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A B S T R A C T

We study the dynamics of the collinear points in the planar, restricted three-body problem, assuming that the
primaries move on an elliptic orbit around a common barycenter. The equations of motion can be conveniently
written in a rotating–pulsating barycentric frame, taking the true anomaly as independent variable. We consider
the Hamiltonian modeling this problem in the extended phase space and we implement a normal form to make
a center manifold reduction. The normal form provides an approximate solution for the Cartesian coordinates,
which allows us to construct several kinds of orbits, most notably planar and vertical Lyapunov orbits, and
halo orbits. We compare the analytical results with a numerical simulation, which requires special care in the
selection of the initial conditions.
1. Introduction

Despite their instability, the collinear equilibrium points of the pla-
nar, circular, restricted three-body problem (hereafter, PCR3BP) play
a key role in Celestial Mechanics and Astrodynamics. In the PCR3BP,
a small particle moves in the gravitational field of two primaries,
which orbit around each other on a circular orbit; moreover, all bodies
move in the same plane. The collinear points, which are equilibria in
the synodic reference frame, have been used to design space trajecto-
ries [1,2] and they are considered privileged positions where to place
spacecraft or instruments. There are many works devoted to analytical
and numerical solutions around the collinear points in the circular
problem (see, e.g., [3–7]). In this work, we extend the study of the
dynamics around the collinear points assuming that the primaries move
on an elliptic orbit, thus providing a more realistic description.

An analytical approach based on the construction of a resonant
normal form has been applied in [6,7] in the case of the spatial circular
problem. This approach provides an integrable 3-DOF Hamiltonian
which captures both the hyperbolic dynamics normal to the center
manifold and the elliptic dynamics on it. This analytical approach
allows us also to compute approximate solutions for periodic and quasi-
periodic orbits, including those associated to 1:1 resonant bifurcations.
We remark that the method can be easily generalized to include per-
turbing effects like the Solar radiation pressure and the oblateness of
the primaries [8,9].

In this work, we extend the construction of the analytical solution
to the elliptic case by computing a suitable normal form, which de-
scribes Lyapunov planar orbits, Lyapunov vertical orbits, halo orbits;
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these orbits are characterized by prescriptions on the normal modes
or by resonant conditions. As it is well known [10–12], in the planar,
elliptic, restricted three-body problem, it is convenient to introduce
a rotating–pulsating frame, which rotates with the true anomaly of
the elliptic orbit, which is taken as independent variable; moreover,
the coordinates are rescaled with the orbital radius. The Hamiltonian
describing this problem depends on the true anomaly and therefore
it is useful to consider it in the extended phase space by adding a
dummy action conjugated to the true anomaly, thus obtaining a 4DOF
Hamiltonian. In practice, however, the normal-form dynamics retains
all the properties of the circular case and it is effectively an integrable
3-DOF problem. The time dependence is encoded in the generating
function of the normalizing transformation and becomes apparent when
the solutions are mapped back to the original variables.

We provide the explicit expressions of the normal form Hamiltonian
for the collinear points 𝐿1, 𝐿2 and we give examples of the main
families of periodic orbits for several cases of interest in astrodynamical
applications. We remark that, in the work [13], the same problem has
been treated with the Poincaré–Lindstedt method. The normal-form
construction and the solutions thereof reproduces the results in [13]
with additional dynamical clues. A first order resonant normal form
already allows us to analytically compute the bifurcation threshold
of the halo family which, for 𝐿1 and 𝐿2, turns out to be slightly
higher than in the corresponding (namely, same mass ratio 𝜇) circular
problem.

In the specific case of the Earth–Moon system some Lyapunov and
halo orbits are given together with some examples of isolated periodic
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orbits with higher commensurability [14,15]. Explicit expressions of
the generating functions of the Lie transform are given in order to
compute invariant manifolds (periodic orbits and invariant tori) at
second order in the expansion.

The results are validated by a numerical integration of the equations
of motion in which the initial conditions are given by the normal
form procedure and carefully refined in order to find the given orbit,
either Lyapunov or halo orbit. Finally, we mention that to get reliable
trajectories, it is essential to use the symmetry of the periodic orbit
which leads to some constraints in the initial conditions.

The paper is organized as follows. In Section 2 we give the setup
in the elliptic case and we proceed with the center manifold reduction;
in Section 3 we describe the resonant normal form; in Section 4 the
normal form is used to compute the bifurcation thresholds of the
halo orbits; Section 5 provides examples of different orbits for the 𝐿1
quilibrium point in the Earth–Moon case; Section 6 presents numerical
imulations with a dedicated procedure to refine the initial conditions.

. Collinear points and center manifold reduction

In this Section, we present the Hamiltonian of the elliptic, restricted
hree-body problem in the rotating–pulsating frame (Section 2.1), we
iscuss the location of the collinear points (Section 2.2), we introduce
he Hamiltonian in the extended phase space (Section 2.3), we compute
he quadratic part of the Hamiltonian in suitable coordinates (Sec-
ion 2.4) and we briefly recall the main results of the center manifold
eduction (Section 2.5).

.1. The rotating–pulsating Hamiltonian

We consider a satellite 𝑆 orbiting in the gravitational field of
wo primaries, 𝑃1 and 𝑃2 with masses, respectively, 𝑚1 and 𝑚2 (with
2 ≤ 𝑚1). We assume that the primaries orbit around their common
arycenter on a Keplerian ellipse with semimajor axis 𝑎 and eccentricity
. Denoting by ℎ the angular momentum constant, related to the orbital
lements by
2 = 𝑎(1 − e2) ,

he orbital radius 𝑟 is given by

(𝑓 ) = ℎ2

1 + e cos 𝑓
, (2.1)

where 𝑓 is the true anomaly.
We consider a rotating–pulsating barycentric frame, say (𝑂,𝑋, 𝑌 ,𝑍),

which is obtained as in [11] (see also [12]) starting from a set of coor-
dinates in a fixed frame with origin coinciding with the barycenter 𝑂
of the primaries, transforming the coordinates to a frame rotating with
the true anomaly of the elliptic orbit (rotating frame), then rescaling
the coordinates by the radius 𝑟 (pulsating frame) and taking the true
anomaly, instead of time, as independent variable. The latter choice
implies that the time derivative is transformed into

𝑑
𝑑𝑡

=
𝑑𝑓
𝑑𝑡

𝑑
𝑑𝑓

= ℎ
𝑟(𝑓 )2

𝑑
𝑑𝑓

=
(1 + e cos 𝑓 )2

ℎ3
𝑑
𝑑𝑓

;

n the following, we will denote by a prime the derivative with respect
o the true anomaly.

In the non-uniformly rotating–pulsating frame (𝑂,𝑋, 𝑌 ,𝑍), the equa-
tions of motion of the satellite are given by (see [11], Section 10.3.2.3):

𝑋′′ − 2𝑌 ′ = 𝜕𝛺
𝜕𝑋

𝑌 ′′ + 2𝑋′ = 𝜕𝛺
𝜕𝑌

𝑍′′ +𝑍 = 𝜕𝛺
𝜕𝑍

, (2.2)

where the potential has the form

𝛺(𝑋, 𝑌 ,𝑍, 𝑓 ) = 1
[

1 (𝑋2 + 𝑌 2 +𝑍2) +
1 − 𝜇

+
𝜇

+ 1𝜇(1 − 𝜇)
]

(2.3)
2

1 + e cos 𝑓 2 𝑟1 𝑟2 2
with

𝜇 =
𝑚2

𝑚1 + 𝑚2

nd where the distances 𝑟1, 𝑟2 from the primaries, which are located at
(𝜇, 0, 0), (−1 + 𝜇, 0, 0), are given by

𝑟1 = [(𝑋 − 𝜇)2 + 𝑌 2 +𝑍2]
1
2 , 𝑟2 = [(𝑋 + 1 − 𝜇)2 + 𝑌 2 +𝑍2]

1
2 .

Denoting by 𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍 the momenta conjugated to 𝑋, 𝑌 , 𝑍, the
equations (2.2) are associated to the 3D non-autonomous Hamiltonian
function

𝐻(𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍 , 𝑋, 𝑌 ,𝑍, 𝑓 ) =
1
2
(𝑝2𝑋 + 𝑝2𝑌 + 𝑝2𝑍 ) + 𝑌 𝑝𝑋 −𝑋𝑝𝑌

+ 1
2
(𝑋2 + 𝑌 2 +𝑍2) −𝛺(𝑋, 𝑌 ,𝑍, 𝑓 ) .

(2.4)

e consider such Hamiltonian on the collisionless manifold 𝑐 ⊂ R3 ×
3, defined as

𝑐 ≡ {(𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍 ), (𝑋, 𝑌 ,𝑍) ∈ R3×R3 ∶ 𝑟1(𝑋, 𝑌 ,𝑍) ≠ 0, 𝑟2(𝑋, 𝑌 ,𝑍) ≠ 0}

nd we endow 𝑐 with the standard symplectic form

𝑠 = 𝑑𝑝𝑋 ∧ 𝑑𝑋 + 𝑑𝑝𝑌 ∧ 𝑑𝑌 + 𝑑𝑝𝑍 ∧ 𝑑𝑍 .

