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ABSTRACT

A comprehensive characterization of lattice Boltzmann (LB) schemes to perform warm fluid numerical simulations of particle wakefield
acceleration (PWFA) processes is discussed in this paper. The LB schemes we develop hinge on the moment matching procedure, allowing
the fluid description of a warm relativistic plasma wake generated by a driver pulse propagating in a neutral plasma. We focus on fluid
models equations resulting from two popular closure assumptions of the relativistic kinetic equations, i.e., the local equilibrium and the warm
plasma closure assumptions. The developed LB schemes can, thus, be used to disclose insights on the quantitative differences between the
two closure approaches in the dynamics of PWFA processes. Comparisons between the proposed schemes and available analytical results are
extensively addressed.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0175910

I. INTRODUCTION

The process of particle acceleration plays a role of primary impor-
tance at the interface between fundamental and applied physics.1 The
growing costs and dimensions of conventional large-scale accelerators
demand for new and more efficient technologies to push the energies
reached by particle beams beyond the state of the art of modern day
capabilities. In this context, plasma acceleration is a promising tech-
nique that would enable the construction of compact particle accelera-
tors while retaining the same (or superior) energy gains obtained with
conventional methods.2–4 A ionized gas is perturbed via the injection
of relativistic charged particles (particle wakefield acceleration,
PWFA)5 or intense lasers (laser wakefield acceleration, LWFA),6 gen-
erally named driver: the interaction between the neutral plasma and
the injected driver creates a wave like dynamics of positive and nega-
tive charges, and hence, strong accelerating fields (up to 100GV/m)
are developed; the interested reader might look into7,8 to go into detail
on the topic. The described process involves a large number of
“actors”: the injected driver components, whether particles moving
near the speed of light—typically electrons—or laser fields, and both

the ions and electrons that make up the plasma. All of them interact
with each other via electromagnetic forces, thus making it really diffi-
cult to predict and control the final behavior of a plasma acceleration
experiment. Theoretical modeling and numerical simulations are,
therefore, a powerful tool to help guide the design of new experiments.

On the side of numerical simulations, the most commonly used
techniques in the field are represented by particle in cell (PIC) meth-
ods9–13 that employ single particle dynamics to describe both the par-
ticles in the driver (in this paper, we will focus on PWFA) and the
plasma components. These schemes are deeply fine-grained and, while
they can capture the most refined phenomena that happen at the
microscopic scale, they bring in low-statistics numerical noise.9,14 An
alternative numerical modeling can be proposed by recurring to con-
tinuum fluid descriptions of the system. Fluid models describe the
plasma via macroscopic fields such as particle number density and
fluid velocity, and they do so by solving the inviscid relativistic Euler
equations that can be systematically derived from kinetic theory of
charged gases via a coarse graining of the relativistic Maxwell–Vlasov
system15–17 (in their most general warm formulation, these equations
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are not closed and, hence, require additional constrains—more on this
later on). Despite losing the ability to describe some kinetically perti-
nent features, numerical methods relying on the fluid description are
still able to capture non trivial features of the PWFA system and are
set up by construction not to show statistical noise. Some examples of
fluid solvers used in the realm of PWFA are Architect,18 QFLUID,19

MARPLE,20 FLASH,21 and the code used for hydrodynamic optically
field-ionized plasma channels in Ref. 22.

From the theoretical point of view, fluid models have traditionally
been developed by neglecting thermal effects, i.e., by neglecting pres-
sure terms in the Euler equations. This choice has been motivated first
and foremost by the fact that initial electron thermal energy in
the plasma is expected to be of the order of kbTi � 10 eV,23,24 which
is a small value when compared with the electron rest energy
mec2 ¼ 0:511 MeV (the initial thermal energy normalized to the elec-
tron rest energy, li ¼ kbTi=ðmec2Þ, is the control parameter that is
usually used to assess the importance of thermal effects), and second
by the fact that these cold fluid models are easier to treat theoretically,
providing even analytical results in some simplified cases.25–27

Nevertheless, there is a series of important reasons that drive the
development of warm fluid models for PWFA. First, the wave-like sol-
utions to cold fluid equations become singular in the presence of wide
and highly charged driver pulses (Wave Breaking28,29) The presence of
thermal effects may be one of the regularizing mechanisms that miti-
gate the singularity,30–33 by altering the wakefield properties and allow-
ing electron trapping in the wakefield.34 A significant heating is also
expected in the post-wavebreaking dynamic.35 Second, studies targeted
at the late stage dynamics of the process36–40 point to the importance
of electrons temperature (with particular emphasis on thermally driven
ion-acoustic motion39–43) for the restoration of the equilibrium condi-
tions after a driver pulse has passed in the plasma channel.
Understanding the restoration conditions is pivotal to enable the possi-
bility of having high repetition rates of driver pulses in order to create
sustained accelerating fields. Third, although the aforementioned ini-
tial temperatures would not lead to meaningful divergences in behav-
ior from the cold case (at least in the first wave periods34,35), a different
situation is expected as many consecutive pulses are injected into the
system. The energy deposited by every pulse would be partially trans-
ferred to the plasma,36,38 leading to significant increases in temperature
[some estimates provide O(1) keV increases in post wave-breaking sit-
uations39,40]. Finally, we mention that temperature effects might also
be relevant for the study of positron acceleration in quasi-hollow
warm plasma channels.41,44–47

If one wants to develop a warm fluid theory, often the only viable
option when trying to derive analytical results, an immediate problem
has to be tackled: additional fields are now present in the set of equa-
tions (namely, the pressure tensor fields), and therefore, a suitable clo-
sure has to be carefully selected. The closure problem has been studied
in the community, and various models have been proposed48–53 (see
Ref. 54 for an outlook).

In this paper, we explore two closures. The first one48 is based on
the assumption that the underlying probability distribution solving
for the Vlasov equation is a Maxwellian equilibrium, which is
described in the relativistic framework by a Maxwell–J€uttner distribu-
tion.55 Hereafter, we will refer to it as the local equilibrium closure
(LEC). This choice leads to no entropy production and, therefore,
grants the adoption of an isentropic equation of state to close for the

pressure tensor field that in this framework can be described as a single
scalar quantity. The LEC is in principle not well suited for the descrip-
tion of early stage dynamics, as the restoring mechanism that drives
the plasma back to an eventual initial equilibrium state (particle colli-
sions) happens on longer time scales than the ones which are typical of
the early phases of PWFA. Nevertheless, this closure would still retain
a physical relevance when studying late stage dynamics (when particle
collisions start to become relevant40). Furthermore, side-by-side com-
parisons against other closure schemes (or PIC solvers) might, indeed,
reveal that the LEC is also helpful for qualitative assessments on early
dynamics.

