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Abstract: Background: Tuberous sclerosis complex (TSC) can present prenatally, often with cardiac
rhabdomyomas, which, if large, may cause complications such as hydrops fetalis and reduced
cardiac output. Prenatal treatment of these lesions with mTOR inhibitors, approved for other TSC
manifestations, is under investigation. We hypothesize that mTOR inhibitors could help manage
or prevent other TSC-related conditions, particularly neurological issues like epilepsy and CNS
lesions, potentially improving neurodevelopmental outcomes. However, the safety of prenatal mTOR
treatment remains a concern, especially for foetal development, and limited data are available on
neurological outcomes. Methods: We conducted a literature review using PubMed, EMBASE, and
Cochrane CENTRAL, focusing on studies involving mTOR inhibitors for prenatal TSC management.
The search included case reports and series involving pregnant women diagnosed with TSC or early
manifestations like cardiac rhabdomyomas. Keywords included “mTOR Inhibitor”, “Rapamycin”,
“tuberous sclerosis complex”, “prenatal”, and “rhabdomyoma”. Results: Three prenatal mouse
studies and eight papers reporting on ten pregnant women treated with mTOR inhibitors were
identified. Conclusions: The literature confirms that prenatal mTOR inhibitors may reduce cardiac
rhabdomyomas. However, further studies are needed to explore their broader potential, particularly
in preventing neurological complications, while carefully considering their impact on intrauterine
growth and neurodevelopment.

Keywords: mTOR Inhibitors; rapamycin; sirolimus; tuberous sclerosis; TSC1; TSC2; prenatal; foetal;
pregnancy; rhabdomyoma

1. Introduction

Tuberous sclerosis complex (TSC) is a rare autosomal dominant multisystem disease,
with a prevalence of approximately 1 in 6000 live births [1]. It is characterized by the
development of benign tumours, known as hamartomas, in various organs, including the
brain, kidneys, skin, heart, and lungs [2]. TSC is caused by inactivating mutations in either
the TSC1 or TSC2 genes, which encode the proteins hamartin and tuberin, respectively.
These two proteins form a heterodimeric complex that inhibits the GTPase Rheb, thereby
suppressing the mammalian target of rapamycin complex 1 (mTORC1) [3]. When this
inhibitory pathway is disrupted, mTORC1 becomes hyperactive, driving the abnormal
growth of cells and leading to the formation of TSC-associated lesions [4,5]. Moreover,
mTORC1 hyperactivation plays a pivotal role in shaping the neurological manifestations of
TSC, which are among the most debilitating aspects of the disease [6].
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While TSC affects multiple organ systems, neurological involvement has the most
significant impact on patient morbidity and mortality [7]. Neurological lesions include
subependymal nodules, subependymal giant cell astrocytomas, radial migration lines, and
cortical tubers. Historically, cortical tubers have been regarded as the primary epileptogenic
foci; however, growing evidence suggests that the “normal appearing perituberal cortex”
may also be a source of seizures [8]. The age at seizure onset and the timing of the
appearance of epileptiform abnormalities on the electroencephalogram (EEG), as well as
their localization, may correspond to the placement of cortical tubers detected through
magnetic resonance imaging (MRI). These events often align with the functional maturation
of the cortex, with seizures appearing earlier in the temporo-occipital regions compared to
the frontal areas [9].

Histologically, cortical tubers and “normal-appearing perituberal cortex” exhibit a
spectrum of abnormalities, including the loss of the typical six-layered cortical structure and
the presence of aberrant cell types such as dysplastic neurons, giant cells, and abnormally
shaped astrocytes. These dysplastic neurons and astrocytes exhibit altered expression of
gamma-aminobutyric acid (GABA) transporters and glutamate receptors [10]. This imbal-
ance in neurotransmission, characterized by decreased GABA-mediated inhibition and
increased glutamate-driven excitation, is thought to underlie epileptogenesis in TSC. The
deficiency of GABAergic interneurons may also contribute to the early onset and severity of
seizures in TSC patients [11]. Moreover, the disruption of GABAergic neurotransmission is
believed to serve as a potential neurobiological link between epilepsy and autism spectrum
disorder (ASD), which is prevalent in TSC [12].

