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Production networks arise from supply and customer relations among firms. These systems are
nowadays gaining attention as a consequence of the supply chain disruptions due to natural or man-
made disasters that happened in the last few years, such as the Covid-19 pandemic or the Russia-
Ukraine war. Recent empirical evidence shows that production networks are shaped by functional
modules arising from ‘complementary relationships’ between firms. However, data constraints force
the few, available studies to consider only country-specific production networks. In order to fully
capture the cross-country structure of modern supply chains, here we focus on the global automotive
industry as represented by the ‘MarkLines Automotive’ dataset. After representing this data as a
network of manufacturers, suppliers, and products, we perform a pattern-detection exercise using
a statistically grounded validation technique based on the maximum entropy principle. We reveal
the presence of a significantly large number of V-shaped and square-shaped motifs, indicating that
manufacturing firms compete and are seldom engaged in a buyer-supplier relationship, while they
typically have many suppliers in common. Interestingly, ‘generalist’ and ‘specialist’ suppliers coexist
in the network. Additionally, we unveil the presence of geographical patterns, with manufacturers
clustering around groups of suppliers; for instance, Chinese firms constitute a disconnected commu-
nity, likely an effect of the protectionist policies promoted by the Chinese government. We also show
the tendency of suppliers to organize their production by targeting specific ‘functional modules’ of
a vehicle. Besides shedding light on the self-organising principles shaping production networks, our
findings open up the possibility of designing realistic generative models of supply chains, to be used
for testing the resilience of the interconnected global economy.

INTRODUCTION

The growth of network science over the last twenty years has impacted several disciplines, by establishing new
empirical facts about the structural properties of complex systems as well as novel methodologies for their analysis.
Prominent examples are represented by economic and financial networks, such as international trade [1–3], country-
product exporting relationships [4–7] transaction networks [8, 9] and, after the 2008 global financial crisis, interbank
networks [10–14].

A class of systems that has recently gained attention is that of interfirm production networks, or supply chains,
emerging as (manufacturing) firms become dependent on other (supplier) firms for their own production. As a
consequence of globalization [15] and of a constant strive towards efficiency [16], production networks have become
increasingly interdependent – a feature lying at the basis of the business interruptions that occurred due to recent
natural and man-made disasters, such as (the first wave of) the Covid-19 pandemic [17–22]. The propagation of
shocks through an economy has been traditionally studied using classical input-output economics at the industry
level [23]. However, economists have recently pointed out the importance of considering supply chain data at the firm
level, in particular to assess the consequences of individual firm failures on macroeconomic fluctuations [24–26], also
because data aggregation can create substantial biases [27, 28]. Indeed, the importance of considering the microscopic
topology of the network to understand its resilience to shocks has been extensively demonstrated in the financial
network literature [29]. Therefore, network theory is becoming increasingly popular as a tool to analyse production
systems at the firm level [30–36], study the propagation of shocks and estimate supply chain resilience [37–41].

Firm-level datasets are notoriously difficult to acquire because of both technical and privacy issues [42]. While early
works relied on aggregated flows of goods between countries [43–47], today there are a few firm-level datasets with
global coverage that are built from financial reports, but mainly cover large companies listed on US stock exchanges
and their main customers: this is the case of Factset [42, 48], Compustat [37, 49, 50] and Capital IQ [51, 52] data.
Other global datasets that have been analyzed in the Operations Research and Supply Chain Management literature
concern specific industrial sectors [53]. The most popular and complete data is about the automotive sector, obtained
from a private industry database (the ‘MarkLines Automotive Information Platform’) populated through surveys
sent to automotive supplier firms [54, 55]. At the individual country level, instead, production networks can be
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constructed either from value-added tax (VAT) data concerning the transactions between the firms registered in
a country (examples are provided by Belgium [56], Ecuador [57], Hungary [40], Spain [58]) or from payment data
provided by central, or major, banks (examples are provided by Brazil [59], Japan [60, 61] and The Netherlands [62]).
National data, often characterised by a reporting threshold, typically have a very good internal coverage although do
not contain information about international relationships.

The Japan Interfirm Network (JIN) was the first large-scale dataset at the firm level to become available, hence
being extensively studied during the last decade [60, 61, 63–65]. Empirical analyses of the JIN revealed that firm-
specific structural quantities (such as the number of connections), as well as purely financial indicators (for instance
the total amount of sales and the total number of employees) are distributed as power-laws, while firm degree grows
along with its total sales in a non-linear fashion [63]. Regarding the JIN topology, it was shown to be disassortative
by degree (as suppliers with few customers are preferentially connected with large firms) and characterised by a well-
defined community structure, with clusters being shaped by geographic proximity and industrial sector similarity [61]:
notably, these clusters are characterized by bipartite structures with large companies not being directly linked but
sharing many first-tier suppliers. This result was confirmed by a comprehensive study of triadic motifs [60]: when
compared with a benchmark constraining the degree of each firm, the JIN features an over-representation of V-shaped
motifs [3] and an under-representation of triangular loops.

These findings have been interpreted as a sign that the self-organization of production networks is driven by
complementarity rather than homophily [66]. Indeed the latter is known to play an important role in shaping social
networks, where people with similar interests or acquaintances are likely to be connected, causing the formation of a
large number of closed triangles - a tendency well summed up by the popular saying ‘the friend of my friend is my friend
as well’ [67]. However, networks in different contexts can obey different principles: two proteins with similar binding
sites do not interact directly but can be both linked with others having complementary binding properties; protein
interaction networks are thus characterised by a large number of square patterns [68]. As the over-representation of
V-shaped motifs characterizing the JIN is compatible with the over-representation of the square patterns known as
X-motifs [3], the findings of [60, 61] corroborate a similar picture, according to which firms with similar outputs are
often engaged in a competitive (rather than a buyer-supplier) relationship, but can have many suppliers and customers
in common [55].

Such an over-representation of square motifs has been explicitly shown only for a company-level production network
constructed from Dutch national economic statistics [66, 69]: no results are available for global datasets, despite
the well-documented cross-country structure of production networks [15]. The aim of this paper is to bridge the
gap by carrying out a pattern-detection analysis on a global scale, using the ‘MarkLines Automotive’ dataset. In
particular, after providing a representation of the system in terms of a manufacturer-supplier-product network, we
employ validation techniques based on the maximum-entropy principle to unveil the presence of statistically significant
patterns [3, 70, 71].

METHODS

Network representation of the ‘MarkLines Automotive’ dataset

According to the (technological) taxonomy provided by the platform https://www.marklines.com, products are
classified into five categories: Chassis/Body (CB), Electrical (EL), Powertrain (PW), Interior/Exterior (IE) and
General parts (GP). A thorough data-cleaning and harmonization procedure (see also Appendix A) has led us to

TABLE I: Basic statistics of the ‘MarkLines Automotive’ dataset for each category of products: Chassis/Body (CB),
Electrical (EL), Powertrain (PW), Interior/Exterior (IE) and General parts (GP). The percentages reported in the
last row are so small to let us opt for discarding the links between manufacturers, hence obtaining perfectly bipartite
networks.

