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Abstract
Magnetic confinement nuclear fusion holds great promise as a source of clean and sustainable
energy for the future. However, achieving net energy from fusion reactors requires a more
profound understanding of the underlying physics and the development of efficient control
strategies. Plasma diagnostics are vital to these efforts, but accessing local information often
involves solving very ill-posed inverse problems. Regrettably, many of the current approaches
for solving these problems rely on simplifying assumptions, sometimes inaccurate or not
completely verified, with consequent imprecise outcomes. In order to overcome these
challenges, the present study suggests employing physics-informed neural networks (PINNs) to
tackle inverse problems in tokamaks. PINNs represent a type of neural network that is versatile
and can offer several benefits over traditional methods, such as their capability of handling
incomplete physics equations, of coping with noisy data, and of operating mesh-independently.
In this work, PINNs are applied to three typical inverse problems in tokamak physics:
equilibrium reconstruction, interferometer inversion, and bolometer tomography. The
reconstructions are compared with measurements from other diagnostics and correlated
phenomena, and the results clearly show that PINNs can be easily applied to these types of
problems, delivering accurate results. Furthermore, we discuss the potential of PINNs as a
powerful tool for integrated data analysis. Overall, this study demonstrates the great potential of
PINNs for solving inverse problems in magnetic confinement thermonuclear fusion and
highlights the benefits of using advanced machine learning techniques for the interpretation of
various plasma diagnostics.

a See Mailloux et al 2022 (https://doi.org/10.1088/1741-4326/ac47b4) for JET Contributors.
∗

Author to whom any correspondence should be addressed.

Original content from this workmay be used under the terms
of the Creative Commons Attribution 4.0 licence. Any fur-

ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

1741-4326/23/126059+28$33.00 Printed in the UK 1
© 2023 The Author(s). Published by IOP Publishing Ltd

on behalf of the IAEA. All rights reserved

https://doi.org/10.1088/1741-4326/ad067c
https://orcid.org/0000-0003-4414-6119
https://orcid.org/0000-0001-5158-7292
https://orcid.org/0000-0002-3932-3865
mailto:r.rossi@ing.uniroma2.it
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-4326/ad067c&domain=pdf&date_stamp=2023-11-7
https://doi.org/10.1088/1741-4326/ac47b4
https://creativecommons.org/licenses/by/4.0/


Nucl. Fusion 63 (2023) 126059 R. Rossi et al

Keywords: inverse problems, equilibrium reconstructions, tomography, interferometry,
bolometry, physics-informed neural networks, integrated-data analysis

(Some figures may appear in colour only in the online journal)

1. Introduction

Advanced diagnostic techniques in tokamak reactors are fun-
damental to understand the physics, validate models, develop
new ones, and advance and implement control strategies for
correct execution of the discharges [1–3]. Unfortunately, most
of plasma diagnostics do not give a direct access to local
internal quantities, limiting the amount and the details of
information about the plasma. Many diagnostics, such as
magnetic coils, measure only variables external to the high-
temperature plasma. Others return line-integrated information,
such as the interferometers and bolometers, which provide the
line-integrated density (LID) and the line-integrated emissiv-
ity respectively [4–7].

The lack of local internal measurements implies that the
nuclear fusion scientific community had to develop strategies
to reconstruct the local variables by using advanced inver-
sion techniques. For example, in order to reconstruct and ana-
lyse the magnetic configuration of tokamak plasmas, mag-
netic equilibrium reconstruction routines have been developed
by imposing the Grad-Shafranov equation (derived from one-
fluid steady state toroidally symmetric ideal magnetohydro-
dynamic (MHD) equations) constrained with the magnetic
measurements (used as boundary conditions of the partial dif-
ferential equations (PDEs) and internal measurements when
available [8–15]. Another typical inverse problem is bolometer
tomography that, combining the measurements from two or
more bolometer cameras, allow reconstructing the most prob-
able emissivity field [16–18].

However, such inversion techniques are usually limited by
various assumptions that are required to render the inversion
algorithm stable, fast, and reliable. For example, most equi-
librium reconstruction codes use the one-fluid approximation,
assume that the resistivity is zero, that the plasma is in a steady-
state toroidally symmetric regime, while bolometer tomo-
graphy usually assumes that emissivity is toroidally symmetric
(this assumption is required when cameras see the plasma in
different toroidal positions). Unfortunately, these hypotheses
are true as first approximations at best, while if one is inter-
ested in extracting more physically meaningful information,
more detailed reconstruction should be performed [18–22].

This work aims at showing how physics-informed neural
networks (PINNs) may be used to solve inverse problems
in nuclear fusion science. PINNs constitute a new branch of
artificial intelligence that offers the possibility of integrating
data-driven methodology and physics equations in a very effi-
cient way. The physics equations can also be incomplete, leav-
ing to experimental data the task of providing information
on the unknown parts. They have good generalisation cap-
ability also in the opposite situation, in which there is some
consolidated physics knowledge, but the measurements are
scarce (a case of great interest in the next generation of devices

particularly the reactor DEMO). Moreover, they do not need
a mesh and can be easily applied to complex problem thanks
to domain decomposition [23, 24]. All these features imply
that PINNs have been deployed to address a huge number
of problems in various fields, such as fluid dynamics [25],
physics [26], engineering [27], and medicine [28]. The present
manuscript, as a first attempt to use PINNs to solve inverse
problems in tokamaks, investigates their use in three funda-
mental problems: equilibrium reconstruction, interferometer
inversion, and bolometer tomography. It also illustrates the
potential of the technology to perform integrated data analysis
(IDA).

The paper is organised as follows. The next section intro-
duces the PINNs, with particular attention to the aspects relev-
ant to the solution of inverse problems in tokamaks. Section 3
shows the PINNs potential to derive the magnetic topology in
both 2D and 3D geometry from external measurements. The
PINNs capability of solving tomographic inversion problems
is addressed in section 4 for Joint European Torus (JET) bolo-
metric diagnostic. How to perform IDAwith PINNs is the sub-
ject of section 5, exemplified by the case of reconstructing the
density profile with the help of interferometry and Thomson
scattering on JET. Summary, discussion and lines of future
developments are covered in the last section of the paper.

2. PINNs

PINNs, or PINNs, are new types of deep neural networks
devised to solve partial differential equations through deep
learning. Most physical phenomena can be described by PDE
(e.g. Navier-Stokes equations for fluid dynamics) that can be
solved only by numerical methods (finite volumes, finite dif-
ferences, and finite elements). These methods usually rely on
some prior assumptions, linearisation, and they have to deal
with meshing (domain discretization), which usually limit the
numerical simulation accuracy and fidelity [29–31].

The idea behind PINNs is based on the fact that a suffi-
ciently deep neural network with nonlinear activation func-
tions is a universal function approximator. Therefore, one can
train the neural network to predict the physical variables that
minimise the error on the physics equations and the available
data. Therefore, contrary to typical supervised machine learn-
ing, PINNs are trained to find a solution that satisfy both data
and physics [23–25].

Such an approach results in the following main advantages
[23, 24]:

1. Contrary to numerical simulations, which needwell defined
boundary conditions, neural networks can deal with prob-
lems that have sparse and incomplete data.

2. When the knowledge about the physics of the problem
in incomplete, numerical simulations require an iterative
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procedure to model specific phenomena (e.g. turbulence
in fluids) that can demand a lot of computational time
(without any guarantee that the found solution is the best).
On the contrary, PINNs can deal with incomplete phys-
ics, allowing a ‘self-tuning’ of the model parameters. Of
course, such an approach is possible only by over con-
straining the problem (for example with additional meas-
urements, inequalities, etc).

3. Soft constraints (i.e. some constraints that may be true, but
not everywhere and not every time) can be easily imple-
mented and they can be used to close problems with incom-
plete physics and data.

4. The method is meshless, allowing for solutions with very
high-spatial resolution.

5. PINNs are easily scalable to large problems thanks to
domain decomposition.

To fix the ideas, from now on the discussion will be partic-
ularised for the applications discussed in the rest of the paper.
In this work, a PINN mathematical model will be indicated
as f(θ,X) where θ is the vector of the parameters and X is
the input vector. The data from the measurements, from here
on named boundary conditions, will be indicated with Y. The
training process is based on minimising a loss function L that
is calculated as the sum of the physics lossesLp and the bound-
ary condition lossesLb. The physics losses termLp is meant to
quantify how well a solution reproduces the input mathemat-
ical equations. The boundary condition losses term Lb basic-
ally consists of the goodness of fit, quantifying how well a
solution approximates the available data. The losses are usu-
ally weighted by the vector α that allows adjusting the relative
importance of the models and the data.

For what concern notations, from now on the variables
without any subscript refer to the predicted variables while the
ones with the subscript ‘b’ refer to the boundary conditions
(measurements or a priori known information). For example,
y is the predicted variable while yb is the measured quantity.

Several problems are defined by many physics equations
and many boundary conditions. Therefore, the loss function of
a problem described byNp physics equations andNb boundary
conditions can be written as:

L=

Np∑
i

αp,iLp,i +

Nb∑
i

αb,iLb,i . (1)

Boundary condition losses are specific to the problem:
they could be localmeasurements, line-integrated information,
indirect measurements, etc. In the next sections, the applica-
tion of PINNs to problemswith both local boundary conditions
(such as magnetic coils) and line-integrated boundary condi-
tions (bolometer and interferometers) are exemplified.