Among the neurological challenges posed by TSC, pharmacoresistant epilepsy is par-
ticularly prominent, affecting approximately two-thirds of patients. Additionally, around
half of the affected individuals experience varying degrees of intellectual disability, with a
similar proportion being diagnosed with autism spectrum disorder [13,14]. These neurolog-
ical deficits not only complicate clinical management but also have profound implications
for the patient’s overall quality of life, especially given the long-term cognitive and be-
havioural consequences [15].

One of the most significant challenges is addressing TSC-associated neuropsychiatric
disorders, also known as TAND, which are reported in 90% of affected individuals, starting
in childhood [16]. These disabilities appear to have age-related presentations, depending
on different developmental stages, and require a broad perspective and a multidisciplinary
approach. This involves professionals such as psychiatrists, psychologists, occupational
therapists, and educators, with individualized care tailored to each stage of life [17]. TAND
has been studied more extensively in terms of its psychiatric aspects, rather than its social
and behavioural dimensions, despite the well-known association between TSC and autism
spectrum disorder (ASD), with TSC being one of the leading single-gene disorders causing
ASD [18]. A more precise assessment of clinical features, such as genetic mutations, MRI
findings, and epilepsy history, has only recently been proposed as a way to predict the
development of ASD, emphasizing the critical role these factors play in managing the
neurocognitive burden [19].

In recent years, there has been a growing focus on early and aggressive treatment
of epilepsy in TSC, driven by the recognition that recurrent seizures, especially in early
life, can have detrimental effects on neurodevelopment [20]. Early treatment strategies are
designed to mitigate the long-term impact of these seizures on cognitive, language, and
motor development [21]. As part of this shift, preventive treatment with vigabatrin (VGB)
is now widely recommended. This treatment is typically initiated as soon as epileptiform
abnormalities are detected, even before the clinical manifestation of seizures [22]. VGB is
a GABA transaminase inhibitor that can completely halt spasms in 95% of infants with
TSC. It is recommended as the first-line treatment for early-onset seizures, including both
focal seizures and infantile spasms (IS) [23,24]. This drug is highly effective for this specific
condition, as it increases GABA availability in the tuberal area, thereby preventing the
spread of paroxysmal activity beyond the cortical dysplasia [25]. However, this is not
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the sole reason for VGB’s unique efficacy in TSC-related epilepsy. Unlike other GABA-
enhancing drugs such as barbiturates and benzodiazepines, VGB has been shown to inhibit
mTOR overactivation, which may contribute to its effectiveness [26].

However, results from a recent multicentre study suggest that although this treatment
strategy is quite effective in reducing the onset and/or severity of epilepsy, there is no
clear effect on neurodevelopmental outcomes [27]. Nevertheless, more recent studies
aimed to demonstrate that individuals treated with sirolimus or vigabatrin as preventive
therapy before symptom onset will perform better in terms of cognitive, language, and
motor development compared to those who did not receive treatment or were treated
after symptom onset. This raises the possibility that antiseizure medication alone may be
insufficient to alter the disease’s neurodevelopmental trajectory [28].

In recent decades, significant advancements have been made in the treatment of this
complex pathology, especially with the introduction of drugs specifically inhibiting the
mTOR complex. These drugs have been approved for the treatment of TSC-related SEGAs,
epilepsy, and renal angiomyolipomas, offering a more targeted therapeutic approach that
addresses the underlying molecular pathology.