CB EL PW IE GP Full
# manufacturers 246 215 249 196 108 301
# suppliers 1864 1203 2659 1776 479 5725
# links 7937 5390 10978 6502 1687 26535
% internal links 0.4 0.94 2.6 0.83 0 1.3

https://www.marklines.com
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FIG. 1: The ‘MarkLines Automotive’ dataset, represented either as a bipartite multiplex (left panel) or as a tripartite
network (right panel).

consider M = 301 manufacturers, S = 5.725 suppliers, and P = 291 products; the overall number of buyer-supplier
relationships amounts to 26.535 (see also table I).
Information about each category of products, indexed by γ = 1 . . . 5, can be arranged into a biadjacency matrix

Bγ whose dimensions read Mγ ×Sγ , where Mγ is the number of manufacturers and Sγ is the number of suppliers in
category γ: naturally, bγms = 1 if supplier s provides manufacturer m with at least one product belonging to category
γ and bγms = 0 otherwise. Overall, then, the ‘MarkLines Automotive’ dataset can be represented as a bipartite
multiplex, each layer corresponding to a category of technological products (see also the left panel of figure 1).

Alternatively, the dataset can be represented as an M × S × P tripartite network, i.e. a ‘combination’ of two
bipartite networks sharing the set of suppliers (see also the right panel of figure 1): the generic element of the ‘left’
M × S biadjacency matrix L reads lms = 1 if manufacturer m buys from supplier s, otherwise lms = 0; analogously,
the generic element of the ‘right’ S × P biadjacency matrix R reads rsp = 1 if supplier s sells product p and rsp = 0
otherwise. Although we could also link each manufacturer to the set of products purchased by its suppliers, the
evidence that all of them are car producers and hence need the same basket of products let us opt for discarding this
third set of connections.

Structural properties

Local connectivity. The most important network quantity at the local level is the degree, defined as the number
of connections of a node. In order to properly describe our data, we need the following definitions:

• the number of suppliers, or product providers, of manufacturer m: km→S =
∑S

s=1 lms;

• the number of customers, or client manufacturers, of supplier s: ks→M =
∑M

m=1 lms;

• the ‘diversification’ of supplier s, i.e. the number of products it sells to its client manufacturers: ks→P =∑P
p=1 rsp;

• the ‘ubiquity’ of product p, i.e. the number of its vendor suppliers: kp→S =
∑S

s=1 rsp.

Assortativity. The presence of degree correlations is captured by the average nearest neighbors’ degree. In order
to properly describe our data, we need the following definitions:

• the average number of customers of a manufacturer’s neighbors: ANNDm→S =
∑S

s=1 lmsks→M/km→S ;

• the average number of providers of a supplier’s neighbors: ANNDs→M =
∑M

m=1 lmskm→S/ks→M;
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• the average ‘ubiquity’ of a supplier’s products: ANNDs→P =
∑P

p=1 rspkp→S/ks→P ;

• the average ‘diversification’ of a product’s suppliers: ANNDp→S =
∑S

s=1 rspks→P/kp→S .

Motifs. In order to capture the concept of a node’s ‘highly connected neighborhood’, we need to consider the
bipartite analogue of the monopartite square clustering coefficient. To this aim, several definitions have been proposed
so far (see also Appendix B): here, we adopt the one provided in [72] and reading1

BCCm =

∑
s<s′ qm(s, s′)∑

s<s′ [(ks→M − 1) + (ks′→M − 1)− qm(s, s′)]
(1)

where ks→M is the number of customers, or client manufacturers, of supplier s and

qm(s, s′) =

M∑
m′=1

(m′ ̸=m)

lmslms′ lm′slm′s′ = lmslms′

M∑
m′=1

(m′ ̸=m)

lm′slm′s′ (2)

counts the number of cycles, composed by four links, involving the common neighbors to s and s′, other than m.
According to BCCm, the total number of closed squares involving manufacturer m is given by the sum of degrees of
all pairs of its neighbours minus qm(s, s′), i.e. the number of squares that are already closed. In other words, the
total number of closed squares coincides with the number of squares that could become closed upon connecting, by
adding new links, the neighbors of s with s′ and the neighbors of s′ with s, excluding m from both sets.

Upon considering that the generic addendum lmslms′ lm′slm′s′ equals 1 if a closed square involving nodes m, m′, s
and s′ exists and 0 otherwise, we can compute the number of squares involving manufacturers m and m′ by summing
over s and s′, i.e. as

Xmm′ =
∑
s<s′

lmslms′ lm′slm′s′ =

(
Vmm′

2

)
(3)

where Vmm′ ≡
∑S

s=1 lmslm′s is the number of common suppliers (V-motifs) to m and m′ [3]: hence, the number of
cycles, composed by four links, involving node m equals the number of X-motifs involving it, i.e.

∑
s<s′ qm(s, s′) =∑M

m′=1
(m′ ̸=m)

Xmm′ .

Subgraph centrality. In order to detect the presence of closed paths of higher order, we have considered the bipartite
analogue of the monopartite subgraph centrality [73], whose definition reads

BSCm =

∑∞
k=0[L

2k]mm

(2k)!
= [cosh(L)]mm (4)

where L0 ≡ I, i.e., the zeroth power of L coincides with the M × M identity matrix, and only closed walks of
even length are accounted for. Still, carrying out a meaningful comparison of the centrality of nodes across different
configurations requires it to be properly normalized; here, we adopt the following definition

BSCm =
BSCm∑M

m=1 BSCm

=
[cosh(L)]mm

Tr[cosh(L)]
. (5)

1 In order to keep the discussion as simple as possible, hereby we have provided the definitions of the bipartite clustering coefficient only
for manufacturers - whereas needed, these definitions will be extended to suppliers and products as well.
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Statistical benchmarks

Answering the question of whether an empirical property represents a non-trivial signature of a network requires
comparing it with a properly defined benchmark - or null model, as its role is analogous to the one played by a null
hypothesis in traditional statistics.

Following the approach introduced in [74] and developed in [75], here we adopt the Exponential Random Graphs
(ERG) formalism, characterizing maximum-entropy probability distributions that preserve a desired set of constraints
on average while keeping everything else as random as possible [76]. Among the models that can be defined within
this framework, we consider the Bipartite Configuration Model (BiCM), introduced in [3] and defined by constraining
the degrees of the nodes belonging to both layers of a bipartite network - in other words, this model embodies the
null hypothesis that (the numerical values of) empirical network patterns are induced by (the numerical values of)
the degrees of the nodes.

Let us, now, briefly illustrate the basic results for our manufacturer-supplier network, redirecting the interested
reader to [3] for the explicit derivation of the BiCM. In the case of the BiCM, constrained entropy-maximization leads
to a factorized probability reading P (L) =

∏
m,s p

lms
ms (1− pms)

1−lms where

pms =
xmys

1 + xmys
(6)

is the probability that manufacturer m and supplier s are connected (i.e. that lms = 1) and xm and ys are functions
of the Lagrange multipliers, respectively controlling for the degrees km→S and ks→M .

The vectors of parameters x and y must be numerically determined: here, we employ the maximum likelihood
principle, prescribing to maximize the expression L = lnP (L|x,y) with respect to xm, ∀m and ys, ∀s. Such a recipe
leads us to find the system of equations

k∗m→S =

S∑
s=1

xmys
1 + xmys

, ∀m (7)

k∗s→M =

M∑
m=1

xmys
1 + xmys

, ∀ s (8)

ensuring that the empirical value of each constraint matches its expectation. The system above has been solved by
running the NEMTROPY package [71] available at https://github.com/nicoloval/NEMtropy.

Projection of the ‘MarkLines Automotive’ dataset

The projection of a bipartite network onto one of its layers yields a monopartite graph, where each pair of nodes is
connected as the number of common neighbors, proxying their similarity [77, 78], is significantly large. Here, we follow
the approach proposed in [70, 79] to validate the similarity of any two nodes with respect to the BiCM. Schematically,
this method works by A) focusing on a specific pair of nodes belonging to the layer of interest and counting the
number of common neighbors; B) quantifying its statistical significance with respect to the BiCM; C) linking the two
nodes if, and only if, the corresponding p-value is sufficiently low. Let us now describe these steps in detail.