Regarding the physics losses, let us assume a general PDE
equation (a convection-diffusion equation is considered as an
example):

f(Ri,ϕ i,Zi, ti) =

(
∂c
∂t

+∇· (vc)−∇ · (D∇c)+R

)
Ri,ϕ i,Zi,ti

= 0

(2)

where c, v, D, and R are the variables and parameters of the
equation. The neural network is asked to predict the unknowns
and evaluate the derivatives (through automatic differentiation
[32, 33]) in M points known as collocation points. Then, the
physics loss is calculated as the mean square error (MSE) of
the physics equation(s) in these points:

Lp,i =
1
Mp

Mp∑
j=1

(
fi
(
Rj,φ j,Zj, tj

))2
. (3)

Collocation points can be different at each iteration, allow-
ing the neural network to generalise the solution in the entire
domain with a good spatial resolution. In this work, colloca-
tion points have been generated using a Sobol sequence [34,
35]. Collocation points are strategically generated to encom-
pass the entire geometry of the problem. In 2D geometries, a
2D Sobol sequence is employed to generate both the R and Z
coordinates, whereas in 3D geometries, a 3D Sobol sequence
is utilized to also generate the toroidal angle coordinate.

The boundary loss is calculated as the MSE of the resid-
uals, the differences between the experimental points and the
predictions:

Lb,i =
1
Mb

Mb∑
j=1

(
yj− ybj

)2
(4)

where yj indicates the experimental values and ybj the PINN
predictions.

Since the paper reports only applications of PINNs to toka-
mak problems, all the following examples are described in a
cylindrical reference frame with coordinates R, ϕ, Z. All the
neural network architectures presented in this work are also
based on a feed-forward structure alternating fully connec-
ted layers with activation functions. The choice of the hyper-
parameters is a delicate aspect, which needs to be addressed
on a case-by-case basis. Various approaches and solutions are
discussed in the following sections particularised for the indi-
vidual applications.

The neural network training (schematically represented in
figure 1) is computed for Ke epochs. For each epoch, Ki itera-
tions are performed. At each iteration, a mini-batch, i.e. a sub-
set of the entire collocation points, is taken and used to evaluate
the loss function. Then the gradients of the loss function are
computed, and the neural network parameters (θ) are updated
using the Adaptive Moment Estimation algorithm [36]. The
total number of collocation points (Mp,total) is computed as
(Mp,total = Ki Mp,batch), to ensure that each iteration has a num-
ber of collocation points equal to Mp,batch and that each itera-
tion is run with a different batch. On the contrary the colloca-
tion points are the same for each epoch.

The training process is stopped when the ‘Stop Condition’
is fulfilled, i.e. one of the following criteria is satisfied:

1. The loss function reached a target loss function (Ltarget).
When this criterion is reached, the neural network is trained
for other 100 epochs and then the neural network which
returned the best loss is saved.
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Figure 1. A schematics of PINN training logic.

2. The loss function does not statistically improve for Kv

epochs. A loss is considered not improving the new epoch
if it is contained in the range between L̄−σL and L̄+σL,
where L̄ and σL are the loss average and standard deviation
of the losses in the previous 30 epochs.

3. The maximum number of epochs is reached.

For Criterion 1, the loss target is chosen case by case, while
for Criterion 2 Kv has been chosen equal to 100.

Criterion 3 should never be reached, since it means that the
target loss has not been achieved (criterion 1) but the PINN
is still improving (criterion 2). For this reason, the maximum
number of epochs has been set to a large value (106).

It has to be highlighted that the stop condition hyperpara-
meters define the quality of the reconstruction and the compu-
tational time.

For what concern the learning rate, the typical time-based
learning rate update is applied, where the learning rate LR at
the ith iteration is LR= (LR0)/(1+Decay ×i). In all cases,
LR0 is set to 10−2 and decay to 10−4.

It is also worth mentioning that some solutions adopted in
the present work, such as MSE loss, Adam optimizer, learning
rate decay are very common and consolidated but alternatives
exist [26–28].

3. Equilibrium reconstruction

In tokamaks the accurate measurement and control of the
magnetic configuration is essential to achieve the required
performances [37]. This aspect has become increasingly
important in the last years, due to the continuous increase
of the scenarios’ sophistication and several new methodolo-
gies, also based on artificial intelligence, have been developed
[38–41]. From the hybrid scenario to various small or free
edge localised modes (ELMs) regimes, fine tuning of the
fields is indispensable for both the quality and the stability

of the plasmas. Unfortunately, the reconstruction of the mag-
netic topology is a very ill-posed inversion problem. Indeed,
the internal fields have to be reconstructed on the basis of
external measurements, while internal measurements are few
and often not routinely available. Given the nature of the prob-
lem and the quality and quantity of the diagnostics available,
in principle there is even an infinite number of solutions com-
patible with the measurements. To converge on physically
meaningful solutions, the inversion codes rely on the Grad-
Shafranov equation [42, 43], which assumes that the plasma
is in a steady state ideal MHD equilibrium between magnetic
and kinetic pressure. Even when these assumptions are well
satisfied, the deployment of the inversion algorithms is not
necessarily straightforward. Indeed, the development of reli-
able codes implementing the reconstructions of the fields on
the basis of the Grad-Shafranov equation has proved delicate,
with their maintenance and update particularly time consum-
ing. Consequently, easy alternatives, based on completely dif-
ferent mathematical methods are potentially quite valuable.

The section is organised as follows. Section 3.1 describes
the neural network architectures developed for the equilib-
rium reconstructions. Then, in section 3.2 the results obtained
with the PINN in some analytical cases (both 2D and 3D) are
shown. Section 3.3 is devoted to some tests performed with
JETmeasurements, comparing the PINNs-predictionswith the
outputs of the standard equilibrium reconstruction codes used
at JET.

3.1. Equilibrium equations and network architectures

In this work, the reconstruction of the magnetic configura-
tion is performed by assuming the ideal steady-state MHD
equations:

∇·B= 0
µ0J=∇×B
J×B=∇p

(5)

4
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where B is the magnetic field vector, J is the plasma
density current vector and p is the plasma pressure.
Therefore, the problem is described by seven scalar variables
(BR, Bϕ , Bz, JR, Jϕ , Jz, p) and seven scalar physics losses
(equation (4)). However, instead of predicting seven differ-
ent variables and ask the neural network to minimise all the
physics loss functions, a smarter solution can be developed
introducing some ‘physics Layers’ in the neural network. In
this section, three different neural network architectures are
presented, developed for ad hoc problems and situations.

3.1.1. Steady state 3D MagnetoHydroDynamics neural net-
work. The first neural network, S3MHDnet (Steady state 3D
MagnetoHydroDynamics net), is the most general architecture
(figure 2-top). The network is trained to predict the three com-
ponents of the vector potential A (AR, Aphi, Az) and pressure.
Then, the first physics layer calculates the magnetic field B
from the equation:

B=∇×A (6)

Note that this automatically implies that the divergence of
the predicted magnetic field is equal to zero and therefore the
first of the seven physics conditions is always fulfilled. Then,
a second physics layer computes the plasma density current
from the magnetic field by exploiting the Ampere’s law:

J=
1
µ0

∇×B. (7)

Then, the neural network is required to satisfy the force bal-
ance vector equation and the boundary conditions. This archi-
tecture could be used also for 3D equilibria, and it allows redu-
cing the number of variables to predict from seven to four and
the number of physics losses to minimise from seven to three.

The inputs to the neural network are the cylindrical coordin-
ates of the points (Ri, ϕ i, zi). The hidden layers are composed
of 9 layers with 20 neurons each, for a total of 3544 learnable
parameters. The activation functions are the hyperbolic tan-
gent for the hidden layers, the linear function for the output
layer giving the potential vector and the softplus for the pres-
sure (this allows imposing that the pressure is non-negative).

3.1.2. Steady state 2D MagnetoHydroDynamics neural net-
work. For axial symmetric equilibria, two other architec-
tures have been developed. The first one, the S2MHDnet
(figure 2- middle), trains the neural network to predict only the
toroidal component of the potential vector, the toroidal mag-
netic field, and the pressure. In fact, since all the derivatives
with respect to the toroidal angle are equal to zero, it is pos-
sible to write:

B=∇×A=


1
R
∂Az
∂ϕ − ∂Aϕ

∂z
∂AR
∂z − ∂Az

∂R

1
R

(
∂(RAϕ )

∂R − ∂AR
∂ϕ

)
=

 −∂Aϕ

∂z
Bϕ

1
R
∂(RAϕ )

∂R

 .
(8)

Also in this case, the divergence of the magnetic field is
automatically fulfilled. Then, the plasma density current is cal-
culated with the physics informed layer as for the S3MHDnet
and the unique physics loss function is the vector force bal-
ance equation. With this architecture, the neural network has
to predict only three variables instead of seven.

The inputs to the neural network are the coordinates of the
points (Ri, zi). The hidden layers are made up of 9 layers with
20 neurons each, for a total of 3483 parameters. The activation
functions are the hyperbolic tangent for the hidden layers, the
linear function for the output layer giving the potential vector
and the toroidal magnetic field and the softplus for the pressure
(this allows imposing that the pressure is non-negative).

