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Abstract
We show thatWormdomains are not Gromov hyperbolicwith respect to theKobayashi
distance.
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1 Introduction

A central problem in contemporary several complex variables is to determine when
a complete Kobayashi hyperbolic domain � ⊂⊂ C

n is Gromov hyperbolic when
endowed with its Kobayashi distance. Assume in what follows that � is smoothly
bounded.

Some families of relevant domains are Gromov hyperbolic: Balogh–Bonk [2]
proved it for strongly pseudoconvex domains, and Zimmer [19] showed it for convex
domains of D’Angelo finite type. The third-named author showed it [13] for pseudo-
convex domains of finite type inC

2. On the other hand, Gaussier–Seshadri [15] proved
that for smoothly bounded convex domains � ⊂⊂ C

n an analytic disk in the bound-
ary is an obstruction to Gromov hyperbolicity. This result was later strengthened by
Zimmer [19], who showed that the same is true if � is a smoothly bounded C-convex
domain. The following important question remains open.

Question Is an analytic disk in the boundary an obstruction to Gromov hyperbolicity
for a smoothly bounded complete Kobayashi hyperbolic domain � ⊂⊂ C

n?
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In this paper, we study the Gromov hyperbolicity of the Worm domains introduced
byDiederich–Fornæss [11],which have a holomorphic annulus in the boundary and are
highly non-C-convex. Worm domains play a central role in several complex variables
as they provide counterexamples to several important questions. See, e.g., [17] for a
review of the properties of Worm domains. We actually consider a more general class
of Worms (see Definition 10), with an open Riemann surface in the boundary, and
prove the following result:

Theorem 1 Worms are not Gromov hyperbolic w.r.t. the Kobayashi distance.

The proof is based on Barrett’s scaling (cf. [4, Sect. 4]). We rescale the Worm W
obtaining in the limit a holomorphic fiber bundle, which we call a pre-Worm, with
base an open hyperbolic Riemann surface and with fiber the right half-plane. We show
that such a pre-Worm cannot be Gromov hyperbolic. Since the Kobayashi distance is
continuous with respect to this scaling, this yields the result.

2 Gromov Hyperbolicity—Basic Definitions

In this section, we will review some basic definitions and properties of Gromov hyper-
bolic spaces. The book [8] is one of the standard references.

Definition 2 Let (X , d) be a metric space. For every x, y, o ∈ X the Gromov product
is

(x |y)o := 1

2
[d(x, o) + d(y, o) − d(x, y)].

The metric space (X , d) is δ-hyperbolic if for all x, y, z, o ∈ X

(x |y)o ≥ min{(x |z)o, (y|z)o} − δ.

Finally, a metric space is Gromov hyperbolic if it is δ-hyperbolic for some δ ≥ 0.

Definition 3 Let (X , d) be a metric space, I ⊂ R be an interval and A ≥ 1 and B ≥ 0.
A function σ : I → X is

(1) a geodesic if for each s, t ∈ I

d(σ (s), σ (t)) = |t − s|;

(2) a (A, B)-quasigeodesic if for each s, t ∈ I

A−1|t − s| − B ≤ d(σ (s), σ (t)) ≤ A|t − s| + B.

A (A, B)-quasigeodesic triangle is a choice of three points in X and three (A, B)-
quasigeodesic segments connecting these points, called its sides. If M ≥ 0, a (A, B)-
quasigeodesic triangle is M-slim if every side is contained in the M-neighborhood of
the other two sides.
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Finally, recall that a metric space (X , d) is proper if closed balls are compact, and
geodesic if any two points can be connected by a geodesic. A fundamental property
of geodesic Gromov hyperbolic spaces is that quasigeodesics are uniformly close to
geodesics, a fact which implies the following characterization of Gromov hyperbol-
icity.

Proposition 4 [8, Corollary 1.8]Aproper geodesicmetric space (X , d) is δ-hyperbolic
if and only if for all A ≥ 1 and B ≥ 0, there exists M ≥ 0 such that every (A, B)-
quasigeodesic triangle is M-slim.