.2. The collinear points

We denote by 𝐿1, 𝐿2, 𝐿3 the collinear equilibrium points inheriting
he notation of the circular case. We underline that the reference frames
re oriented in such a way that 𝐿2 lies at the left of the smaller primary,
hile 𝐿3 is at the right of the larger primary.

Let 𝛾𝑗 , 𝑗 = 1, 2, 3, be the distances of the collinear equilibrium points
rom the closest primary. The collinear equilibrium positions are the
olutions of the equations
𝜕𝛺
𝜕𝑋

= 0 , 𝜕𝛺
𝜕𝑌

= 0 , 𝜕𝛺
𝜕𝑍

= 0

with the condition 𝑌 = 𝑍 = 0. It can be shown (see, e.g., [12]) that the
𝛾𝑗 ’s are the solutions of the following 5th order Euler’s equations:

𝛾51 − (3 − 𝜇)𝛾41 + (3 − 2𝜇)𝛾31 − 𝜇𝛾21 + 2𝜇𝛾1 − 𝜇 = 0 for 𝐿1

𝛾52 + (3 − 𝜇)𝛾42 + (3 − 2𝜇)𝛾32 − 𝜇𝛾22 − 2𝜇𝛾2 − 𝜇 = 0 for 𝐿2

𝛾53 + (2 + 𝜇)𝛾43 + (1 + 2𝜇)𝛾33 − (1 − 𝜇)𝛾23 − 2(1 − 𝜇)𝛾3 − (1 − 𝜇) = 0 for 𝐿3 .

s in the circular problem, for each 𝐿𝑘, 𝑘 = 1, 2, 3, we translate the
origin so that it coincides with a collinear point: we introduce new
coordinates (𝑥, 𝑦, 𝑧) through the following transformation

= ∓𝛾𝑗𝑥 + 𝜇 + 𝑎𝑗 , 𝑌 = ∓𝛾𝑗𝑦 , 𝑍 = 𝛾𝑗𝑧 . (2.5)

he transformation (2.5) is used to simplify the new Hamiltonian
hrough a rescaling translation. In (2.5), the upper signs hold for 𝐿1,
𝐿2, while the lower signs hold for 𝐿3 and 𝑎1 = −1 + 𝛾1, 𝑎2 = −1 − 𝛾2,
𝑎3 = 𝛾3. In this way, the collinear ‘equilibria’ in the elliptic problem,
are actually pulsating with the rotating frame.

We introduce the energy as the value of the Hamiltonian computed
at the initial conditions; this quantity is a function of the true anomaly.
The relation between the energy 𝐸 in rotating–pulsating synodic co-
ordinates and the energy ̃ in the local coordinates, in virtue of the
rescaling, is given by

𝐿1 ∶ 𝐸 = ̃𝛾21 − 1
2
(1 − 𝛾1 − 𝜇)2 −

𝜇
𝛾1

−
1 − 𝜇
1 − 𝛾1

𝐿2 ∶ 𝐸 = ̃𝛾22 − 1
2
(1 + 𝛾2 − 𝜇)2 −

𝜇
𝛾2

−
1 − 𝜇
1 + 𝛾2

𝐿3 ∶ 𝐸 = ̃𝛾23 − 1
2
(𝛾3 + 𝜇)2 −

1 − 𝜇
𝛾3

−
𝜇

1 + 𝛾3
.

ntroducing the coefficients 𝑐𝑛(𝜇), 𝑛 ≥ 2, given by

𝑛(𝜇) = 1
3

(

𝜇 + (−1)𝑛
(1 − 𝜇)𝛾𝑛+11

𝑛+1

)

for 𝐿1
𝛾1 (1 − 𝛾1)



Physica D: Nonlinear Phenomena 468 (2024) 134302A. Celletti et al.

𝑐

𝑇

w

𝑇

2

d
s
a
a
𝐺
i
n
t



w

l
t

𝐹

w
s
b
r
b
A
𝑝
p

w

s

m
p
𝑝
z
o
p
t

𝐻

S
d
a

𝜉

w

𝐽

s

𝜉

w
t

w

𝑀

𝑐𝑛(𝜇) =
(−1)𝑛

𝛾32

(

𝜇 +
(1 − 𝜇)𝛾𝑛+12

(1 + 𝛾2)𝑛+1

)

for 𝐿2

𝑛(𝜇) =
(−1)𝑛

𝛾33

(

1 − 𝜇 +
𝜇𝛾𝑛+13

(1 + 𝛾3)𝑛+1

)

for 𝐿3 (2.6)

and using the Legendre polynomials 𝑛, we expand the gravitational
part of the potential (2.3) as

−
1 − 𝜇
𝑟1

−
𝜇
𝑟2

=
∑

𝑛≥2
𝑐𝑛(𝜇)𝜌𝑛𝑛

(

𝑥
𝜌

)

,

where 𝜌 = (𝑥2 + 𝑦2 + 𝑧2)
1
2 . Introducing the functions

𝑛(𝑥, 𝑦, 𝑧) = 𝜌𝑛 𝑛
(

𝑥
𝜌

)

,

hich are recursively defined through the formulae

0 = 1 , 𝑇1 = 𝑥 , 𝑇𝑛 =
2𝑛 − 1
𝑛

𝑥𝑇𝑛−1−
𝑛 − 1
𝑛

(𝑥2+𝑦2+𝑧2)𝑇𝑛−2 ∀𝑛 ≥ 2,

(2.7)

we obtain that the Hamiltonian (2.4) can be written as

𝐻(𝑝𝑥, 𝑝𝑦, 𝑝𝑧, 𝑥, 𝑦, 𝑧, 𝑓 ) = 1
2

(

𝑝2𝑥 + 𝑝
2
𝑦 + 𝑝

2
𝑧

)

+ 𝑦𝑝𝑥 − 𝑥𝑝𝑦

+1
2

(

1 −
𝑟(𝑓 )
ℎ2

)

(𝑥2 + 𝑦2 + 𝑧2)

−
𝑟(𝑓 )
ℎ2

∑

𝑛≥2
𝑐𝑛(𝜇)𝑇𝑛(𝑥, 𝑦, 𝑧) . (2.8)

.3. The Hamiltonian in the extended phase space

The Hamiltonian (2.8) is 3D non-autonomous, due to the depen-
ence on time of the true anomaly 𝑓 . The standard way to make the
ystem autonomous is to extend the phase space by considering 𝑓 as an
ngle in the Hamiltonian context of action–angle variables and adding
new dummy action 𝐹 , conjugated to 𝑓 . In the usual units in which
(𝑚1+𝑚2) = 1 with 𝐺 the gravitational constant and 𝑎=1, the time unit

s such that the revolution period of the primaries is 2𝜋. Therefore the
ew angle has unit frequency and, starting from (2.8), we can define
he autonomous null Hamiltonian  as

(𝑝𝑥, 𝑝𝑦, 𝑝𝑧, 𝐹 , 𝑥, 𝑦, 𝑧, 𝑓 ) = 𝐻 + 𝐹 , (2.9)

here the dependence on 𝑓 appears through the radius 𝑟(𝑓 ).
Formally, we can introduce a new time 𝜏 which is equal to 𝑓 ; with a

ittle abuse of notation, we denote with a dot the derivative with respect
o 𝜏 and write the equations of motion as

𝑥̈ − 2𝑦̇ = 𝜕𝛺
𝜕𝑥

,

𝑦̈ + 2𝑥̇ = 𝜕𝛺
𝜕𝑦
,

𝑧̈ + 𝑧 = 𝜕𝛺
𝜕𝑧

,

supplemented by

̇𝑓 = 𝜕
𝜕𝐹

= 1,

̇ = − 𝜕
𝜕𝑓

= 𝜕𝛺
𝜕𝑓

=
e sin𝑓

(1 + e cos 𝑓 )2
𝑊 (𝑥, 𝑦, 𝑧) ,

where 𝑊 denotes the effective potential

𝑊 (𝑥, 𝑦, 𝑧) = 1
2
(𝑥2 + 𝑦2 + 𝑧2) +

1 − 𝜇
𝑟1

+
𝜇
𝑟2

+ 1
2
𝜇(1 − 𝜇) .

The Hamiltonian (2.9) in the extended phase space

(𝑝𝑥, 𝑝𝑦, 𝑝𝑧, 𝐹 , 𝑥, 𝑦, 𝑧, 𝑓 ) = 𝐻 + 𝐹 ≡ 0

is indeed conserved and is always identically zero. We remark that
3

in the elliptic case there is no equivalent of the Jacobi constant that
appears in the circular case (see e.g. [11], Sect.10.3), therefore the con-
served quantity (2.9) for the extended system can be usefully exploited
as a diagnostic in numerical computations.