3.1.3. Grad-Shafranov neural network. The last neural net-
work GradShafrNet (figure 2- bottom) is the one that aims at
solving the Grad-Shafranov equation:

∂2ψ

∂R2
− 1
R
∂ψ

∂R
+
∂2ψ

∂z2
=−µ0R

2 dp
dψ

− 1
2
df 2

dψ
. (9)

Here, the neural network architecture is composed of two
separate hidden layer sections. The first section aims at pre-
dicting the poloidal magnetic flux ψ and the external density
current Jext. The prediction of the external currents is required
only when these currents are not known a priori, that is the
worst case, and it is the case analysed in this example. On the
other hand, if the external currents are well known, they can
be used in the boundary losses to constraint the equilibrium.
Then, the second hidden layer section calculates the pressure
and the variable f = RBϕ from the poloidal flux. This archi-
tecture imposes that f and p are both a function of ψ, allowing
for a better constrained equilibrium.

The input of the neural network is the coordinate of the
point (R, z). The first hidden section has 9 layers with 20 neur-
ons each while the second hidden section has 3 layers with 20
neurons each, for a total of 4364 parameters. The activation
functions are the hyperbolic tangent for the hidden layers, the
linear function for the output layer giving the magnetic flux,
external current and f, while the softplus is used for the pres-
sure (this allows imposing that the pressure is non-negative).

3.2. Test with analytical solutions

In this section, the MHD PINNs are tested with some analyt-
ical solutions of the ideal steady state MHD equilibria. The
tests performed are:

1. Solov’ev’ solution (2D, steady state)—(see appendix A for
additional details).

2. Solov’ev solution (3D, toroidal symmetry, steady state)—
(see appendix A for additional details).
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Figure 2. Neural network architectures developed for the plasma equilibrium reconstruction.
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Figure 3. BR, BZ , and p from Solov’ev 2D analytical solution using a = 7/3 c, b = −0.091, c = 0.158, R0 = 2.96 and p0 = 32 060 (top
row). Reconstructed BR, BZ , and p using the S2MHDnet PINN (bottom row).

3. Periodic Toroidal Solution—(see appendix B for additional
details).

3.2.1. Solov’ev’ 2D case. The first analytical case is based
on the Solov’ev’ solution of the Grad-Shafranov equation (2D
steady state idealMHD). A detailed description is given in [44,
45] and in appendix A. Data are generated with the following
equations:

ψ (R,z) =
1
2
(b+ c)R2

0z
2 +

c
(
R2 −R2

0

)
z2

2

+
1
8
(a− c)

(
R2 −R2

0

)2
p= p0 −

a
µ0

Ψ (10)

where Ψ is the magnetic flux, a, b, c, p0 and R0 are free para-
meters. Varying these parameters produces different equilib-
rium solutions and consequently different magnetic, current
and pressure fields.

With regard to the geometry, in cylindrical coordinates,
the radius R ranges from 1.61 m to 4.01 m while the vertical
coordinate Z covers the interval from−1.62 m to 1.58 m. The
boundary conditions are magnetic and pressure point sensors
positioned at the edge of the volume considered. A total of 100
points are used as boundary conditions. No internal constraints
are imposed.

The neural network used is the S2MHDnet. The loss func-
tion is:

L= αpLp+αbLb

Lp =
µ2
0

Mp

Mp∑
ip=1

[(
JϕBZ− JZBϕ − ∂p

∂R

)2

+(JZBR− JRBZ)
2

+

(
JRBϕ − JϕBR−

∂p
∂Z

)2
]
(Rip ,Zip)

Lb =
1
Mb

Mb∑
ib=1

[(
BR−BbR

)2
+
(
BZ−BbZ

)2
+
(
Bϕ −Bϕ

b
)2

+Cpµ
2
0

(
p− pb

)2]
(Rib ,Zib)

(11)

where Mip is the number of collocation points for each itera-
tion, ip is index relative to the ipth collocation point,Mb is the
number of boundary conditions, ib is index relative to the ibth
boundary condition. The collocation points for each iteration
are 103, with a total of 105 (100 iterations per epoch).
Cp is a normalisation coefficient that should be used to

ensure that the pressure term is comparable with the magnetic
one. In the following cases, Cp has been set equal to 1.

Regarding the loss weights αp and αb, several tests have
been performed varying the ratio (αb/αp) and no signi-
ficant differences in terms of accuracy have been detec-
ted. However, it has been clearly observed that for bal-
anced weights (αb/αp ∼ 1) the neural network presents faster
convergence.

Figure 3 shows the expected (top row) and predicted
(bottom row) pressure and the R and Z components of the

7
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Table 1. Reconstruction performances of S2MHDnet PINN for the Solov’ev analytical equilibrium using a= 7/3 c, b=−0.091, c= 0.158,
R0 = 2.96 and p0 = 32 060.

Standard deviation variable RMSE Relative error R2

ψ [Wb] 2.36 × 10+00 5.19 × 10−02 2.2% 99.95%
BR [T] 2.25 × 10−01 1.01 × 10−02 4.5% 99.80%
BZ [T] 4.40 × 10−01 1.51 × 10−02 3.4% 99.88%
p [Pa] 4.49 × 10+03 2.25 × 10+02 5.0% 99.75%

magnetic field for a casewith a= 7/3 c, b=−0.091, c= 0.158,
R0 = 2.96 and p0 = 32 060. Table 1 reports: the standard
deviation of the analytical fields, the root mean squared error
(RMSE) of the difference between the PINN reconstruction
and the analytical solution, the relative prediction error, and
the coefficient of determination R2. From the table, it is pos-
sible to notice that the average relative error is always below
5%, with R2 larger than the 99%. Here and in the examples
shown in the rest of the paper the relative error is defined

as: rel error= 1
M

∑
i

2
√

(target valuei−predictioni)2

target valuei
where M indic-

ates the number of points (physics or boundary) and tar-
get value indicates the values to predict (from the physics
equations or the measurements).

3.2.2. Solov’ev 3D case. A second analytical test has been
performed employing the S3MHDnet to reconstruct a 3D
equilibrium. This reconstruction was based on the Solov’ev
equation, with the condition that the fields at any toroidal
angle match those described in the previous section. So, the
magnetic flux (from which all other fields are calculated as
described in appendix A) is:

ψ (R,ϕ ,z) =
1
2
(b+ c)R2

0z
2 +

c
(
R2 −R2

0

)
z2

2

+
1
4
(a− c)R0

(
R2 −R2

0

)
. (12)

Thus, the actual solution is toroidally symmetric but this a
priori information is not given to the PINN.

Again, in cylindrical coordinates, the radius R ranges from
1.61 m to 4.01 m while the vertical coordinates Z covers the
interval from−1.62 m to 1.58 m. The angle ϕ spans the entire
toroidal range from 0 to 2π. The boundary conditions are mag-
netic and pressure point sensors positioned at the edge of the
geometry at eight different toroidal positions equally spaced.
A total of 100 points are used as boundary conditions for each
poloidal section, for a total of 800 measurements. No internal
constraints are used.

The neural network used is the S3MHDnet. The loss func-
tion is:

L= αpLp +αbLb

Lp =
µ2
0

Mp

Mp∑
ip=1

[(
JϕBZ − JZBϕ −

∂p
∂R

)2

+

(
JZBR − JRBZ −

1
R

∂p
∂ϕ

)2

+

(
JRBϕ − JϕBR −

∂p
∂Z

)2
]
(Rip ,ϕ ip ,Zip )

Lb =
1
Mb

Mb∑
ib=1

[(
BR −BbR

)2
+
(
BZ −BbZ

)2
+
(
Bϕ −Bϕ

b
)2

+Cpµ2
0

(
p− pb

)2]
(Rib ,ϕ ib ,Zib )

. (13)

Considerations similar to those of the previous section
apply to the loss weights αp and αb. For this analytical case,
the α weights do not play a very important role, but balanced
hyper-parameters ensure a faster and a slightly more accurate
solution.

Figure 4 shows the three-dimensional pressure field from
the analytical solution (same as in the previous section, rep-
licated at each toroidal angle) and the one reconstructed by
the S3MHDnet. The reconstructed fields reproduce the ana-
lytical ones quite well, as it is shown in table 2 for the poloidal
flux, the R and Z magnetic field components and the pressure.
In this case, the relative error is about 5–7%, a bit larger with
respect to the previous 2D case, and it may be explained as fol-
lows. In the 2D case, considering the number of sensors (100)
and the perimeter of the boundary (11.2 m) the linear bound-
ary density is around 10 sensors m−1. In the three-dimensional
case, the boundary is a surface and the sensor surface density
is ∼4 sensors m−2. Therefore, the average distance between
two subsequent sensors in the 2D case is about 0.1 m while
in the 3D case is about 0.5 m, implying that the problem is
less constrained than the 2D (in addition to the fact that the
system of equations is more complex). This example, even if
the PINN achieves a quite good accuracy, suggests that for
accurate and reliable 3D MHD equilibria, the use of a multi-
diagnostic constrained reconstructions may be fundamental
for complex topologies of the fields. Indeed, in this example
the boundary values for the loss are derived from the analytical
solution whereas in real life they will be provided by experi-
mental measurements, each with its error bars and uncertain-
ties. Depending on the relative accuracy of the diagnostics
used, a different choice of the αsmay become important. This
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Figure 4. Analytical and pressure of the 3D Solov’ev solution predicted by the S3MHDnet PINN (Solov’ev equation used parameters are
a = 7/3 c, b = −0.091, c = 0.158, R0 = 2.96 and p0 = 32 060).

