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ABSTRACT

We investigate the dynamics of plasma-based acceleration processes with collisionless particle dy-
namics and non-negligible thermal effects. We aim at assessing the applicability of fluid-like models,
obtained by suitable closure assumptions applied to the relativistic kinetic equations, thus not suffer-
ing of statistical noise, even in presence of a finite temperature. The work here presented focuses on
the characterization of pressure anisotropies, which crucially depend on the adopted closure scheme,
and hence are useful to discern the appropriate thermal fluid model. To this aim, simulation results
of spatially resolved fluid models with different thermal closure assumptions are compared with
the results of particle-in-cell (PIC) simulations at changing temperature and amplitude of plasma
oscillations.

Keywords Plasma wakefield acceleration, thermal fluid closures

1 Introduction

Plasma wakefield acceleration (PWFA) is a promising new concept in the context of accelerator physics [1–3]. In
this process, a bunch of charged relativistic particles (driver) enters a neutral plasma and creates a perturbation in the
form of oscillations of plasma electrons; the resulting electromagnetic fields produce intense accelerating forces that
are orders of magnitude larger than those obtained with conventional accelerating technologies [4–6]. The physics of
plasma-based acceleration processes is extremely rich and complex [7–11]: the driver moves at relativistic velocities,
and it interacts with the plasma particles via electromagnetic forces: the early stages of the dynamics take place on
time-scales much smaller than the characteristic time of inter-particle collisions, thus precluding thermalization to
local equilibrium for plasma particles. The resulting dynamic is well represented by the relativistic Maxwell-Vlasov
kinetic equations [12, 13].
Due to the inherent complexity of the physics involved, numerical simulations are important tools to support the
design of novel PWFA experimental configurations. Particle-in-cell (PIC) methods are the reference tool in the com-
munity [14–20]. In PIC simulations, the relativistic Vlasov-Maxwell equations are solved via particle dynamics at
the microscopic level [21, 22]. While this provides the most accurate description of the physics, it also requires a
careful balance between increasing computational costs and low statistical noise, which both scale with the number of
simulated particles [22–24]. On the other hand, there has been some effort in the community to design coarse-grained
models based on the fluid description of plasma [25]: instead of particle distribution functions, these methods provide
a continuum description based on fields such as particle density and velocity. Fluid models result from suitable clo-
sure assumptions applied to the kinetic equations [26–31], and therefore can not be used to describe the whole richness
emerging from kinetic models. Nevertheless, an accurate determination of the limits on their applicability can help in
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designing efficient tools of analysis for PWFA as a valid alternative to PIC simulations [32, 33].
Fluid models have been traditionally developed in the cold limit, i.e., by neglecting thermal effects in the plasma
dynamics [34]. Thermal effects are known to provide a regularization of the singularity emerging in the wakefield
structure close to wake-breaking [29, 35–37]; furthermore, recent research has prompted renewed interest in con-
sidering plasma acceleration processes with non negligible thermal effects since they may become relevant for high
repetition rate operation [38–40], have significant impact in the understanding of ion channel formations [41, 42],
improve beam quality in positron based accelerators [43–46] and also help in the development of new PWFA diagnos-
tics [47].
Developing fluid models for PWFA involving collisionless particle dynamics and including non-negligible thermal
effects is a non-trivial task and requires the application of suitable closure schemes to the relativistic kinetic equa-
tions [25–28, 48–50]. Applying a closure scheme that is based on the assumption that the distribution function is close
to a local equilibrium (hereafter named ”local equilibrium closure” , LEC) seems inappropriate, at least in the early
stages of plasma dynamics where particles do not collide and the local particle distribution function cannot relax to-
wards a local equilibrium. However, if the plasma is initially in equilibrium and at rest, after the perturbation induced
by the driver there may be features in the dynamics that may be qualitatively captured by LEC when the perturbation is
small (linear regimes); other applications of LEC could be related to late stage dynamics, after the wake has mixed and
broken [42]. In fact, it is known [51] that nonlinear collective forces have the same effect as collisions in thermalizing
a particle distribution. Hence, one could think of using LEC for some numerical investigations, especially thanks to
the fact that the number of fluid equations is limited, i.e., one has to consider in this case only mass and momentum
conservation [13, 26, 52]. Other closure schemes [27–31, 49] can also be derived by considering centered moments
equations obtained from the Vlasov equation and neglecting moments higher than the second without any assumption
on the local equilibrium structure. This closure scheme (hereafter named ”warm closure”, WARMC) reproduces fluid
equations possessing a pressure field that is inherently anisotropic [53, 54]. With respect to the LEC, the WARMC
involves a larger number of fluid equations and is nominally valid only for small thermal spreads i.e. momentum dis-
tribution variances. Both fluid closures (LEC and WARMC) coincide in the cold limit, but they are expected to deliver
different results at finite temperatures. So far, a quantitative assessment of the validity of spatially resolved thermal
fluid closures in numerical simulations of PWFA is missing. This paper takes a step further in filling this gap. In
more detail, we will focus here on a characterization of pressure anisotropies in thermal plasmas [53–55], specifically
assessing the ability of fluid closures in describing this particular feature of PWFA experiments by comparing them
against PIC simulations, the most reliable benchmark aside from conducting actual experiments. This work builds on
the work presented in [53–55], and expands it by presenting fully spatially resolved results. The paper is organized as
follows. In Sec. 2, the relativistic kinetic equations for collisionless plasma are recalled and the main ingredients for
the two closure schemes (LEC and WARMC) are given. The problem setup and the numerical schemes are described
in Sec. 3. Results are described in Sec. 4 and conclusions will follow in Sec. 5.