2.4. The quadratic part of the Hamiltonian

The general approach to the non-integrable system given by (2.8)–
(2.9) is perturbative. Henceforth, we will write  as a series of the form

(𝑝𝑥, 𝑝𝑦, 𝑝𝑧, 𝐹 , 𝑥, 𝑦, 𝑧, 𝑓 ) =
∑

𝑛≥0
𝜖𝑛𝑛 , (2.10)

here 𝜖 is a book-keeping parameter used to arrange terms in this and
ubsequent series. It is not necessarily related to a physical parameter,
ut has the role of providing a hierarchy of terms; in practice, after
ecursions usually implying multiplication of terms, a given series can
e reordered and truncated and, in the end, 𝜖 can be set equal to one.
natural choice is that of considering of order 𝜖𝑛 the monomials in

𝑥, 𝑝𝑦, 𝑝𝑧, 𝑥, 𝑦, 𝑧 of degree 𝑛+2. Moreover, since the dependence on 𝑓 is
rovided by the following series expansion

𝑟(𝑓 )
ℎ2

= 1
1 + e cos 𝑓

=
∞
∑

𝑛=0
(−e)𝑛 cos𝑛 𝑓 , (2.11)

e can replace the expansion (2.11) with the expression

1
1 + e cos 𝑓

=
∞
∑

𝑛=0
𝜖𝑛(−e)𝑛 cos𝑛 𝑓 , (2.12)

o that terms proportional to e𝑛 are assumed to be of order 𝜖𝑛.
In order to put the terms of the starting Hamiltonian in a form

ost suitable for normalization, we need to diagonalize the quadratic
art. In view of the expansion (2.12), already the quadratic part in
𝑥, 𝑝𝑦, 𝑝𝑧, 𝑥, 𝑦, 𝑧 of the Hamiltonian contains terms of order greater than
ero in the book-keeping. We adopt the simplifying approach of keeping
nly truly zero-order terms in the quadratic part and therefore we
erform the same diagonalizing transformation of the circular case on
he quadratic Hamiltonian

(𝑞)
0 (𝑝𝑥, 𝑝𝑦, 𝑝𝑥, 𝑥, 𝑦, 𝑧) =

1
2
(𝑝2𝑥+𝑝

2
𝑦+𝑝

2
𝑧)+𝑦𝑝𝑥−𝑥𝑝𝑦−𝑐2𝑥

2+ 1
2
𝑐2𝑦

2+ 1
2
𝑐2𝑧

2 .

(2.13)

ince the vertical component is already diagonalized, one can limit to
efine a vector 𝜉 ≡ (𝑥, 𝑦, 𝑝𝑥, 𝑝𝑦)𝑇 and write the equations of motion
ssociated to (2.13) as

̇ = 𝐽∇𝐻 (𝑞)
0 =𝑀𝜉 ,

here the matrices 𝐽 and 𝑀 are given by

=

⎛

⎜

⎜

⎜

⎜

⎝

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑀 =

⎛

⎜

⎜

⎜

⎜

⎝

0 1 1 0
−1 0 0 1
2𝑐2 0 0 1
0 −𝑐2 −1 0

⎞

⎟

⎟

⎟

⎟

⎠

.

Next, after introducing the vector 𝜉 = (𝑥̃, 𝑦̃, 𝑧̃, 𝑝̃𝑥, 𝑝̃𝑦, 𝑝̃𝑧), one performs a
ymplectic change of coordinates

̃ = 𝐶 𝜉 (2.14)

ith 𝐶 a real matrix (see below for its explicit expression), such that
he transformed equations are

𝑑𝜉
𝑑𝑡

=𝑀 𝜉

ith

̃ =

⎛

⎜

⎜

⎜

⎜

𝜆𝑥 0 0 0
0 0 0 𝜔𝑦
0 0 −𝜆𝑥 0

⎞

⎟

⎟

⎟

⎟

.

⎝

0 −𝜔𝑦 0 0
⎠



Physica D: Nonlinear Phenomena 468 (2024) 134302A. Celletti et al.

T

𝐶

w
a

𝑠

A
s
a

𝐻

I
q



b

𝛿

t

P
e
t

𝐾

w
𝑄
c

r

p
c
c

3
i
f
o

e
f

3

a
f

𝐾

In complete analogy with the circular case, we introduce the zero-order
frequencies

𝜔𝑦 ≡
√

−𝜂1, 𝜔𝑧 ≡
√

𝑐2 (2.15)

and the rate

𝜆𝑥 ≡
√

𝜂2

where

𝜂1 =
𝑐2 − 2 −

√

9𝑐22 − 8𝑐2
2

, 𝜂2 =
𝑐2 − 2 +

√

9𝑐22 − 8𝑐2
2

.

he matrix 𝐶 in (2.14) is defined as

=
(

𝑎+𝜆𝑥
𝑠1

𝑎𝜔𝑦
𝑠2

1
√

𝜔𝑧
𝑒3

𝑏−𝜆𝑥
𝑠1

𝑏𝜔𝑦
𝑠2

√

𝜔𝑧𝑒6

)

,

here 𝑒𝑗 denote the unit vectors of the canonical basis, the eigenvectors
ssociated to 𝜔𝑦 are 𝑎𝜔𝑦 + 𝑖𝑏𝜔𝑦 , while those associated to ±𝜆𝑥 are
𝑎+𝜆𝑥 , 𝑏−𝜆𝑥 ; finally, the quantities 𝑠1, 𝑠2 are introduced to make the
transformation symplectic:

𝑠1 =
√

2𝜆𝑥((4 + 3𝑐2)𝜆2𝑥 + 4 + 5𝑐2 − 6𝑐22 ) ,

2 =
√

𝜔𝑦((4 + 3𝑐2)𝜔2
𝑦 − 4 − 5𝑐2 + 6𝑐22 ) .

s it is well known, since 𝑐2 > 1, one obtains that 𝜂1 < 0, 𝜂2 > 0,
howing that the equilibrium point is of type saddle × center × center
nd, as a matter of fact, the quadratic part 𝐻 (𝑞)

0 can be written as

̃ (𝑞)
0 (𝑝̃𝑥, 𝑝̃𝑦, 𝑝̃𝑧, 𝑥̃, 𝑦̃, 𝑧̃) = 𝜆𝑥𝑥̃𝑝̃𝑥 +

𝜔𝑦
2
(𝑦̃2 + 𝑝̃2𝑦) +

𝜔𝑧
2
(𝑧̃2 + 𝑝̃2𝑧) .

Finally, we introduce complex coordinates through the canonical trans-
formation

𝑥̃ = 𝑞1 , 𝑝̃𝑥 = 𝑝1 ,

𝑦̃ =
𝑞2 + 𝑖𝑝2
√

2
, 𝑝̃𝑦 =

𝑖𝑞2 + 𝑝2
√

2
,

𝑧̃ =
𝑞3 + 𝑖𝑝3
√

2
, 𝑝̃𝑧 =

𝑖𝑞3 + 𝑝3
√

2
.

n the eccentric model, such a transformation leads to write the
uadratic part of the Hamiltonian as

𝑞𝑢𝑎𝑑𝑟(𝑝, 𝑞) = 𝜆𝑥𝑞1𝑝1 + 𝑖𝜔𝑦𝑞2𝑝2 + 𝑖𝜔𝑧𝑞3𝑝3+𝐹

−
∞
∑

𝑛=1
𝜖𝑛(−e)𝑛 cos𝑛 𝑓

[ 1
2
(𝑥2 + 𝑦2 + 𝑧2) + 𝑐2(𝜇)𝑇2(𝑥, 𝑦, 𝑧)

]

,

where, in the square brackets, 𝑥, 𝑦, 𝑧 has to be intended as expressed
first in terms of 𝜉 and then in terms of (𝑝, 𝑞), while 𝑐2 and 𝑇2 have
been defined, respectively, in (2.6) and (2.7). We recognize that the
zero-order term in the extended phase space takes the diagonal form

0(𝑝, 𝑞) = 𝜆𝑥𝑞1𝑝1 + 𝑖𝜔𝑦𝑞2𝑝2 + 𝑖𝜔𝑧𝑞3𝑝3 + 𝐹 (2.16)

and the starting Hamiltonian series can finally be written as in (2.10)

(𝑝, 𝑞, 𝐹 , 𝑓 ) =
∑

𝑘≥0
𝜖𝑘𝑘(𝑝, 𝑞, 𝑓 ) , (2.17)

but expressed in the diagonalizing coordinates.