Table 2. Reconstruction performances of S3MHDnet PINN for the 3D Solov’ev analytical equilibrium using a = 7/3 c, b = −0.091,
c = 0.158, R0 = 2.96 and p0 = 32 060.

Standard deviation variable RMSE Relative error R2

ψ [a.u.] 2.36 × 10+00 1.14 × 10−01 4.8% 99.77%
BR [T] 4.93 × 10−01 3.02 × 10−02 6.1% 99.63%
BZ [T] 7.37 × 10−01 5.84 × 10−02 7.9% 99.37%
p [Pa] 1.76 × 10+04 1.00 × 10+03 5.7% 99.68%

is also the reason why, for experimental cases, a Zscore like
loss has been used (see next sections).

3.2.3. Toroidally asymmetric equilibrium. In this subsection,
a simple toroidal asymmetric solution is used to test the
S3MHD capability of reconstructing asymmetric equilibria.
The completed model is derived in appendix B. The magnetic
field along Z and the pressure vary as:

BZ = 2b sin(nϕ)

p= p0 − 2b2sin2nϕ
(14)

where b, n and p0 are three free parameters.
In cylindrical coordinates, the plasma volume has a radius

R ranging from 1 m to 3 m while the vertical coordinates Z
covers the interval from −1 m to 1 m. The toroidal angle ϕ
spans the entire torus from 0 to 2π. The boundary conditions
are magnetic and pressure point sensors located at the edge of
the volume at 16 different toroidal positions equally spaced.
A total of 84 points are used as boundary conditions equally
spaced for each poloidal section, for a total of 1344 measure-
ments. No internal constraints are imposed.

The neural network implemented is the S3MHDnet. The
loss function is the same of the previous case (equation (13)).

In the analysis, b and p0 are fixed at b = 1 and
p0 = 20 × 105, while n is the toroidal number and is varied
from 1 to 4. Note that the pressure periodicity is twice the
magnetic one, and therefore presents a toroidal number ran-
ging from 2 to 8. Of course, given the limited toroidal resolu-
tion of the 16 boundary conditions, the reconstructions present
a decreasing accuracy for higher toroidal numbers. It is an
obvious fact that higher toroidal numbers need a higher tor-
oidal resolution of the measurements (coils, etc) to be properly
reconstructed.

Figure 5 shows the comparison between the expected and
the predicted magnetic field component along Z and the pres-
sure profile (maps are plotted for Z = 0) for different toroidal
numbers (n = 1, 2 and 4). The performances are quantified in
table 3. From the reported results, it can be observed that for
small toroidal numbers (compared with the toroidal resolution
of the boundaries, that is 16) the reconstruction error is almost
zero. On the contrary, when the toroidal number increases
(n= 4), performances slightly decrease (even if reconstruction
error is comparable with the target loss). A case with n= 8 has
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Figure 5. Comparison between expected and predicted magnetic field and pressure for the simple asymmetric toroidal solution with n = 1,
2 and 4. The plots on the left are a view of the torus from the top. In the plots of the right column, the red lines indicate the exact prediction,
the perfect agreement between the PINN output and the analytic solution.
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Table 3. Reconstruction performances of S3MHDnet PINN for the asymmetric toroidal solution at different toroidal numbers n.

Standard deviation variable RMSE Relative error R2

Bz [T] n = 1 1.39 × 10+00 1.20 × 10−03 0.1% 100.00%
p [Pa] n = 1 5.70 × 10+05 1.18 × 10+03 0.2% 100.00%
Bz [T] n = 2 1.39 × 10+00 2.30 × 10–03 0.2% 100.00%
p [Pa] n = 2 5.70 × 10+05 2.32 × 10+03 0.4% 100.00%
Bz [T] n = 4 1.39 × 10+00 5.38 × 10−02 3.9% 99.85%
p [Pa] n = 4 5.70 × 10+05 4.16 × 10+04 7.3% 99.47%

been tested and the performances dropped as it was expected
(remember that for n = 8, the pressure periodicity is 16, the
same of the boundary constraints in this example).

3.3. Test with JET measurements

The JET is the largest operating tokamak in the world, with
geometrical major and minor radii of 2.96 m and 1 m respect-
ively. Given the variety of experiments and scenarios run on
JET, the accurate reconstruction of the magnetic topology is a
very important issue. On the other hand, various factors, from
the dimensions of the device to the harsh environment, com-
plicate this task on JET [46]. A suite of codes, called EFIT,
was developed over the years to perform this task [47–50]. In
the following, the PINN technology is applied to the problem
of the equilibrium reconstruction using the same diagnostics as
EFIT. section 3.3.1 describes the topology of the problems, the
diagnostics and the PINN architecture. The results are reported
in the next section 3.3.2.

3.3.1. Geometry, diagnostics and PINN configuration.
Contrary to the previous analytical cases, where all the entire
domain is occupied by the plasma, in this problem both plasma

and wall regions should be correctly taken into account in the
loss functions. The reason why it is crucial to consider the
wall is that the magnetic coils (whose measurements are the
boundary conditions) are located outside it. The major radius
coordinate ranges from 1.5 m to 4.5 m while the vertical
coordinate goes from −2.5 m to 2.5 m. Figure 6 shows the
entire domain, in which magnetic field, current density field
and pressure field are reconstructed. The plasma region is
delimited by the walls (the black curve in the figure).

In this work, the same boundary conditions used by the
equilibrium reconstruction algorithm deployed on JET (EFIT)
[51] have been implemented. On JET, different methodologies
have been developed to reconstruct the fields. In this work, the
‘magnetic only’ EFIT configuration is employed. Three dif-
ferent types of magnetic sensors are included:

Pick-up coils (CP) (represented by blue circles
in the figure), which measure the poloidal magnetic
field along a specific direction (given by the coil
angle θCP). The first boundary loss function is then
calculated as the predicted magnetic field along the
iCPth coil direction axis, BR

(
Rib,CP ,Zib,CP

)
cos
(
θib,CP

)
+

BZ
(
Rib,CP ,Zib,CP

)
sin
(
θib,CP

)
, vs the measured one, Bbib,CP .

Moreover, since the measurements are affected by uncertain-
ties, σbib,CP , the MSE is normalised to the uncertainty variance:

Lb,CP =
1

Mb,CP

Mb,CP∑
ib,CP=1

(
BR
(
Rib,CP ,Zib,CP

)
cos
(
θib,CP

)
+BZ

(
Rib,CP ,Zib,CP

)
sin
(
θib,CP

)
−Bbib,CP

)2
(
σbib,CP

)2 (15)

Flux loops (CF) (represented by the green squares in
figure 5), large coils that cover the whole toroidal angle and
measure the poloidal flux at the coil radius. The second bound-
ary loss function is then calculated as the predicted poloidal
flux, ψ

(
Rib,CF ,Zib,CF

)
, against the measured one, ψ b

ib,CF , norm-

alised by the measurement uncertainty, σbib,CF ,

Lb,CF =
1

Mb,CF

Mb,CF∑
ib,CF=1

(
ψ
(
Rib,CF ,Zib,CF

)
−ψ b

ib,CF

)2
(
σbib,CF

)2 (16)

Saddle coils (CS) (represented by the red lines in the figure,
while the red dots indicate the start and the end of the saddle
coil), large coils positioned at different angles to measure the
flux in specific directions. In the steady state toroidal symmet-
ric case, it can be demonstrated that the saddle coils measure
the poloidal flux difference between the saddle coil coordin-
ates,

(
R2,ib,CF ,Z2,ib,CF

)
and

(
R1,ib,CF ,Z1,ib,CF

)
, in the poloidal

section:

Si,CS = ψ
(
R2,ib,CF ,Z2,ib,CF

)
−ψ

(
R1,ib,CF ,Z1,ib,CF

)
. (17)

Consequently, the loss function associated to the saddle
coils is:
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Figure 6. Geometry and magnetic coils positions used for JET
equilibrium reconstruction using a PINN.

Lb,CS =
1

Mb,CS

Mb,CS∑
ib,CS=1

(
Si,CS − Sbi,CS

)2(
σbib,CS

)2 . (18)

A fourth boundary loss function regards the wall, which
forces the plasma pressure to zero:

Lb,Wall =
1

Mb,Wall

Mb,Wall∑
ib,Wall=1

(
p
(
Rib,Wall ,Zib,Wall

))2
(σp,wall)

2 (19)

where σp,wall in this case is not the uncertainty but a normal-
isation factor (chosen to be equal to 10 Pa).

For what concern the physics losses, we have to distinguish
the regions inside and outside the wall. Inside the wall, where
there is plasma, the loss can be written as:

Lp,inside =
1
Mp

Mp∑
ip=1

[(
∂2ψ

∂R2
− 1
R
∂ψ

∂R
+
∂2ψ

∂Z2

+µ0R
2 dp
dψ

+
1
2
df 2

dψ

)2
]
(Rip ,Zip)inside

.

(20)

While for the region outside the wall, the same approach
presented in [52] has been adopted:

Lp,outside =
1
Mp

Mp∑
ip=1

[(
∂2ψ

∂R2
− 1
R
∂ψ

∂R
+
∂2ψ

∂Z2

+µ0RJext)
2
]
(Rip ,Zip)outside

. (21)

Another ‘soft’ loss is used to force the neural network to
minimise the external currents (external currents should be
present only in specific regions of the wall where shaping coils
are used).