The second closure (hereafter named warm closure—WARMC)
is based on the idea proposed in Refs. 49, 50, and 52 and later on
reconsidered by Refs. 32, 56, and 57: the centralized moments equa-
tions obtained from the coarse-graining of the Vlasov equation are
closed by neglecting the third order centralized moment, choice moti-
vated by the assumption of weakly warm systems, and hence small
momentum distribution variances. This leads to a closed set of equa-
tions that can be solved without having to make hypotheses on the
underlying momentum probability distribution, except for the small-
ness of its variance. This gives also the possibility to evolve indepen-
dently the various components of the pressure tensor, and hence to
evaluate the expected momentum spread anisotropies: in fact, as the
dynamics of the system is strongly focused in the acceleration direc-
tion, and no collisions are taken into account on these short timescales
to regularize the process, momentum spread anisotropies are to be
expected.58,59

The main target of this paper is to develop novel numerical
schemes for the simulation of warm fluid models in the context of
PWFA, for both the LEC and the WARMC. The schemes rely on the
lattice Boltzmann (LB) method60,61 to solve the fluid equations. LB is a
popular numerical scheme commonly used in computational fluid
dynamics as an alternate scheme to direct hydrodynamical solvers. Its
formulation is rooted in the kinetic theory of gases, and this provides a
strong physical basis to the method. Furthermore, the space locality of
the calculations involved in the method makes this solver prone to
multi CPUs and/or multi GPUs parallelization.60 In the past years, LB
has been generalized to work in many fields other than classical fluid
dynamics,61 and it is now widely accepted as a numerical solver for
many physics problems that rely on a set of continuum equations. The
LB formulation used in this paper is the so-called moment matching
LB that solves systems described by advection diffusion equations.60,61

This is the very same formulation used in Ref. 62 to solve for the cold
fluid models in PWFA. Here, we extend such formulation to warm
fluid models; hence, we are pushing further the usage of the LB
method in the context of PWFA. The LB schemes for warm fluids are
coupled to a finite difference time domain (FDTD) scheme that solves
for the electromagnetic fields:63,64 we refer to Ref. 62 for a more in
depth explanation of the coupling. The development of the LB
schemes for two different warm fluids closures will enable us to look
for thermal effects that depend on the adopted closure scheme and,
furthermore, to assess the importance of thermal spreads anisotropies
showing side-by-side comparisons between the two closures.

This paper is organized as follows: in Sec. II, we provide a basic
introduction to the LB method, with particular emphasis on the
moment matching procedure; in Sec. III, basic equations for collision-
less relativistic plasmas are reviewed, and the two fluid closures LEC
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and WARMC are discussed in Secs. IV and V, respectively; numerical
results will be presented in Sec. VI, and an outlook and a discussion on
future perspectives are given in Sec. VII.

II. LATTICE BOLTZMANN (LB) METHOD

In this section, we introduce the lattice Boltzmann (LB) method,
which we use to solve the fluid equations both in the LEC and
WARMC models. We first present the basics of the method, that are
directly drawn from the kinetic theory of gases and in their original
formulation tasked to the reproduction of classical (non relativistic)
Navier–Stokes equations. We then illustrate how the whole procedure
can be adapted to the simulation of generic advection equations
(moment matching LB). We will see in the following sections how the
relativistic warm fluid equations, in both the LEC (Sec. IV) and
WARMC (Sec. V), can be recast into a set of advection equations and,
hence, can be numerically solved via moment matching LB. The inter-
ested reader might look into60,61 for more detailed discussions on both
LB in its original formulation and itsmoment matching variant.

A. Basic LB

As the theoretical cornerstone of LB is kinetic theory, the natural
starting point in its algorithmic derivation is the Boltzmann transport
equation

@t þ n � rxð Þf ðx; n; tÞ ¼ Rðx; n; tÞ; (1)

which describes the evolution of the phase space density f ðx; n; tÞ
referring to the number of fluid particles with velocity n at position x
at time t. On the RHS of the equation, Rðx; n; tÞ represents a produc-
tion term that is usually expressed as the sum of two components

Rðx; n; tÞ ¼ Sðx; n; tÞ þ Xðx; n; tÞ; (2)

Sðx; n; tÞ representing the action of volume body forces F on the par-
ticles, and Xðx; n; tÞ the action of binary collisions

Sðx; n; tÞ ¼ �F � rnf ðx; n; tÞ; (3)

Xðx; n; tÞ ¼ � 1
s

f ðx; n; tÞ � f eqðx; n; tÞð Þ; (4)

where the latter has been here written by recurring to the customary
Bhatnagar–Groos–Krook operator,65 which expresses the tendency of
the distribution function f to relax toward an equilibrium f eq in a typi-
cal relaxation time s. The moments of the distribution function f that
solves Eq. (1)

MðnÞðx; tÞ ¼
ð
f ðx; n; tÞnndn; (5)

are then used to retrieve the hydrodynamic fields. In this basic formu-
lation, the zeroth- and first-order moments (i.e., n¼ 0, 1) provide the
mass density and the momentum density of the fluid, respectively.60

It can then be verified through the Chapman–Enskog expan-
sion60,61,66 that the moments obtained according to Eq. (5) verify the
target continuum equations—again, the Navier–Stokes equations in
this original formulation of the LB method—provided that f is suffi-
ciently close to f eq. The most pivotal step in the development of the LB
method is the realization that one needs only a truncated version of
the distribution functions f and f eq to properly recover the desired
moments MðnÞðx; tÞ that solve the field equations.67,68 For this reason,

it proves expedient to expand both f and f eq into series of orthogonal
Hermite polynomials in the variable n and then to truncate this expan-
sion up to the point where one recovers the macroscopic observables
of interest.69

The second most important ingredient in the development of the
LB is the velocity discretization procedure. Because of the truncated
Hermite polynomials expansion, one usually adopts Gauss-Hermite
quadrature rules to prune the continuum velocity space and select a
discrete set of ni ði ¼ 0;…;Npop � 1Þ velocities (stencil), each of them
having a statistical weight wi.

70,71 In Fig. 1, we report the discrete sten-
cil adopted in this paper. This velocity discretization procedure splits
Eq. (1) into a set of Npop equations, one for every discrete distribution
function fi ¼ f ðx; ni; tÞ, also called population. The careful selection of
the velocity stencil is performed with the goal of exactly preserving the
coarse-graining of the moments when passing from the continuous
integrals of Eq. (5) to discrete summations

MðnÞðx; tÞ ¼
ð
f ðx; n; tÞnndn ¼

XNpop�1

i¼0

nni fi: (6)

The performed velocity discretization, when joined with an explicit
time marching discretization of step Dt, finally delivers the Lattice
Boltzmann equation

fiðx þ niDt; t þ DtÞ ¼ fiðx; tÞ þ DtRiðx; tÞ; (7)

where space is discretized on a regular lattice of characteristic length
Dx ¼ niDt. The production term Riðx; ni; tÞ is a discretization of the
continuous counterpart appearing in Eq. (1)

Riðx; tÞ ¼ Xðx; ni; tÞ þ Siðx; tÞ; (8)

with Siðx; tÞ being discretized according to one of the many forcing
schemes available in the literature60 to properly reproduce Eq. (3).

The algorithmic steps of the LB scheme are now clearly outlined.
A set of Npop versions of Eq. (7), one for every fi, is evolved on a regular
spatial grid: the fi are updated at every node with the source term Eq.
(8) (Source step) and then stream to neighboring nodes with their cor-
responding velocity ni (Streaming step). At every iteration, the hydro-
dynamic fields are obtained through the discrete summation
appearing in Eq. (6).