2.5. Center manifold reduction

Perturbation theory is implemented here by constructing a resonant
normal form generalizing that obtained in the circular problem [6,7]. It
turns out that for typical values of the mass parameter, the two elliptic
frequencies 𝜔𝑦 and 𝜔𝑧 in (2.15) are very close to each other [16];
moreover, when extending the notion of frequencies to the elliptic
problem, this fact is not substantially changed if the eccentricity is
small. Therefore, in order to capture bifurcation phenomena related
4

to the synchronous 1:1 resonance (e.g., halo orbits), we proceed to
normalize with respect to the resonant quadratic part

(𝑟𝑒𝑠)
0 (𝑝, 𝑞) = 𝜆𝑥𝑞1𝑝1 + 𝑖𝜔𝑧(𝑞2𝑝2 + 𝑞3𝑝3)+𝐹 .

Namely, we assume that the two elliptic frequencies 𝜔𝑦 and 𝜔𝑧 are
equal and we shift their small difference into a first-order term
∞
∑

𝑛=1
𝜖𝑛𝑛 = 𝑖𝜖𝛿𝑞2𝑝2 +

−
∞
∑

𝑛=1
𝜖𝑛(−e)𝑛 cos𝑛 𝑓

[ 1
2
(𝑥2 + 𝑦2 + 𝑧2) + 𝑐2(𝜇)𝑇2(𝑥, 𝑦, 𝑧)

]

+

−
∞
∑

𝑛=0
𝜖𝑛(−e)𝑛 cos𝑛 𝑓

∞
∑

𝑗=1
𝜖𝑗𝑐𝑗+2(𝜇)𝑇𝑗+2(𝑥, 𝑦, 𝑧) ,

y means of the detuning parameter 𝛿 defined as

≡ 𝜔𝑦 − 𝜔𝑧 .

In the end, we perform the center manifold reduction [3], according
o the following result.

roposition 1. Consider the Hamiltonian (𝑝, 𝑞, 𝐹 , 𝑓 ) in (2.17). There
xists a canonical transformation  ∶ R6 → R6 with (𝑝, 𝑞) = (𝑃 ,𝑄), such
hat  is transformed to order 𝑁 ∈ N into the ‘normal form’

(𝑃 ,𝑄, 𝐹 ) = 𝜆𝑥𝑄1𝑃1 + 𝑖𝜔𝑧(𝑄2𝑃2 +𝑄3𝑃3) + 𝑖𝜖𝛿𝑄2𝑃2 + 𝐹

+
𝑁
∑

𝑛=1
𝜖𝑛𝐾𝑛(𝑄1𝑃1, 𝑃2, 𝑃3, 𝑄2, 𝑄3) + 𝑅𝑁+1(𝑃 ,𝑄) ,

here the polynomials 𝐾𝑛 depend on 𝑄1, 𝑃1 only through their product
1𝑃1, while 𝑅𝑁+1(𝑃 ,𝑄) is the remainder function of degree 𝑁 + 1, which

an depend on 𝑄1, 𝑃1, separately.

We notice that the terms 𝐾𝑛, 𝑛 > 0, satisfy the following properties:

(i) 𝐾𝑛 are polynomials of degree 𝑛 + 2 in (𝑃 ,𝑄);
(ii) the terms 𝐾𝑛 satisfy the following normal form equation:

{𝐾𝑛,𝐻
(𝑟𝑒𝑠)
0 }||

|(𝑃 ,𝑄)
= 0 ∀ 𝑛 > 0 ,

namely they are combinations of monomials in the kernel of the
linear Hamiltonian operator associated to 𝐻 (𝑟𝑒𝑠)

0 ;
(iii) the coefficients of the terms 𝐾𝑛 depend on e, but all terms

depending on 𝑓 are eliminated.

Summarizing, the resonant normal form allows us to obtain three
elevant results:

1. The normal form depends on the first conjugate pair only through
owers of the product 𝑄1𝑃1; the hyperbolic dynamics is ‘killed’ and the
enter manifold reduction is henceforth obtained by choosing initial
onditions such that 𝑄1 = 0, 𝑃1 = 0 (compare with Section 3).

2. We pass from a non-autonomous to an autonomous integrable
-DOF Hamiltonian system. The dependence on 𝑓 , which is removed
n the normalizing transformation, is maintained in the generating
unctions which are used to construct approximating solutions for the
rbits explicitly depending on the true anomaly of the primaries.

3. The resonant terms allow us to describe bifurcation phenom-
na associated to the (almost) 1:1 commensurability of the linear
requencies 𝜔𝑦 and 𝜔𝑧.

. The resonant normal form

By exploiting a recursion procedure based on the Lie-transform
pproach [6], according to Proposition 1, we construct the normal
orm,

(𝑃 ,𝑄) =
𝑁
∑

𝐾2𝑛(𝑃 ,𝑄) =

𝑛≥0
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𝑑
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

= 𝜆𝑥𝑄1𝑃1 + 𝑖𝜔𝑧(𝑄2𝑃2 +𝑄3𝑃3) + 𝑖𝛿𝑄2𝑃2

+
𝑁
∑

𝑛=1
𝐾2𝑛(𝑄1𝑃1, 𝑃2, 𝑃3, 𝑄2, 𝑄3) , (3.1)

which actually is of order 2𝑁 since, by symmetry, odd-degree terms
do not appear. We have ignored the higher-order remainder and put
equal to one the book-keeping parameter. By construction, (3.1) does
not depend anymore on 𝑓 so that 𝐹 is formally conserved and can be
ignored from hereinafter.

At each step of the recursion, we get the generating functions 𝜒𝑛 as

𝜒𝑛(𝑃 ,𝑄, 𝑓 ), 𝑛 = 1, 2,… , 2𝑁 − 1 ,

where each term is of degree 𝑛+2 in (𝑃 ,𝑄) and possibly trigonometric in
cos 𝑛𝑓 . Following [7], the normal form is expressed in the most compact
way by using action–angle variables defined through

𝑄1 =
√

𝐽𝑥𝑒
𝜃𝑥

2 =
√

𝐽𝑦(sin 𝜃𝑦 − 𝑖 cos 𝜃𝑦) = −𝑖
√

𝐽𝑦𝑒
𝑖𝜃𝑦

3 =
√

𝐽𝑧(sin 𝜃𝑧 − 𝑖 cos 𝜃𝑧) = −𝑖
√

𝐽𝑧𝑒
𝑖𝜃𝑧

𝑃1 =
√

𝐽𝑥𝑒
−𝜃𝑥

𝑃2 =
√

𝐽𝑦(cos 𝜃𝑦 − 𝑖 sin 𝜃𝑦) =
√

𝐽𝑦𝑒
−𝑖𝜃𝑦

𝑃3 =
√

𝐽𝑧(cos 𝜃𝑧 − 𝑖 sin 𝜃𝑧) =
√

𝐽𝑧𝑒
−𝑖𝜃𝑧 .

As said above 𝐽𝑥 = 𝑄1𝑃1 is a formal conserved quantity of the normal
form. The motion on the center manifold 𝐽𝑥 = 0 is then described by
an effective 2-DOF Hamiltonian of the form

𝐾 (𝐶𝑀)(𝐽𝑦, 𝐽𝑧, 𝜃𝑦, 𝜃𝑧) = 𝛺𝑦𝐽𝑦 +𝛺𝑧𝐽𝑧 +
𝑁
∑

𝑛=1
𝐾2𝑛(𝐽𝑦, 𝐽𝑧, 𝜃𝑦 − 𝜃𝑧) , (3.2)

where the new elliptic frequencies can be expanded as powers of the
ccentricity up to a given order 0 ≤𝑀 ≤ 𝑁 :

𝛺𝑦 =
𝑀
∑

𝑛=0
𝛺𝑦,𝑛 e𝑛 , 𝛺𝑧 =

𝑀
∑

𝑛=0
𝛺𝑧,𝑛 e𝑛 (3.3)

with

𝛺𝑦,0 = 𝜔𝑦, 𝛺𝑧,0 = 𝜔𝑧 .

For further reference, the terms up to third order in the actions are

𝐾2 = 𝛼𝐽 2
𝑦 + 𝛽𝐽 2

𝑧 + 𝐽𝑦𝐽𝑧(𝜎 + 2𝜏 cos 2(𝜃𝑦 − 𝜃𝑧)), (3.4)

𝐾4 = 𝛼1𝐽
3
𝑦 + 𝛽1𝐽 3

𝑧 + 𝜎1𝐽 2
𝑦 𝐽𝑧 + 𝜎2𝐽𝑦𝐽

2
𝑧

+2(𝜏1𝐽 2
𝑦 𝐽𝑧 + 𝜏2𝐽𝑦𝐽

2
𝑧 ) cos 2(𝜃𝑦 − 𝜃𝑧) (3.5)

for suitable constant coefficients 𝛼, 𝛽, 𝜎, 𝜏, 𝛼1, 𝛽1, 𝜎1, 𝜎2, 𝜏1, 𝜏2. The
coefficients of these expansions depend not only on the mass-ratio 𝜇,
but also on the eccentricity of the motion of the primaries as terms of
the series in e2𝑛. They progressively appear as much as higher is the
truncation order of the normal form. For example, truncating at 𝐾4, in
𝐾2 there appear terms proportional to e2.