Quantifying nodes similarity. The simplest indicator of the similarity of two nodes belonging to the same layer of
a bipartite network is provided by the number of their common neighbors. For the couple of manufacturers m and
m′ this number is given by

V ∗
mm′ =

S∑
s=1

lmslm′s, (9)

i.e. the number of V-motifs the two nodes originate - as m and m′ cannot be directly connected, the presence of a
common supplier, belonging to the opposite layer, draws a V-like shape [70].

https://github.com/nicoloval/NEMtropy
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FIG. 2: Empirical cumulative density function of manufacturers’ degrees (top left), suppliers’ ‘left’ degrees (top
right), suppliers’ ‘right’ degrees (bottom left) and products’ degrees (bottom right): all of them are heavy-tailed
and right-skewed, a result pointing out the quite large heterogeneity of our nodes connectivity. More specifically,
they all obey a power-law with exponential cutoff whose functional form reads f(x) = x−αe−βxβ1−α/Γ[1− α, βxmin]
and whose parameters - numerically determined by implementing the Levenberg-Marquardt algorithm [80] for least
squares optimization through the Python library SciPy - read α = 0.134, β = 0.005 (top left), α = 0.743, β = 0.049
(top right), α = 1.276, β = 0.015 (bottom left), α = 0.063, β = 0.022 (bottom right). Overall, the above results
indicate that ‘generalist’ suppliers co-exist with ‘specialist’ suppliers - noticeably, ≃ 51% of suppliers sells only one
product.

Statistical significance of nodes similarity. The BiCM, as any ERG model induced by linear constraints, treats
links as independent random variables. Therefore, the presence of a common supplier for any two manufacturers m
and m′, i.e. lmslm′s = 1, can be described as the outcome of a Bernoulli trial whose probability coefficients read:

fBer(lmslm′s) = pmspm′s, (10)

fBer(lmslm′s = 0) = 1− pmspm′s. (11)

As Vmm′ is a sum of independent Bernoulli trials, each characterized by a different probability, the behaviour of such
a random variable is described by the Poisson-Binomial (PB) distribution [70]. Evaluating the statistical significance
of the similarity of nodes m and m′, thus, amounts at computing the p-value

p-value(Vmm′) =
∑

x≥V ∗
mm′

fPB(x). (12)

Validating the monopartite projection. P-values must, then, be validated by implementing a procedure for testing
multiple hypotheses at a time. Several alternatives are viable, among which the Bonferroni correction [81], the Holm-
Bonferroni correction, and the Benjamini-Hochberg correction [82]. Here, we opt for the third one, controlling for the
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so-called False Discovery Rate (FDR), i.e. the expected proportion of false positives to appear within the set of tests
that pass the validation. Thus, we sort the n = M(M − 1)/2 p-values in increasing order

p-value1 ≤ p-value2 ≤ · · · ≤ p-valuen (13)

and, then, individuate the largest integer i satisfying the condition

p-valuei ≤
it

n
(14)

where t represents the single-test significance level, set to the value of 0.01. The FDR procedure prescribes to reject
the null hypothesis for all pairs of nodes whose p-value is less than, or equal to, p-valuei, meaning that their similarity
is considered statistically significant - hence, not explainable by constraining (just) the degrees - and the corresponding
nodes are linked in the resulting, monopartite projection.

Detecting communities on the validated network. In order to detect the presence of communities, i.e. densely-
connected subsets of nodes, in the validated projection, we employ the popular, modularity-based Louvain algo-
rithm [83]. Modularity is a score function that assesses the quality of a given partition of nodes by comparing the
number of internal links with the one expected under a given null model: the Louvain algorithm implements a heuristic
exploration of the landscape of partitions, individuating the one maximizing modularity.

Although faster and more accurate than other methods, the Louvain algorithm is sensitive to the order in which
nodes are selected [84, 85]. This limitation can be overcome by running the Louvain algorithm several times, each
one considering nodes in a different order: the best partition will be, again, the one attaining the largest value of
modularity.

RESULTS AND DISCUSSION

Let us, now, comment on the results of our analysis of the ‘MarkLines Automotive’ dataset.

Structural properties

Local connectivity. Figure 2 shows the degree distributions of manufacturers, suppliers, and products. All of them
are heavy-tailed and right-skewed, an evidence pointing out the large heterogeneity of nodes’ connectivity: more
specifically, they all obey a power-law with exponential cutoff [86].

Overall, the above results indicate the presence of ‘generalist’ suppliers (i.e. providing many products) co-existing
with ‘specialist’ suppliers (i.e. providing few products - ≃ 51% of suppliers sells only one product). Figure 3 further
shows that the number of client manufacturers of a supplier and the number of different products it sells are positively
correlated, indicating that ‘generalist’ suppliers tend to be connected with a large number of manufacturers. Still,
many ‘specialist’ suppliers that are linked to a relatively large number of manufacturers exist; a noticeable exception
is Motor Super, a Russian company that sells 56 different products to just 2 manufacturers, i.e. the Russian AvtoVaz
and the American Chevrolet. Overall, ≃ 41% of suppliers is connected to only one manufacturer.

Assortativity. In order to inspect the presence of degree correlations, we have scattered the ANNDm→S values
versus the km→S values (top left panel of Figure 4) and the ANNDs→M values versus the ks→M values (top right panel
of Figure 4). As the plots show, both trends are slightly decreasing, pointing out the presence of disassortative patterns:
in other words, manufacturers with many suppliers tend to be connected with suppliers having few customers, while
manufacturers with few suppliers tend to be connected with suppliers having many customers; similarly, suppliers
with many clients tend to be connected with manufacturers having few suppliers, while suppliers with few clients
tend to be connected with manufacturers having many suppliers. Overall, then, the automotive industry resembles an
ecosystem where suppliers serving (only) ‘bigger players’, by providing them few products - the so-called ‘specialists’ -
co-exist with suppliers serving a larger number of clients, by providing them a larger basket of products - the so-called
‘generalists’.

To spot differences between firms induced by their geographic location, we have partitioned them into nine groups,
i.e. African, Asean (i.e. Indonesia, Malaysia, South Korea, Thailand, and Vietnam), Chinese, Indian, Japanese,
Middle Eastern (i.e. Egypt, Iran, and Turkey), Russian, Western (i.e. Australia, Europe, Israel, and US) and Joint
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FIG. 3: ks→M values are positively correlated with ks→P values (the Pearson correlation coefficient reads r ≃ 0.64
with a p-value smaller than 0.001), an evidence indicating that ‘generalist’ suppliers tend to be connected with a large
number of manufacturers; still, many suppliers providing few products while being connected with a relatively large
number of manufacturers exist. Each dot represents the average of the number of customers of the suppliers that
have a particular diversification; the bars accompanying them represent the 95% sample CIs.

Ventures (JVs) and colored them accordingly. Overall, the group of Western firms is quite well-distinguished from
the group of Chinese firms and JVs. Among the manufacturers, Western ones display significantly large ANNDm→S
values, lying in the top 0.5% of the ensemble distribution induced by the null model, while the ANNDm→S values for
JVs, Chinese and Japanese manufacturers are either in line with the predictions of the null or lie below the bottom
0.5% confidence interval. For what concerns suppliers, instead, Chinese firms display significantly small ANNDs→M
values, lying in the bottom 0.5% confidence interval, while the ANNDs→M values for Western and Japanese suppliers
are in line with the predictions of the null model. This result suggests the supply chains of the Western and Japanese
automotive sector to be structurally different from the Chinese ones: Western and Japanese manufacturers tend to
purchase products from suppliers whose degree is, on average, larger than the one of the suppliers serving Chinese
manufacturers - in particular, the Japanese automotive industry revolves around few, big manufacturers purchasing
products from many, low-degree suppliers.