mTOR inhibitors represent a relatively new pharmacological class, firstly born with
rapamycin, a natural substance with antifungal properties isolated from Streptomyces
species. In addition, it also showed anticancer activity, leading to the current clinical
use [29]. Sirolimus is a biochemical, functional form of rapamycin derived from the ex-
pression of the specific molecular domain (FKBP12 and FKBP51) that determines the
pharmacological effect. Everolimus is a modified drug derived from sirolimus [30]. Ra-
pamycin and its derivatives bind to the FKBP12 (FRB-FK506 binding protein 12), forming a
protein complex. This complex then binds to mTOR through its FRB (FKBP–rapamycin
binding) domain, inhibiting mTOR and its downstream effectors. As a result, cells are
arrested in the G1 phase of the cell cycle, leading to apoptosis [31]. Clinical studies on TSC-
related manifestations primarily focus on everolimus, the only mTOR inhibitor approved
for treating this complex disease. However, few studies compare everolimus with other
mTOR inhibitors. Like earlier compounds, everolimus is biochemically active without
modification and is administered orally once daily. Compared to sirolimus, it has several
pharmacokinetic differences, including better absorption, higher oral bioavailability, and
faster steady state and clearance, while maintaining similar pharmacodynamics [32].

Animal studies suggest that preventive treatment with mTOR inhibitors could not
only prevent seizure onset but also reverse certain social deficits observed in mouse models
of TSC [33–35]. However, while case reports indicate potential behavioural benefits from
mTOR inhibitors in humans, larger studies have yet to conclusively demonstrate their
efficacy in reversing neuropsychological and cognitive deficits [36–39]. This may be due, in
part, to the age of patients included in these studies, as pharmacological interventions in
older children may be less effective at reversing years of neural dysfunction. As a result,
scientific efforts are now concentrated on identifying the critical time window during which
therapeutic interventions might yield the greatest benefit.

TSC is increasingly being diagnosed prenatally, often following the detection of cardiac
rhabdomyomas—benign tumours that serve as the earliest sign of the disease. These
tumours, which are associated with TSC in up to 96% of cases involving multiple lesions,
are typically asymptomatic and benign [40]. Generally, the literature agrees that cardiac
rhabdomyomas grow most significantly during the second and third trimesters, then
slow down after 32 weeks and toward the end of pregnancy. This could be due to the
influence of estrogenic hormones during pregnancy on tumour growth [41]. However,
most rhabdomyomas have a favourable course, showing continuous regression in size
and complete resolution in over 80% of cases by early childhood, with no further cardiac
involvement or major cardiovascular complications [42]. The average time for shrinkage is
well established to be within the first six years of life, possibly due to apoptosis, though
the exact mechanism remains unknown. In females, particularly during adolescence,
symptomatic or asymptomatic growth or the appearance of new rhabdomyomas may
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occur, possibly linked to oestrogen’s proliferative effect on cardiac cells [43]. Additionally,
genetic variability has been suggested as a possible explanation for differing growth
patterns, particularly in rare cases where large masses develop very early. However, no
data currently support a genetic hypothesis in the pathogenesis of rhabdomyomas in
TSC [44].

The ability of mTOR inhibitors to reduce rhabdomyoma size after birth is well estab-
lished, as demonstrated in numerous case series. These inhibitors are now considered a
viable alternative to invasive therapies, with a high success rate [45,46]. On average, a
significant reduction in the size of cardiac masses, or even complete regression, is reported
within 2–3 months, with some cases showing improvement in under a month [47]. Serial
echocardiographs are used to track the progressive effectiveness of the therapy, though a
rebound in tumour size may occur after rapid discontinuation of mTOR inhibitors, neces-
sitating close follow-up, even after complete regression of cardiac lesions [48]. However,
when rhabdomyomas are large enough to obstruct cardiac flow, they can cause serious
complications such as hydrops fetalis and reduced cardiac output, which may lead to
prenatal or early postnatal death [49]. In some cases, the detection of large lesions has
prompted attempts at prenatal treatment with mTOR inhibitors, both in animal models
and in pregnant women. Despite the promise of this approach, very little is known about
the long-term effects of prenatal mTOR inhibition. The aim of this paper is to review the
existing literature on prenatal treatment with mTOR inhibitors, with a focus on potential
long-term and systemic effects, as well as possible adverse outcomes.