3 Worms and Pre-Worms

Let X be an open Riemann surface, and let θ : X → R be a smooth “angle” function.
Consider the domain in X × C defined as follows:

Z(X , θ) := {(z, w) ∈ X × C : �(we−iθ(z)) > 0},

which is readily seen to be a smooth fiber bundle with base X and fiber a half-plane.

Proposition 5 If the function θ is harmonic, then Z(X , θ) is a holomorphic fiber
bundle.

Proof Let v be (minus) a local harmonic conjugate of θ , so that F(z) = v(z) + iθ(z)
is a holomorphic function on an open set U ⊂ X . Then Z(X , θ) is locally defined
over U by �(we−F(z)) = �(we−v(z)−iθ(z)) > 0, and (z, w) �→ (z, e−F(z)w) is the
desired local trivialization. 	

Definition 6 (pre-Worms) If the function θ is harmonic, we call the holomorphic fiber
bundle Z(X , θ) a pre-Worm.

Remark 7 Pre-Worms are sectorial domains in the sense of [5] (see in particular Exam-
ple 2.2).

A pre-Worm Z(X , θ) with hyperbolic base X is complete Kobayashi hyperbolic
by the following classical result.

Proposition 8 ([16, Theorem 3.2.15]) Let π : E → X be a holomorphic fiber bundle
with fiber F . Assume that F and X are both (complete) Kobayashi hyperbolic. Then
E is (complete) Kobayashi hyperbolic.

Now we proceed to the definition of the Worms. First of all, given two compact
intervals I , J ⊂ R such that I ⊂ J ◦, we denote by η : R → [0,+∞) any smooth
function satisfying the following properties:

• on I , the function η vanishes identically;
• on R \ I , the function η is real-analytic and satisfies η′′ > 0 (in particular, η is
strictly positive and η′ �= 0 on R \ I );

• J = {η ≤ 1}.
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The precise choice of a function η satisfying the above properties is completely irrel-
evant for what follows.

Next, given an open Riemann surface Y equipped with a smooth angle function
θ : Y → R and two compact intervals I , J as above, we define

W := {(z, w) ∈ Y × C : |w − eiθ(z)|2 < 1 − η(θ(z))}.

We assume the following:

• θ has no critical points where θ(z) ∈ ∂ I or θ(z) ∈ ∂ J ;
• θ−1(J ) is a compact subset of Y .

Proposition 9 The domain W ⊂⊂ Y × C has smooth boundary. Moreover, if θ is
harmonic, then W is Levi-pseudoconvex.

Proof The precompactness of the domain W is a consequence of our assumption that
θ−1(J ) is compact. The domain W has defining function:

r(z, w) = ww − we−iθ(z) − weiθ(z) + η(θ(z)).

We show that dr �= 0 for all (z, w) ∈ ∂W . If ∂w̄r �= 0, this is clear. Since ∂w̄r =
w − eiθ(z) vanishes only if w = eiθ(z), we may assume that this identity holds. Then
necessarily η(θ(z)) = 1, that is, θ(z) ∈ ∂ J , in which case

∂z̄r = i∂z̄θ(z)we−iθ(z) − i∂z̄θ(z)weiθ(z) + η′(θ(z))∂z̄θ(z) = η′(θ(z))∂z̄θ(z) �= 0

by our assumption about the critical points of θ . This proves that W has smooth
boundary.

Since Levi-pseudoconvexity is a local property, we may restrict the z variable to
an open set U ⊂ Y where θ(z) admits a harmonic conjugate v(z), as in the proof of
Proposition 5. A local defining function for the boundary of W is then given by

e−vr = |e− F
2 w|2 − 2�(we−F ) + e−vη ◦ θ,

where F(z) = v(z) + iθ(z) is holomorphic. Recalling that moduli squared (resp. real
parts) of holomorphic functions are plurisubharmonic (resp. pluriharmonic), we see
that e−vr is equal to a plurisubharmonic function plus e−vη ◦ θ , which is a function
of the variable z alone. If we show that the latter is subharmonic, we are done. One
computes

	(e−vη ◦ θ) = 	(e−v)η ◦ θ + 2∇(e−v) · ∇(η ◦ θ) + e−v	(η ◦ θ),

where 	 and ∇ are the ordinary real Laplacian and gradient in C ≡ R
2. In U , we

have

∇(e−v) · ∇(η ◦ θ) = −e−v(η′ ◦ θ)∇v · ∇θ = 0,
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by Cauchy–Riemann equations.