For what concerns the supplier/product network, scattering the ANNDs→P values versus the ks→P values and
the ANNDp→S values versus the kp→S values reveals its disassortative character, with suppliers selling many, less
ubiquitous products and viceversa (middle panels of Figure 4) - a result that is reminiscent of the one concerning
the export of countries within the (bipartite representation of the) international trade. While firms do not seem to
be partitioned according to any geographic criterion, products belonging to the Electrical sector display the larger
ANNDp→S values.

The aforementioned, geographical difference is recovered when scattering the tripartite assortativity coefficient of
each manufacturer, defined as ANNDm→P =

∑S
s=1 lmsks→P/km→S , versus its degree. As the bottom panel of Figure 4

confirms, Western and Japanese manufacturers tend to connect with suppliers providing a number of products that
is larger than the one provided by the suppliers to which Chinese manufacturers and JVs tend to connect.

Motifs. For what concerns the bipartite clustering coefficient, both panels of Figure 5 show an overall decreasing
trend, signaling that manufacturers (suppliers) having a large degree are generally closing less squares than manufac-
turers (suppliers) having a small degree. Again, the group of Western and Japanese firms is quite well-distinguished
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FIG. 4: Top panels: ANNDm→S scattered versus km→S (left) and ANNDs→M scattered versus ks→M (right). Both
trends are slightly decreasing, hinting at a disassortative behavior, i.e. manufacturers (suppliers) having a large degree
are generally connected with suppliers (manufacturers) having a small degree and viceversa. In other words, our results
depict the automotive industry as an ecosystem populated by 1) suppliers that serve ‘bigger players’ by providing
them with few products and 2) suppliers that serve a larger number of clients by providing them with a larger basket
of products. Middle panels: ANNDs→P scattered versus ks→P (left panel) and ANNDp→S scattered versus kp→S
(right panel). As for the manufacturer-supplier network, both trends are decreasing, pointing out a disassortative
behavior, according to which suppliers providing many products tend to have exclusive products within their baskets,
whereas suppliers providing few products tend to have a basket of ubiquitous products; in this case, however, no
geographically-induced distinction between firms emerges. Bottom panel: ANNDm→P scattered versus km→S . The
slightly decreasing trend confirms the picture provided by the figures above, i.e., Western and Japanese manufacturers
with a larger degree tend to be connected with suppliers providing fewer products and viceversa. Nodes are colored
according to their geographic location: • Africa, • Asean, • Chinese, • Indian, • Japanese, • Latin America, • Middle
East, • Russian, • Western and • Joint Ventures. Products are colored according to their technological sector, i.e. •
Chassis/Body, • Electrical, • Powertrain, • Interior/Exterior, • General parts.
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FIG. 5: BCCm scattered versus km→S (left panel) and BCCs scattered versus ks→MS (right panel). Both trends are
overall decreasing, indicating that manufacturers (suppliers) having a large degree are generally closing less squares
than manufacturers (suppliers) having a small degree. Besides, our results highlight that the automotive industry of
different geographic locations is shaped by different organizing principles: while the Western ecosystem seems to be
highly interconnected, where manufacturers share many suppliers that, in turn, share many different manufacturers,
the Chinese ecosystem seems to be rather fragmented, with different (sets of) manufacturers purchasing products from
different (sets of) suppliers, each one serving few clients. Overall, our results confirm the presence of the (statistically
significant) functional structures first observed in [66], however highlighting their peculiarly geographical character.
Nodes are colored according to their geographic localization: • Africa, • Asean, • Chinese, • Indian, • Japanese, •
Latin America, • Middle East, • Russian, • Western and • Joint Ventures.

from the group of Chinese firms and JVs, as the former ones display significantly large values of the bipartite clus-
tering coefficient, lying in the top 0.5% of the ensemble distribution induced by our null model. In other words, the
presence of mesoscale structures characterizing the Western and Japanese subsets of firms cannot be simply traced
back to the nodes degrees: rather, it represents a peculiar feature of these areas whose automotive industry appears
as a highly interconnected ecosystem. Chinese firms, on the contrary, constitute a seemingly fragmented environment
with different (sets of) manufacturers purchasing products from different (sets of) suppliers, each one serving few
clients. Our results complement the ones about the presence of statistically significant functional structures within
the automotive industry [66], clarifying that they come along a geographical signature. These results are robust with
respect to the definition of the bipartite clustering coefficient (see Appendix B).

Subgraph centrality. The results of the analysis of the bipartite subgraph centrality (BSC), illustrated in Figure
6, show that nodes with a larger degree tend to be more central as well. More importantly, the BSC allows us to
appreciate the different behavior displayed by firms located in different countries at best: Chinese firms and JVs
are, in fact, characterized by values of the BSC that are much smaller (some hardly above zero) than the values
of the BSC characterizing Western and Japanese firms. Specifically, the latter (former) have a larger-than-expected
(smaller-than-expected) BSC on the layer of manufacturers. Similar trends are observed when considering the layer
of suppliers, the only difference being that, now, the BSC of Western and Japanese firms is, overall, in line with the
predictions of the BiCM. Once again, these findings reveal Western and Japanese firms to be crossed by a large number
of patterns, an evidence confirming the plethora of interconnections leading from one node to another within this
portion of the network; Chinese firms, instead, seemingly belong to less interconnected, if not completely segregated,
supply chains.

Suppliers’ redundancy. Let us now complement our analysis by calculating the average suppliers’ redundancy for
each manufacturer, defined as ASRm =

∑S
s=1 lmsREDs/km→S where REDs =

∑P
p=1

∑
s′ (̸=s)∈Sm

rsprs′p/ks→P and
with Sm indicating the neighborhood of manufacturer m, i.e. the set of its suppliers. Scattering the ASRm values
versus the km→S values (see Figure 7) reveals an increasing trend, pointing out that suppliers serving manufacturers
with a larger degree tend to produce a larger number of similar products; besides, the suppliers serving Western
manufacturers display significantly large redundancy values, lying in the top 0.5% of the ensemble distribution induced
by our null model. The size of the dots is proportional to the number of countries of origin of the suppliers of
each manufacturer. A clear geographical signature is present: while the suppliers serving Western and Japanese
manufacturers are scattered across many different countries - e.g. 36 for Toyota and 34 for Ford - this is true to
a much lesser extent for what concerns Chinese manufacturers and JVs - e.g. the number of countries hosting the
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FIG. 6: BSCm scattered versus km→S (left panel) and BSCs scattered versus ks→M (right panel). Both trends are
increasing, pointing out that nodes with a larger degree are also more central. Chinese firms and JVs are characterized
by values of the BSC that are much smaller than those characterizing Western and Japanese firms and always smaller
than expected under the BiCM, a finding seemingly confirming that Chinese firms belong to less interconnected,
if not completely segregated, supply chains. Western and Japanese firms, instead, appear to be crossed by a large
number of patterns - when considering the layer of manufacturers, larger-than-expected under the BiCM - an evidence
confirming the plethora of interconnections leading from one node to another within this portion of the network. Nodes
are colored according to their geographic localization: • Africa, • Asean, • Chinese, • Indian, • Japanese, • Latin
America, • Middle East, • Russian, • Western and • Joint Ventures.

suppliers of Geely and FAW Volkswagen is 10 and 15, respectively.