Lp,Jext =
1
Mp

Mp∑
ip=1

[
J2ext
σ2
Jext

]
(Rip ,Zip)outside

(22)

where σJext has been set equal to 100 A. Some clarifications are
needed concerning the external currents. In general, the geo-
metries (coils) and intensities of the important external cur-
rents are well known. Therefore, any reconstruction of the
equilibrium should model and constrain the external currents
so that the best possible map of the fields can be obtained.
In this work, this part of the modelling has not been imple-
mented, and the PINN is just asked to reconstruct an equi-
valent external current distribution that is coherent with both
the boundary conditions and the physical equations. This just
make the problem harder to solve and convergence to a good
solution more challenging.

The final loss is:

L= Lp,inside +Lp,outside +Lb,CP +Lb,CF +Lb,CS

+α(Lb,wall +Lb,Jext) . (23)

For this experimental case, an ad hoc adaptive α has been
implemented. Indeed, it has been noticed that requiring the
neural network to minimise the pressure on the wall and the
external current outside the wall from the beginning of the
training causes several troubles in the training process. In par-
ticular, the network tends to be stuck in local minima for long
times, rendering the convergence very long. So, an in-training
update of α has been adopted with the following logic. If the
loss for the boundary conditions (measurements) are large, α
is small so that the PINN is free to adapt to the measurements.
When the measurements are well replicated, α increases so
that the PINN refines the field to minimise the pressure on the
wall and the external currents. The α adaptive function is:

α= 10−6 +
1(

Lb,CP+Lb,CF+Lb,CS

3

)4 . (24)

Note that when the measurement error is comparable with

the measurement uncertainty
(

Lb,CP+Lb,CF+Lb,CS

3 ∼ 1
)
the α is

equal to the weight of the other losses (α ∼ 1).
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Figure 7. Measured magnetic fields and fluxes measured by the coils vs predicted values using GradShafrNet for pulse 94 217 at t = 9.0 s.

3.3.2. Results. In this section, the comparison between
the equilibrium reconstructed from EFIT and the two PINNs
(S2MHDnet and GradShafrNet) is reported. The neural net-
works have been trained using 5× 105 collocation points with
5 × 103 per iteration (100 iterations per epoch). The training
algorithms and other parameters are described in section 2.
The results are calculated for pulse 94 217 at the time t = 9 s.
The discharge is an ITER Baseline scenario shot in deuterium.
The steady-state flat top plasma current is 2.5 MA, the toroidal
magnetic field is 2.4 T, the LID (channel 3) is 15.3 m−2 and
the input power is 17 MW from NBI e 2.7 MW from ICRH.

First, figure 7 shows the comparison between the measured
and the predicted values from the pick-up coils, saddle coils
and flux loops. Measurements and predictions are in very good
agreement. This fact demonstrates that the neural network is
able to find a solution that fits both the physics equations and
the boundary conditions.

The capability of the PINNs to reconstruct the equilibrium
is evaluated by comparing the reconstructed poloidal flux with
the output of EFIT. Figure 8 shows in blue the flux surfaces
from EFITwhile in red the surfaces from S2MHDnet (top) and
GradShafrNet (bottom). The thicker line represents theΨ= 1
Magnetic Surface. Looking at the images, one can note that
the magnetic surfaces are almost overlapping. The largest dif-
ference is observed in the core, and this is to be expected for
two reasons:

1. No internal constraints are included, and this limits the
accuracy in the core region, since small errors tend to
propagate toward the centre and be amplified.

2. Since no internal constraints have been implemented, the
core is strongly determined by the pressure profile. In the
case of EFIT, it is assumed that the pressure is a low order
polynomial function of the flux, while the neural network
has much higher flexibility.

On the contrary, the last closed surfaces and the X-point
are very similar, and the differences are probably due to the
stop conditions of the two algorithms and how they weight

the different loss functions. Table 4 quantifies the differences
between EFIT and PINNs and it can be observed that the aver-
age difference is always below 5%.

4. Bolometer tomography

In tokamaks the measurement of the total emitted radiation
is performed with detectors called bolometers [53]. These
sensors are located outside the plasma and therefore their out-
put are line integrals of the emission along their correspond-
ing lines of sight. To obtain the local emissivity therefore
quite sophisticated tomographic algorithms are required [17].
Again, given the emission patterns and the topology of the
diagnostics, these inversion problems are mathematically very
ill-posed. The convergence on physically acceptable solutions
requires the implementation of regularization terms and non-
negativity conditions. The magnetic topology must also be
known in advance, to allow implementing different smooth-
ing of the solutions along and perpendicularly to the magnetic
surfaces. Consequently, the devised tomographic algorithms
are quite delicate to fine tune: they have problems providing
reasonable estimates of the uncertainties in the reconstruc-
tions, are prone to produce artefacts and the computational
times are typically significant. A numerically completely
alternative approach is therefore useful in many respects
[21, 54, 55].

This section is organised as follows. First the main features
of JET bolometric diagnostics are described (section 4.1).
Then the architecture of the PINNs and their loss functions
are described in quite detail in section 4.2. The last subsec-
tion reports the results obtained for the most typical radiation
patterns encountered on JET.

4.1. Geometry and diagnostic

The geometry considered for the bolometer tomography
includes only the region inside the wall (the external emissiv-
ity is exactly zero and no information is required for the wall).

13



Nucl. Fusion 63 (2023) 126059 R. Rossi et al

Figure 8. Top: EFIT vs S2MHDnet. Bottom: EFIT vs GradShafrNet.

JET is equipped with two main bolometer cameras that
measure the line-integrated emissivity: the vertical camera
(KB5V) and the horizontal camera (KB5H). Both KB5V and

KB5H have 24 bolometer channels. The two cameras are in
two different octants (KB5V is located on top of octant 3,
while KB5H in the equatorial plane of octant 6). Therefore,
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Table 4. Difference between the PINNs and EFIT reconstructions.
The row ψN is calculated as the RMSE of the normalise flux maps.
Last Closed Magnetic Surface (LCMS) ∆R and ∆Z are calculated
as the position difference between the separatrix location output of
the two algorithms.

RMSE Relative error R2

S2MHDnet ψN [a.u.] 0.043 4.5% 99.80%
S2MHDnet LCMS ∆R
[m]

0.017 2.5% 99.94%

S2MHDnet LCMS ∆Z
[m]

0.027 2.6% 99.93%

GradShafrNet ψN [a.u.] 0.037 3.9% 99.85%
GradShafrNet LCMS
∆R [m]

0.015 2.2% 99.95%

GradShafrNet LCMS∆Z
[m]

0.034 3.3% 99.89%

tomographic inversions typically assume that the emissivity is
toroidally symmetric. A schematic of the two cameras lines of
sight is shown in figure 9.

4.2. Network architecture, losses, and training options

In the case of bolometer tomography, the neural network archi-
tecture is a standard feed-forward neural network with nine
layers and 20 neurons each, two input coordinates (R, Z) and
one output, the emissivity (ε). All the activation functions are
hyperbolic tangent for the hidden layers and a softplus layer
for the output (to ensure that the emissivity is non-negative).
In figure 10 a schematic view of the PINN architecture for the
bolometer tomography is reported.

As usual the loss function is made up of two terms, one
physics loss and one boundary loss.

The boundary loss function is calculated as the MSE
between measured (gb) and reconstructed (g) powers (projec-
tions) divided by the squared standard deviation (σch) of each
bolometer channel:

Lb =
1
Mb

Mb∑
ch=1

(
gch − gbch

)2
σ2
ch

. (25)

Here, the measured power gb and the standard deviation σ
are expressed in W (conversion from W m−2 to W have been
done through the channel etendues). They are calculated as the
averages and standard deviation of the measurements over an
interval of∓200 ms. The reconstructed power is calculated as:

gr,ch =
Np∑
n=1

Hch,nεn∆Vn (26)

where Np is the total number of pixels, ∆Vn is the volume of
the pixel, and Hch,n is the projection matrix, which represent
the probability that a photon in the pixel n is detect in the chan-
nel ch. Therefore, for the calculation of the reconstructed bolo-
meter signals, a structured grid is used, with a spatial resolu-
tion of 0.04 m.

For what concerns the physics loss, a physics-based reg-
ularisation term is used by assuming that emissivity should
be ‘smooth’. In magnetized plasmas, especially in steady-
state conditions, it is expected that the plasma variables vary
smoothly, and the degree of smoothness is assumed to be dif-
ferent in the directions parallel and orthogonal to the gradient
of the magnetic flux. More specifically, most plasma variable
gradients are expected to be zero along the directions with the
same poloidal magnetic flux, such that in several situations it
is allowed to assume that iso-magnetic flux surfaces are iso-
density and iso-temperature [37, 56, 57].

Therefore, in order to implement these physical constraints,
two loss functions are added, one for the gradients along the
iso-magnetic surfaces and one along the gradient of the mag-
netic flux.

Let us call Ψ (R,z) the normalized poloidal magnetic flux,
such thatΨ is equal to zero on themagnetic axis andΨ is equal
to one at the plasma separatrix. We can calculate the gradient
of the output variable ε along the magnetic surfaces ∇∥ε and
along the gradient of the magnetic flux ∇⊥ε as:

∇∥ε=∇ε · pΨ (27)

∇⊥ε=∇ε ·nΨ (28)

where pΨ and nΨ are the direction parallel and orthogonal to
the magnetic flux gradient.