Next, notice that e−v = |e− F
2 |2 is subharmonic. Sinceη and e−v are nonnegative, all

we are left to do to check the nonnegativity of	(e−vη◦θ) is to verify that	(η◦θ) ≥ 0.
By direct computation, we see that

	(η ◦ θ) = 4|∂z̄θ |2η′′ ◦ θ,

which is nonnegative thanks to our convexity assumption on the auxiliary function
η. 	

Definition 10 (Worms) If the function θ is harmonic (and satisfies the assumptions on
page 3), we call the domain W ⊂ Y × C a Worm.

The reader may find a picture of a Worm in Fig. 1.

Remark 11 By Docquier–Grauert [12] every Worm is Stein.

For a more refined analysis, we split the boundary of W into four regions:

• the spine of the Worm

S := {(z, w) ∈ ∂W : θ(z) ∈ I , w = 0},

• the body of the Worm

B := {(z, w) ∈ ∂W : θ(z) ∈ I , ∂zθ(z) �= 0, w �= 0},

• the exceptional set

E := {(z, w) ∈ ∂W : ∂zθ(z) = 0, w �= 0},

• the caps

C := {(z, w) ∈ ∂W : θ(z) ∈ J \ I , ∂zθ(z) �= 0}.

Remark 12 Identify the slice {w = 0} ⊂ Y × C with the Riemann surface Y . Inside
Y the spine S is the closure of the domain

X in := θ−1(I ◦) ⊂⊂ Y .

Since the angle function θ has no critical point z ∈ θ−1(∂ I ), the domain X in is
smoothly bounded. X in is a Riemann surface contained in the boundary of the Worm
W ; hence, every point of the spine S is of D’Angelo infinite type.

In what follows an important role is also played by the smoothly bounded domain

Xout := θ−1(J ◦) ⊂⊂ Y .
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Fig. 1 AWorm, whose underlying Riemann surface Y (depicted above) has genus zero and three boundary
components. In this picture, the harmonic angle function θ is represented as a height function for visual
clarity. In the two boxes below, one finds a generic w-slice of the worm over a point z1 ∈ θ−1(I ) (on the
left) and z2 ∈ θ−1(J \ I ) (on the right). Notice that, because of the indicated choice of I and J , the surfaces
X in and Xout have the same topology (albeit in general different conformal structures)

Remark 13 The classical Worm domains introduced by Diederich–Fornæss [11] cor-
respond to the case where Y = C

∗, θ(z) = log |z|2. In this case, X in is a holomorphic
annulus contained in the boundary of W , of which conformal class depends on the
choice of the interval I .

A“genus zero”generalization of the Diederich–Fornæss Worms is obtained choos-
ing Y = C \ {a1, . . . , ak} and θ(z) = ∑k

j=1 λ j log |z − a j |2 (where λ j > 0). If
I = [−a, b] with a and b large enough, the spine S has k + 1 boundary components.
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Proposition 14 The caps C and the body B consist of strongly pseudoconvex points,
the exceptional set E consists of finite-type points, and the spine S consists of infinite-
type points.

Proof We already remarked that S consists of infinite-type points.
In the proof of Proposition 9, we saw that the boundary of a worm has a local

defining function admitting the representation

r̃ = |e− F
2 w|2 + e−vη ◦ θ + ph,

where ph denotes a pluriharmonic function, and that

	z(e
−vη ◦ θ) ≥ e−v|∂z̄θ |2η′′ ◦ θ.

Since the latter quantity is positive on the caps (thanks to the strict convexity assump-
tion on η), we conclude that the Worm is strictly pseudoconvex at every point of C
where ∂w is not tangent to the boundary, that is ∂wr �= 0 (or, equivalently, the vec-
tor (0, 1) is not in the complex tangent to ∂W ). If instead ∂wr = 0, then we have
θ ∈ ∂ J (cf. the beginning of the proof of Proposition 9), and we may exploit the

strong plurisubharmonicity of |e− F
2 w|2:

∂w∂w̄|e− F(z)
2 w|2 = |e− F(z)

2 |2 > 0.