The Hamiltonian 𝐾 (𝐶𝑀) defines an integrable dynamics, since it
depends just on the combination angle 𝜃𝑦 − 𝜃𝑧: the additional formal
integral of motion is

 = 𝐽𝑦 + 𝐽𝑧 .

In principle, any initial condition on the center manifold determines
a known invariant object, periodic or quasi-periodic. In particular, the
nonlinear normal-modes 𝐽𝑦 = const, 𝐽𝑧 = 0 and 𝐽𝑦 = 0, 𝐽𝑧 = const,
respectively produce planar and vertical Lyapunov orbits. Resonant
solutions satisfying 𝜃𝑦 − 𝜃𝑧 = ±𝜋∕2 and suitable values of 𝐽𝑦, 𝐽𝑧,
produce the halo families. Generic initial conditions produce invariant
(Lissajous) tori around each family.

These solutions can be mapped back to the original coordinates by
inverting the normalizing transformation. To do this, let us collectively
5

denote the final coordinates corresponding to a given invariant object
as 𝑊 = (𝑃 ,𝑄). Then, the original coordinates 𝑤 = (𝑝, 𝑞) approximating
the ‘actual’ object, are given by a series of the form 𝑤 =

∑

𝑘 𝜖
𝑘𝑤𝑘 with

terms given by the sequence

𝑤0 = 𝑊 ,

𝑤1 = {𝑊 ,𝜒1},

𝑤2 = {𝑊 ,𝜒2} +
1
2
{{𝑊 ,𝜒1}, 𝜒1},

⋮ = ⋮

𝑤𝑘 = {𝑊 ,𝜒𝑘} + 𝛤𝑘(𝑊 ,𝜒1,… , 𝜒𝑘−1) (3.6)

for a suitable function 𝛤𝑘 depending on the generating functions deter-
mined at the previous steps. The above formulae allow us to deduce the
explicit time-dependence of the solutions. Finally, to plot the solutions
in the synodic system, we have to invert the diagonalizing and scaling
transformations (see, e.g., [7]). It is worth to observe that either a
normal mode or another family of periodic orbits in generic position of
the normal form [17], in general, do not give a periodic orbit in the
original coordinates. The dependence on the true anomaly injected in
the terms (3.6) by the generating functions 𝜒𝑘 appears at the frequency
of the primaries, which is in general not-commensurable with the
period of the orbit in the normalizing variables. True periodic orbits can
appear as isolated objects only when initial conditions produce such a
commensurability. We will provide some examples in Section 5.

4. Halo orbits

The theory of bifurcation of the halo family proceeds in the same
way as treated in the circular problem; we refer to [6,7] for more results
in the context of the circular problem. Here, we limit the analysis to
bifurcations at first-order which, for sake of understanding the relevant
mechanism, is perfectly fit.

Hamilton’s equations associated to 𝐾 (𝐶𝑀) in (3.2)-(3.4) are given by

𝐽̇𝑦 = 4𝜏𝐽𝑦𝐽𝑧 sin(2𝜃𝑦 − 2𝜃𝑧) (4.1)

𝐽̇𝑧 = −4𝜏𝐽𝑦𝐽𝑧 sin(2𝜃𝑦 − 2𝜃𝑧) (4.2)

𝜃𝑦 = 𝛺𝑦 + [2𝛼𝐽𝑦 + 𝜎𝐽𝑧 + 2𝜏𝐽𝑧 cos(2𝜃𝑦 − 2𝜃𝑧)] (4.3)

𝜃𝑧 = 𝛺𝑧 + [2𝛽𝐽𝑧 + 𝜎𝐽𝑦 + 2𝜏𝐽𝑦 cos(2𝜃𝑦 − 𝜃𝑧)] . (4.4)

From (4.1)–(4.2) we have that 𝐽̇𝑦+𝐽̇𝑧 = 0, so that, in this approxima-
tion, 𝐽𝑦 +𝐽𝑧 is a constant of motion. According to [6,18], we introduce
the following transformation of coordinates

 = 𝐽𝑦 + 𝐽𝑧
 = 𝐽𝑦
𝜈 = 𝜃𝑧
𝜓 = 𝜃𝑦 − 𝜃𝑧 . (4.5)

he transformed Hamiltonian 𝐾 (𝐶𝑀), obtained implementing (4.5),
reads as

𝐾 (𝑡𝑟)( ,, 𝐹 , 𝜈, 𝜓) = 𝛺𝑧 + 𝛿+𝑎2 + 𝑏2 + 𝑐+𝑑(2 −) cos(2𝜓) ,

(4.6)

where

𝑎 = 𝛼 + 𝛽 − 𝜎 ,

𝑏 = 𝛽

𝑐 = 𝜎 − 2𝛽

= −2𝜏 .

rom Hamilton’s equations associated to (4.6), we have:

̇ = 0
̇ = 2𝑑( − ) sin(2𝜓)
𝜈̇ = 𝛺𝑧 + 2𝑏 + 𝑐 − 𝑑 cos(2𝜓)
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𝜓̇ = 𝛿 + 2𝑎 + 𝑐 + 𝑑(2 − ) cos(2𝜓) .

Hence, we recognize that the equilibrium positions 𝜓 = 0, 𝜋, ± 𝜋
2 give

̇ = 0; according to [6,18], 𝜓 = 0, 𝜋 are denoted inclined orbits and
𝜓 = ± 𝜋

2 loop orbits. The loops are usually dubbed halo orbits in the
terminology associated to the collinear points. The equilibria, say 𝑒𝑞 ,
are constrained by the condition

0 ≤ 𝑒𝑞 ≤  ,

so that threshold values of  will appear determining the bifurcation of
the corresponding family. We denote by 𝑁 a truncation of the series
up to an integer order 𝑁 , say

𝑁 =
𝑁
∑

𝑘=1
𝐶𝑘 𝛿

𝑘

for suitable real coefficients 𝐶𝑘. Then, we look for a relation on the
bifurcating normal mode between  and 𝐸, that is the energy associated
with the Hamiltonian (2.8). These equilibrium positions stem from
bifurcations from the normal modes when entering the synchronous
resonance, since the normal modes lose stability. As said above, normal
modes are the periodic orbits along a single axis, which correspond to
the solutions of  =  for motions along the 𝑦-axis and  = 0 for
motions along the 𝑧-axis. Such normal modes represent, respectively,
an approximation of the planar and vertical Lyapunov periodic orbits.

A computation to first order in 𝛿 of the energy level 𝐸1 correspond-
ing to a bifurcation to halo orbits is given by

𝐸1 = 𝛺𝑧1 = 𝛺𝑧𝐶1𝛿 ,

which, going back to the original coefficients, gives the bifurcation
value

𝐸1 =
𝛺𝑧𝛿

𝜎 − 2(𝛼 + 𝜏)
. (4.7)

5. Example: 𝑳𝟏 in the Earth–Moon case

In order to give a workable case, we provide figures for the Earth–
Moon case (𝜇 = 0.012150586) with explicit expressions for the equilib-
rium point 𝐿1, but we remark that the other collinear points can be
treated in a similar way Moreover, we make use of our analytical the-
ory, for the parameters of the Earth–Moon system, to find approximate
initial conditions for Lyapunov and halo type orbits. Several results
are presented here, whereas more cumbersome formulas are provided
in Appendix.

5.1. Normal-mode frequencies

We start with the horizontal and vertical frequencies (3.3) of the
ormal modes computed up to the power 8 in the eccentricity:

𝛺𝑦 = 2.33439 + 0.356732 e2 + 0.200957 e4 + 0.139319 e6 + 0.106541 e8 ,

𝑧 = 2.26883 + 0.360261 e2 + 0.201856 e4 + 0.139720 e6 + 0.106766 e8 .

(5.1)

It is worth to observe that these expansions coincide term by term with
those obtained in [13] using the Poincaré–Lindstedt method. Fig. 1
shows the graphs of 𝛺𝑦 and 𝛺𝑧 for the point 𝐿1 as a function of the
eccentricity, when computing a normal form to the order 𝑁 = 2 and as
a series expansion in the eccentricity to the order 𝑀 = 8.

5.2. Planar Lyapunov orbits

By inserting the generating functions (A.5)–(A.6) given in the Ap-
pendix in the sequence of transformation (3.6), we get the explicit
expressions (A.7)–(A.9) for the Cartesian coordinates. Examples of use
of these series are provided in this and the following subsections.
6

Fig. 1. 𝛺𝑦 (blue) and 𝛺𝑧 (yellow) for the point 𝐿1 as a function of the eccentricity
in the Earth–Moon system, computed using a normal form to order 2 and a series
expansion of the eccentricity to order 8.

Fig. 2. A planar Lyapunov orbit around 𝐿1 in the Earth–Moon (𝜇 = 0.012) system with
e = 0.2. Units are in terms of the Earth–Moon distance.