2 Warm Fluid Theories for a collisionless plasma

The basic step in the construction of a fluid theory for warm plasmas is provided by the relativistic Vlasov equation [12,
13],

pα
∂f

∂xα
− e

c
Fαβpβ

∂f

∂pα
= 0 , (1)

that details the time evolution of a gas of electrons with mass me and charge −e, space-time coordinates xα = (ct,x)
and relativistic kinetic momentum pα = (p0,p), via the distribution function f = f(xα, pα), whose moments deliver
quantities of interest in relativistic fluid dynamics. The relevant low order moments are the invariant density h, the
particle flow Nα, the energy-momentum tensor Tαβ and the energy-momentum flux Mαβγ given by:

h = c

∫
f
dp

p0
, (2)

Nα = c

∫
fpα

dp

p0
, (3)

Tαβ = c

∫
fpαpβ

dp

p0
, (4)

Mαβγ = c

∫
fpαpβpγ

dp

p0
. (5)
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The transport equation Eq. (1) implies conservation of mass, momentum and energy, expressed here as conservation
equations for Nα, Tαβ and Mαβγ [13, 31, 52]:

0 = ∂αN
α , (6)

0 = ∂αT
αβ +

e

c
F βαNα , (7)

0 = ∂αM
αβγ +

e

c
(F βαT γ

α + F γαT β
α ) . (8)

Finally, the electromagnetic field tensor Fαβ (whose components are the electric and magnetic fields, E and B,
respectively) appearing in Eq. (1) evolves according to Maxwell equations [56]:

0 = ∂αF
αβ + µ0ce(N

β +Nβ
b ) , (9)

0 = ∂αFβγ + ∂βFγα + ∂γFαβ , (10)

with Nβ
b representing the driving electron bunch that perturbs the plasma.

2.1 Local Equilibrium Closure (LEC)

A popular closure for the fluid equations Eqs. (6) to (8) is given by the local equilibrium closure (LEC), which
postulates the distribution function f solving for Eq. (1) as the Maxwell-Jüttner distribution [57] (see Appendix B for
details). This hypothesis has some strong implications. First, in this configuration, the fluid must be considered ideal,
and therefore its particle flow Nα and energy-momentum tensor Tαβ assume the form

Nα = n0U
α , Tαβ = (P0 + ε0)

UαUβ

c2
− P0η

αβ , (11)

with n0 = n/γ, P0, ε0 respectively the rest number density, pressure, and internal energy density, Uα = γ(c,u) the
four vector for fluid velocity (γ being its related Lorentz factor), and ηαβ is the Minkowsky metric tensor. Second, the
adoption of a local Maxwell-Jüttner distribution grants both entropy conservation and the use of an ideal equation of
state (in this relativistic framework the Synge [58] equation of state, that we adopt here in the small temperature limit).
This translates into a particular scaling for temperature T , pressure and energy density in the plasma:

T = Ti

(
n0

ni

)2/3

, (12)

P0 = n0mec
2µi

(
n0

ni

)2/3

, (13)

ε0 = n0mec
2

[
1 +

3

2
µi

(
n0

ni

)2/3
]

, (14)

with ni and Ti respectively the initial number density and temperature fields, and µi = kbTi

mec2
. All in all, the LEC

produces the following set of warm plasma equations:

∂tA+∇x · (uA) = F , (15)

where

A =

 n[
1 + 5

2µi

(
n0

ni

)2/3]
nmeγu

 , (16)

F =

(
0

−nimec
2µi∇x

(
n0

ni

)5/3
− en(E+ u ∧B)

)
. (17)

In cylindrical coordinates, assuming axial symmetry and imposing no azimuthal fluid velocity uφ = 0 due to the fact
that this component is often sub-dominant in these kinds of setups, Eq. (15) simplifies into a set of three equations, one
for the plasma number density n and two for the remaining non-zero components of the relativistic fluid momentum,
γmeur and γmeuz .
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2.2 Warm Plasma Closure (WARMC)

A second closure to warm fluid equations is provided by the so called Warm Closure (WARMC) [31]. Eqs. (6) to (8)
are re-expressed through the centered (w.r.t. the thermal momentum wµ = Nµ/h) moments of second (θµν) and third
order (Qµνλ)

θµν = c

∫
f(pµ − wµ)(pν − wν)

dp

p0
, (18)

Qµνλ = c

∫
f(pµ − wµ)(pν − wν)(pλ − wλ)

dp

p0
, (19)

where one can easily verify that θµν = Tµν − NµNν

h . The closure is indeed performed by neglecting Qµνλ in the
conservation equations, on the excuse of small thermal spreads in the plasma. This leads to the following set of
equations

∂tA+∇x · (uA) = F , (20)

where

A =


n

nn0U
β

h

n θβγ

h

 , (21)

F =


0

−∂αθ
αβ − n0e

c F βαUα

−θγα∂α

(
n0Uβ

h

)
−θαβ∂α

(
n0Uγ

h

)
− e

c (F
βαθ γ

α +Fγαθ β
α )

 , (22)

which have to be coupled with the constraints coming from the mass-shell condition for kinetic momenta, pµpµ =
m2

ec
2:

θµµ = hc2
[
m2

e −
(n0

h

)2]
, (23)

Uνθ
µν = 0 . (24)

All in all, when considering Eq. (20) in a cylindrical geometry with axial symmetry and no azimuthal velocity, this
system reduces to a set of eight forced advection equations for the plasma number density n, the invariant density h,
the non-zero cylindrical components of the fluid velocity ur and uz , and some components of the centered energy
momentum tensor, namely θrr, θφφ, θzz and θrz (all other non-zero components are recovered via Eqs. (23) and (24)).
Note here that in the WARMC equations, the components of the centered energy-momentum tensor θµν , which basi-
cally represent pressure and energy density in a generic lab frame of reference (and can indeed be linked to the rest
frame versions of said quantities - more details in Appendix A) appear as dynamic variables, and in principle lead to
anisotropic pressures. In PWFA, where processes occur on short time scales so that particle collisions can not act as
isotropy-restoring terms, such condition is expected [53, 54].

3 Setup and numerical simulations

In this section we present the setups employed for the numerical simulations of the fluid equations previously pre-
sented, for both the two closure schemes (LEC and WARMC). Such equations can be numerically solved by recurring
to the lattice Boltzmann method, with algorithmic details provided in Refs. [59, 60]. Conversely, Maxwell equations
are solved by employing a Finite Difference Time Domain scheme [61, 62]. The method has been presented in detail
in Refs. [59, 60], and the interested reader might refer to these publications for further algorithmic details.
In each subsequent figure, we compare results coming from the fluid solver against PIC simulations performed using
the code FBPIC [17]. FBPIC is a quasi-3D PIC that employs the Hankel transform to decompose transversely the
relevant quantities (the maximum order is set by the user) allowing to go beyond the limiting pure cylindrical sym-
metry. It also makes use of a spectral solver that does not introduce numerical dispersion for close to the speed of
light moving quantities. For both the two solvers, we initialize the background plasma at rest, with uniform density
ni = 1016 cm−3 and temperature kbTi = 37 eV: in the case of PIC, such thermal spread is introduced as a variance
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Figure 1: A typical outcome of a fluid solver (top) versus the PIC solver (bottom). Depicted in the figure is the number
density, normalized w.r.t. initial unperturbed plasma density ni, given by two contributions: one coming from the
Gaussian driving bunch nb, with rms-sizes σr = 5.3 µm and σz = 16 µm, peak amplitude α = 1.05 × 1016 cm−3,
and traveling from right to left at the speed of light. The second contribution is given by the background plasma density
n, initially set in an equilibrium configuration at uniform temperature kbTi = 37 eV and density ni = 1016cm−3

in the initial velocity distribution of the plasma particles. The plasma is then perturbed by a driver of electrons, with
Gaussian bunch density nb

nb = α exp

(
− (z − z0)