Thus, every point of C is strongly pseudoconvex.
We now study points (z, w) in the body B, where η ◦ θ ≡ 0. Calculating the Levi

form L(z,w)r̃ we obtain, for (a, b) ∈ C
2,

L(z,w)r̃(a, b) = (
a b

) |e− F(z)
2 |2

(
|w|2 |F ′(z)|2

4 −w
F ′(z)
2

−w
F ′(z)
2 1

) (
a
b

)

.

Hence, L(z,w)r̃(a, b) vanishes if and only if (a, b) ∈ C
2 is a multiple of (2, wF ′(z)).

This readily shows that the Worm is strongly pseudoconvex at every boundary point
of the body where (2, wF ′(z)) is not in the complex tangent to the boundary. But a
simple computation shows that the vector (2, wF ′(z)) is never complex tangent to the
boundary since

(2∂z + wF ′(z)∂w)r̃ = wF ′(z)e−F(z) �= 0.

This shows that every point of the body B is strongly pseudoconvex.
We are left with the proof that every point of the exceptional set E is of finite

type. By the Cauchy–Riemann equations, the critical points of θ are the same as the
critical points of the (locally defined) holomorphic function F , and hence, they are
isolated. Thus, E is a finite union of circles and circles with one point deleted (the point
with w = 0, in case the circle crosses the spine). Moreover, since θ has no critical
points on ∂ I , the boundary of the Worm is real-analytic in an open neighborhood
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of E . Thus, to verify that every point of E is of finite type, we need to check that
no positive dimensional complex analytic variety lies in such a neighborhood (see,
e.g., [3]). This is easy, because any point of such a variety would be of infinite type
and, since we already checked that B and C consist of strongly pseudoconvex points,
this would force the variety to be contained in E , which is impossible by dimension
considerations (or by the open-mapping theorem). 	

Remark 15 The Worms are examples of domains with nontrivial, yet nicely behaved,
Levi core. See [9, 10], where this notion has been introduced by the second-named
author and S. Mongodi. As a consequence of Proposition 14, the Levi core of a Worm
is the T 1,0 bundle of its spine. A straightforward computation using [9, Proposition
4.1, part vi)] shows that the deRham cohomology class on the spine S (or, equivalently,
X in) induced by the D’Angelo class of theWorm is represented by i(∂ −∂)θ , which is
exact if and only if the angle function θ is globally on X in the real part of a holomorphic
function (that is, the pre-Worm Z(X in, θ |X in) is trivial as a fiber bundle). This is in
turn equivalent to the condition that the Diederich–Fornæss index of the Worm is 1.
We refer to [9, Sect. 4] for a review of the basic theory of D’Angelo classes and to [1,
9] for the implications on the Diederich–Fornæss index.

We end this section proving that Worms are complete Kobayashi hyperbolic. For
this, we observe that a Worm W is naturally associated with two pre-Worms.

Definition 16 Set

Win := Z(X in, θ |X in), Wout := Z(Xout, θ |Xout ),

where we are using the notation of Remark 12. Notice thatWin ⊂ Wout andW ⊂ Wout.

In the remaining of the paper, if M is a complex manifold, we denote by kM
its Kobayashi pseudodistance and by KM its Kobayashi–Royden pseudometric. The
following lemma is proved in [14, Lemma 2.1.3].

Lemma 17 Let D ⊂ C
d be a domain and kD its Kobayashi distance. If zn → ξ ∈ ∂D

and ξ admits a local holomorphic peak function, then for every neighborhood U of ξ ,
we get

lim
n→+∞ kD(zn, D ∩Uc) = +∞.

Proposition 18 Worms are complete Kobayashi hyperbolic.

Proof Assume by contradiction that there exists a nonconvergent Cauchy sequence
{xn}n in W . Passing to a subsequence, we can assume that xn → ξ ∈ ∂W . We write
xn = (zn, wn) and ξ = (z0, w0).

Ifw0 �= 0, then ξ is a pseudoconvex finite-type point by Proposition 14. By [6] (see
also [18, Sect. 4]), ξ admits a local holomorphic peak function, and hence, it cannot
be a Cauchy sequence by Lemma 17.