Therefore, the physics loss function can be written as:

Lp =
1
Mp

1
C2
∥

Mp∑
ip=1

(
∇∥ε

(
Rip ,Zip

))2
+

1
Mp

1
C2
⊥

Mp∑
ip=1

(
∇⊥ε

(
Rip ,Zip

))2
(29)

where C∥ and C⊥ are two hyper-parameters that have two
roles. First, they are used to render dimensionless the phys-
ics loss function, and second, they define how important the
parallel term is with respect to the orthogonal one. Since the
two hyper-parameters have to render dimensionless the deriv-
ative of the output ε, one can write the two factors as a refer-
ence output (reference emissivity) divided by a characteristic
length:

C∥ ∝∇∥ε∝
ε0

2πR0
and C⊥ ∝∇⊥ε∝

ε0
a

(30)

where R0 is the geometrical major radius and a is the geomet-
rical minor radius. It has to be noted that the parallel regular-
isation has a weight that is much larger than the orthogonal
one (the ratio C∥/C⊥ is 2πR0/a that is around 18.6 for JET,
that means a loss weight ratio of around 345). This is in full
harmony with the physical understanding of the problem since
in tokamaks strong orthogonal gradients are common, while
parallel gradients are usually less pronounced. The magnetic
flux unit vectors (pΨ and nΨ ) are calculated from the equi-
librium reconstructions (see section 3). Regarding the ‘grid’
(collocation points) where the physics loss is computed, the
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Figure 9. Vertical (left) and Horizontal (right) cameras with the 24 labelled channels.

Figure 10. Network architecture for the bolometer tomography.

Sobol sequence is used. The number of collocation points has
been set equal to 105 with 103 for each iteration (100 iterations
per epoch).

Then, the loss function is:

L= αLp+Lb. (31)

For the bolometer tomography, it has been observed that
α= 0.1 is a good choice. However, some adaptive α update is
under investigation.

4.3. Results

In this section, results relative to JET bolometric tomography
are reported. In the case of the plasma total emissivity, dif-
ferent patterns can be observed as function of the plasma

characteristics and impurity content. In figure 11, the PINN
emissivity reconstructions for four typical radiation patterns
are shown, together with a comparison of the reconstruc-
ted projections with the measured line-integrals of the hori-
zontal and vertical cameras. To provide an independent val-
idation, the reconstructions of the most sophisticated tomo-
graphic technique deployed on JET, based on the maximum
likelihood (ML) approach, are also reported [16–19]. The ML
method has been chosen not only for its accuracy but also
because one of its main characteristics is the capability of
providing a statistically sound estimate of the confidence inter-
val for each pixel [21, 22]. As can be derived from the tomo-
grams reported and the discussion in the following, the recon-
structions obtained with the PINN are of more than satisfact-
ory quality. The main differences are mostly due to the fact
that ML does not weigh the measurements as a function of
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Figure 11. Each row shows the reconstructed emissivity using the maximum likelihood (left column), the PINN (central column) and the
comparison between measured and PINN reconstructed line integrals (right column). The dashed red lines in the PINN reconstructions are
some poloidal magnetic flux surfaces, while the continuum line is the last closed magnetic surface.

their uncertainties (but measurements uncertainties are used to
estimate the reconstruction confidence interval). Besides the
comparison with the ML reconstructions, we provide also a
short description of each pulse with an explanation of the radi-
ation pattern shown.

The first row of figure 11 shows the tomogram of pulse
96 950 at t = 8.15 s. The emissivity pattern is the crescent
shape radiative blob observed in the outer midplane of several
JET discharges and predicted by the combination of turbulent
and neoclassical transport [58, 59]. A high-radiative region is
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also observed in the divertor. The reconstructed channels rep-
licate well the measurements, with an average RMSE equal to
3.4 × 104 Wm−2, a relative error of 3.5% and a Lb = 0.28.

The second row is an example of a typical radiative
pattern concentrated in the divertor for pulse 94 458 at
t = 11.05 s. Also in this case, reconstructed and measured
bolometric channels almost overlap, with an average error of
1.4 × 104 W m−2, a relative error of 0.4% and a Lb = 0.015.
It has to be noted that the standard deviations of the meas-
ured channels are quite large for most of the channels look-
ing at the divertor, because of the presence of ELMs, which
are rapid and frequent events observed in H-mode plasmas
that cause relevant radiative bursts. Ideally, to achieve a good
emissivity reconstruction in these situations, one should nar-
row the timewindow during which themeasurements are aver-
aged. Unfortunately, since on JET the vertical and horizontal
camera are placed in different toroidal positions of the toka-
maks, when the time resolution is reduced, toroidal asymmet-
ries due to ELMs become more important and therefore the
reconstruction is prone to generate artefacts in the reconstruc-
ted emissivity.

The third row shows pulse #94869 at t = 9.9 s, where an
anomalous core radiation pattern is observed. On JET, some-
times heavy impurities accumulate in the central region of the
plasma, with a clear increase of the core radiation that usually
leads to a hollowing of the electron temperature profile. This is
exactly what it is observed in this pulse by the high-resolution
Thomson scattering (HRTS), confirming that the reconstruc-
ted core radiation is not an artefact. The average reconstruc-
tion error is 3.5 × 104 Wm−2, a relative error of 2.25% and a
Lb = 0.17.

The last row reports the tomogram for pulse #99763 at
t = 19 s. In this case, a multifaceted asymmetric radiation
from the edge (MARFE) event is observed during the ramp
down of the plasma current. MARFEs are anomalous toroidal
symmetric radiative events that can lead to plasma disruptions.
MARFEs develop from the divertor region and move up and
down the inner wall on the high-field side [60–63]. For this
emission pattern, the reconstruction error is 3.5× 103 Wm−2,
the relative error is 8% and the Lb is 0.038. Also in this
example, the standard deviations of the measurements are
quite large due to the high frequency variations of the emis-
sion (due to both the fast movements of the MARFE and the
fact that the plasma is in the ramp-down phase of the plasma
current). However, it is worth pointing out that in all the cases
analysed the reconstructed projections are within the error bars
of the bolometric measurements.

5. IDA: reconstructing the density profile

In tokamaks, the density is typically measured at high time
resolution by interferometry, which provides lines integ-
rals. Spatially resolved information is typically derived from
Thomson scattering but at lower time resolution. After
describing the main aspects of these diagnostics on JET
(section 5.1), the main aspects of the PINN developed for the
determination of the density profile are covered in section 5.2.

The results obtained using the measurements of the interfero-
meter only are described in section 5.3, which illustrates the
PINN potential to deal with sparse data. An example of the
PINNs application to IDA, is the subject of section 5.4, in
which interferometric, High Resolution and LIDAR Thomson
scattering systems are combined to obtain a unique density
profile. Moreover, for this second case, combining the meas-
urements of three diagnostics, a special neural network archi-
tecture and training process have been implemented, which
allow estimating not only the local density but also the uncer-
tainties correlated with the reconstructions.

5.1. Diagnostics

The JET far-infrared interferometer/polarimeter is composed
of eight lines of sight, four verticals and four laterals. A schem-
atic view of the eight lines of sight is shown in figure 12 (left).
The interferometer is based on a 200 mW dicyanonaphthalene
(DCN) lasers operating at 195 µm [64]. The interferometer
measures the LID, defined as:

LID=

lˆ

0

Nedl (32)

where l is the length of the line of sight crossing the plasma
and Ne is the local electron density.

The local measurement of electron density can be achieved
through the Thomson scattering effect [65]. At JET, there are
two reliable diagnostics that exploit this physical mechanism,
shown in figure 12 (right): the (Core) lidar and the HRTS. The
Lidar is a back-scattering Thomson scattering diagnostics that
relies on the time-of-flight methodology to measure the dens-
ity at distinct positions. The laser of the diagnostic has a repe-
tition rate of 4 Hz and a spatial resolution around 12 cm [66].
The HRTS is a 90◦ Thomson scattering system. It can measure
the temperature in 63 acquisition points (per time slice) with
a repetition rate of 20 Hz. The spatial resolution ranges from
1.6 cm in the core to 1 cm in the pedestal region [67, 68].

5.2. Network architecture, losses, and training options

Two different PINNs have been developed for the density
reconstruction.

The first PINN, that will be named ‘TOMOnet’ is the same
reported in figure 10 of section 4 and it also reported in
figure 13. The only difference is that the output is the dens-
ity (Ne) and not the emissivity (ε). The neural network archi-
tecture is a standard feed-forward neural network with nine
layers and 20 neurons each, two input coordinates (R, Z) and
one output, the density (Ne). All the activation functions are
the hyperbolic tangent for the hidden layers and the softplus
for the output layer (to ensure that the density is non-negative).

The second PINN, maximum-likelihood TOMOgraphy net
(MLTOMOnet), has the same architecture of TOMOnet, with
the only difference that the output layer now predicts a second
variable that represents the electron density uncertainty (σNe).
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Figure 12. Left: Lines of sight of the JET Far Infrared interferometer/polarimeter. Right: Laser path of the HRTS (in red) and Lidar (green).