B. Moment matching procedure for forced advection
diffusion equation

In this section, we will make use of the framework established in
Sec. II A to explain how the moment matching LB, tasked for the solu-
tion of advection diffusion equations (ADEs), works. This variant was
initially developed as an alternative, more straightforward formulation
of thermal LBs72–74 and at the same time applied to model different
physics phenomena, such as diffusive chemical reactions,75 combus-
tion problems,76,77 dissolution in porous media78,79 (more use cases
can be found in Refs. 60 and 61). The target equation for a moment
matching LB is a forced ADE for the scalar field Aðx; tÞ

@tAþrx � ðAuÞ ¼ jr2
xAþ F; (9)

where the quantity A is advected with velocity uðx; tÞ and diffused
via the diffusion parameter j. The previously established framework
(Sec. II A) can then be used by considering a discrete probability
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distribution function fiðx; tÞ whose zeroth-order discrete moment is
exactly the field Aðx; tÞ

Aðx; tÞ ¼
XNpop�1

i¼0

fiðx; tÞ: (10)

The velocity stencil described in Fig. 1 can then be used to evolve via
Eq. (7) the distribution functions fi, and the Chapman-Enskog analysis
grants that the coarse graining Eq. (10) solves for Eq. (9). The last
remaining ingredient to complete the algorithmic discussion of the
method is the form of the Hermite truncated expansion f eqi . It has
been shown that a suitable form that recovers the correct equations for
A and minimizes the computational error is80

f eqi ¼ wiA 1þ u � ni
�2

þ ðu � niÞ2
�4

� u � u
2�2

� �
; (11)

where � ¼ 1ffiffi
3

p Dx
Dt is a reference lattice velocity. This completes the

description of the main algorithmic steps of the moment matching LB.
The diffusion coefficient j is shown via Chapman–Enskog procedure
to be dependent on the relaxation time s in the following way:

j ¼ �2 s� Dt
2

� �
: (12)

While in this work we keep s as small as possible (taking into account
the known inferior limit s > Dt=2 imposed by LB bulk stability condi-
tions60) in order to recover the physics of the problem, we note from
Eq. (12) that by adjusting the parameter s in the simulations one might
control the diffusive effect in the ADE, obtaining, therefore, a tunable
regularizing effect that might be helpful when dealing with stiff advec-
tion equations. Finally, we report a couple of additional details for our
implementation of the method. First, the source term Si is chosen to be
of the form

Siðx; tÞ ¼ wiFðx; tÞ; (13)

in order to correctly reproduce the forcing appearing in Eq. (9).60,61

Second, open boundary conditions are imposed at the extrema of the
domain via the enforcing of the variables fi

fiðxb; tÞ ¼ fiðxf ; tÞ; (14)

where xb and xf are, respectively, the boundary position and the
nearest bulk fluid node. Finally, we remark that the whole proce-
dure showed so far can be adapted to a 3D axisymmetric geome-
try: when doing so, after switching to cylindrical coordinates, we
postulate that every quantity is independent from the azimuthal
variable A ¼ Aðr; zÞ. Furthermore, no angular motion is
requested, hence the azimuthal component of the advection veloc-
ity u is zero.

Following81,82 one can develop an axisymmetric moment match-
ing LB by considering a 2D Cartesian geometry (r, z) where all the dif-
ferential operators—the divergences and laplacians appearing in Eq.
(9)—are carefully adapted to the cylindrical geometry.83 To this extent,
we remark that differently from the cited sources we will consider A to
be either a scalar or the coordinate component of some hydrodynamic
tensor field. Hence, particular care will have to be taken when convert-
ing the differential operators to the cylindrical geometry. Finally, when
adopting the cylindrical geometry, we have to modify the conditions
applied at the r¼ 0 boundary node. If the LB advected quantity A is
symmetric with respect to radial reflections, we keep employing Eq.
(14). Instead, if A changes sign under radial reflections (the radial
momentum component has this property), we employ the following
condition:

fiðxb; tÞ ¼ f�iðxf ; tÞ; (15)

with�i being the mirrored direction to i with respect to the radial axis.

FIG. 1. Lattice Boltzmann discretization.
Through a pruning procedure, the contin-
uum velocity space is discretized in a min-
imal set of Npop velocities. This discrete
set (stencil) is selected in such a way as
to guarantee the hydrodynamic equations
for coarse grained fields (e.g., density,
momentum). On the right, we report one
of the most popular LB stencils, with
Npop¼ 19 velocities in 3D, which we have
also used in this work. In the table, we
report the adimensional velocity compo-
nents of the stencil, together with corre-
sponding statistical weights. The different
shades of blue group velocities with the
same magnitude.
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III. RELATIVISTIC KINETIC EQUATIONS
FOR COLLISIONLESS PLASMA

In this section, we review the basic equations that can be used to
build hydrodynamic models of warm plasmas starting from the kinetic
theory of gases, all expressed within the framework of special relativ-
ity.15–17 In Sec. IV and Sec. V, we will see how the obtained set of equa-
tions can be closed via either a local equilibrium assumption or a
warm closure and then explain how to recast them into a set of advec-
tion equations.

In the following, we will work in a flat space-time with
Minkowski metric signature gab ¼ diagðþ;�Þ. When expressing for-
mulas in a manifestly covariant form, we will adopt Einstein’s summa-
tion convention, with Greek indexes running from 0 to D and Latin
indexes from 1 to D. When not explicitly stated, we will use @a � @

@xa.
The starting point in a relativistic fluid theory of warm plasmas is

the Relativistic Vlasov equation

qa
@f
@xa

þ q
c
Fabqb

@f
@qa

¼ 0; (16)

where xa ¼ ðct; xÞ is the space-time coordinate vector, qa ¼ ðq0; qÞ is
the relativistic kinetic momentum vector, Fab is Maxwell’s electromag-
netic field tensor, and f ¼ f ðxa; qaÞ is the single-particle probability
distribution function, describing the number of particles of mass m
and charge q (m¼me and q ¼ �e in case of electrons) in the Lorentz
invariant momentum space volume dq

q0 .
The fields subject of hydrodynamic theories emerge from the

coarse graining of the distribution function f in relativistic momentum
space

Ma1���an ¼ c
ð
f qa1…qan

dq
q0

; (17)

with the first moments being assigned the following specific names:
Invariant density h, Particle flow Na, and Energy-momentum tensor
Tab. Equation (16) implies the following conservation equations for
the moments:15,17,57

0 ¼ @aN
a; (18)

0 ¼ @aT
ab � q

c
FbaNa; (19)

0 ¼ @aM
abc � q

c
ðFbaT c

a þ FcaT b
a Þ: (20)

Equations (18)–(20) are the constitutive equations of a relativistic fluid,
which must be coupled to Maxwell equations84

0 ¼ @aF
ab � l0cqN

b; (21)

0 ¼ @aFbc þ @bFca þ @cFab; (22)

to provide a complete description of a plasma. Equations (18)–(20)
express conservation of mass, energy, and momentum once a proper
decomposition for Na and Tab is provided: as an example, the cold
fluid equations can be obtained from Eqs. (18) and (19) by assuming
the following:

Na ¼ n0U
a; Tab ¼ n0mUaUb; (23)

Ub ¼ cðc; uÞ being the fluid four velocity and n0 the particle number
density as measured in the fluid rest frame (density transforms under

Lorentz boosts as n ¼ cn0). c is the Lorentz factor associated with u.
At variance with the cold fluid treatment, any other fluid model involv-
ing a non-zero temperature requires additional closing equations.

In Sec. IV and Sec. V, we will show two possible closures: the first
one (LEC) postulates that the underlying distribution function describ-
ing the warm plasma [and hence solving Eq. (16)] is a local equilib-
rium distribution. This grants the use of an isentropic equation of state
to close for the system; the second one (WARMC) rephrases Eqs.
(18)–(20) as centered moments equations and then assumes the third
order centered moment to be zero on the excuse of small thermal
spreads, i.e., by assuming small values of the initial thermal energy (i
subscripts stand for the initial values) to electron rest energy

li ¼
kbTi

mec2
: (24)

This is the control parameter that is usually used to assess the impor-
tance of thermal effects in warm fluid models and will be extensively
used in Sec. VI to label our results.