Projection of the ‘MarkLines Automotive’ dataset

Community structure of the validated projection. Lastly, we focus on the validated projection onto each of our
layers.

Figure 8 shows the validated network of manufacturers, where two manufacturers are linked if sharing a statistically
significantly large number of suppliers. A markedly modular structure emerges (the value of modularity amounts at
≃ 0.5), the clusters of manufacturers being coherent with their geographic localization: the two, largest ones are those
composed by Chinese and Western firms - which, however, are not interconnected. Instead, the Chinese cluster is
linked only to the community of JVs that is constituted exclusively by Joint Ventures involving one Chinese company.
The Western cluster is, in turn, connected with the cluster of JVs via the manufacturer BMW Brilliance, with the
Japanese cluster via the manufacturer Nissan and with the Asean-Indian cluster via several links. Interestingly, the
similarity of the two small sets of nodes (recognized by the Louvain algorithm as individual communities) which are
detached from the Chinese and Western clusters is not only due to geographic proximity but also to their technological
characterization: the three nodes lying on the left of the Chinese cluster (i.e. GAC Aion, Weltmeister and Xpeng) are
all manufacturers of electric cars, while the four nodes lying below the Western cluster (i.e. Alpina, Lotus, McLaren
and SRT ) are all manufacturers of sports cars. As a last comment, let us stress once more that the Western cluster is
much more internally-connected than the Chinese one, a finding further confirming that the closure of motifs, within
the automotive industry, is strongly driven by geographic proximity.

As Figure 9 shows, the validated projection of suppliers (where two suppliers are linked if sharing a significantly
large number of manufacturers, see Appendix C for details on how this projection was obtained) is markedly modular
as well (the value of modularity amounts at ≃ 0.6) with clusters embodying geographic information. As evident
upon inspecting the figure, the Chinese cluster is not only isolated but also (internally) fragmented, being constituted
by a plethora of smaller connected components; the Indian cluster is disconnected from the rest of the network as
well, although its density is quite large. The largest components are constituted by two pairs of interconnected
communities, i.e. the one gathering Asean and Japanese firms and the one gathering American and European firms;
German suppliers give origin to a smaller community, lying on the right of the European subgraph.

For what concerns the supplier/product network, the validated projection of products (linked if sharing a signifi-
cantly large number of suppliers) is shown in figure 10: it displays an interesting community structure (the value of
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FIG. 7: ASRm scattered versus km→S . The increasing trend signals that suppliers serving manufacturers with a larger
degree tend to produce a larger number of similar products. The suppliers serving Western manufacturers display
the larger redundancy values; the size of dots, proportional to the number of countries of origin of the suppliers of
each manufacturer, highlight a geographical signature: the suppliers serving Western and Japanese manufacturers are
scattered across many, different countries (36 for Toyota and 34 for Ford) while this is true to a much lesser extent for
what concerns the suppliers serving Chinese manufacturers and JVs (the number of countries hosting the suppliers of
Geely and FAW Volkswagen are 10 and 15, respectively). Nodes are colored according to their geographic localization:
• Africa, • Asean, • Chinese, • Indian, • Japanese, • Latin America, • Middle East, • Russian, • Western and • Joint
Ventures.

modularity amounts at ≃ 0.45), characterized by the emergence of clusters that do not overlap with the (technologi-
cal) taxonomy provided by the platform https://www.marklines.com; rather, they represent the different ‘functional
modules’ that are present in a car - the list of products per community is provided in table II (Appendix D) - an
evidence suggesting that suppliers tend to focus their production on ‘coherent’ sets of products [87, 88].

CONCLUSIONS

The recent pandemic has fostered research on the structure of global supply chains [18, 22]. The use of tools
routinely employed in economics [89] has allowed scholars to discuss a number of relevant economic and geopolitical
issues, such as the consequences of different, national development strategies on the global value-chain of low-carbon
technologies [90], the effects of the US-China trade war [91], and so on. Yet this empirical evidence is typically
discussed from a qualitative or merely statistical point of view. The aim of the present paper is to bridge this gap,
carrying out a quantitative and disaggregated investigation of the global structure of a specific industry, by employing
methods rooted in network theory and statistical physics. Our analysis of the ‘MarkLines Automotive’ dataset allows
us to draw a number of conclusions:

• Degree distributions are heavy-tailed, hence describing an ecosystem where nodes are characterized by a highly

https://www.marklines.com
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FIG. 8: Validated projection of manufacturers, linked if sharing a significantly large number of suppliers. Analyzing
the presence of connections between communities reveals that the Chinese cluster is solely linked to the cluster of JVs
which, in turn, is connected with the Western cluster via the manufacturer BMW Brilliance; as the latter is connected
with the Japanese and Asean-Indian clusters as well, it is also the most central one of our validated projection. Lastly,
let us stress once more that the Western cluster is much more internally connected than the Chinese one, a finding
further confirming the closure of motifs to be strongly driven by geographic proximity. Nodes are colored according
to their geographic localization: • Africa, • Asean, • Chinese, • Indian, • Japanese, • Latin America, • Middle East,
• Russian, • Western and • Joint Ventures.

heterogeneous number of neighbors. More explicitly, ‘generalist’ suppliers selling many products co-exist together
with ‘specialist’ suppliers selling few products; besides, ‘generalist’ suppliers tend to be connected with a large
number of small-degree manufacturers while ‘specialist’ suppliers tend to be connected with a small number
of large-degree manufacturers. Specifically, the suppliers selling only one product (amounting to ≃ 51% of the
total) are connected with a subset of 166 manufacturers whose average degree amounts at ≃ 151, i.e. almost
twice the manufacturers’ average degree - a result indicating that well-connected manufacturers are preferentially
connected with suppliers seemingly providing ‘exclusive’ services.

• The analysis of the bipartite subgraph centrality points out that both manufacturers and suppliers with a larger
degree tend to be more central, although the abundance of squares shows a decreasing trend when plotted as
a function of the degree. These two quantities provide the neatest, geography-based partition of our basket of
firms, separating Chinese from Western ones: the former close a smaller number of squares than the latter, hence
providing an indication that the Chinese ecosystem is less integrated than the Western one. This is particularly
evident when considering the set of Chinese suppliers: the limited, although statistically significant, number of
neighbours shared by them induces a projection that is made of several, disconnected components. Although
this may be (at least, partly) induced by the peculiar way this projection has been obtained, our conclusions
are supported by the methodologically different analysis of of [92], which finds that the Chinese automotive
industry is characterized by a large degree of internal fragmentation, which is in play even at a territorial level,
as several components correspond to different Chinese provinces.

• The information provided by redundancy complements the one provided by geography, clarifying that the pres-
ence of (many) suppliers providing the same products to a manufacturer is compatible with a broader geograph-
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FIG. 9: Validated projection of suppliers, linked if sharing a significantly large number of manufacturers. Analyzing
the presence of connections between communities reveals that the Chinese cluster is isolated and internally fragmented.
The largest components are constituted by two pairs of interconnected communities, formed by Asean and Japanese
firms and American and European firms. Nodes are colored according to their geographic localization: • Africa, •
Asean, • Chinese, • Indian, • Japanese, • Latin America, • Middle East, • Russian, • Western and • Joint Ventures.

ical distribution of the manufacturer’s plants. By converse, the presence of (fewer) suppliers selling different
products to a manufacturer is compatible with a narrower geographical distribution of the manufacturer’s plants
- in certain cases, a very local one. This result also suggests the manufacturers belonging to the first group
are more resilient than the ones belonging to the second group, as their production is apparently less prone to
interruptions due to supply shortages.