A normal form solution of the form 𝐽𝑦 = const, 𝐽𝑧 = 0 produces a
lanar Lyapunov orbit. Viceversa, a solution 𝐽𝑦 = 0, 𝐽𝑧 = const gives
vertical orbit. In the final normalizing variables, they correspond to

onlinear oscillations with frequency

𝜅𝑦 = 𝛺𝑦 + 2𝛼𝐽𝑦 + 3𝛼1𝐽 2
𝑦 (5.2)

𝑧 = 𝛺𝑧 + 2𝛽𝐽𝑧 + 3𝛽1𝐽 2
𝑧 . (5.3)

As we mentioned before, for planar Lyapunov orbits, then 𝐽𝑧 = 0. Given
𝜅𝑦, one determines 𝐽𝑦 through (5.2). When mapped back to the original
variables, since now the solution explicitly depends on time, we see
how a planar Lyapunov orbit around 𝐿1 of the circular problem is
affected by the elliptic motion of the primaries. As an example, using a
big value of the eccentricity in order to magnify its effect (e = 0.2) and
taking 𝐽𝑦 = 1, we get a plot like that presented in Fig. 2.

In the eccentric case, it is possible to find periodic Lyapunov orbits,
provided that the frequency (5.2) satisfies a condition of the form 𝜅𝑦 =
𝑚∕𝑛 with 𝑚, 𝑛 suitable integers. This means that there is a resonance
between the orbital period and the synodic period. Once chosen a
value for the eccentricity, using expression (5.2), one obtains a value of
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Fig. 3. Periodic planar Lyapunov orbits (in yellow) for 𝜅𝑦 = 2:1 in the Earth–Moon system: on the left we use e = 0.2 in order to magnify the effect. On the right the true value
e = 0.0549 is used. The two orbits are respectively produced by the amplitudes 𝐽𝑦 = 1.075 and 𝐽𝑦 = 0.9287. In blue the corresponding orbit in the circular case.
Fig. 4. Periodic vertical Lyapunov orbits for 𝜅𝑧 = 2:1 in the Earth–Moon (𝜇 = 0.012) system but with e = 0.2. The amplitude is 𝐽𝑧 = 0.9775.
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he amplitude which produces a certain commensurability. In analogy
ith the example given in [13], where the approximations have been

ound with the Lindstedt–Poincaré method, we look for the first-order
mplitude producing the resonance condition 𝜅𝑦 = 2:1. By using (5.2)
ith e = 0.2, we find 𝐽𝑦 = 1.075. In the actual Earth–Moon case (e =
.0549) we find instead 𝐽𝑦 = 0.9287. By constructing the corresponding
olutions in the synodic system, we obtain a fairly good approximation
f periodic Lyapunov orbits with the 2:1 ratio, as shown by comparing
he right panel of Fig. 3 with Fig. 8.

.3. Vertical Lyapunov orbits

The procedure to find periodic vertical Lyapunov is the same as that
resented in Section 5.2. For vertical Lyapunov orbits, then 𝐽𝑦 = 0
nd equation (5.3) for a given 𝜅𝑧 allows us to determine 𝐽𝑧. Then,
artesian coordinates𝑋, 𝑌 , 𝑍 can be found in the Appendix and plotted
s a function of the true anomaly 𝑓 . We notice that, in analogy to the
ircular case, motion occurs also along 𝑋 and 𝑌 , although the normal
orm prescribes only an oscillation in the vertical direction.

We report in Fig. 4 an example with 𝜅𝑧 = 2:1, while in Fig. 5 we
ive an example with 𝜅 = 3:2.
7

𝑧

.4. Halo orbits

In the case of the Earth–Moon system (e = 0.0549), using (A.1)–
A.4), we get that the bifurcation value 𝐸1 (see (4.7)) is given by

1 = 0.30688 + 0.03221e2 ≃ 0.30698 ,

hich is slightly bigger than the value 0.306870 found on [6] using a
nd order resonant perturbation theory.

In order to plot a halo orbit one can again exploit solutions (A.7)–
A.9) of Appendix. This procedure is clearly valid in the framework of
first-order approximation, to keep the algebra as simple as possible.

One starts by choosing a value of  above the bifurcation value
4.9). Then solves Eq. (4.7) for 𝑒𝑞 and finds:

𝑦,𝐻 =
 +𝑒𝑞

2
, 𝐽𝑧,𝐻 =

 −𝑒𝑞

2
.

After that, one computes the frequency of the orbit:

𝛺𝐻 = 𝜕
𝜕

|

|

|

|=𝑒𝑞

= 𝜔𝑧
2𝛼(1 + 2𝛽) + 2𝛽(1 + 𝛿) − (𝜎 − 2𝜏)(2 + 𝛿 + (𝜎 − 2𝜏))
2(𝛼 + 𝛽 − 𝜎 + 2𝜏)
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Fig. 5. Periodic vertical Lyapunov orbits for 𝜅𝑧 = 3:2 in the Earth–Moon (𝜇 = 0.012) system but with e = 0.2. The amplitude is 𝐽𝑧 = 2.7030.
Fig. 6. Halo orbit in the Earth–Moon system (𝜇 = 0.012) around 𝐿1: left, plotted for one-half synodic period; right, plotted for 100 synodic periods.
and obtains

𝜃𝑦 = 𝜃𝑧 ± 𝜋∕2 = 𝛺𝐻𝑓.

Plus or minus in the angles give the northern and southern halo families.
Finally, one inserts 𝐽𝑦,𝐻 , 𝐽𝑧,𝐻 , 𝜃𝑦, 𝜃𝑧 into (A.7)–(A.9) and plots the orbit.

In Fig. 6 we show an example of a halo-orbit in the Earth–Moon
system around 𝐿1, plotted after one-half synodic period and after 100
synodic periods.

6. Validation by numerical simulations

Special care needs to be taken to use the results from the previous
sections also in the original rotating–pulsating frame of reference. In
this section we highlight two major problems that may arise and
also provide a numerical solution to them. We start by taking the
approximate initial conditions (AICs), that were obtained from the
analytical theory, and use them as initial conditions for a numerical
integration of the system (2.2). As an example we provide the orbit
8

shown in Fig. 7 using similar parameters and initial conditions as for
the 2:1 resonant planar orbit shown on the right of Fig. 3. In both
panels of Fig. 7, we show the orbit in the plane (𝑋, 𝑌 ) for one synodic
period 𝑇 . From the analytical theory, we expect the orbit to perform
two closed loops during the integration time which we do not see on the
left. However, taking the time interval [−𝑇 ∕2, 𝑇 ∕2] the orbit approaches
better the trajectory shown on the right of Fig. 3. Still, we notice that
𝑋′(−𝑇 ∕2) does not equal the value 𝑋′(𝑇 ∕2) as we should expect for a
truly 2:1 resonant periodic planar orbit. We think that the difference
can be explained by a combination of factors: (i) the approximation
error of the initial conditions obtained from the analytical estimate
and (ii) errors in the numerical integration. Moreover, such errors are
greatly amplified since the orbit is unstable and the accumulation of the
errors over the integration time grows exponentially. As a consequence,
we conclude that a direct numerical integration of the AICs using (2.2)
is not able to reproduce the correct orbit.

To control the numerical problem (ii), we use the solver NDSolve
(Wolfram language, see [19]) using arbitrary precision arithmetic (64
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𝑆

Fig. 7. Same orbit as shown in Fig. 3 for the Earth–Moon system with e=0.0549 based on direct numerical integration of (2.2) with appropriate initial conditions computed using
the analytic theory: one complete period [0, 𝑇 ] (left) and [−𝑇 ∕2, 𝑇 ∕2] (right) with 𝑇 = 2𝜋.
digits in our case). This choice is made to minimize the propagation of
the errors due to numerical instabilities when integrating unstable or-
bits in nonlinear dynamical systems. Several test simulations, together
with the analysis of the Jacobian of (2.2) along the solution vector,
have been made to guarantee an accuracy of the numerical integration
up to 16–20 digits (using for safety a total of 64 digits). Moreover, we
checked that the Hamiltonian in the extended phase space is conserved
up to machine precision. As a result, we claim to have a reasonable
control over the errors stemming from problem (ii).

It remains to tackle the problem (i). As it turns out, even an eighth
order normal form does not allow us to obtain a sufficient number of
digits in the AIC to overcome problem (i).