IV. LOCAL EQUILIBRIUM CLOSURE (LEC)

The key assumption of the LEC hypothesis is that the distribution
f solving for Eq. (16) is the relativistic version of the Maxwell–
Boltzmann distribution, the Maxwell–J€uttner distribution.55,85 This
has a number of important consequences, first and foremost the fact
that under this assumption the plasma can be considered to be an ideal
fluid. It can be shown15 that, in this case, the particle flow and the
energy momentum tensor assume the following forms:

Na ¼ n0U
a; (25)

Tab ¼ ðP0 þ �0ÞU
aUb

c2
� P0g

ab; (26)

where �0 and P0 are, respectively, the plasma energy density and pres-
sure, as measured in the fluid’s rest frame (all quantities written with
the 0 subscript have to be intended as they are measured in this frame).
Consequently, the conservation equations Eqs. (18) and (19) can be re-
expressed as the relativistic counterpart of Euler’s equations

@tnþrx � ðnuÞ ¼ 0 ;

@t
hep
mc2

� �
þ u � rx

hep
mc2

� �
¼ �rxP0

n
þ qðEþ u�BÞ ; (27)

where he ¼ ðP0 þ �0Þ=n0 is the relativistic enthalpy per particle and
p ¼ mcu is the relativistic fluid momentum. Equation (27) is not yet
closed, but another important feature of the LEC assumption is that
there is no entropy production in the fluid. Therefore, to close the set
of equations instead of a statement of energy conservation, we consider
the entropy per particle

s0 ¼ kb log
1
n0

mkbT

2p�h2

� �D=2
" #

þ kb 1þ D
2

� �
; (28)

here written in the small temperature limit,15 to be constant. This
statement leads to the following scaling for temperature:

T ¼ Ti
n0
ni

� �2=D

: (29)
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Furthermore, this grants the use of the Synge equation of state86 that
we consider here for small temperatures

P0 ¼ n0kbT ¼ n0mc2li
n0
ni

� �2=D

; (30)

ð
0
¼ n0mc2 þ D

2
n0kbT ¼ n0mc2 1þ D

2
li

n0
ni

� �2=D
" #

: (31)

This provides sufficient information for the closure of Eq. (27) and
paves the way to a successful numerical treatment of this set via
moment matching LB.

A. Local equilibrium closure lattice Boltzmann
(LEC-LB)

We can now express Eq. (27) as a series of forced advection
equations

@tAþrx � ðuAÞ � DuðAÞ ¼ F; (32)

where

A ¼
n

1þ 1þ D
2

� �
li

n
cni

� �2=D
" #

np

0
BB@

1
CCA; (33)

F ¼
0

�nimc2lirx
n
cni

� �1þ2=D

þ qnðEþ u�BÞ

0
B@

1
CA: (34)

This set can then be numerically solved via moment matching LB,
using the techniques explained in Sec. II B. As already stated, we can
adapt the method to work in a 3D axisymmetric environment, and
particular care has to be taken when translating the equations to said
geometry. As the final expressions are rather bulky, we report them in
full in Appendix A.

The two-way coupling of the fluid with the electromagnetic fields
needs no particular explanation: the plasma hydrodynamic quantities
(particle density n and the transport velocity u) are obtained from the
LB evolved quantities (the various components of A) and then fed to
the FDTD Maxwell solver together with the driving bunch terms. The
evolved electromagnetic fields are then plugged into Eq. (34) as source
terms, and the next LB iteration can be performed.

The only detail worth of discussion is the determination of the
transport velocity u from the LB-advected quantities A. In fact, due to
the appearance of the c Lorentz factor in Eq. (33), one cannot easily
obtain the relationship between u and the second component of the
vector A (the one containing momentum pÞ, and therefore, there is
the need for a specific iterative algorithm to determine it. Initially, set
pð0Þ as the zeroth order moment of the distribution function coming
out of the LB iteration, divided by n: Then,

1. Starting from k¼ 0, compute uðkÞ as

uðkÞ ¼ pðkÞ

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jpðkÞ=ðmcÞj2

q : (35)

2. Compute cðkÞ ¼ cðuðkÞÞ as

cðkÞ ¼ cðuðkÞÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðuðkÞ=cÞ2

q : (36)

3. Set pðkþ1Þ as

pðkþ1Þ ¼ pð0Þ

1þ 1þ D
2

� �
li

n
cni

� �2=D
: (37)

4. Repeat until convergence is reached.

V. WARM PLASMA CLOSURE (WARMC)

The derivation given in this section closely follows:57 to explain
how to derive the Warm Closure from the conservation equations Eqs.
(18)–(20), one has to first define the thermal momentum wl as

wl ¼ n0
h

� �
Ul ) Nl ¼ n0U

l ¼ hwl: (38)

The second and third order centered moments of the distribution
function f, respectively, hl� and Ql�k, are then defined as

hl� ¼ c
ð
ðql � wlÞðq� � w�Þf dq

q0
; (39)

Ql�k ¼ c
ð
ðql � wlÞðq� � w�Þðqk � wkÞf dq

q0
: (40)

Therefore, one obtains

Tl� ¼ hl� þ hwlw�; (41)

Ml�k ¼ Ql�k þ wlh�k þ w�hlk þ wkhl� þ hwlw�wk; (42)

and due to the mass-shell condition qlql ¼ m2c2 it follows that

Tl
l ¼ hm2c2 ) hll ¼ hðm2c2 � wlwlÞ; (43)

Ml�
� ¼ Nlm2c2 ) Ql�

� ¼ 2w�h
l�: (44)

The conservation equations Eqs. (18)–(20) become, therefore,

0 ¼ @aðhwaÞ; (45)

0 ¼ @ah
ab þ @aðhwawbÞ � hq

c
Fbawa; (46)

0 ¼ @aQ
abc þ @a hwa h

bc

h

� �
þ hca@aw

b

þ hab@aw
c � q

c
ðFbah c

a þ Fcahb
a Þ : (47)

The warm closure consists in taking Qabc ¼ 0 based on the assump-
tion of a small momentum spread

@aðn0UaÞ ¼ 0; (48)

@a n0U
a n0U

b

h

� �
¼ �@ah

ab þ n0q
c

FbaUa; (49)

@a n0U
a h

bc

h

� �
¼ �hca@a

n0Ub

h

� �
� hab@a

n0Uc

h

� �

þ q
c
ðFbah c

a þ Fcahb
a Þ ; (50)

and this also provides an additional condition, obtained from Eq. (44)
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hll ¼ hc2 m2 � n0
h

� �2
" #

; (51)

U�h
l� ¼ 0: (52)

Note that the previous expressions have been written using Eq. (38) to
express everything in terms of the more familiar quantities n0 and Ua.
Equations (48)–(52) constitute a closed set of fluid equations, which
may be solved for the plasma evolution throughmoment matching LB.

A. Warm plasma closure lattice Boltzmann
(WARMC-LB)

Equations (48)–(52) can be rephrased as advection equations
by realizing that, for any given quantity G ¼ 1; n0Ub=h; hbc=h

� �
, one

can write

@aðn0UaGÞ ¼ @tðnGÞ þ rx � ðnGuÞ ¼ DuðnGÞ: (53)

Therefore, one has

@tAþrx � ðuAÞ � DuðAÞ ¼ F; (54)

where

A ¼

n

n
n0Ub

h

n
hbc

h

0
BBBBB@

1
CCCCCA; (55)

F ¼

0

�@ah
ab þ n0q

c
FbaUa

�hca@a
n0Ub

h

� �
� hab@a

n0Uc

h

� �
þþ q

c
ðFbah c

a þ Fcahb
a Þ

0
BBBBB@

1
CCCCCA:

(56)

The system of equations can now be simulated via moment matching
LB, interpreting all terms on the RHS of equations as external forcings.
The Fluid-Maxwell coupling discussed in Sec. IVA applies also, in this
case, with the exception of the iterative scheme for the transport veloc-
ity u since, in this framework, u can be naturally identified from the
LB advected quantities.