Assume next that w0 = 0, so that in particular ξ ∈ ∂Wout. Since W ⊂ Wout, it
follows that {xn}n is also aCauchy sequencew.r.t. kWout , which converges to ξ ∈ ∂Wout.
This contradicts the completeness of the pre-Worm Wout (Proposition 8 below). 	
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4 Holomorphic Fiber Bundles are not Gromov Hyperbolic

We recall a classical result from the theory of Kobayashi hyperbolic complex mani-
folds. If M is a complex manifold, we denote by BM (p, r) the kM -ball of center p
and radius r .

Proposition 19 ([16, Proposition 3.1.19]) Let M be a Kobayashi hyperbolic complex
manifold. Let p ∈ M and R, ε > 0. Then there exists a constant C ≥ 1 depending
only on ε such that

kBM (p,3R+ε)(x, y) ≤ CkM (x, y), ∀x, y ∈ BM (p, R),

and thus, the metrics kM and kBM (p,3R+ε) are biLipschitz equivalent on BM (p, R).

The fact thatC depends only on ε is not stated explicitly in [16, Proposition 3.1.19],
but it is clear from the (first paragraph of the) proof. We will actually use this result
in the following simplified form.

Corollary 20 Let M be a Kobayashi hyperbolic complex manifold. Then there exists
an absolute constant C ≥ 1 such that

kBM (p,4R)(x, y) ≤ CkM (x, y), ∀x, y ∈ BM (p, R),

for all R ≥ 1 and all p ∈ M .

We introduce the following definition.

Definition 21 Let π : E → X be a holomorphic fiber bundle and z ∈ X . Then define

r(z) := sup{r > 0 : the bundle trivializes over BX (z, r)}

Notice that r(z) > 0 for every z ∈ X if X is Kobayashi hyperbolic.
We can now prove the main result of this section. Recall [16, Theorem 3.1.9] that

if X and Y are two complex manifolds then

kX×Y ((z1, w1), (z2, w2)) = max {kX (z1, z2), kY (w1, w2)} , z1, z2 ∈ X , w1, w2 ∈ Y .

(1)

Theorem 22 Let X , F be non-compact complete Kobayashi hyperbolic complex man-
ifolds. Let π : E → X be a holomorphic fiber bundle with fiber F and such that
supz∈X r(z) = +∞. Then (E, kE ) is not Gromov hyperbolic.

Proof Wewill construct a sequence {Tn}n of quasigeodesic triangles in E violating the
definition of Gromov hyperbolicity. Let {zn}n in X be such that rn := r(zn) → +∞.
We define

�n := π−1(BX (zn, rn/2)),
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and let

n : BX (zn, rn/2) × F → �n

be a holomorphic trivialization. Let q ∈ F be any point of F . Let C ≥ 1 be the
universal constant given by Corollary 20. Set tn := rn

16C .
We construct the triangles in the following way. Since X and F are non-compact,

for all n > 0, we can find a geodesic of X denoted γn : [0, tn] → X with γn(0) =
zn , and a geodesic of F denoted σn : [0, tn] → F with σn(0) = q. Notice that
γn([0, tn]) ⊂ BX (zn, rn/8), so by Corollary 20 the curve γn is a (C, 0)-quasigeodesic
w.r.t. the Kobayashi distance of BX (zn, rn/2) (we may assume that rn ≥ 8 for every
n).

By (1) the curves an(t) = (zn, σn(t)) and bn(t) = (γn(t), q) are respectively a
geodesic and (C, 0)-quasigeodesic of BX (zn, rn/2) × F . Moreover, a simple compu-
tation shows that the curve cn : [0, 2tn] → BX (zn, rn/2) × F defined by

cn(t) =
{

(γn(t), σn(tn)) if t ∈ [0, tn]
(γn(tn), σn(2tn − t)) if t ∈ [tn, 2tn].

is a (2C, 0)-quasigeodesic of BX (zn, rn/2) × F . Indeed, cn is a geodesic w.r.t. the
distance kX + kF that is 2C-BiLipschitz to kBX (zn ,rn/2)×F in BX (zn, rn/8) × F .
Hence, the triangle Tn with sides an, bn and cn is a (2C, 0)-quasigeodesic triangle
in BX (zn, rn/2) × F . Notice Tn is not tn-slim because

kBX (zn ,rn/2)×F (cn(tn), an([0, tn]) ∪ bn([0, tn])) = tn .