2. Materials and Methods

We conducted a comprehensive search of the PubMed, EMBASE, and Cochrane
Central Register of Controlled Trials (CENTRAL) databases to identify relevant studies on
the use of mTOR inhibitors in the prenatal management of tuberous sclerosis complex (TSC).
The search strategy was designed to capture all pertinent articles using a combination of
keywords and MeSH terms. The following search terms were employed: “mTOR inhibitor”
OR “everolimus” OR “rapamycin” AND “prenatal” OR “foetal” OR “pregnancy” AND
“tuberous sclerosis complex” OR “tuberous sclerosis” OR “TSC”. These terms were chosen
to ensure a broad, yet focused retrieval of studies related to the prenatal application of
mTOR inhibitors in TSC-affected pregnancies.

We applied no restrictions regarding publication date to ensure that older, poten-
tially seminal studies were included, while focusing primarily on peer-reviewed articles
published in English. In addition, we manually screened the references of the retrieved
studies to identify any further relevant articles that may not have been captured by our
initial search. Conference abstracts, case reports, and reviews were also considered if they
provided novel data or perspectives relevant to prenatal mTOR inhibition in TSC. Where
necessary, duplicate entries across the databases were removed prior to the analysis.

The final dataset was filtered based on predefined inclusion and exclusion criteria,
which focused on studies reporting the effects of prenatal mTOR inhibition on foetal
outcomes, long-term neurodevelopment, or systemic effects in either animal models or
human cases.

3. Results
3.1. Animal Models

We found three mouse model studies aimed at investigating the potential effects of
prenatal treatment with mTOR inhibitors, particularly on its psychomotor and behavioural
development. Data are summarized in Table 1.

In the first study by Anderl et al. [50], the authors studied a TSC1-mutant mouse
model characterized by brain enlargement, mTOR hyperactivation, and neonatal death
due to neurobehavioral effects, such as poor mother–pup interaction, with limited milk
suckling and consequent hypoglycaemia. They demonstrated that a single dose of prenatal
rapamycin led to a dramatic improvement in the survival of the pups. This treatment
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was supplemented with further administration of rapamycin starting at postnatal day 8
and continued at gradually increasing doses. Although this treatment prolonged survival
(up to 40 days), the mice showed low birth weights, associated with poor weight gain,
developmental delay and neurological symptoms such as tremor, delayed eye opening
beyond age 3 weeks, and the “Straub tail” phenomenon (tail spasms, resembling those
typically observed after opioid administration). These symptoms did not appear in the pre-
natally treated wildtype, suggesting a reversal in mTORC1 activity, reducing the pathway
in favour of mTORC2, and consequent hyperactivation of Akt, which contributes to poor
neurocognitive development.

Way et al. [51] conducted a three-arm study that included prenatal therapy, a combined
prenatal and postnatal therapy scheme, and postnatal therapy only, all using rapamycin. To
minimize the risk of intrauterine growth restriction (IUGR) and postnatal growth issues, the
lowest possible dose was administered. An increase in mean survival was observed across
all three groups. The combined and postnatal groups were indistinguishable from healthy
controls at birth but began to experience mortality around 40 days after birth, underscoring
the necessity for continuous treatment. Prenatal therapy alone did not definitively block
the mTORC1 pathway and thus did not alter the natural course of the disease or affect
mortality. However, histological examination revealed a significant reduction in cellular
hypertrophy and hyperplasia in all three groups. Clinically, the combined treatment
showed the greatest neurodevelopmental recovery by blocking the altered prenatal cortical
migration. Nonetheless, animals treated with the combined therapy did not perform as
well as postnatally treated animals in learning and memory tasks.