2

2σ2
z

− r2

2σ2
r

)
, (25)

with σr = 5.3 µm and σz = 16 µm, and peak amplitude α = 1.05 × 1016 cm−3, set to reproduce the desired value
of 0.05 for the normalized charge parameter Q̃, defined as follows:

Q̃ = α(2π)3/2σ2
rσz

(
k3p
ni

)
, (26)

where kp =
ωp

c =
√
e2ni/(mec2ϵ0) is the cold plasma wave-number, ϵ0 being vacuum’s permittivity. For the fluid

solver, the driver is initialized at a position kpz0 = 1.5 inside the simulation domain, and then moves rigidly at the
speed of light from right to left along the z-axis. In the case of the PIC solver, the driving bunch is initialized in
vacuum and focused at the vacuum-plasma transition (consisting of a step-like profile) to the prescribed rms-sizes. Its
energy is set to 10 GeV , in order to increase the betatron wavelength and reduce any contribution due to transverse
evolution.
For the fluid code, the simulation domain is 425 µm long and has a maximum radius of 318 µm, with corresponding
cell resolutions kpdz = kpdr = 10−2. For the PIC code we have instead a box of size 530 µm × 106 µm, sampled
at a resolution of kpdz = 6.2 × 10−3 and kpdr = 4.7 × 10−3. For both solvers, the temporal step is ωpdt = 10−3.
Finally, in the PIC code, the unperturbed plasma density ni is sampled with 64 particles per cell (4 × 4 × 4 in z, r, φ
directions respectively). This number of particles per cell has been selected after performing a convergence test and
chosen as a balanced compromise between computational efficiency and achieving sufficiently smooth fields. In order
to reproduce the cylindrical symmetry of the fluid code, only the fundamental azimuthal mode has been employed.
In Fig. 1, we show a comparison between the fluid and PIC codes at time 1.78 ps. We show the total number density,
comprising the driving bunch contribution nb and the plasma response n, with the co-moving variable ζ = z − ct on
the x-axis (as all figures presented in this work). This figure both serves as a sketch for the simulation setup, and to
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Figure 2: Comparison between the results of the fluid code in the two closures (top and middle panels) against the
PIC code (bottom panels) for all the diagonal components of the centered energy momentum tensor θµν expressed
in cylindrical coordinates. All quantities are normalized w.r.t. their initial values θ00i = ni3(kbTi)

2/(2mec
2) and

θrri = θφφ
i = θzzi = nikbTi, computed in Appendix B for an isotropic plasma at rest in thermodynamic equilibrium.

verify compliance between the two solvers.
Finally, we mention that all the results shown in Sec. 4 are drawn for the PIC solver by coarse-graining information
from the particles of the simulation. In practice, the components of the centered energy-momentum tensor θµν , given
by Eq. (18), are computed for the PIC code by performing particles averages on sub-cells of the physical domain.
Particular care has to be taken when performing such operation, as the sub-cells must have dimensions smaller than
the typical length scales of the system, while also being sufficiently large to accumulate adequate statistics for the
particles averages. In our case, we employ sub-cells of dimensions kp∆r = 2 × 10−2 and kp∆z = 6 × 10−2.
Additionally, when in Sec. 4 we will be showing slice plots of the different quantities at fixed r values, it is to be
intended that such quantities are averaged along the r direction on a slice of size 5 µm = 0.10/kp, in order to reduce
the noise of the PIC code.