However, we propose a solution that implements a numerical re-
finement of the approximate analytical initial conditions. To this end,
let 𝑆 = (𝑋, 𝑌 ,𝑍,𝑋′, 𝑌 ′, 𝑍′) be the state vector of the orbit and let

= 𝑆(𝑡) be the state vector at a given time 𝑡. The orbit shown in
Fig. 7 is based on the initial condition 𝑆(0)

0 = 𝑆(𝑡0 = 0) where 𝑆(0)
0 =

(𝑋0, 𝑌0, 𝑍0, 𝑋′
0, 𝑌

′
0 , 𝑍

′
0) denotes the AIC from the normal form. Making

use of the construction of the AIC, we can deduce the following. Since
𝑆(0) has been constructed to obtain a planar 2:1 resonant periodic orbit,
we also have the property 𝑆(𝑇 ) = 𝑆(0) (called P1) with given period
𝑇 . Since the periodicity does not depend on the specific choice of 𝑓0
we also have 𝑆(−𝑇 ∕2) = 𝑆(𝑇 ∕2) (called P2). Looking at the right panel
of Fig. 7, we see that property P2 is nearly fulfilled. Let us denote by
𝛿𝑆(0)

0 the initial error of the approximate initial condition labeled 𝑆(0)
0

and define

𝛿𝑆(0)
0 = 𝑆(0)(−𝑇 ∕2) − 𝑆(0)(𝑇 ∕2) ,

where we used the upper-script (0) in 𝑆 to indicate that the solution
𝑆 = 𝑆(𝑡) has been obtained using the initial condition 𝑆(0)

0 . The aim of
the numerical refinement method is to find better approximate initial
conditions 𝑆(𝑘+1)

0 such that |𝛿𝑆(𝑘+1)
0 | < |𝛿𝑆(𝑘)

0 | with 𝑘 = 0, 1,… , where

𝑆(𝑘)
0 = (𝑋(𝑘)

0 , 𝑌 (𝑘)
0 , 𝑍(𝑘)

0 , 𝑋′(𝑘)
0 , 𝑌 ′(𝑘)

0 , 𝑍′(𝑘)
0 )

𝛿𝑆(𝑘)
0 = 𝑆(𝑘)(−𝑇 ∕2) − 𝑆(𝑘)(𝑇 ∕2)

and where the superscript (𝑘) denotes the 𝑘th step of the numerical
refinement. Thus, we aim to minimize |𝛿𝑆(𝑘)

0 | up to 𝑂(𝜀), say

|𝛿𝑆(𝑘)
0 | < 𝜀, (6.1)

for a given threshold 𝜀 ∈ R+. In the case of a planar 2:1 resonant
periodic orbit (right panel of Fig. 3), the approximate initial condition
has been constructed by making use of the symmetry of the periodic
orbit that leads to initial conditions of a specific form:
(0) (0) ′(0)
9

𝑆0 = (𝑋0 , 0, 0, 0, 𝑌0 , 0) .
In other words, from the geometry of the planar orbit, 4 out of 6
components vanish exactly:

𝑌 (𝑘)
0 = 𝑍(𝑘)

0 = 𝑋′(𝑘)
0 = 𝑍′(𝑘)

0 = 0 , 𝑘 ∈ Z+ . (6.2)

It thus remains to refine (𝑋(𝑘)
0 , 𝑌 ′(𝑘)

0 ). A further reduction of the com-
plexity of the problem can be achieved as follows. In the circular
problem the so-called Jacobi constant 𝐶𝐽 is a conserved quantity along
the orbit. Thus, 𝐶𝐽 = 𝐶𝐽 (𝑋

(𝑘)
0 , 𝑌 ′(𝑘)

0 ) may be used to relate 𝑋(𝑘)
0 and

𝑌 ′(𝑘)
0 to define 𝛿𝑆(𝑘)

0 to be a scalar function of a single argument 𝑥
only: 𝛿𝑆(𝑘)

0 = 𝛿𝑆(𝑘)
0 (𝑥) (e.g., 𝑥 = 𝑋(𝑘)

0 ). With this we ensure that we
converge to an orbit close to its initial Jacobi constant (and also a
related energy level). In the elliptic case, however, 𝐶𝐽 = 𝐶𝐽 (𝑡) becomes
a time dependent quantity. Still, 𝐶𝐽 (0) relates 𝑋(𝑘)

0 with 𝑌 ′(𝑘)
0 at the

initial time 𝑡0. We make use of this relation, also in the elliptic problem,
to define the error function 𝐹𝑘 of a single variable 𝑥 to be a scalar
function:

𝐹𝑘(𝑥) = |𝛿𝑆(𝑘)
0 (𝑥)| . (6.3)

Thus, the problem to obtain refined initial conditions that fulfill (6.1)
reduces to minimize (6.3) with respect to 𝑥 = 𝑋(𝑘)

0 .
In practice, we integrate numerically the equations of motion (2.2)

using 𝑆(𝑘)
0 , varying 𝑋(𝑘)

0 until 𝐹𝑘(𝑋
(𝑘)
0 ) = 𝑂(𝜀), i.e. to meet the re-

quirement provided in (6.1). We therefore notice the presence of an
additional parameter in the problem that we need to determine, which
is the integration time 𝑇 ∕2. From the condition for the orbit to be
in 2 ∶ 1 resonance with the synodic period we conclude 𝑇 = 2𝜋.
However, as it turns out (6.2) is not necessarily fulfilled at 𝑓 = ±𝑇 ∕2
for approximate initial conditions 𝑆(𝑘)

0 . A solution to this problem can
be found by introducing the integration time itself, let us say 𝑇 (𝑘)

1∕2, as a
free parameter to the problem. At each step of refinement of the initial
conditions 𝑆(𝑘)

0 we determine 𝑇 (𝑘)
1∕2 by making use of the condition (6.2)

itself. In the planar case, we numerically integrate the equations of
motion using 𝑆(𝑘)

0 and determine 𝑇 (𝑘)
1∕2 from integration time 𝑓 at which

the condition 𝑌 (𝑘)
0 = 0 is fulfilled. We notice that for approximate initial

conditions, 𝑋′(𝑘)
0 does not necessarily vanish when 𝑌 (𝑘)

0 = 0. Defining a
second error function

𝐺𝑘(𝑥 = 𝑋(𝑘)
0 ) = |𝑋′(𝑘)

0 | when 𝑌 (𝑘)
0 = 0, (6.4)

the correct resonant orbit is therefore determined by the requirement
that both conditions, (6.3) and (6.4), vanish together. The implemen-
tation of the procedure outlined above requires special care and comes
with some solvable technical difficulties: the numerical integrations
based on (2.2) need to be very precise, and we need to check the
conservation of the Hamiltonian in the extended phase space. In ad-

dition, the numerical integrations need to be able to determine very
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Table 1
Parameter 𝑒 and initial conditions 𝑋0, 𝑌 ′

0 (first lines: numerically refined; second lines: analytically
approximated), taking 𝜇 = 0.012150585618, for planar Lyapunov orbits as shown in Fig. 9. Additional initial
conditions are supposed to be zero.

e 𝑋0 𝑌0 ’

5.49 × 10−5 −0.895612364839257860 0.380021182345849947
−0.895653299698303313 0.380142415324720250

5.49 × 10−4 −0.895630368651718917 0.380013722440848202
−0.895671692052450123 0.380136116402705453

5.49 × 10−3 −0.895811058769587885 0.379945336382900154
−0.895856299492844644 0.380079447631832591

1.10 × 10−2 −0.896013224440070178 0.379882574878297933
−0.896062892521110146 0.380029955833534409

2.74 × 10−2 −0.896628726470471275 0.379777646882579412
−0.896692190599293081 0.379966565765416729

5.49 × 10−2 −0.897685606860096430 0.379879928046645625
−0.897774034521699616 0.380144764189132574
Fig. 8. Same orbit as shown in Fig. 7. The black curve indicates the orbit obtain from
approximate analytical initial conditions, the red curve gives the same orbit based on
the refined approximate initial conditions (same integration time 𝑇 ≃ 2𝜋).

accurately the condition 𝑌 (𝑘)
0 = 0 to calculate 𝐺𝑘(𝑋

(𝑘)
0 ). We notice

that the convergence of the method does not only depend on the
initial choice 𝑆(𝑘)

0 , but also on the choice of the solver to minimize
(6.3) and (6.4). In our implementation a combination of a shooting
method and Newton’s method was used to ensure convergence during
the refinement process. We show in Fig. 8 the orbit, mentioned at the
beginning of the section, in the (𝑋, 𝑌 ) plane obtained by implementing
the refinement of the analytical initial conditions. The original orbit is
shown in black (compare with Fig. 7, right panel), while the numerical
refined method is shown in red. For the red orbit 𝜀 has been set
equal to 10−32. This orbit should be compared with the analytical
approximation as shown in Fig. 3, right panel, based on the normal
form method, the agreement being very good.

We provide the parameters and initial conditions for several planar
Lyapunov orbits in Table 1, where we vary the orbital eccentricity
of the Earth–Moon system and fixing the mass parameter. Taking
the numerically refined initial conditions (first line in each cell) a
numerical integration within the interval −𝜋 < 𝑓 < +𝜋, with 𝑓 (0) = 0,
in the synodic reference frame results in the orbits as shown in Fig. 9.
The left panel shows the overall structure of the orbits and the right
panel a magnification of the region close to the crossing points of the
2 ∶ 1 resonant, periodic orbits. Initial conditions have been constructed
10
to provide a maximum error well below machine precision for one full
orbital period.