Also in this case, we employ the axisymmetric description: the
passages that are needed to adapt Eqs. (51), (52), (55), and (56) to this
framework are rather lengthy but simple and we report the final full
expressions in Appendix A.

As a final remark, it can be worth mentioning how the tensor hab

can be decomposed in its transversal and longitudinal pressure compo-
nents (w.r.t. the direction of the driving bunch, here chosen to be the
z� axis), respectively, P? and Pk ¼ P? þ DP, as to define a term of
comparison against the isotropic pressure case provided by the LEC.
We postulate17,87 that in the fluid rest frame the anisotropic energy
momentum tensor and the thermal momentum would read as

Tl�
0 ¼ diagð�;P?; P?; PkÞ; (57)

wl
0 ¼ n0

h
ðc; 0; 0; 0Þ: (58)

It follows then from Eq. (41) that

hl�0 ¼ diag �0 � n20c
2

h
; P?; P?; P?

� �
þ DPdlzd

�
z: (59)

It is sufficient to apply a Lorentz boost Kl
� to derive this tensor in a

generic reference frame

hl� ¼ Kl
aK

�
bh

ab
0 ¼ P? þ �0 � n20c

2

q

� �
UlU�

c2
� P?gl� þ DPKl

zK
�
z :

(60)

Other than showing how to obtain the rest frame values for both pres-
sure terms, this form of the tensor is actually useful to determine that
some of its components are null in the axisymmetric framework. This
effectively reduces the number of advection equations that have to be
solved viamoment matching LB.

VI. NUMERICAL RESULTS

In this section, we present the current capabilities of the method
by reproducing known analytical results and we also show side-by-side
comparisons between the two closures, highlighting the emergence of
momentum spreads anisotropies. We divide the showcase of our
results in three different parts: in the first, we start by considering tem-
perature effects in a completely 1D scenario, where our equations of
motions are made mono-dimensional by imposing translational sym-
metry along the radial directions (all derivatives w.r.t. transversal coor-
dinates are, therefore, zero), imposing D ¼ 1 in Eqs. (33) and (34)
(this is equivalent to considering a 1D kinetic momentum space) and
considering ð1þ 1Þ� dimensional tensors in the WARMC case. In
this 1D1V set-up, we compare our numerical result with known ana-
lytical solutions.30–32,56 Then, we move to the discussion of dispersion
relations in a 1D3V setup:57,88 there is still translational invariance
along the transversal directions, but a 3D kinetic momentum space is
considered [D ¼ 3 in Eqs. (33) and (34) and hl� tensors are (3þ 1)
dimensional]. Finally, we consider full spatially resolved simulations in
a 3D axisymmetric environment (3D3V).

In this work, plasma ions are considered as an immobile back-
ground with constant plasma density ni ¼ 1016 cm�3, as they are sev-
eral order of magnitude more massive than plasma electrons.
Furthermore, the driving electron pulse is modeled by a rigid bi-
Gaussian density nb, with rms-sizes rz ¼ rr ¼ 25 lm and moving at
the speed of light c (moving from right to left)

nbðr; zÞ ¼ a exp �ðz � ct � z0Þ2
r2z

 !
exp � r2

r2r

 !
: (61)

The driving bunch is initially centered in z0 and with a peak amplitude
a such that the Normalized Charge Parameter ~Q

~Q ¼ ð2pÞD=2rzrD�1
r a

kDp
ni

 !
; (62)

representing the strength of the perturbation, is kept at a fixed desired
value. Here, kp is the plasma wave number, kp ¼ xp=c, with

xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ni=ðm�0Þ

p
the cold plasma frequency (m being the electron

mass and �0 the vacuum permittivity). Unless explicitly stated, all
the results presented from now on will consider a computational
domain of size Lr ¼ 6=kp and Lz ¼ 30=kp, with cell resolutions
Dz ¼ Dr ¼ 0:01=kp and computational time step Dt ¼ 0:001=xp, for
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a simulated physical time of 30=xp. The value of s is tuned in every setup
in order to gauge between the LB numerical stability conditions60 and the
smallness of the parameter j introduced in Eq. (12), as to properly recover
the physics of the problem: we have chosen a value of s ¼ 0:52Dt in the
1D setups, and s ¼ 0:53Dt in the 3D setups, and both these two values
perfectly reproduce the available analytic solutions.

As already mentioned, just like other common PWFA solvers,18

the electromagnetic fields are solved via an FDTD scheme63,64 through
numerical integration of the curl Maxwell equations [Faraday’s and
Amp�ere’s laws in Eqs. (21) and (22)]. It can be shown in fact89 that
when these equations are considered together with the continuity
equation, the divergence Maxwell counterparts [Gauss laws in Eqs.
(21) and (22)] are automatically satisfied, provided that the fields are
correctly initialized. For this reason, we properly initialize the electro-
magnetic fields by solving analytically the Maxwell system with just a
rigid Gaussian density (the driving bunch) in its rest-frame and then
boost the quantities to the lab-frame.90,91

A. 1D1V results

We adapt our scheme to work in a 1D environment by employ-
ing a value of rr which is way bigger than the computational domain

along the radial direction Lr so that the driving bunch of Eq. (61)
reduces effectively to a single Gaussian profile along the z coordinate,
and the system assumes a translational invariance along the r coordi-
nate. Equation (62) is, therefore, employed by imposing D ¼ 1.
Furthermore, the 1V condition is reached for the LEC by setting
D ¼ 1 in Eqs. (33) and (34), while in the WARMC case is sufficient to
initialize to zero the transversal components of the hl� tensor.

We present in Fig. 2 the results for a numerical benchmark of the
method obtained by comparing both the two fluid solvers against the
analytic solutions that can be obtained by considering Eq. (27) and
Eqs. (48)–(52) in a 1D1V environment. The corresponding equations
are well studied in the literature: for the LEC, see Sec. VI in Ref. 31 or
equivalently;30 for the WARMC, see Ref. 32 and replace the laser
driven case with a particle driven case. The theoretical solutions are
obtained via finite differences integration of Eq. (6.4) in Ref. 31 (LEC)
and Eq. (8) in Ref. 32 (WARMC). Although coming from different set
of equations, these solutions are equivalent in the limit of small tem-
perature. Being this the case, they are represented by a single solid
black curve in Fig. 2. We observe that both the two methods are per-
fectly able to reproduce the theoretical results. In this simplified 1D
scenario, it is also possible to start appreciating some effects of

FIG. 2. Comparison between the numerical results obtained from the moment matching LB with the LEC (LEC-LB), the moment matching LB with the WARMC (WARMC-LB)
and their respective warm (li ¼ 0:04 ! kbTi ¼ 20 keV) 1D theory31,32 (which coincide for this choice of the parameters and hence is represented here by a single solid black
line). We also show for reference the analytic solution that can be derived from the cold fluid model (light purple). From top to bottom, we show results for the electron plasma
density n, the electric field E (normalized w.r.t. Ep ¼ mcxp

e ), and the plasma velocity u. All the curves are plotted with the co-moving variable f ¼ z � ct on the x� axis. We
show two significant regimes: ~Q ¼ 0:01 on the left column and ~Q ¼ 0:5 on the right column. The Gaussian driving bunch (green line) appearing in the top panels is vertically
shifted by a unit factor for visualization purposes.
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temperature on the dynamics (the choice of li is done in order to evi-
dence thermal effects in the first periods of the wave): by comparing
against the analytic solutions of the cold fluid model (light purple in
Fig. 2), it is possible to see that temperature leads to a decrease in the
thermal wavelength of the plasma wave. As it will be seen in Sec. VI B,
this effect is in stark contrast to what can be observed in a 3V environ-
ment, where the wavelength increases or decreases depending on the
selected fluid closure.