Now since n is a biholomorphism between BX (zn, rn/2) × F and �n , the triangle
T̂n in �n that is image of Tn via n is again a (2C, 0) quasigeodesic triangle w.r.t.
k�n , and it is not tn-slim.

Now the map π : E → X is non-expanding, so

BE ((zn, q), rn/2) ⊂ �n .

The triangle T̂n is contained in B�n ((zn, q), rn/8), and hence, it is contained in
BE ((zn, q), rn/8). By another application of Corollary 20, the distances kE and k�n

are C-BiLipschitz in BE ((zn, q), rn/8), so T̂n are a (2C2, 0)-quasigeodesic triangle
not (C−1tn)-slim w.r.t. the distance kE . It follows that E is not Gromov hyperbolic. 	


We conclude this section highlighting an interesting class of holomorphic fiber
bundles satisfying the condition supX r = +∞.

Proposition 23 Let Y be a complex manifold and let π : E → Y be a holomorphic
fiber bundle. Let X ⊂ Y be a domain. Assume that there exists a point ξ ∈ ∂X which
admits a local holomorphic peak function. Then the restricted holomorphic bundle
E |X has the property supX r = +∞.
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Fig. 2 The triangle Tn in
BX (zn , rn/2) × F

BX(zn, rn/2)

F

bn

an

cn

zn γn(tn)

q

σn(tn)

...
...

Proof LetU be an open neighborhood of ξ in Y such that π : E → Y trivializes over
U . Let {zn}n be a sequence in X converging to ξ . By Lemma 17, we have that

lim
n→+∞ kX (zn, X ∩Uc) = +∞.

Hence, for each R > 0, we have BX (zn, R) ⊂ X ∩ U for n large enough, which
implies that r(zn) → +∞. 	

Corollary 24 The pre-Worms Win and Wout are not Gromov hyperbolic w.r.t. its
Kobayashi distance.

Proof The domains

X in ⊂⊂ Xout ⊂⊂ Y

are smoothly bounded (see Remark 12), and thus, every point in their boundary admits
a local holomorphic peak function. Hence by the previous proposition the pre-Worms
Win and Wout satisfy supX r = +∞ and Theorem 22 yields the result. 	


5 Barrett’s Scaling and Proof of Main Theorem

In what follows, we denote by T M the holomorphic tangent bundle of a complex
manifold M and by π : T M → M , the canonical projection. We denote by D ⊂ C

the unit disk. Recall the following classical definition.

Definition 25 Let M be a complex manifold and let X ⊂ M be a domain. Then X has
simple boundary in M if for all φ : D → M holomorphic mappings with φ(D) ⊂ X
and φ(D) ∩ ∂X �= ∅ one has φ(D) ⊆ ∂X .

The proof of Theorem 1 is based on the following result, showing the stability of
the Kobayashi distance and of the Kobayashi–Royden metric under a particular type
of convergence of domains Dn → D∞.
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Proposition 26 Let M be a taut complex manifold and let {Dn}n be a sequence of
domains of M. Let D∞ ⊂ M be a complete Kobayashi hyperbolic domain with
simple boundary. Assume that

(i) if {xn}n is a sequence converging to x∞ ∈ M and xn ∈ Dn for all n ∈ N, then
x∞ ∈ D∞;

(ii) for every compact H ⊂ D∞, there exists N such that H ⊂ Dn for n ≥ N.

Then as n → +∞ we have KDn → KD∞ uniformly on compact subsets of T D∞,
and kDn → kD∞ uniformly on compact subsets of D∞ × D∞.

See, e.g., [16,Chap. 5] for the notion of tautness. The idea of the proof of Proposition
26 is similar to [7, Theorem 4.3]. The proof is based on two lemmas, valid under the
assumptions of the proposition.

Lemma 27 For every H ⊂ D∞ compact and ε > 0, there exists N such that for all
n ≥ N and for all v ∈ π−1(H), we have

KDn (v) ≤ (1 + ε)KD∞(v).