4 Results

We present here the results of the comparisons between the fluid solver for both the two fluid closures and the PIC
solver, having set up both the two numerical schemes with the prescriptions provided in Sec; 3. First, we compare
in Fig. 2 the diagonal components of the centered energy-momentum tensor: θ00, θrr, θφφ, θzz , normalized w.r.t.
their initial value at rest (more details on these values at the end of Appendix B). As it is possible to appreciate in
Appendix A, these are in fact the building blocks used to compute the fluid’s rest frame longitudinal and transversal
pressure components, and therefore provide already an important indication on matches/mismatches between the fluid
schemes and the PIC code. We reckon that, while in the WARMC these components are a direct output of the sim-
ulation, and in the LEC case, they have to be computed from rest frame quantities according to Eq. (47). Finally, as
it has already been mentioned, in the PIC case we compute these quantities by performing particle averages of the
form Eq. (18). By close inspection of the figure, it is possible to appreciate that the WARMC is in tight visual agree-
ment with the PIC results, and well reproduces all the main spatial features of the tensor components. In particular,
it is already possible to appreciate a difference in the spatial entries θrr, θφφ, θzz . This inhomogeneity in the spatial
components is not expected in the LEC case, where the only differences are due to relativistic effects: in fact in the
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Figure 3: Left column: color plots of the transversal P⊥ (top part of the figure) and longitudinal P∥ (bottom part of the
figure) rest frame pressure fields for the two fluid theories (top panels LEC, mid panels WARMC) versus the PIC solver
(bottom panels). For the LEC fluid theory, these quantities coincide and are computed according to Eq. (13). Middle
and right columns: we show two characteristics slice plots at selected values of the r coordinate, kpr1 = 0.05 (middle
column, panels a1-a2) and kpr2 = 0.15 (right column, panels b1-b2). For all these plots, pressures are normalized
w.r.t. their initial isotropic value, Pi = nikbTi.

non-relativistic case these values reduce to the components of Euler-Cauchy stress-tensor of an ideal fluid, see Ap-
pendix B for details. Finally, we mention that at variance with the cited spatial entries of θµν , the time-time component
θ00’s initial value is quadratic with temperature Ti, and hence both the two fluid closures, which are first order theories
in T , are not expected to recover this quantity as well as the others, both at rest and in the dynamics. Nevertheless, we
appreciate a congruent agreement between the PIC and the fluid solver, with most of the spatial features of θ00 well
reproduced in the simulations.