B. 1D3V results

An increase in complexity with respect to the 1D1V case is repre-
sented by the 1D3V case, that is targeted specifically at the recovery of
dispersion relations for the plasma wave, while still retaining a 1D sim-
ulation framework. In this context, it is actually possible to extract for
both closures a dispersion relation linking the frequency x of the
plasma wave to its wavenumber k. In the literature, such result has
been obtained with various levels of approximations.88,92 In our case, a
theoretical study can be conducted by considering Eqs. (27) and (48)–
(52), linearly perturbing them and then obtaining the dispersion rela-
tion via Fourier analysis.57,93,94 The following formulas are obtained at
order OðliÞ:

x
xp

� �2

¼ 1� 5
2
li þ

5
3
li

k
kp

 !2

LEC; (63)

x
xp

� �2

¼ 1� 5
2
li þ 3li

k
kp

 !2

WARMC: (64)

Note that the WARMC result in the previous equation coincides with
findings in Ref. 88 and represents the relativistic Bohm-Gross relation-
ship for warm Langmuir waves, where the 5/2 correction term stands
for thermal inertia, i.e., hydrodynamic transport correction due to
temperature.

The 1D3V framework is such that only longitudinal waves are
present in the system, and therefore, one has phase velocity equal to
the bunch velocity vph ¼ x

k ¼ c. Therefore, in this context, one obtains
at orderOðliÞ

x
x0

� �2

¼ 1� 5
6
li LEC; (65)

x
x0

� �2

¼ 1þ 1
2
li WARMC: (66)

At variance with what was observed in Sec. VIA, Eq. (65) foresees a
closure dependent behavior of the wave: with respect to the cold case
(where x ¼ xp), LEC plasmas exhibit wavelengths decreasing with
temperature, whereas WARMC plasmas wavelengths increase with
temperature. This can be observed in Fig. 3, where we report a com-
parison between the theoretical predictions and the numerical results.
In both the two closure schemes, we observe a very good agreement.

C. 3D3V results

We now move our analysis to fully spatially resolved simulations.
In Fig. 4, we provide an initial comparison of the two fluid closures in
a 3D3V axisymmetric environment. The temperature is set to an initial
value of kbTi ¼ 20 keV, and the chosen regime of the driving pulse is

quasi-linear, ~Q ¼ 0:5. In the figure, we show color plots for four signif-
icant quantities: the plasma number density n, the longitudinal fluid
velocity uz, the longitudinal accelerating field Ez, and the transversal
wakefield Er � cB/. It is possible to appreciate that at variance with
the usual dynamics of the cold case,62 the typical wave-like pattern of
peaks and valleys is perturbed by the emergence of an acoustic behav-
ior that promotes electron motion out of the radial axis. The presence
of pressure waves can be appreciated by the appearance of Mach cone
structures95 that can be easily spotted by looking at anyone of the pan-
els of Fig. 4: as the driving bunch travels at the speed of light c, it per-
turbs the plasma medium. The perturbation propagates at a specific
velocity cs (that depends on the initial temperature li) smaller than c,
and the wave-fronts of the perturbation, that in a sub-sonic flow would
radially propagate all over the space, are instead constrained in a coni-
cal structure around the perturbation: a supersonic Mach cone is
observed.

From a qualitative point of view, at this stage of the analysis, there
is no clear difference in behavior between the two fluid closures. A
more quantitative characterization can be performed by analyzing
these acoustic structures in the linear regime (i.e., for small values of
the parameter ~Q), where it is possible to elaborate an analytical theory
for both the two fluid models: in a nutshell, by using perturbation the-
ory on, respectively, Eqs. (27) and (48)–(52), it is possible to derive a
forced Klein–Gordon equation for the electron plasma density n,
where the only difference between the fluid closures appear in the tem-
perature dependent coefficients of the equation (see the Appendix B
for details). By looking at this equation, the acoustic nature of the
dynamics becomes clear, and it is possible to derive some analytical
results to compare with the numerical simulations. In Fig. 5, we show
the result of numerical simulations (top half of the panels) vs the ana-
lytical solutions (bottom half of the panel). There is good agreement
between the two. By inspecting the two cited panels, it is evident that
the two fluid models, although exhibiting similar qualitative features,
differ in the inclination H (plotted for reference in the figure) of the

FIG. 3. Dispersion relation dependency on temperature. Comparison of the
numerics obtained from the moment matching LB simulations vs the theory predic-
tions Eqs. (65) and (66). In both the two closures, our numerical codes well repro-
duce the theoretical results. We remark that theory predictions are operated in the
linear regime (small ~Q perturbation) and in the assumption of small initial tempera-
tures (small li values).
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FIG. 4. Qualitative comparison of 3D3V LEC-LB simulation against the WARMC-LB counterpart. We show four significant quantities, all properly adimensionalized w.r.t. previ-
ously defined values: the particle density n, the longitudinal fluid velocity uz, and both the two components of the wakefields, Ez and Er � cB/. The chosen initial temperature
value is li ¼ 0:04 ! kbTi ¼ 20 keV (again, selected for enhancing thermal effects in the first wave periods) while ~Q ¼ 0:5.

FIG. 5. Comparison of simulations (top
half of both panels) against analytic solu-
tions of the warm linear theory (bottom
half of both panels), for both the two clo-
sures (top panel LEC, while bottom panel
WARMC). The quantity shown is the parti-
cle density n, normalized w.r.t. the initial
plasma density ni. We also plot the Mach
cone structure, together with its inclination
H for reference.
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conical structure. The theory of supersonic flows95 tells us that this
inclination is linked to the intensity of the velocity cs via

cs ¼ c sin ðHÞ; (67)

which means that the wavefront of the perturbation propagates in the
two models with different velocities. The warm linear theory provides,
in fact, a dependency (look at Appendix B for more analytical details)
of cs from the initial temperature

cs
c

� �2

¼ 5
3
li LEC; (68)

cs
c

� �2

¼ 3li WARMC: (69)

One can then run a set of simulations with different initial tempera-
tures li and study the inclination of the conical envelope (from which
we extract cs) as a function of the temperature. In Fig. 6, we show the
results of this analysis that again show good match between the simu-
lations and expectations from theory.

As a final element of discussion, we present the results of Fig. 7,
where we consider the rest frame pressures ratio Pk=P? for the

WARMC model. This quantity is expected to be equal to one in the
case of an isotropic pressure tensor, as it is the case in the LEC model;
therefore, in Fig. 7, we consider the following quantity:

Pk
P?

� 1: (70)

The fluid rest frame pressures Pk and P? are obtained from the
numerics by inverting Eq. (60) (the lab-frame components of the hl�

tensor are obtained from the simulations). We note thermal spread
anisotropies are mostly relevant in the proximity of the bunch (located
at fkp ¼ 3:0) where they become of the order of 10% and become less
and less important as one proceeds further away from the perturba-
tion. To the best of our knowledge, this is the first time that such analy-
sis is conducted on the WARMC model for a spatially resolved plasma
(a study on a laser excited, 1D restricted plasma can be found in Ref.
96) and this preliminary results indicate that the LEC model, that is
missing this pressure anisotropy feature by construction, could still be
used to characterize plasma behavior in late-stage dynamics studies.
We reserve further investigation, in particular studies on the depen-
dency of this anisotropic feature on driving bunch parameters and ini-
tial temperatures, for later research.