• Projecting on the layer of manufacturers reveals that the Chinese cluster is solely connected with the cluster
of Chinese JVs, a result indicating that Chinese manufacturers do not share (a significantly large number of)
suppliers with other manufacturers. Again, this is supported [92], who observe that the Chinese government
adopted protectionist policies to boost the development of an indigenous automotive industry, forcing Chinese
JVs to buy the 40%− 80% of their components from Chinese suppliers.

• Taken together, our results confirm the prominent role played by square patterns in shaping the structure
of interfirm networks [66]. In our case, this becomes evident when considering how the network projections
are obtained, i.e. upon linking any two nodes, say m and m′, in case the number of neighbors they have
in common is found to be significantly large. As this number coincides with the number of shared V-motifs
Vmm′ which, in turn, is related to the number of X-motifs via the relationship Xmm′ = Vmm′(Vmm′ − 1)/2, our
validation procedure provides (an, at least, indirect) information about which pairs of nodes are likely to share
a significantly large number of square motifs as well.

As a last remark, we would like to stress that the investigation of the economic, historical, and social motivations at
the origin of the geographic-related structures we found is beyond the scope of the present paper. Here, we have shown
that the adoption of tools from complex networks theory can lead to the discovery of clear, structural features shaping
international supply chains (in this case, concerning the automotive sector) that should not be overlooked during the
model-building phase: these patterns, in fact, could inform methods for reconstructing production networks [93] -
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FIG. 10: Validated projection of products, linked if sharing a significantly large number of suppliers. The network
displays a clearly defined community structure whose clusters represent the different ‘functional modules’ that are
present in a car. Nodes are colored according to their technological sector, i.e. • Chassis/Body, • Electrical, •
Powertrain, • Interior/Exterior, • General parts.

which aim at overcoming the limitations affecting available datasets by adopting statistically-grounded techniques [62],
machine learning tools [55, 57, 94, 95] or proper data proxies [96] - to be later employed for stress testing [40, 41, 97].
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APPENDIX A.
DATA CLEANING AND HARMONIZATION

Here we detail the procedure used to clean and harmonize the ‘MarkLines Automotive’ dataset.

First, we dealt with the presence of companies, reported along with their divisions, with multiple names that do
not necessarily correspond to the actual taxonomy of the firm (e.g. ‘BAIC Motor’ appears as ‘BAIC’, ‘BAIC Motor’
and ‘BAIC Group Off-road Vehicles’). Name homogenization was carried out by reconstructing the actual taxonomy
of each group. Specifically, the corrections introduced are listed below:

• the instances of ‘BAIC’ with Senova and Beijing models, ‘BAIC Motor’ and ‘BAIC Group Off-road Vehicles’
were listed as ‘BAIC Motor’;

• the instances of ‘BAIC’ with Weiwang models were listed as ‘BAIC Yinxiang’;

• ‘Changan’, ‘Chongqing Changan’ and ‘Changan Commercial Vehicles’ were listed as ‘Chongqing Changan’;

• ‘Dongfeng’, ‘Dongfeng Motor’ and ‘Dongfeng Passenger Vehicles’ were listed as ‘Dongfeng Motor’;

• the instances of ‘FAW’, ‘FAW Car’ with Bestune models and ‘FAW Bestune’ were listed as ‘FAW Bestune’;

• the instances of ‘FAW’, ‘FAW Haima’ and ‘FAW Car’ with Haima models were listed as ‘FAW Haima’;

• the instances of ‘FAW’, ‘FAW Hongqi’ and ‘FAW Car’ with Hongqi models were listed as ‘FAW Hongqi’;

• ‘GAC Aion’ and ‘GAC NE’ were listed as ‘GAC Aion’;

• the instances of ‘GAC’ with Leopaard models and ‘GAC Changfeng’ were listed as ‘GAC Changfeng’;

• the instances of ‘GAC Motor’, ‘Trumpchi’ and ‘GAC’ with Trumpchi models were listed as ‘GAC Motor’;

• the instances of ‘Jiangling Holdings’, ‘JMH’ and ‘Jiangling’ with Landwind models were listed as ‘JMH’;

• ‘Jiangling Motors’ and ‘JMC’ were listed as ‘JMC’;

• the instances of ‘SAIC Maxus’, ‘SAIC’ and ‘SAIC Motors’ with Maxus models were listed as ‘SAIC Maxus’;

• the instances of ‘SAIC MG’, ‘MG’, ‘MG Motors’, ‘SAIC’ and ‘SAIC Motors’ with MG models were listed as
‘SAIC MG’;

• the instances of ‘SAIC Roewe’, ‘SAIC’ and ‘SAIC Motors’ with Roewe models were listed as ‘SAIC Roewe’.

Second, we addressed the simultaneous presence of both parent companies and their divisions as manufacturers of
the same models (e.g. ‘Daimler Group’ along with ‘Mercedes-Benz’ and ‘Smart’, ‘GM’ along with ‘Chevrolet’ and
‘Cadillac’, etc.); in order to remove such ambiguity, we decided to split the parent companies into their divisions
according to the produced models:

• ‘Daimler’ was split into ‘Bharat Benz’, ‘Mercedes-Benz’, ‘Mercedes-AMG’, ‘Smart’;

• ‘Fiat Chrysler’ was split into ‘Abarth’, ‘Alfa Romeo’, ‘Chrysler’, ‘Dodge’, ‘Fiat’, ‘Jeep’, ‘Lancia’, ‘Ram’ and
‘SRT’;

• ‘Ford’ was split into ‘Ford’ and ‘Lincoln’;

• ‘GM’ was split into ‘Buick’, ‘Cadillac’, ‘Chevrolet’, ‘Pontiac’, ‘Opel’ and ‘Opel/Vauxhall’;

• ‘Jaguar Land Rover’ was split into ‘Jaguar’ and ‘Land Rover’.

Third, we merged pairs of manufacturers in case one of them produced only vehicle models also produced by the
other one. This led to the following mergers:

• ‘Brilliance Jinbei’ with ‘Renault Brilliance Jinbei’;

• ‘Brilliance Xinyuan’ with ‘Brilliance Shineray’;
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• ‘Chengdu Xindadi’ with ‘Shanghai Maple’ and ‘Geely’;

• ‘Dongfeng Venucia’ with ‘Dongfeng Nissan’;

• ‘FAW Xiali’ with ‘Tianjin FAW Xiali’;

• ‘Guangqi Honda’ with ‘GAC Honda’;

• ‘Reva’ with ‘Mahindra Reva’;

• ‘Rongcheng Huatai’ with ‘Hawtai’;

• ‘Weltmeister’ with ‘WM Motors’;

• ‘Jiangxi Changhe Suzuki’ and ‘Zhicheng Automobile’ with ‘Changhe Suzuki’.

Finally, we merged the following manufacturers as they represent different plants of the same company:

• ‘FAW Toyota’, ‘Tianjin FAW Toyota’, ‘SFTM’ and ‘SFTM Changchun Fengyue’;

• ‘SAIC GM’, ‘SAIC GM Dong Yue’ and ‘SAIC GM Norsom’.