Figure 13. Network architectures (TOMOnet and MLTOMOnet) for density reconstruction tomography.
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For both PINNs, 2 × 105 collocations points have been
deployed, 2× 103 for each iteration (100 iterations per epoch).

5.2.1. Losses for TOMOnet. The losses for TOMOnet,
which is applied to the electron density reconstruction using
only the interferometer channels, are very similar to the ones
used for the emissivity reconstruction from bolometry.

The loss related to the measurements is calculated as the
difference between the predicted LID and the measured one.
The measurement from the interferometer (LIDm,ch) for each
channel (ch) is given as the line integral of the electron dens-
ity along the line of sight and therefore the unit measure is
m−2. The predicted line-integrated densities (LIDp,ch) are cal-
culated from the local electron density (Ne) by computing the
discrete line-integral along the line of sight of each interfero-
meter channel:

LIDp,ch =

ˆ

lch

Ne (l)dl=
M∑
i=1

Ne (lch,i)∆l. (33)

Where lch is the line of sight of the chth channel, lch,i is the
ith position of the chth channel line of sight and∆l is the step
size used for the numerical integration. The measurement loss
is calculated as the MSE divided by the square uncertainty of
the measurement of each channel (σ2

ch):

LLID =
1
8

8∑
ch=1

(LIDp,ch −LIDm,ch)
2

σ2
ch

. (34)

Moreover, for the case of the electron density reconstruc-
tion, another loss has been added to impose the electron dens-
ity goes to zero near the wall:

Lwall =
1

Nwall

1(
10−2 Ne,0

)2 Nwall∑
i=1

[Ne (Rwall,i,Zwall,i)]
2 (35)

where, Ne,0 is a reference density (calculated as the average
density measured by the eight channels). Therefore, the meas-
urement loss for the electron density reconstruction is calcu-
lated as:

Lb = LLID +Lwall. (36)

The physics loss is the same described in section 4, but par-
ticularised for the electron density mean and uncertainty:

Lp,Ne =
1
Mp

1
C2
∥

Mp∑
ip=1

(
∇∥Ne

(
Rip ,Zip

))2
+

1
Mp

1
C2
⊥

Mp∑
ip=1

(
∇⊥Ne

(
Rip ,Zip

))2
(37)

where:

C∥ ∝∇∥Ne ∝
Ne,0
2πR0

and C⊥ ∝∇⊥Ne ∝
Ne,0
a
. (38)

Then, the overall loss function is:

L= αLp,Ne +Lb. (39)

5.2.2. Losses for MLTOMOnet. In all the experimental pre-
vious cases (equilibrium, emissivity, and density reconstruc-
tion), the measurement uncertainties have been used to norm-
alise the boundary loss and to have a statistical estimate of the
discrepancies between measurements and predictions. These
uncertainties can be evaluated in different ways. For example,
they can be provided by the data sheets of the instruments,
by experimental assessment of the noise or they can be cal-
culated as the standard deviation of the statistical fluctuations
in a suitable time window. However, while the uncertainty of
the measurements can be calculated, the uncertainties of the
predicted field are more difficult to quantify.

In this section, an approach to estimate the uncertain-
ties of the reconstructed variables using the MLTOMOnet is
described.

Let us consider a time window [t1 t2] in which the recon-
struction must be performed. In this time window, the inter-
ferometer has measured Mt values of the LID LIDb (where
the number of points is given by ∆t= t2 − t1 multiplied by
the sample rate of the interferometer). The objective consists
of calculating the average electron density (Ne) profile that
returns the LID in this time window. Assuming that the uncer-
tainties are normally distributed, it is possible to write that
the probability that the kth measured LIDb

ch,k from channel ch
belongs to the reconstructed LIDch (Ne) with the uncertainty
σLID,ch (σNe) is:

Pch,k (Ne,σNe) =
1√

2πσLID,ch
e
− (LIDch,k−LIDbch,k)

2

2σ2
LID,ch . (40)

Then, the probability of all measurements from all channels
(likelihood) is:

Ptotal (Ne,σNe) =
∏
ch

∏
k

Pch,k (Ne,σNe) . (41)

Identifying the profile that maximises the log-likelihood is
equivalent to minimising the following loss:

LML,LID =
1
Mch

1
Mk

∑
ch

∑
k

(
log
(√

2πσLID,ch
)

+

(
LIDch,k−LIDb

ch,k

)2
2σ2

LID,ch

)
(42)

where:

σLID,ch =

ˆ

lch

σNe (l)dl=
M∑
i=1

σNe (lch,i)∆l. (43)
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With similar considerations, one can find the ML loss also
for the local electron density measurements (lidar and HRTS):

LML,Ne =
1
Mb

1
Mk

∑
ib

∑
k

 log(
√
2πσNe,ib,k)

+

(
Ne,ib,k−Nbe,ib,k

)2
2σ2

Ne,ib,k

 . (44)

The physics loss for density is the same of the previous case,
however also a ‘physics’ (regularisation) loss is used for the
predicted uncertainty:

Lp,Ne =
1
Mp

1
C2
∥

Mp∑
ip=1

(
∇∥Ne

(
Rip ,Zip

))2
+

1
Mp

1
C2
⊥

Mp∑
ip=1

(
∇⊥Ne

(
Rip ,Zip

))2
(45)

Lp,σNe =
1
Mp

1
C2
∥

Mp∑
ip=1

(
∇∥σNe

(
Rip ,Zip

))2
+

1
Mp

1
C2
⊥

Mp∑
ip=1

(
∇⊥σNe

(
Rip ,Zip

))2
. (46)

And then:

L= α(Lp,Ne +Lp,σNe)+LML,LID +LML,Ne +Lwall. (47)

In this case, an adaptive α update scheme has been
developed to ensure that the PINN find a smooth solution that
ensures a good reconstruction of measurements:

α= 10−1 + 10−
3
2

(LML,LID+LML,Ne)
2 . (48)

5.3. Results: density profiles from interferometer only

The interferometer tomography is tested for the ITERBaseline
scenario pulse 94 217 (the same used for the equilibrium
reconstruction in section 3). Figure 14 shows the time evol-
ution of the plasma current (top) and the LID along channel 3
(LID3, bottom plot). The red big points indicate the six time
slices where the PINN reconstruction has been run (t = 6 s,
7 s, 8 s, 9 s, 10 s, 11 s).

Each reconstruction has been performed by averaging the
LID measurements in a time window of 100 ms and with the
hyper-parameter α equal to 1.

The tomogram for each time slice is shown in figure 15. In
each tomogram, in addition to the reconstructed density field
(represented by the colour scale), some specific poloidal mag-
netic surfaces (dashed lines in red) and the last closed mag-
netic surface (solid line in red) are reported. In addition, the
eight lines of sight of the interferometer are shown as black
dashed lines.

Figure 14. Plasma current (top) and core line-integrated density
(LID3, bottom) for plasma discharge 94 217. The six red dots
indicate the six time slices, at which the interferometer
reconstructions have been performed.

Figure 16 illustrates the comparison between the measured
and reconstructed line-integrated densities. The plots clearly
show that the eight lines of sight are reconstructed with a very
high accuracy (the worst LLID obtained in these reconstruc-
tions is 4 × 10−3, which means that, on average, the dis-
crepancy between the reconstructed and the measured LID is
around 0.06 σ, where σ is the standard deviation of the meas-
urements).

However, the comparison between reconstructed andmeas-
ured LIDs is not the most reliable approach to evaluate the
reconstruction of the electron density, since the LID meas-
urements have been used as constraint. A better validation
approach consists of comparing the reconstruction quantities
with one independent diagnostic (i.e. a diagnostic that has not
been used as constraint). Figure 17 reports a comparison of the
HRTS measurements with the reconstructed electron densit-
ies (evaluated at the same position as the HRTS points). The
agreement between reconstructed andmeasured electron dens-
ities is quite good. In the worst time slice (t = 10 s), the
average error is 0.047 × 1020 m−3 while the relative error is
15.4%. If the uncertainties of the HRTS are considered, the
reconstructed electron density is always contained inside two
standard deviations. Moreover, it is worth highlighting that,
for this pulse, the LID calculated from the HRTS (a routine
developed at JET, which assumes that magnetic surfaces are
iso-densities) overestimates by a similar factor the (1.05/1.1)
the interferometer LID, suggesting that the error is in themeas-
urements and not in the inversion.

As a comment on these quantitative comparisons, it may
be important to note that, despite the small number of lines
of sight, the electron density reconstruction seems to resolve
acceptably well the pedestal region (in this part, reconstruc-
ted and HRTS measured electron densities perfectly overlap).
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Figure 15. Electron density reconstruction using PINN TOMOnet for six time slices (pulse 94 217). The dashed red lines are some poloidal
magnetic fluxes, while the continuum line is the last closed magnetic surface. Black dashed lines indicate the eight lines of sight of the
interferometer.

Moreover, off-normal” profiles, such as the hollow electron
density profile (t = 8 s), are also well reconstructed.

5.4. Results with multi-diagnostics and ML

In this section, the electron density profile reconstructed
by combining interferometer, HRTS and LIDAR is shown.
Moreover, in this example the estimation of the uncertainty
using the MLTOMOnet is presented. Figure 18 (top-left)
shows the reconstructed electron density field, while figure 18
(top-right) reports the uncertainty field. The uncertainties are
to be interpreted as the standard deviation of the PINN recon-
structions (with which the confidence interval can be calcu-
lated as 1.96 the standard deviation).