A subsequent study [52] focused on the clinical effects of rapamycin during early
development and adulthood, not specifically in TSC-mutant mice. In this study, pregnant
wildtype mice received a single intraperitoneal dose of rapamycin at a gestational age of
16.5 days, which corresponds to the second trimester in human gestation. This timing was
chosen to minimize the risk of interfering with organogenesis if administered too early and
to avoid birth complications if administered too late. The results showed that the treated
mice, monitored blindly from short-term follow-up into adulthood, exhibited an anxious
phenotype and delays in psychomotor development stages. However, no alterations were
observed in their development of relational or social skills.
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Table 1. Animal models: prenatal treatment with mTOR inhibitors in TSC1- or TSC2-knockout and wildtype mice.

Nr. Reference Mutant Gene GA at Therapy Drug Route of
Administration Dosage Therapy after

Birth
Age of

Follow-Up Follow-Up

1 Tsai ’13 [52] Wildtype E16.5 SIR IP 1 mg/kg once no 4–7 weeks
Delay in sensorimotor and motor

milestones, anxious phenotype, no
effects on social behaviour

2 Way ’12 [51] TSC2

• E12.5-P0
(prenatal)

• E12.5-P21
(combined)

• P0-P21
(postnatal)

SIR IP 0.1 mg/kg/day
Yes—IP (only
combined and

postnatal group)
P120

• Reduction of survival, less
effectiveness in restoring
neurodevelopment

• Long-term memory
(consolidation) disfunction

• Best performance in
hippocampus-dependent
memory tasks

3 Anderl ‘11 [50] TSC1 E15-17 SIR SC 1 mg/kg once

Yes—IP
(P8–P19:

1 mg/kg, every
3–4 days;

>P21: 3 mg/kg,
3 times/week)

P40
Reduction in the weight of the
newborn, developmental delay,

neurological symptoms

[GA: gestational age; E: embryonal (prenatal) day; P: postnatal day; SIR: sirolimus; IP: intraperitoneally; SC: subcutaneous].
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3.2. Clinical Studies

Our search identified eight papers [53–60] comprising case reports and case series,
detailing ten pregnant women treated with mTOR inhibitors following a prenatal TSC
diagnosis. In all cases, the diagnosis was made after the detection of cardiac rhabdomyomas,
which were also the indication for treatment. These rhabdomyomas were detected in only
two cases where the mothers had a prior diagnosis of TSC. In the remaining cases, the
rhabdomyomas were incidentally discovered during the first morphological screening
ultrasound. Genetic testing was performed either in utero following clinical suspicion or
after birth. In one case, a prenatal diagnosis of TSC was made based on foetal MRI, which
showed CNS involvement. More details are listed in Table 2.

Sirolimus was the most frequently administered drug, with everolimus used in only
one case. Therapy typically began between the end of the second and the beginning
of the third trimesters, ranging from a minimum of 23 to 36 weeks of gestation. The
treatment continued for varying periods, with regular clinical evaluations and blood tests
every 1–2 weeks and foetal echocardiographic assessments every 2 weeks. The average
dosage was progressively adjusted based on blood levels, which were usually maintained
between 10 and 15 ng/ml. In almost all cases, therapy was continued until birth, though in
some instances, it was discontinued one week before the scheduled birth or even earlier.
Achieving the desired blood levels corresponded with a gradual reduction in the size of
intracardiac lesions, with one case showing total disappearance. Except for one case ([57])
where preterm birth was planned due to intrauterine growth restriction, no adverse effects
on the foetus were observed. In the remaining cases, pregnancies progressed favourably
for both the foetus and the mother, with full-term births and no perinatal issues.

Only one newborn received immediate postnatal therapy with an mTOR inhibitor,
specifically everolimus [53], due to its positive effects on the size of the known rhab-
domyoma. Follow-up until 13 months of age documented developmental delay, elec-
troencephalogram (EEG) abnormalities, leading to the initiation of prophylactic therapy
with Vigabatrin, and recurrent major infections, including viral pneumonia. Consequently,
clinicians discontinued everolimus therapy at 20 months.

Two other patients started therapy at 4 days and 2 months of age to prevent tumour
progression or because the tumour progressed after an attempt to discontinue therapy.
Follow-up at 36 months and 9 months, respectively, showed no developmental alterations
or EEG abnormalities.