Evaluating thermal spread anisotropies by comparing components of the centered energy momentum tensor is indeed
useful, but a more straightforward characterization can be proposed by recurring to comparisons of the pressure values
in the rest frame of the fluid, which basically reduces the parameter space to only two observables (one in the LEC
case) instead of many more. As already stated, particle collisions are a restoring mechanism for recovering local
equilibrium, and hence pressure isotropy; therefore in the LEC case, where equilibrium is enforced by construction,
there is only one single value for pressure, which is constructed from the number density by a simple consequence
of ideal gas’ law and entropy conservation (Eqs. (12) and (13)). In the WARMC, such constrain is not imposed, and
pressure anisotropies might naturally arise in the system. This indeed is observed in Fig. 3, where we compare the
isotropic pressure term coming from LEC against the longitudinal P∥ and transversal P⊥ pressure terms that can be
derived in the WARMC case: these values are indeed obtained connecting the numerically computed components
of the centered energy-momentum tensor in the lab frame, θµν , to its rest fluid’s frame counterpart, via a Lorentz
transformation, see Appendix A for more details. When comparing against the PIC, we see, at variance with the LEC
model, that there is a very good agreement with the WARMC theory, both qualitatively (color plots on the left) and
quantitatively (slice plots on the right). This is especially true in the first electron depletion bubble after the driver,
and the agreement is generally well maintained all over the spatial domain. Close to the radial axis (see for example
Fig. 3(a1-a2)), approximately at the closing of the first electron depletion bubble in kpζ ∼ 5−6, we observe a tenuous
mismatch: this is to be expected, since judging by Fig. 1 this is where the density peak is approximately located, and
hence where the agreement between fluid theories and kinetic solvers is expected to be worsening. In addition, the
particle averages for the coarse-graining of the PIC quantities (see Sec. 3) are most sensible to sharp field transitions,
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Figure 4: Comparison between the fluid WARMC and the PIC code, for both the transversal (top part of the figure)
and longitudinal pressures (bottom part of the figure). We use the setup exposed in Sec. 3, with initial temperature
kbTi = 37 eV, and for two different values of Q̃: Q̃ = 0.1 in the first and third row, Q̃ = 0.25 in the second and
fourth row. For both these two parameters, we show color plots (on the left column) and two slice plots at chosen
radial values kpr1 = 0.05 (panels a1-c1-a2-c2) and kpr2 = 0.15 (panels b1-d1-b2-d2). All pressure components are
normalized w.r.t. their initial isotropic value, Pi = nikbTi.
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Figure 5: Comparison between the fluid WARMC and the PIC code, for both the transversal (top part of the figure)
and longitudinal pressures (bottom part of the figure). We use the setup exposed in Sec. 3, with normalized charge
parameter Q̃ = 0.05, and for two different values of kbTi: kbTi = 100 eV in the first and third row, kbTi = 383 eV
in the second and fourth row. For both these two parameters, we show color plots (on the left column) and two slice
plots at chosen radial values kpr1 = 0.05 (panels a1-c1-a2-c2) and kpr2 = 0.15 (panels b1-d1-b2-d2). All pressure
components are normalized w.r.t. their initial isotropic value, Pi = nikbTi.
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and this is exactly the case in this particular zone. Nevertheless, by comparing the color plots and slice plots for both
P⊥ (see Fig. 3(a1-b1)) and P|| (see Fig. 3(a2-b2)) we see a convincing indication of the occurrence of thermal spread
anisotropies in the plasma, i.e. P|| ̸= P⊥; additionally, we note that that the biggest differences w.r.t. the LEC isotropic
case are encountered for P||: this means that the LEC would fail to reproduce longitudinal pressure forces while still
being able to qualitatively reproduce radial expansion/compression due to thermal effects. This feature is probably due
to the relativistic nature of the driving bunch; in relativistic beam dynamics, the beam temperature typically have dif-
ferent values (and may also have different definitions) in the longitudinal and transverse directions (see, for example,
Ref. [63]); in addition, a number of collisional effects display similar non isotropic behaviors like the Boersch [64] or
the Touschek [65] effects. It does seem then reasonable to attribute the failure of LEC on the longitudinal direction to
the boosting of the driver reference frame while in the transverse direction it retains some validity due to the relative
”smallness” of the perturbation occurring in the linear regime. One last remark is in place: this figure provides indica-
tion that a selection of the closure scheme might impact on the radial size of the first depletion bubble: from the slice
plots it is indeed possible to appreciate that the way the radial pressure is restored to the initial pressure is different in
the LEC and WARMC. Estimates on the radial size of the first depletion bubble in the wake of the driver are indeed a
topic of interest in PWFA [66–69], and we reserve a characterization study of the dependence of these quantities on
thermal spread to future works.
Up to now, we have adopted for our comparisons a fixed setup, comprising an initially uniform temperature field of
kbTi = 37 eV and a normalized charge parameter of Q̃ = 0.05. The question of how this characterization stands
up to variations of these parameters might naturally come and has indeed to be faced. On one side, fluid theories
cannot sustain highly non-linear regimes, as they are expected to break down in the presence of the strong field gra-
dients that might arise in such situations. Conversely, warm fluid closure schemes are formulated on the assumption
of small thermal spreads, and hence are expected to deliver incorrect results at rising values of kbTi. We therefore
characterize the impact of an increase in non-linearity and an increase in temperature in the system. Given the very
good agreement that we have found between PIC simulations and WARMC (see Fig. 3), we restrict our analysis to the
WARMC. In Fig. 4 we show pressure fields by fixing the initial temperature to kbTi = 37 eV and increasing the level
of non-linearity of the system. We choose two values of the normalized charge parameter Q̃ = 0.1 and Q̃ = 0.25,
and regarding the slice plots we focus on the ζ range on the most problematic area for the matching, i.e., the tail of
the electron depletion bubble, as the area at the start of the bubble is clearly caught by the WARMC. By increasing the
non-linearity in the system, we actually observe that, although not dramatically, the WARMC-PIC matching starts to
lose consistency and presents a mismatch for both P⊥ (see Fig. 4(a1-b1) versus Fig. 4(c1-d1)) and P|| (see Fig. 4(a2-
b2) versus Fig. 4(c2-d2)). The mismatch starts around the density peak, and moves to the left toward the bulk of
the depletion bubble. For P⊥ the mismatch is particularly evident close to the axis (Fig. 4(a1)-(c1)) and not much
pronounced away from the axis (Fig. 4(b1)-(d1)); for P|| we find a mismatch both close to the axis (Fig. 4(a2)-(c2))
and away from it (Fig. 4(b2)-(d2)). It is worth noting that, in the Q̃ = 0.25 case, the longitudinal size of the bubble
starts diverging between the two models. This hints at a clear dependency of this observable on the chosen closure for
the fluid equations, and could be worth future research. Conversely, we move our analysis (Fig. 5) to a comparison of
pressure fields for increasing values of the initial temperature, which we fix at kbTi = 100 eV and kbTi = 383 eV.
We choose the normalized charge parameter to be Q̃ = 0.05, and keep the same setup exposed in Sec. 3. In this
case, there is again the onset of a divergence between the PIC and WARMC results, although we observe that the
divergence at increasing temperature is not as dramatic as the one observed at increasing non-linearity. Nevertheless,
despite the increase in noise at raising kbTi, it is observed again that the mismatch starts from the density peak and
moves backward toward the start of the bubble (see Fig. 5(c1-d1) and relative color plot). For the higher kbTi value,
there is also a clear mismatch in the estimation of the longitudinal wake features. This suggests once again further
investigations on the impact of finite temperatures and chosen fluid closures on the spatial features of the wakefield in
PWFA experiments.
All in all, we infer from both Fig. 4 and Fig. 5 that for the chosen parameters the WARMC is still capable of repro-
ducing qualitatively the dynamic shown by the PIC. Nevertheless, by increasing Q̃ and kbTi one might start diverging
importantly from the kinetic solution, and should be careful to adopt the WARMC for the evaluation of PWFA systems.