VII. OUTLOOK AND PERSPECTIVES

In the development of a fluid model for the simulations of PWFA
processes, a multitude of physical ingredients has to be taken into
account to provide a realistic description of the process. In an earlier
paper,62 some of the authors started the exploration of lattice
Boltzmann (LB) schemes for the construction of fluid models for
PWFA and considered the simplified case of cold fluid models. This
paper represents a step forward, in that we have explored LB fluid
schemes accounting for thermal effects.30–32,34,39,41,44–46 The inclusion
of thermal effects is a rather non trivial task due to the theoretical com-
plication represented by the choice of a proper closure to the set of
equations.54 We have handled this problem by selecting two of the
most popular closure models that have been discussed in the literature:
the first one relies on the assumption of a local equilibrium (LEC),48

while the second one involves truncating the hierarchy of centered
equations at an arbitrary order (WARMC).57 We have then shown
how to successfully adapt the LB schemes to both closures. If from one
side the LEC is nominally not appropriate for a collisionless warm
plasma, from the other side, the WARMC is obtained under the
assumption of an asymptotically small temperature. Any finite temper-
ature, however small, can raise the question on what is the right closure
scheme to obtain the correct fluid model for collisionless warm plasma

FIG. 6. Acoustic velocity cs dependency on the initial plasma temperature li.
Comparison of the numerics obtained from the moment matching LB simulations vs
the warm linear theory predictions Eqs. (68) and (69). In both the two closures, our
numerical codes well reproduce the theoretical results. We remark that theory pre-
dictions are operated in the linear regime (small ~Q perturbation) and in the assump-
tion of small initial temperatures (small li values).

FIG. 7. Study of the thermal spread anisotropies in the WARMC model. The pressure ratio Pk=P? , whose value is obtained in the numerics via inversion of Eq. (60), is com-
pared against its isotropic value 1. Differences of order 10% are observed in proximity of the bunch. The chosen initial temperature value is li ¼ 0:04 ! kbTi ¼ 20 keV
(again, selected for enhancing thermal effects in the first wave periods) while ~Q ¼ 0:5.
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dynamics. The preliminary comparisons shown in this work, although
not presenting strong qualitative differences in the dynamics, give a clear
indication that the selection of a closure scheme is pivotal for the quanti-
tative assessment of PWFA experiments. To this aim, a one-to-one com-
parison between the predictions of fluid models and the PIC simulations
(or a numerical solution of the Vlasov equations) could be helpful to
shed lights on the matter. Work is in progress along this direction.

The next logical step in the development of the method is the
inclusion of ions dynamics. Since plasma ions are way more massive
then electrons, their dynamics happens on longer time scales than the
ones examined in PWFA studies that target the early stage evolution of
system, unless a strongly dense driving bunch is considered.97 There is
though a growing research interest for studies that inquire the late
time evolution of the system where this kind of dynamics cannot be
ignored anymore:36,38,40,98 unlocking the movement of ions brings in a
new wealth of physical processes such as soliton dynamic40 and ion
channels formation.39 Furthermore, most of these studies invoke ther-
mal effects to explain the acoustic motion of the ions,38,40,41,43 and it is
then clear how the development of a method that would be able of
handling both temperature and ions dynamics is of the uttermost
importance. The inclusion of ion motion in the numerical scheme pre-
sented in this paper is theoretically trivial and only brings in a bigger
computational effort (more equations need to be integrated): the afore-
mentioned characterization is, therefore, completely within the reach
of the LB method.

We would also like to mention a couple of advancements that
would make the method presented in this paper a more complete
numerical tool for the simulation of wakefield acceleration processes:
the first is represented by the possibility of including a laser source field
as the plasma perturbating mechanism, as the LWFA has always been
an alternative (w.r.t. PWFA) route to wakefield acceleration;8 the sec-
ond is the possibility of handling non-rigid particle bunches, as the
tracking of the driving bunch properties is both an important element
of diagnostic and also a feature to be kept under control in modern
day PWFA experiments (see, for example, Ref. 99) Again, work in this
direction is in progress. On the computational side, we would like to
mention that the code developed for this work is amenable to a num-
ber of numerical optimizations (such for example porting on GPUs)
and it is a firm intention of the authors to realize these improvements
in future works.

As the most important design choice presented in this paper is
the selection of the LB method as a fluid solver, a few comments are in
place. In this paper, we have shown that the LB method is well capable
of recovering analytic results, and we would like to mention further
advantages that could make LB a convenient and viable option in the
context of PWFA simulations. Although PIC methods are able to
model the dynamics at the particle level, and hence are able to model
kinetic effects, they constantly have to keep at bay their inherent
numerical noise.9,100 Therefore, in some situations, it would be prefera-
ble to dispose of alternative tools for prototyping and to reserve more
complete PIC simulations for later stages. Solvers based on a strict dis-
cretization of the Vlasov equations would not suffer of the noise prob-
lem and still be able to capture mesoscopic effects, but for any
dimensionality more than 1D, they would be too computationally
demanding and hungry for memory resources. Fluid solvers (and the
LB method among them) present then a viable option for the realiza-
tion of quick PWFA simulations. They are coarse-grained and hence do

not suffer of numerical noise, and still capture a good amount of the
physical effects that are encountered in PWFA. Furthermore, the LB
method lends itself exceptionally well to parallelization on both CPUs
and GPUs.60 In our implementation, we achieved parallelization on
multi CPUs using the message passing interface (MPI). This approach
involves dividing the computational domain into multiple rectangular
sub-domains, corresponding to the number of processors. Leveraging
the local nature of computations [Eq. (7), r.h.s.], communications are
solely required to exchange populations between neighboring process-
ors during the “streaming” process [Eq. (7), l.h.s.]. By effectively disen-
tangling “compute” and “communicate,” this strategy greatly enhances
the parallelization process.101–104 Simulations in this study were con-
ducted on an Intel Xeon E5-2695@2.40GHz processor. A representative
simulation (like those shown in Figs. 4 and 5) run on 96 processors
requires approximately 182min for the LEC-LB model and 368min for
the WARMC-LB model for 3 � 104 time steps. Memory requirements
for such simulations are �1.6 GB for the LEC-LB model and �4.3 GB
for the WARMC-LB model although these numbers could be decreased
by further optimizations of the code. As a final note, we would like to
remark that LB takes roughly 50% of the compute time in the simula-
tion, whereas the Maxwell solver for the electromagnetic fields takes
1%. This is to be expected as the amount of computation appearing in
LB is significantly higher. Figure 8 presents the execution time per

FIG. 8. Top panel: execution time per iteration (in [s]) as a function of the number of
processors for both LEC-LB (blue dotted) and WARMC-LB (orange solid). The scale
is logarithmic. Bottom panel: corresponding speedups (data from the two closures
are mostly overlapping). The simulation setup is the same as for results in Figs. 4
and 5.
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iteration and speedup data for varying numbers of processors (strong
scaling).

Furthermore, an advantage of the LB method over Vlasov solvers
is that the first adopts a smart pruning of the velocity space,60,61 thus
improving the computational efficiency. It is possible to increase the
number of discrete velocities Npop (see Sec. II A). However, this leads
to a proportional increase in both the computational cost and memory
requirements, making it a crucial factor to consider when choosing the
LB stencil. Common practice is, indeed, to choose the minimum value
Npop that ensures the recovery of the hydrodynamic properties.60 We
hasten to remark, however, that at variance with usual hydrodynamic
solvers, LB’s theoretical formulation is strongly grounded in kinetic
theory, and its fluid behavior is obtained via the smart discretization of
the velocity space cited above. This is a remarkable feature that makes
the method a strong candidate for the inclusion of kinetic effects into
PWFA fluid solvers. In fact, recent studies105–107 in other research
fields show that LB is, indeed, capable of capturing behaviors beyond
hydrodynamics just by increasing the number of discrete kinetic veloc-
ities. This could open novel perspectives for developing more refined
numerical schemes for simulations of PWFA processes, with the obvi-
ous need of a precise comparison/benchmark against some reference
PIC/Vlasov simulations. Further investigation on this is in progress.