Proof Set r := (1 + ε)−1 ∈ (0, 1). Define Ĥ ⊂ D∞ as

Ĥ := {φ(ζ )| φ : D → D∞ holomorphic, φ(0) ∈ H , |ζ | ≤ r}.

The set Ĥ is compact. Indeed, let {zn}n be a sequence in Ĥ , i.e., there exist φn : D →
D∞ such that φn(0) ∈ H , and |ζn| ≤ r such that zn = φn(ζn). Since φn(0) ∈ H for
all n ∈ N and D∞ is taut (by [16, Theorem 5.1.3]), we can assume that φn converges
uniformly on compact sets to a holomorphic map φ̂ : D → D∞ and that ζn converges
to ζ̂ with |ζ̂ | ≤ r . But then zn → φ̂(ζ̂ ) ∈ Ĥ . This proves that Ĥ is compact.

Now, for each v ∈ π−1(H) let φ : D → D∞ be such that φ(0) = π(v) and

KD∞(v)φ′(0) = v.

Using property (ii), there exists N such that for all n ≥ N , we have Ĥ ⊂ Dn , which
implies that if φr : D → D∞ is defined by φr (z) := φ(r z) then φr (D) ⊂ Ĥ ⊂ Dn .
Finally, using the definition of the Kobayashi–Royden metric, we have

KDn (v) ≤ r−1KD∞(v) = (1 + ε)KD∞(v).

	


Lemma 28 For every H ⊂ D∞ compact and ε > 0, there exists N such that for all
n ≥ N and for all v ∈ π−1(H), we have

KD∞(v) ≤ (1 + ε)KDn (v). (2)
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Proof Fix an Hermitian metric on T D∞. The result immediately follows if we prove
(2) for all v ∈ π−1(H) such that ‖v‖ = 1. Assume by contradiction that there exist
H ⊂ D∞ compact, ε > 0, and nk → +∞, vk ∈ π−1(H) such that ‖vk‖ = 1 and

KD∞(vk) > (1 + ε)KDnk
(vk).

We can assume that vk → v∞ ∈ π−1(H). Let φk : D → Dnk be a holomorphic
map such that φk(0) = π(vk) and αkφ

′
k(0) = vk , where αk ≤ (1+ ε)1/2KDnk

(vk). In

particular, αk ≤ (1 + ε)−1/2KD∞(vk) and hence, αk is uniformly bounded in k. We
may, therefore, assume that αk converges to a limit α as k → +∞.

Since M is taut and φk(0) ∈ H , we can assume that the sequence {φk}k converges
uniformly on compact sets to a holomorphic map φ : D → M , which satisfies the
identity αφ′(0) = v∞. Using property (i), we have φ(D) ⊂ D∞. Since D∞ has simple
boundary in M it follows from φ(0) = π(v∞) ∈ D∞ that φ(D) ⊂ D∞. Finally using
the definition of the Kobayashi–Royden metric, we have

KD∞(v∞) ≤ α ≤ lim
k

(1 + ε)−1/2KD∞(vk) = (1 + ε)−1/2KD∞(v∞),

which is a contradiction. 	

Proof of Proposition 26 Theuniformconvergenceoncompact subsets of theKobayashi–
Royden metric follows from Lemmas 27 and 28. We now prove the local uniform
convergence of the Kobayashi distance. In what follows, we denote by �M (γ ) the
Kobayashi–Royden length of a curve γ on the manifold M .

Let H ⊂ D∞ be a compact set, and set R := diam(H). Given p, q ∈ H and
ε ∈ (0, 1), let γ : [0, 1] → D∞ be a piecewise C1 curve joining p with q and
satisfying �D∞(γ ) ≤ kD∞(p, q) + ε. Fix o ∈ H . Then, for all t ∈ [0, 1],

kD∞(o, γ (t)) ≤ kD∞(o, p) + kD∞(p, γ (t))

≤ R + �D∞(γ ) ≤ R + kD∞(p, q) + ε ≤ 2R + 1,

i.e., the support of γ is contained in BD∞(o, 2R + 1) which is a compact subset of
D∞ by the completeness of D∞. By Lemma 27, there exists N such that for all n ≥ N
and for all v ∈ π−1(BD∞(o, 2R + 1)) we have KDn (v) ≤ (1 + ε)KD∞(v), which
implies �Dn (γ ) ≤ (1 + ε)�D∞(γ ). Hence,

kDn (p, q) ≤ �Dn (γ ) ≤ (1 + ε)�D∞(γ ) ≤ (1 + ε)(kD∞(p, q) + ε)

≤ kD∞(p, q) + O((1 + R)ε).