5 Conclusions

We have used spatially resolved warm fluid models to characterize thermal spread anisotropies in a typical setup of
plasma wakefield acceleration (PWFA), where a neutral plasma with finite temperature is perturbed by a bunch of
relativistic particles (driver). Our focus was on the initial stages of the perturbation induced by the driver, where the
dynamics take place on time-scales where local equilibration of the background plasma is not granted. This poses
the question on what is the right closure scheme to be applied to the moment equations derived from the relativistic
Vlasov equation to formulate the warm fluid model. In this landscape, pressure anisotropies are the hallmark pointing
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to the correctness of the adopted closure scheme. We have therefore evaluated pressure anisotropy effects in warm
fluid models based on different closure assumptions and compared with particle-in-cell (PIC) simulations. We found
that there is a window of applicability for warm fluid models, with a clear evidence that fluid closures based on higher
order truncations of the kinetic moments equations (WARMC) [29–31] are more prone to reproduce a faithful dynam-
ics for the plasma.
Various pathways for future research can be envisaged. Warm fluid models are not supposed to work for large tem-
peratures and strongly non-linear wakes, and a detailed characterization of the limiting temperature and degree of
non-linearity must also depend on the structure of the driver bunch, a feature that we have not explored in detail in our
analysis. Moreover, a dedicated and complementary analysis focused on the characterization of density, electric and
magnetic fields and velocity in the wake of the driver would also be needed on a future perspective to better clarify the
validity and limitations of the various closure schemes. Finally, we remark that our results provide a clear indication
that temperature has a non-trivial effect on the size of the first bubble in the wake of the driver bunch. These effects
might be relevant for the PWFA community, due to the interest in the theoretical and numerical evaluation of the
boundaries of the first electron cavity in the blowout regime [66–69], which directly reflects on the intensity of the
longitudinal accelerating wakefields. In this landscape, warm fluid models could help in rationalizing how temperature
impacts such scenario, thus requiring a thorough study on the effects of fluid closures on the dynamics, particularly on
the intensity of the wakefields.
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A Pressure calculations in the rest frame

In this section, we will determine the link between quantities (denoted with subscript 0) defined in the rest frame of
the fluid (where Uµ = Uµ

0 = (c, 0, 0, 0) and the lab-frame quantities, namely, Nµ, Tµν and θµν . This derivation is
in principle independent of the underlying phase distribution function of the plasma, but we will see in Appendix B
that an assumption of local equilibrium (i.e., a LEC to fluid equations) is indeed compatible with the findings of this
section.
We define, extending [13], an anisotropic energy-momentum tensor Tµν

0 in the fluid’s rest frame [70], with pressure
P⊥ in the directions transversal to the motion of the driver’s bunch, and P∥ = P⊥ +∆P in the direction longitudinal
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to its motion (we omit rest-frame subscripts 0 for these pressures, in order to keep the notation light)

Tαβ
0 = diag

(
ε0, P⊥, P⊥, P∥

)
, (27)

together with the rest frame particle flow Nα
0

Nα
0 = n0(c, 0, 0, 0) . (28)

It is then immediate to build θµν0 = Tµν
0 − Nµ

0 Nν
0

h :

θαβ0 = diag
(
ε0 −

n2
0c

2

h
, P⊥, P⊥, P⊥

)
+∆Pδαzδ

β
z . (29)

To get the corresponding quantities in a generic frame of reference, it is then sufficient to apply a Lorentz transforma-
tion Λµ

α to the tensor in Eq. (29), θµν = Λµ
αΛ

ν
βθ

αβ
0 :

θµν =

(
P⊥ + ε0 −

n2
0c

2

h

)
UµUν

c2
− P⊥η

µν +∆PΛµ
zΛ

ν
z . (30)