We finally would like to mention that an alternative route to LB
wakefield simulation could be represented by the Relativistic Lattice
Boltzmann method.108 This is an extension of LB hydrodynamic
schemes (like the ones exposed in Sec. II A) to the theory of special rela-
tivity, originally created for simulation in astrophysical109 and con-
densed matter110,111 contexts, and, therefore, constitutes a promising
tool for the simulation of warm plasmas within the LEC assumption.
Adapting it to a PWFA framework is though more technical and less
immediate w.r.t. themoment matching LB used in this paper, therefore,
the authors reserve further development on this line for future works.
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APPENDIX A: FULL EXPRESSIONS FOR THE FLUID
ADVECTION EQUATIONS

We report here the full form of the advection equations solved
via the moment matching LB method in both the LEC and
WARMC model. The equations are expressed in a 3D3V axisym-
metric environment. In this context, we slightly modify the advec-
tion operator Du defined in the main text to adopt its cylindrical
counterpart

~DuðAÞ � @tAþ @rðAurÞ þ @zðAuzÞ: (A1)

All cylindrical correction terms deriving from the divergence trans-
formation are moved to the RHS of the equations and are treated as
source terms. The axisymmetry condition provides some useful
simplifications:

1. The azimuthal fluid velocity is zero

0 ¼ u/: (A2)

2. Axisymmetric Maxwell equations lead to some electromagnetic
field components to be zero

0 ¼ E/ ¼ Br ¼ Bz: (A3)

3. In the WARMC model, thanks to the strategy explained in the
main text (end of Sec. VA) one can derive rest frame quantities

0 ¼ h0/ ¼ hr/ ¼ hz/; (A4)

P? ¼ h//; (A5)

Pk ¼ � c2hll þ h00u2 þ h//u2r
c2 þ u2z

: (A6)

1. LEC equations

~DuðnÞ ¼ � urn
r

; (A7)

~DuðnArÞ ¼ � urAr

r
� nimec

2li@r
n
cni

� �5=3

� enðEr � uzB/Þ; (A8)

~DuðnAzÞ ¼ � urAz

r
� nimec

2li@z
n
cni

� �5=3

� enðEz þ urB/Þ; (A9)

with

Ar

Az

� �
¼ 1þ 5

2
li

n
cni

� �2=3
" #

n
pr
pz

� �
: (A10)
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2. WARMC equations

Define k ¼ n=h

~DuðnÞ ¼ � nur
r

; (A11)

~DuðnkcÞ ¼ � nkcur
r

� 1
c
@th

00 � @rh
0r � @zh

0z � h0r

r

� en
c
ðErur þ EzuzÞ; (A12)

~DuðnkurÞ ¼ � nku2r
r

� 1
c
@th

0r � @rh
rr � @zh

rz � hrr � h//

r

� enðEr � uzB/Þ; (A13)

~DuðnkuzÞ ¼ � nkuzur
r

� 1
c
@th

0z � @rh
rz � @zh

zz � hrz

r

� enðEz þ urB/Þ; (A14)

~DuðkhrrÞ ¼ � khrrur
r

� 2
h0r

c
@t kurð Þ � 2hrr@r kurð Þ

� 2hrz@z kurð Þ � 2
e
c
ðErh0r � cB/h

rzÞ; (A15)

~Duðkh//ÞÞ ¼ �3
kh//ur

r
; (A16)

~DuðkhzzÞ ¼ � khzzur
r

� 2
h0z

c
@t kuzð Þ � 2hrz@r kuzð Þ

� 2hzz@z kuzð Þ � 2
e
c
ðEzh0z þ cB/h

rzÞ; (A17)

~DuðkhrzÞ ¼ � khrzur
r

� h0z

c
@t kurð Þ � h0r

c
@t kuzð Þ

� hrz@r kurð Þ � hrr@r kuzð Þ � hzz@z kurð Þ � hrz@z kuzð Þ
� e
c
Erh

0z þ Ezh
0r þ cB/ðhrr � hzzÞ� �

: (A18)

The mass-shell conditions Eqs. (51) and (52) provide the remaining
non-zero components of the tensor hl�

h0r ¼ ur
c
hrr þ uz

c
hrz; (A19)

h0z ¼ ur
c
hrz þ uz

c
hzz ; (A20)

h00 ¼ ur
c
h0r þ uz

c
h0z : (A21)

APPENDIX B: WARM LINEAR THEORY

The fluid equations, respectively, Eqs. (27) and (48)–(52) for
the two closures, can be linearly perturbed w.r.t. the initial rest state
when coupled with Maxwell equations Eqs. (21) and (22). One then
obtains a forced Klein–Gordon equation for the density perturba-
tion n1 ¼ n� ni

@2
t n1 � c2sr2n1 ¼ �a2en1 � a2bnb; (B1)

where the coefficients cs, ae, and ab depend on the initial tempera-
ture in a way that’s dictated by the selected closure scheme. At order
OðliÞ, one has

LEC

cs
c

� �2

¼ 5
3
li;

ae
xp

� �2

¼ 1� 5
2
li;

a2b ¼ a2e ;

8>>>>>>><
>>>>>>>:

(B2)

WARMC

cs
c

� �2

¼ 3li;

ae
xp

� �2

¼ 1� 5
2
li;

ab
xp

� �2

¼ 1� 1
2
li:

8>>>>>>>><
>>>>>>>>:

(B3)

This result, aside from giving an explicit dependency of the acoustic
velocity cs w.r.t. temperature [result Eqs. (68) and (69)], tells us that
the behavior of the two fluid schemes is qualitatively the same. One
can further inspect Eq. (B1) to determine a dispersion relation for
the Langmuir wave. Assuming to be far away from the driving
bunch (so that nb can be ignored), one derives the following by
recurring to Fourier transformation ð@t ;$Þ ! ð�ix; ikÞ:

x2 ¼ a2e þ c2s k
2; (B4)

which reduces to the result Eqs. (65) and (66) when considered at
order OðliÞ. Last thing to discuss is the strategy to the solution of
Eq. (B1). After performing the traveling wave ansatz, which states
that every field is dependent on z and t only through the co-moving
coordinate f ¼ z � ct, we obtain the following equation:

ðc2 � c2s Þ@2
fn1 � c2sr2

?n1 ¼ �a2en1 � a2bnb: (B5)

At this point, we introduce the Hankel Tranformation of order 0112

H0 f ðrÞ½ � ¼ f̂ ðwÞ ¼
ðþ1

0
f ðrÞrJ0ðwrÞdr; (B6)

where J0ðwrÞ is the Bessel Function of first kind and order 0. This
transform behaves nicely in the presence of transversal laplacians of
radial functions ðr?Þ ! ðiwÞ. Therefore, if one Hankel transforms
Eq. (B5), a Forced Harmonic oscillator in the variable f is obtained

@2
f n̂1ðw; fÞ ¼ � a2e þ w2c2s

c2 � c2s

 !
n̂1ðw; fÞ � a2b

c2 � c2s

 !
n̂bðw; fÞ ;

(B7)

which can be solved via the Green’s function method. The final anti-
transformed solution, to be numerically integrated, reads, therefore, as

n1ðr; fÞ ¼ � a2bffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � c2s

p ðf
�1

ðþ1

0

n̂bðw; f0ÞJ0ðwrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2e þ w2c2s

p
� sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2e þ w2c2s
c2 � c2s

s
ðf� f0Þ

2
4

3
5dwdf0: (B8)
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