Figure 18 (bottom-row) reports the comparisons between
the measurements and the reconstructions of interferometer
(left), HRTS (middle) and LIDAR (right). The PINN using the

multi-diagnostic constraint allows reconstructing an electron
density profile that correctly reproduces the interferometers,
HRTS, and LIDAR. In this case, since HRTS and Lidar are
used for constraining the tomography, they are not independ-
ent validation measurements. However, this is the most reli-
able reconstruction that can be achieved since it combines the
measurements of all the available diagnostics and, thanks to
the evaluation of the uncertainties, provides clear information
about the reliability of the reconstructed field.

Given the fact that the computational times of the PINNs
are high but not incompatible with intershot analysis in
the next generation of devices, their potential to comple-
ment Bayesian statistical approaches to uncertainty estima-
tion should be carefully investigated. Indeed, they are also
easy to implement and, relying on physical equations and not
on statistical priors, can present various advantages in many
situations.

22



Nucl. Fusion 63 (2023) 126059 R. Rossi et al

Figure 16. Measured vs reconstructed interferometer lines of sight for the six time slices.

Figure 17. Measured electron density by the HRTS (blue) and electron density reconstructed by the PINN in the same positions.
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Figure 18. Multi-diagnostic reconstruction of the density profile (Lidar, HRTS, Interferometer) t = 9 s.

6. Discussion, conclusions and future
developments

In this study, PINNs have been developed to address the chal-
lenging task of solving inverse problems in tokamak research.
Specifically, PINNs have been applied to the problem of recon-
structing the ideal MHD equilibria of thermonuclear plasmas
in both 2D and 3D configurations, achieving accurate results.
Furthermore, the approach has been extended to the analysis
of two additional inverse problems: emissivity reconstruction
from bolometer data and electron density reconstruction from
interferometer measurements. Through the application of the
proposed methodology, these important plasma parameters
have been accurately reconstructed.

One crucial aspect of this line of research is the develop-
ment of ad hoc neural network architectures with physics lay-
ers, which can improve the accuracy, reliability, and feasibility
of the solutions to the inversion problems. This incorporation
of physics into the neural network framework is a fundamental
characteristic of the PINNs.

The PINN architecture for emissivity and electron density
tomography, called TOMOnet, has proved its effectiveness in
solving inverse problems with high accuracy, even when con-
fronted with limited data availability, as demonstrated in the
case of the interferometer measurements. This emphasises the
robustness and versatility of the PINNs in handling real-world
scenarios.

To further enhance the capabilities of TOMOnet, an
upgraded version called MLTOMOnet has been developed,
which not only reconstructs the variables of interest but also
estimates their uncertainties by applying a ML methodology.
This improvement is particularly valuable as it provides a
comprehensive understanding of the reconstructed paramet-
ers, aiding in the decision-making and increasing confidence
in the obtained results.

We subsequently implemented MLTOMOnet to solve a
multi-diagnostic reconstruction problem, enabling the gener-
ation of a combined electron density field that satisfies all the
imposed constraints. This achievement is pivotal for future
applications of PINNs in the field of nuclear fusion, as it
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demonstrates their potential to tackle more complex problems
and deliver holistic solutions. Given the ease and transpar-
ency of their implementation, PINNs have therefore to be con-
sidered a very serious complement to Bayesian statistics for
uncertainty estimation and IDA.

It has to be emphasised that all the results reported in this
paper can be improved by requiring the PINNs to converge on
lower loss functions. Indeed, typically, the loss function tar-
get has been set to 10−4, which coincides with a relative error
between 1% and 5%. More stringent requirements could be
easily satisfied.

Computational times are quite high and may strongly vary
as a function of the problem and PINN complexity. The most
demanding PINN is the S3MHDnet, with an average com-
putational time of 6 h. Equilibrium reconstruction computa-
tional times are reduced when S2MHDnet and GradShafrNet
are used (average time is ∼2 h and ∼1 h 30 m respectively).
TOMOnet and MLTOMOnet have computational times ran-
ging from 20 min to 2 h depending on the case and neural
network initialisation. These computational times cannot be
shortened significantly without paying a significant price in
terms of performance. Indeed the complexity of the PINNs
presented are typically the minimum required to achieve the
reported quality of the outputs. Consequently, there is nomuch
to be gained by acting on the PINNs’ architecture. However
it has to be highlighted that all the results obtained in this
work have been conducted by initialising the net from scratch
without any prior information (random choice of the weights),
which is the worst case. In real life applications, pre-trained
neural networks aimed at solving similar problems can reach
convergence in much sorter times. In any case, these computa-
tional times make impracticable the use of PINN for real-time
purposes. These PINNs must be considered as very flexible
and accurate reconstruction algorithms to be used for post-
pulse processing.

The results obtained in this work prove that PINNs are
susceptible of several possible future developments of great
interest in tokamak research:

Multi-diagnostic integrated reconstruction. Most of equi-
librium reconstruction codes work with a limited number of
diagnostics. An interesting alternative may be the develop-
ment of PINN architectures, losses and training methodolo-
gies that allow for a multi-diagnostic (both magnetic and kin-
etic) constrained equilibrium so that the accuracy of the final
reconstructions is enhanced. Given the difficulty of develop-
ing, maintaining and improving traditional equilibrium codes,
the PINN alternative seems quite attractive. Application to
more complex 3D configurations, such as the stellarator or
unstable configurations (e.g. magnetic islands), looks partic-
ularly promising.

Reconstruction in presence of incomplete physics. In many
cases, some parameters are hard to evaluate or compute
(e.g. transport coefficients). By combining physics and data
driven approaches, it may be possible to reconstruct plasma
parameters by training the PINN to estimate themissing pieces
of information.

PINNs and numerical simulations. In recent years, machine
learning aided numerical simulations have revolutionized the
field of scientific research and engineering. By harnessing
the power of advanced algorithms and vast amounts of data,
machine learning techniques enable scientists to accurately
predict and simulate complex phenomena that were once
challenging or even impossible to model. These simulations
provide valuable insights into the behaviour of physical sys-
tems, allowing to optimize designs, make informed decisions,
and improve overall efficiency. PINNs may be integrated into
numerical simulation codes to improve accuracy and speed of
numerical simulations.

Real-time architectures. Standard PINNs architectures and
methodologies have been developed so that the training pro-
cess is problem specific: a new reconstruction requires a new
training and therefore incompatible computational time for
real-time applications. However, various investigations are
currently underway to develop a novel architecture and meth-
odology that strikes a balance between accuracy and speed.
This pursuit aims to create trained PINNs that can be effect-
ively deployed in real-time applications. By finding a suit-
able trade-off, the power of PINNs could be harnessed to
swiftly deliver reliable results without compromising preci-
sion, opening up exciting possibilities for real-time simulators
and decision-making processes.
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Appendix A

In this section, the Solov’ev analytical solution is briefly
described. Please, for full details see the original article [44].

Starting with the Grad-Shafranov equation:

∂2ψ

∂R2
− 1
R
∂ψ

∂R
+
∂2ψ

∂z2
=−µ0R

2 dp
dψ

− 1
2
df 2

dψ
. (A.1)

The Solov’ev solution is based on assuming that:

− dp
dψ

= cp =
a
µ0

−1
2
df 2

dψ
= cf = bR2

0. (A.2)
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And therefore, substituting (A.2) in (A.1), one can find:

∂2ψ

∂R2
− 1
R
∂ψ

∂R
+
∂2ψ

∂z2
= µ0

a
µ0
R2 + bR2

0 = aR2 + bR2
0.

(A.3)

Solving this equation leads to the exact solution:

ψ (R,z) =
1
2
(b+ c)R2

0z
2 +

c
(
R2 −R2

0

)
z2

2

+
1
8
(a− c)

(
R2 −R2

0

)2
p= p0 −

a
µ0
ψ

f 2 = f20 − 2bR2
0ψ . (A.4)

Since they are solution of the Grad-Shafranov equation
(ideal steady state toroidal symmetric MHD), these equations
are also solution of ideal steady state MHD. Therefore, by
imposing that at each angle the equilibrium is the same of
(A.4), one has a toroidal 3D symmetric equilibrium. This case
has been used to test S3MHDnet in reproducing toroidal sym-
metric MHD without the a priori assumption that the equilib-
rium is symmetric.

Appendix B

In this appendix, the simple ‘Periodic Toroidal Solution’ of 3D
ideal MHD is described.

The solution is found by starting from the definition of the
potential vector:

AR = 0;AZ = 0;Aϕ = bRsin(nϕ) . (B.1)

Then, by applying the rotor, one can find the magnetic field:

B=∇×A=

 BR
Bϕ

BZ

=

 0
0

2bsin(nϕ)

 . (B.2)

From the Ampere’s law, the current density is evaluated:

J=
1
µ0

∇×B=

 JR
Jϕ
JZ

=
1
µ0

 2bn
R cos(nϕ)

0
0

 . (B.3)

And therefore the pressure gradient is determined by the
cross product between the current density and the magnetic
field:

∇p= J×B=


∂p
∂R

1
R

∂p
∂ϕ
∂p
∂Z

=

 0

− 4b2 cos(nϕ) sin(nϕ)
R
0

 . (B.4)

Which leads to:

p= p0 − 2b2sin2nϕ. (B.5)
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