Assuming axial symmetry and no azimuthal velocity (uφ = 0), the relevant components of Eq. (30), properly con-
verted into cylindrical coordinates, can then be inverted to deliver the desired rest frame quantities. For the two
pressure values, P∥ and P⊥, one gets:

P⊥ = θφφ ; (31)

P∥ =
c2(θrr + θzz − θφφ)− |u|2θ00 − u2

rθ
φφ

c2 + u2
z

(32)

Finally, we remark that recovering pressure isotropy (as is the case for the LEC), would simply reduce to setting
∆P = 0 and hence P∥ = P⊥ = P0 in Eq. (30). This would deliver a proper link between the centered energy-
momentum tensor θµν of an ideal fluid and its rest quantities ε0, P0 and h. Therefore, in the LEC case the most
relevant components of θµν would read as:

θ00 =

(
P0 + ε0 −

n2
0c

2

h

)
γ2 c

2 + |u|2

c2
− P0 , (33)

θrr =

(
P0 + ε0 −

n2
0c

2

h

)
γ2u

2
r

c2
+ P0 , (34)

θφφ = P0 , (35)

θzz =

(
P0 + ε0 −

n2
0c

2

h

)
γ2u

2
z

c2
+ P0 . (36)

In Sec. B, we present how to obtain these same quantities in the LEC case by direct calculation of the moments of the
Maxwell-Jüttner distribution. We note here that in the limit of small velocities, these tensors recover the usual form of
non-relativistic thermodynamics:

θ00 =

(
ε0 −

n2
0c

2

h

)
+O

(
|u|2

c2

)
, (37)

θrr = P0 +O

(
u2
r

c2

)
, (38)

θφφ = P0 , (39)

θzz = P0 +O

(
u2
z

c2

)
. (40)

In particular, the diagonal spatial components of θαβ are all equal and reduce to the usual components of the Euler-
Cauchy stress tensor.
In Sec. B we present how to obtain these same quantities in the LEC case by direct calculation of the moments of the
Maxwell-Jüttner distribution.
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B LEC integrals

This section reports results drawn from Ref. [71] and expand them. The interested reader might refer to this publication
for a more in depth discussion.
In the LEC, the plasma is assumed to be at equilibrium, i.e., it is assumed that the phase-space distribution function f
solving for Eq. (1) is the Maxwell-Jüttner distribution [57]

feq =
n0

4πm2
eckbTκ2

exp

(
−pµUµ

kbT

)
, (41)

where κν = Kν

(
mec

2

kbT

)
is the modified Bessel function of the second kind of index ν. One can therefore plug Eq. (41)

into Eq. (2) to compute the first hydrodynamic moments of feq

h =
n0

me

κ1

κ2
, (42)

Nα = n0U
α , (43)

Tαβ =

(
n0mec

2κ3

κ2

)
UαUβ

c2
− n0kbTη

αβ . (44)

A few comments are in place. As it has been already anticipated, the tensorial structure of the particle flow and the
energy momentum tensor is the same given in the main text, Eq. (11), and provides in a natural way both the ideal gas
law and the Synge Equation of State as

P0 = n0kbT , (45)

ε0 = n0mec
2κ3

κ2
− n0kbT , (46)

that reduce to Eqs. (13) and (14) in the case of small temperatures. Second, from Eq. (42) it is possible to derive the
form of the centered energy-momentum tensor θµν = Tµν − NµNν

h in the LEC case

θµν =

(
P0 + ε0 −

n2
0c

2

h

)
UµUν

c2
− P0η

µν . (47)

and to realize that this form is exactly the one derived in Eq. (30) with ∆P = 0. Finally, it can be convenient to
elaborate a bit on the initial values that are assumed by θαβ in the case of an unperturbed plasma. In these last
considerations, valid for both LEC and WARMC, we will assume the following:

1. The unperturbed plasma is in equilibrium, i.e., its mesoscopic state is described by the local equilib-
rium Eq. (41);

2. The plasma is uniform and at rest, i.e., it has constant number density n0 = n = ni and zero velocity u = 0;
3. Due to 1), the plasma fluid can be considered to be isotropic, i.e., ∆P = 0;

With these prescriptions, the asymptotic values given in Eqs. (37) to (40) become exact, and we can further elaborate
on them by employing the findings of this section. In the small temperatures limit, one gets:

θ00i =

(
εi −

n2
i c

2

hi

)
= ni

3(kbTi)
2

2mec2
+O(T 3

i ) , (48)

θrri = Pi = nikbTi , (49)

θφφ
i = Pi = nikbTi , (50)
θzzi = Pi = nikbTi . (51)
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