In particular,
kDn (p, q) = O(1 + R) (3)

for n ≥ N .
For the converse, notice that by (ii) H is eventually contained in the domains Dn .

Given p, q ∈ H and ε ∈ (0, 1), let γn : [0, 1] → Dn be a piecewise C1 curve joining
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p with q and satisfying �Dn (γn) ≤ kDn (p, q) + ε. Fix o ∈ H and define

tn := sup{t ∈ [0, 1] : γn([0, t]) ⊂ BD∞(o, 2R)}.

We have that kD∞(p, γn(tn)) ≥ kD∞(p, q). Indeed, this clearly holds if tn = 1. If
tn < 1, then kD∞(o, γn(tn)) = 2R and thus

kD∞(p, γn(tn)) ≥ kD∞(o, γn(tn)) − kD∞(p, o) ≥ 2R − R = R ≥ kD∞(p, q).

Since BD∞(o, 2R) is compact, by Lemma 28 there exists N such that for all n ≥ N
and for all v ∈ π−1(BD∞(o, 2R)), we have that KDn (v) ≥ (1+ε)−1KD∞(v).Hence,

kDn (p, q) + ε ≥ �Dn (γn) ≥ �Dn (γn|[0,tn ]) ≥ (1 + ε)−1�D∞(γn|[0,tn ])
≥ (1 + ε)−1kD∞(p, γn(tn)) ≥ (1 + ε)−1kD∞(p, q),

that is

kD∞(p, q) ≤ (1 + ε)(kDn (p, q) + ε) ≤ kDn (p, q) + O((1 + R)ε),

where we used (3). 	

Let W be a Worm. We call Barrett’s scaling the one-parameter group of automor-

phisms of Y × C given by

Bλ : (z, w) �→ (z, λw) (λ > 0),

which played a key role in [4, Sect. 4].
For all n ≥ 1 we set Dn := Bn(W ), D∞ := Win, and M := Wout.

Remark 29 Properties (i) and (ii) of Proposition 26 are satisfied in this case.

Lemma 30 The domain Win has simple boundary in Wout.

Proof Let ϕ : D → Wout be a holomorphic map such that ϕ(D) ⊂ W in. Assume that
there exists ζ0 ∈ D such that

(z0, w0) := φ(ζ0) ∈ ∂Win.

Clearly z0 ∈ ∂X in. If π1 : Xout×C → Xout denotes the projection to the first variable,
then π1 ◦ φ : D → Xout is a holomorphic function with image contained in X in and
such that (π1 ◦φ)(ζ0) ∈ ∂X in, hence by the open-mapping theorem π1 ◦φ is constant.
Thus, φ(D) ⊂ ∂Win. 	


We are finally able to prove our main theorem.
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Proof of Theorem 1 By contradiction, assume that there exists δ ≥ 0 such that for each
o, x, y, z ∈ W we have

min{(x |y)kWo , (y|z)kWo } − (x |z)kWo ≤ δ.

Now since for all n ≥ 1, the Barrett’s scaling Bn is an isometry betweenW and Bn(W )

we have, for each o, x, y, z ∈ Bn(W ),

min{(x |y)kBn (W )
o , (y|z)kBn (W )

o } − (x |z)kBn (W )
o ≤ δ.

By Proposition 26, we have, for all o, x, y, z ∈ Win,

min
{
(x |y)kWin

o , (y|z)kWin
o

}
− (x |z)kWin

o

= lim
n→+∞min

{
(x |y)kBn (W )

o , (y|z)kBn (W )
o

}

−(x |z)kBn (W )
o ≤ δ.

Thus, Win is Gromov hyperbolic, which contradicts Corollary 24. 	
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