Among the other newborns who did not undergo postnatal therapy, one patient
exhibited EEG abnormalities at follow-up, prompting the initiation of antiepileptic therapy
with phenobarbital. Additionally, delayed speech was observed in three other cases (at 16,
21, and 24 months).

All patients studied exhibited normal postnatal growth during the observed period,
including the newborn who experienced intrauterine growth restriction.
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Table 2. Clinical studies: human cases of prenatal treatment in utero with mTOR inhibitors.

N Reference
GA at Therapy

Start–Stop
(Weeks)

GA at Birth
(Weeks) Genetics Drug Dosage

(mg)

Maternal
Bood Level

(ng/mL)

Adverse
Prenatal
Events

Postnatal
Therapy

Adverse
Postnatal

Events

Last
Follow-Up
(Months)

Epileptic
Seizures

EEG
Abnormal-

ities

Psychomotor
Delay

1
Carsten-
Will, ’23

[53]
27–38 39 + 1

TSC2
(familial,
father)

SIR 4 8.4–9.9 NO EVE (to 20
months)

Recurrent
infections:
viral pneu-

monia
stopped
therapy

13 N Y Y

2 Dagge, ’22
[54] 26–birth 39 NA SIR 4–10 13.8 NO NO / / / / /

3 Cavalheiro,
’21 [55] / 39 NA EVE 10 8.4 NO EVE (at 4

days) / 36 N N N

4
Ebrahimi-
Fakhari,
’21 [56]

• 35 +
2–birth

• 32 +
3–birth

• 34–birth

• 39 + 1
• 36 + 6
• 38 + 6

NA SIR
• 3
• 3
• 4 + 2

• 6.1
• 3.7
• 10.85 ±

1.26

/ NO /
• 24
• 21
• 16

N N Y (delayed
speech)

5 Pluym, ’19
[57] 28–35 36 TSC2 (de

novo) SIR 6–10 11.6–18.6 IUGR NO / 6 N N N

6
Vachon-

Marceau,
’19 [58]

31 + 4–36 39 TSC2 (de
novo) SIR 5–8

TARGET
(not

specified)
NO NO / / N Y N

7 Park, ’19
[59] 23–birth 39

TSC2
(familial,
mother)

SIR 4–12 12.1 NO NO / / / / /

8 Barnes, ‘18
[60] 30–birth 36 TSC1 SIR / / NO SIR (at

2 months) / 9 N N N

[GA: gestational age; NA: not available; SIR: sirolimus; EVE: everolimus; EEG: electroencephalography].
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4. Discussion

Tuberous sclerosis complex (TSC) remains a challenging genetic disorder, particularly
given the wide range of organ systems it affects and the significant neurological complica-
tions it introduces. The underlying pathophysiology of TSC revolves around mutations
in the TSC1 or TSC2 genes, leading to the dysregulation of the mTORC1 pathway and
resulting in abnormal cell proliferation and tumour growth. Among these manifestations,
cardiac rhabdomyomas are often the first detectable sign of TSC, and their presence in the
prenatal stage offers a window of opportunity for early intervention.

The use of mTOR inhibitors as a therapeutic option in TSC is well-established in postna-
tal settings, with proven efficacy in reducing tumour size and controlling refractory epilepsy
in some cases. However, prenatal treatment with mTOR inhibitors remains largely experi-
mental, and as shown in our review, the long-term impact of such interventions—especially
concerning neurodevelopment—requires much more scrutiny. The safety and efficacy of
mTOR inhibitors during pregnancy are of particular concern, given their teratogenic classi-
fication in animal studies, yet the limited human data available suggest that these drugs
may be safe, or at least not overtly harmful to foetal development [61].

