
http://dx.doi.org/10.1007/978-3-319-28406-4_5
http://dx.doi.org/10.1109/MSR.2010.5463348
http://dx.doi.org/10.1162/tacl_a_00074
http://dx.doi.org/10.1162/tacl_a_00074
http://dx.doi.org/10.1162/tacl_a_00074
http://dx.doi.org/10.1145/3356773.3356796
http://dx.doi.org/10.1145/3356773.3356796
http://dx.doi.org/10.1145/3356773.3356796

Information and Software Technology 170 (2024) 107448M. Esposito and D. Falessi
Matteo Esposito is a Ph.D. student at the University of
Rome Tor Vergata, Italy. He is also R&D Vice-Director
for Multitel SRL. He is the Chairman of the ACM Rome
Tor Vergata Student Chapter. His main research interest is
machine learning to support secure software engineering.
He received his MSc and BSc degrees in Computer Science
Engineering from the University of Rome Tor Vergata, Italy.
18
Davide Falessi is an Associate Professor of Software En-
gineering at the University of Rome Tor Vergata, Italy.
He is the Associate Editor in Software Economics of IEEE
Software and a senior member of IEEE. He is a reviewer
board member of the IEEE Transactions on Software En-
gineering. He has been the Guest Editor of special issues
in several journals, including the Empirical Software Engi-
neering Journal, the Journal of Systems and Software and
IEEE Software. His main research interest is in devising
and empirically assessing scalable solutions for developing
software-intensive systems. He received his Ph.D., MSc, and
BSc degrees in Computer Engineering from the University
of Rome Tor Vergata, Italy.

	VALIDATE: A deep dive into vulnerability prediction datasets
	Introduction
	Background and Related Work
	Machine Learning for Vulnerability Prediction Studies
	Replicability and Reproducibility
	The impact of datasets and feature selection on the accuracy of ML

	Systematic Dataset Review
	Goal and Research Questions
	Research Methodology
	Coding
	Dataset availability
	Dimension 1: Granularity of the labelled entity
	Dimension 2: Nature of the labelled entity
	Dimension 3: Type of labelling
	Dimension 4: Feature sets availability
	Dimension 5: Availability of either a CVE or a CWE information
	Dimension 6: Labelling Process
	Dimension 7: Manually Curated
	Dimension 8: Ground Truth Source
	Dimension 9: Negatives Assessed

	Results
	Dataset availability
	Dimensions
	Dimension 1: Granularity of the labelled entity
	Dimension 2: Nature of the labelled entity
	Dimension 3: Type of labelling
	Dimension 4: Feature sets availability
	Dimension 5: Availability of either a CVE or a CWE information
	Dimension 6: Labelling Process
	Dimension 7: Manually Curated
	Dimension 8: Ground Truth Source
	Dimension 9: Negatives Assessed

	Replication Study
	Dataset selection
	Design
	Results

	Discussion
	Threats to Validity
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