FIG. 11: Bipartite clustering coefficient (top panels: (15); bottom panels: (16)) scattered versus the degree of manu-
facturers (left panels) and suppliers (right panels). All trends are overall decreasing, confirming that manufacturers
(suppliers) having a large degree are generally closing less squares than manufacturers (suppliers) having a small
degree. Again, Western and Japanese firms are clearly distinguished from Chinese firms and JVs on both layers -
with definition (16) providing the neatest separation: while the clustering coefficient of the former is over-represented
on both layers, the clustering coefficient of the latter is either in line with the predictions of the BiCM or under-
represented. Nodes are colored according to their geographic localization: • Africa, • Asean, • Chinese, • Indian, •
Japanese, • Latin America, • Middle East, • Russian, • Western and • Joint Ventures.
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APPENDIX B.
BIPARTITE CLUSTERING COEFFICIENT: ALTERNATIVE DEFINITIONS

Let us, now, consider two, alternative formulations of the bipartite clustering coefficient. The definition provided
in [98] reads

BCC
′

m =

∑
s<s′ qm(s, s′)∑

s<s′ [(us − ηm(s, s′))(us′ − ηm(s, s′)) + qm(s, s′)]
(15)

where ηm(s, s′) = 1+qm(s, s′). According to this definition, the total number of closed squares involving manufacturer
m is given by the product of degrees of all pairs of its neighbours, excluding the number of squares that are already
closed. Otherwise stated, the total number of closed squares coincides with the number of possible ‘matchings’,
achievable by rewiring existing links, between the neighbors of s and those of s′.

A third, possible definition reads

BCC
′′

m =

∑
s<s′ qm(s, s′)

(M − 1)dm(dm − 1)/2
; (16)

according to it, the total number of closed squares involving manufacturer m coincides with the number of squares
that could become closed upon connecting, by adding new links, all pairs of its neighbours (e.g. s and s′) with the
same neighbour.

As shown in figure 11, the obtained trends are very similar to those illustrated in figure 5.

APPENDIX C.
CHOOSING THE THRESHOLD FOR THE VALIDATED PROJECTION OF SUPPLIERS

When building the validated network of suppliers, the application of the FDR criterion as described in the main
text yields an empty graph. In order to retain some information, we softened the validation procedure by neglecting
the correction for testing multiple hypotheses while lowering the threshold t - for the sake of robustness, we employed
three, different values, i.e. t = 10−3, t = 10−4 and t = 10−5. The corresponding projections (i.e. figure 9, obtained
upon choosing t = 10−4, and figure 12, obtained upon choosing t = 10−3 and t = 10−5) show comparable structural
features - namely the fragmentation of Chinese suppliers into several small connected components, the isolation of the
Indian cluster, the division of Western firms into one American and one European cluster, etc. - thus corroborating
the validity of these findings.
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FIG. 12: Validated projections of suppliers, obtained upon choosing the threshold values t = 10−5 (top panel) and
t = 10−3 (bottom panel). The two projections both display similar features with respect to the one obtained with
a threshold of t = 10−4 (see fig.9), such as the fragmentation of Chinese suppliers into several small connected
components, the isolation of the Indian cluster, etc. Nodes are colored according to their geographic localization: •
Africa, • Asean, • Chinese, • Indian, • Japanese, • Latin America, • Middle East, • Russian, • Western.
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APPENDIX D.
COMPOSITION OF PRODUCTS COMMUNITIES IN THE MONOPARTITE PROJECTION

TABLE II: List of products populating the corresponding projection, together with their technological classification
and the community they belong to. As stressed in the main text, the community structure we identify does not match
with the (technological) taxonomy provided by the platform https://www.marklines.com; rather, it identifies the
different ‘functional modules’ that are present in a car.

Product Layer Community
Boot Interior/Exterior Cooling System
Bush Interior/Exterior Cooling System
Bearing Interior/Exterior Cooling System
Fuel hose Powertrain Cooling System
Engine mount Powertrain Cooling System
Radiator Powertrain Cooling System
Radiator hose Powertrain Cooling System
Fuel line Powertrain Cooling System
Oil cooler Powertrain Cooling System
Cooling fan module Powertrain Cooling System
Engine bearing Powertrain Cooling System
Engine cooling module Powertrain Cooling System
Inter cooler Powertrain Cooling System
Power steering hose Chassis/Body Cooling System
Wheel bearing Chassis/Body Cooling System
Brake hose Chassis/Body Cooling System
Brake line Chassis/Body Cooling System
Heater hose Electrical Cooling System
Radiator fan controller Electrical Cooling System
AC HVAC Electrical Cooling System
Condenser Electrical Cooling System
AC hose Electrical Cooling System
Heater Electrical Cooling System
Air conditioner ECU Electrical Cooling System
AC compressor Electrical Cooling System
Inside door handle General Parts Doors
Outside door handle General Parts Doors
Shift lever Powertrain Doors
Side door closure Chassis/Body Doors
Convertible roof Chassis/Body Doors
Key cylinder steering lock Chassis/Body Doors
Back door/trunk lock Chassis/Body Doors
Door module Chassis/Body Doors
Window regulator Chassis/Body Doors
Side door lock Chassis/Body Doors
Wiper system Chassis/Body Doors
Wiper arm/blade Chassis/Body Doors
Hinge Chassis/Body Doors
Tailgate trunk closure Chassis/Body Doors
Lever combination switch Electrical Doors
Power tailgate trunk ECU Electrical Doors
Junction box Electrical Doors
Power sliding door ECU Electrical Doors
Horn Electrical Doors
Relay fuse Electrical Doors
Wiring harness Electrical Doors
Electrical connector Electrical Doors
Motor actuator Electrical Doors
Switch Electrical Doors
Keyless entry start system Electrical Doors