Despite promising results, our review highlights several gaps and challenges. Firstly,
although prenatal mTOR inhibition has been effective in reducing the size of cardiac rhab-
domyomas, it remains unclear if this effect translates into improved long-term outcomes
for the child, particularly in terms of neurological development. Cardiac symptoms in
newborns can be life-threatening, and reducing tumour burden in utero is a significant
achievement, potentially preventing prenatal complications such as hydrops fetalis. How-
ever, as our findings suggest, the full neurological impact of TSC, including the high
prevalence of epilepsy and autism spectrum disorder (ASD), may not be significantly
altered by such interventions.

This brings us to an important consideration: while the early treatment of TSC-related
tumours is clearly advantageous, mTOR inhibitors may not address the full spectrum of TSC
neurodevelopmental challenges. Epileptogenesis, in particular, remains a complex process
that likely begins before birth and involves not just the presence of cortical tubers but also
disruptions in cortical migration and synaptic function. The observation of EEG abnormalities
in some children treated prenatally raises the question of whether mTOR inhibition, particularly
when administered late in gestation, can adequately prevent or mitigate the development
of epilepsy and other neurological deficits. Furthermore, there is still insufficient data to
determine if sirolimus and everolimus have different effects during this specific period of life.

Moreover, the timing of mTOR inhibitor administration appears critical. Animal
models suggest that early prenatal treatment may offer benefits in terms of neurocognitive
recovery, but these effects are not uniformly observed in human studies. Postnatal sup-
plementation with mTOR inhibitors may still be necessary, as seen in some cases where
continuous therapy was required to maintain tumour reduction or prevent postnatal dis-
ease progression. However, the limited cognitive and behavioural improvements observed
in some mouse models raise concerns about whether prenatal interventions alone can
significantly alter the disease trajectory, particularly when initiated later in pregnancy.

Additionally, the dose-related complications noted in animal studies, including in-
trauterine growth restriction (IUGR) and developmental delays, call for careful monitoring
of the dosage and timing of treatment in human pregnancies. While no major congenital
abnormalities have been reported in the cases we reviewed, language delays and develop-
mental abnormalities were noted in some children, which could either be a reflection of the
underlying TSC pathology or a subtle effect of mTOR inhibitor exposure.

Finally, the long-term neurological effects of prenatal mTOR inhibition remain largely
unexplored. While the immediate postnatal outcomes have been mostly favourable in terms
of growth and tumour control, the neurodevelopmental trajectory of these children over
time needs further investigation. Given the high rate of neuropsychiatric manifestations in
TSC, the lack of detailed neurodevelopmental follow-up in the reported cases represents a
significant gap in the literature.
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5. Conclusions

In conclusion, while the data from animal models and early clinical case reports
provide encouraging evidence that prenatal treatment with mTOR inhibitors can reduce
the size of cardiac rhabdomyomas and potentially improve immediate outcomes, there
remains substantial uncertainty regarding the long-term effects of such interventions
on neurodevelopment. The small number of cases, combined with the heterogeneity in
treatment protocols and follow-up periods, makes it difficult to draw definitive conclusions.

The discrepancies between animal model outcomes and human clinical experiences
underscore the complexity of translating preclinical findings into therapeutic interventions.
It is clear that mTOR inhibitors hold promise as part of the prenatal management of TSC,
but additional studies are urgently needed to fully assess their impact on neurological
outcomes, including seizure onset and cognitive development.

Future research should prioritize longitudinal studies with comprehensive follow-up
into childhood and beyond, with a particular focus on neurodevelopmental milestones,
epileptogenesis, and behavioural outcomes. Multicentre clinical trials could help establish
standardized treatment protocols and clarify the potential risks and benefits of prenatal
mTOR inhibition. Only through such rigorous studies can we better understand whether
early intervention with mTOR inhibitors can truly alter the natural history of TSC, improv-
ing both the neurological and overall quality of life for affected individuals.

For now, prenatal mTOR inhibition remains an experimental but promising avenue
for treating TSC. Continued efforts to refine this approach, ensuring its safety and efficacy,
will be critical in shaping the future of prenatal care for this complex disease.
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