https://www.marklines.com
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Product Layer Community
Pedestrian protection airbag General Parts Electronic Control Units
HVEV ECU Powertrain Electronic Control Units
Ignition coil Powertrain Electronic Control Units
Diesel injector Powertrain Electronic Control Units
Engine management system Powertrain Electronic Control Units
Battery control ECU Powertrain Electronic Control Units
On board charger Powertrain Electronic Control Units
Inverter Powertrain Electronic Control Units
DC DC converter Powertrain Electronic Control Units
Battery Powertrain Electronic Control Units
Fuel pump Powertrain Electronic Control Units
Glow plug Powertrain Electronic Control Units
Spark plug Powertrain Electronic Control Units
Starter motor Powertrain Electronic Control Units
Alternator generator Powertrain Electronic Control Units
Throttle body Powertrain Electronic Control Units
Fuel injector Powertrain Electronic Control Units
HVPHVEV battery Powertrain Electronic Control Units
Power steering motor Chassis/Body Electronic Control Units
Active engine mount ECU Electrical Electronic Control Units
Seatbelt ECU Electrical Electronic Control Units
Stop start system ECU Electrical Electronic Control Units
Air flow sensor Electrical Electronic Control Units
Lane keeping assist system ECU Electrical Electronic Control Units
Electronically controlled all wheel drive ECU Electrical Electronic Control Units
Cruise control Electrical Electronic Control Units
Camera ECU Electrical Electronic Control Units
Door ECU Electrical Electronic Control Units
Clearance sonar ECU Electrical Electronic Control Units
Head lamp ECU Electrical Electronic Control Units
Head lamp leveling ECU Electrical Electronic Control Units
Power seat ECU Electrical Electronic Control Units
Occupant detection system Electrical Electronic Control Units
Object detection ECU Electrical Electronic Control Units
Antitheft immobilizer Electrical Electronic Control Units
Power steering ECU Electrical Electronic Control Units
Milliwave and laser radar Electrical Electronic Control Units
Steering sensor Electrical Electronic Control Units
Onboard camera Electrical Electronic Control Units
Pedal sensor Electrical Electronic Control Units
Head up display Electrical Electronic Control Units
Pressure sensor Electrical Electronic Control Units
Temperature sensor Electrical Electronic Control Units
Knock sensor Electrical Electronic Control Units
Glowplug controller Electrical Electronic Control Units
Airbag sensor Electrical Electronic Control Units
ADAS ECU Electrical Electronic Control Units
Electronic control unit Electrical Electronic Control Units
Rain light sensor Electrical Electronic Control Units
Car navigation system Electrical Electronic Control Units
Body control ECU Electrical Electronic Control Units
Display Electrical Electronic Control Units
ABS ECU Electrical Electronic Control Units
Tire pressure monitoring system ECU Electrical Electronic Control Units
OBD interface Electrical Electronic Control Units
Park assist system Electrical Electronic Control Units
Airbag ECU Electrical Electronic Control Units
Oxygen sensor Electrical Electronic Control Units
Crank cam sensor Electrical Electronic Control Units
Transmission ECU Electrical Electronic Control Units
Electronically controlled suspension ECU Electrical Electronic Control Units
Antenna Electrical Electronic Control Units
In-vehicle infotainment Electrical Electronic Control Units
Speed sensor Electrical Electronic Control Units
Telematics Electrical Electronic Control Units
Meter Electrical Electronic Control Units
Car audio Electrical Electronic Control Units
Engine control unit Electrical Electronic Control Units
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Product Layer Community
Seatbelt pretensioner General Parts Airbags, Wheel
Side airbag General Parts Airbags, Wheel
Driver airbag General Parts Airbags, Wheel
Knee airbag General Parts Airbags, Wheel
Passenger airbag General Parts Airbags, Wheel
Curtain airbag General Parts Airbags, Wheel
Seatbelt General Parts Airbags, Wheel
Steering wheel Chassis/Body Airbags, Wheel
Valve spring Powertrain Steering System
Rack end Chassis/Body Steering System
Power steering assist unit Chassis/Body Steering System
Tie rod end Chassis/Body Steering System
Suspension ball joint Chassis/Body Steering System
Stabilizer Chassis/Body Steering System
Power steering pump Chassis/Body Steering System
Steering gear Chassis/Body Steering System
Steering column Chassis/Body Steering System
Suspension spring Chassis/Body Steering System
Shock absorber Chassis/Body Steering System
Steering system Chassis/Body Steering System
Clutch master cylinder Powertrain Breaking System
Steering knuckle Chassis/Body Breaking System
Drum brake shoe Chassis/Body Breaking System
Brake wheel cylinder Chassis/Body Breaking System
Drum brake lining Chassis/Body Breaking System
Brake master cylinder Chassis/Body Breaking System
Drum brake Chassis/Body Breaking System
Brake booster Chassis/Body Breaking System
Parking brake Chassis/Body Breaking System
Corner module Chassis/Body Breaking System
Disc brake pad Chassis/Body Breaking System
ABS ESC Chassis/Body Breaking System
Disc brake caliper Chassis/Body Breaking System
Brake disc rotor Chassis/Body Breaking System
Electric park brake ECU Electrical Breaking System
Vehicle dynamics control Electrical Breaking System
Fuel filter Powertrain Engine
Transmission seal Powertrain Engine
V belt Powertrain Engine
Exhaust manifold gasket Powertrain Engine
Engine ass Y Powertrain Engine
EGR system Powertrain Engine
Piston pin Powertrain Engine
Timing belt/chain Powertrain Engine
Cylinder head Powertrain Engine
Cylinder head gasket Powertrain Engine
Air intake module Powertrain Engine
Connecting rod Powertrain Engine
Engine valve Powertrain Engine
Camshaft Powertrain Engine
Intake manifold Powertrain Engine
Cylinder head cover Powertrain Engine
Crankshaft Powertrain Engine
Piston ring Powertrain Engine
Timing system Powertrain Engine
Cylinder liner Powertrain Engine
Oil filter Powertrain Engine
Piston Powertrain Engine
Valve guide/seat Powertrain Engine
Carbon canister Powertrain Engine
Cylinder block Powertrain Engine
Oil pump Powertrain Engine
Water pump Powertrain Engine
Air cleaner/filter Powertrain Engine
Heat shield Chassis/Body Engine
Cabin air filter Electrical Engine
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Product Layer Community
Window glass General Parts Windows
Sunroof Chassis/Body Windows
Exhaust manifold Powertrain Exhaust System
Fuel supply system module Powertrain Exhaust System
Diesel particulate filter Powertrain Exhaust System
Catalytic converter Powertrain Exhaust System
Muffler Powertrain Exhaust System
Exhaust system Powertrain Exhaust System
Fuel tank Chassis/Body Exhaust System
Fuel filler Chassis/Body Exhaust System
Head lamp cleaner General Parts Lighting System
High mounted stop lamp General Parts Lighting System
Interior mirror General Parts Lighting System
Fog lamp General Parts Lighting System
Head lamp (AFS) General Parts Lighting System
License plate lamp General Parts Lighting System
Interior lighting General Parts Lighting System
Exterior mirror General Parts Lighting System
Head lamp General Parts Lighting System
Rear lamp General Parts Lighting System
Window washer Chassis/Body Lighting System
Adaptive front-lighting system ECU Electrical Lighting System
Glass run channel General Parts Cabin
Sun visor General Parts Cabin
Roof rail General Parts Cabin
Trunk tailgate trim General Parts Cabin
Molding General Parts Cabin
Floor mat General Parts Cabin
Seat frame General Parts Cabin
Cockpit module General Parts Cabin
Floor carpet General Parts Cabin
Cup holder General Parts Cabin
Spoiler General Parts Cabin
Headrest General Parts Cabin
Wheel cover cap General Parts Cabin
Pedal General Parts Cabin
Pedal box General Parts Cabin
Emblem General Parts Cabin
Glove box General Parts Cabin
Body side molding General Parts Cabin
Door panel General Parts Cabin
Weatherstrip General Parts Cabin
Bumper General Parts Cabin
Seat trim General Parts Cabin
Seat lumbar support General Parts Cabin
Seat adjuster recliner General Parts Cabin
Radiator Grille General Parts Cabin
Headliner General Parts Cabin
Seat General Parts Cabin
Door trim General Parts Cabin
Instrument panel General Parts Cabin
Console General Parts Cabin
Duct Interior/Exterior Cabin
Acoustic insulator Interior/Exterior Cabin
Axle Powertrain Cabin
Subframe suspension member Chassis/Body Cabin
Door frame Chassis/Body Cabin
Bumper beam Chassis/Body Cabin
Chassis frame Chassis/Body Cabin
Cross car beam Chassis/Body Cabin
Suspension control arm Chassis/Body Cabin
Side impact beam Chassis/Body Cabin
Suspension module Chassis/Body Cabin
Crossmember Chassis/Body Cabin
Front end module Chassis/Body Cabin
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Product Layer Community
Transfer Powertrain Clutch
Electric all wheel drive motor Powertrain Clutch
CVT Powertrain Clutch
All wheel drive Powertrain Clutch
Automated manual transmission Powertrain Clutch
Reduction gear for EV Powertrain Clutch
Clutch slave cylinder Powertrain Clutch
Propshaft Powertrain Clutch
Clutch Powertrain Clutch
Flywheel Powertrain Clutch
Torque converter Powertrain Clutch
Differential Powertrain Clutch
Manual transmission Powertrain Clutch
Dual clutch transmission Powertrain Clutch
Clutch disc Powertrain Clutch
Drive shaft Powertrain Clutch
Vehicle control unit Powertrain Clutch
Traction motor Powertrain Clutch
Automatic transmission Powertrain Clutch
e4WD ECU Electrical Clutch
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