We remark that the method outlined above can be adapted to
different kinds of orbits, i.e. resonant and non-resonant orbits, planar
and spatial orbits in the circular and elliptic restricted three-body
problem. A detailed survey of orbits, based on the present methodology,
is planned for a future work.

CRediT authorship contribution statement

Alessandra Celletti: Writing – review & editing, Validation, Super-
vision, Software, Project administration, Methodology, Investigation,
Conceptualization. Christoph Lhotka: Writing – review & editing,
Visualization, Validation, Software, Methodology, Investigation, Con-
ceptualization. Giuseppe Pucacco: Writing – review & editing, Val-
idation, Supervision, Software, Project administration, Methodology,
Investigation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

C.L. acknowledges the support from the Excellence Project 2023–
2027 MatMod@TOV awarded to the Department of Mathematics, Uni-
versity of Rome Tor Vergata, the project MIUR-PRIN 20178CJAB ‘‘New
Frontiers of Celestial Mechanics: theory and applications’’, and the
support of GNFM/INdAM.

G.P. acknowledges the support of INFN (Sezione di Roma2) and of
GNFM/INdAM.

Appendix

We provide explicit expressions for the normal form, the generating
functions and solutions for Lyapunov or halo orbit in terms of time
(actually the true anomaly) for the case of the Earth–Moon system.
We limit the results to order 4 (𝑁 = 2). In order to show how the
eccentricity of the primaries propagate into the results, we keep it in

all formulae. The actual value of the Earth–Moon system is e=0.0549.
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m

𝜒

Fig. 9. Planar Lyapunov orbits obtained from numerical integration of the parameters and initial conditions provided in Table 1 (right-to-left of right panel corresponds to
top-to-bottom of table values). Integration time ±𝜋 with 𝑓 (0) = 0.
N

The normal form

The terms linear in the actions are recovered by recalling (3.2) and
looking at (5.1). For the coefficients appearing in (3.4) and (3.5), we
get the following expressions:

𝛼 = −0.162101380 − 0.005834207e2, (A.1)
𝛽 = −0.144882524 − 0.006620655e2, (A.2)
𝜎 = −0.072614915 − 0.009081915e2, (A.3)
𝜏 = −0.23307061 − 0.002303888e2 (A.4)

and

𝛼1 = −0.01326986,

𝛽1 = −0.008427193,

𝜎1 = −0.00294965,

𝜎2 = −0.0023065,

𝜏1 = −0.03174666,

𝜏2 = −0.02757057.

The generating functions

The first two generating functions (when reduced to the center
anifold) are

1 =0.12676787𝐽
3∕2
𝑦 sin 𝜃𝑦 + 0.25911415

√

𝐽𝑦𝐽𝑧 sin 𝜃𝑦−

0.052629037𝐽 3∕2
𝑦 sin 3𝜃𝑦+

0.13726658
√

𝐽𝑦𝐽𝑧 sin(𝜃𝑦 − 2𝜃𝑧)−

0.044009618
√

𝐽𝑦𝐽𝑧 sin(𝜃𝑦 + 2𝜃𝑧)+

0.11318452e𝐽𝑦 sin(2𝜃𝑦 − 𝑓 ) + 0.082529208e𝐽𝑧 sin(2𝜃𝑧 − 𝑓 )+

0.83480871e𝐽𝑦 sin 𝑓 + 0.91403775e𝐽𝑧 sin 𝑓+

(A.5)
11

0.17488611e𝐽𝑦 sin(2𝜃𝑦 + 𝑓 ) + 0.12918669e𝐽𝑧 sin(2𝜃𝑧 + 𝑓 )
and
𝜒2 = − 0.086929879e2𝐽𝑦 sin 2𝜃𝑦 + 0.073423235𝐽 2

𝑦 sin 2𝜃𝑦+

0.082212129𝐽𝑦𝐽3 sin 2𝜃𝑦 − 0.026324747𝐽 2
𝑦 sin 4𝜃𝑦−

0.079393462e2𝐽3 sin 2𝜃𝑧 + 0.04150184𝐽𝑦𝐽3 sin 2𝜃𝑧+

0.051258579𝐽 2
3 sin 2𝜃𝑧 − 0.0096648435𝐽 2

3 sin 4𝜃𝑧−

0.033571224𝐽𝑦𝐽3 sin(2𝜃𝑦 + 2𝜃𝑧)−

0.075207468e2𝐽𝑦 sin(2𝜃𝑦 − 2𝑓 )−

0.061131682e2𝐽3 sin(2𝜃𝑧 − 2𝑓 )−

0.012948487e𝐽 3∕2
𝑦 sin(𝜃𝑦 − 𝑓 )−

0.0096070536e
√

𝐽𝑦𝐽3 sin(𝜃𝑦 − 𝑓 )+

0.038170957e𝐽 3∕2
𝑦 sin(3𝜃𝑦 − 𝑓 )+

0.11871541e
√

𝐽𝑦𝐽3 sin(𝜃𝑦 − 2𝜃𝑧 − 𝑓 )+

0.033351938e
√

𝐽𝑦𝐽3 sin(𝜃𝑦 + 2𝜃𝑧 − 𝑓 )−

0.17836577e2𝐽𝑦 sin 2𝑓 − 0.18013036e2𝐽3 sin 2𝑓+

0.085110721e𝐽 3∕2
𝑦 sin(𝜃𝑦 + 𝑓 )+

0.19449047e
√

𝐽𝑦𝐽3 sin(𝜃𝑦 + 𝑓 )−

0.035544223e𝐽 3∕2
𝑦 sin(3𝜃𝑦 + 𝑓 )−

0.00060004321e
√

𝐽𝑦𝐽3 sin(𝜃𝑦 − 2𝜃𝑧 + 𝑓 )−

0.02959452e
√

𝐽𝑦𝐽3 sin(𝜃𝑦 + 2𝜃𝑧 + 𝑓 )+

0.035853824e2𝐽𝑦 sin(2𝜃𝑦 + 2𝑓 )+

0.015525144e2𝐽3 sin(2𝜃𝑧 + 2𝑓 ) .

(A.6)

ote that all terms explicitly depending on the true anomaly 𝑓 vanish
when e=0.

Orbits

Here we report the analytic solutions in Cartesian coordinates in
the synodic frame for orbits in the Earth–Moon case with, as above,
arbitrary eccentricity of the primaries. These expressions can be used

to plot approximate orbits, when the frequencies are computed as in
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𝑋
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(5.2)-(5.3) and substituted into

𝜃𝑦 = 𝜅𝑦(𝐽𝑦, 𝐽𝑧)𝑓, 𝜃𝑧 = 𝜅𝑧(𝐽𝑦, 𝐽𝑧)𝑓,

once given values of the actions 𝐽𝑦, 𝐽𝑧 are chosen. As discussed above in
ection 5.2 this is particularly useful when looking for approximations
f periodic orbits. In the analytical plots of Section 5 we made the
urther simplifying assumption of approximating 𝑓 with the mean
nomaly 𝓁 = 𝑛𝑡. The Cartesian coordinates 𝑋, 𝑌 , 𝑍 are given by the
ollowing expressions:

(𝑓 ) = − 0.83691513 − 0.028066789𝐽𝑦 − 0.028684328𝐽𝑧−

0.042530591
√

𝐽𝑦 cos 𝜃𝑦 + 0.011616838e2
√

𝐽𝑦 cos 𝜃𝑦−

0.0072538664𝐽 3∕2
𝑦 cos 𝜃𝑦 − 0.0080462385

√

𝐽𝑦𝐽𝑧 cos 𝜃𝑦+

0.011473421𝐽𝑦 cos 2𝜃𝑦 + 0.0030761579𝐽 3∕2
𝑦 cos 3𝜃𝑦+

0.0012147932
√

𝐽𝑦𝐽𝑧 cos(𝜃𝑦 − 2𝜃𝑧) + 0.012054911𝐽𝑧 cos 2𝜃𝑧+

0.002869961
√

𝐽𝑦𝐽𝑧 cos(𝜃𝑦 + 2𝜃𝑧)−

0.0004757866e2
√

𝐽𝑦 cos(𝜃𝑦 − 2𝑓 )+

0.0038943343e
√

𝐽𝑦 cos(𝜃𝑦 − 𝑓 ) − 0.0082945643e𝐽2 cos(2𝜃𝑦 − 𝑓 )−

0.009169466e𝐽𝑧 cos(2𝜃𝑧 − 𝑓 ) − 0.0083767837e𝐽𝑦 cos 𝑓−

0.010112763e𝐽𝑧 cos 𝑓−

0.037106626e
√

𝐽𝑦 cos(𝜃𝑦 + 𝑓 ) + 0.013195973e𝐽𝑦 cos(2𝜃𝑦 + 𝑓 )+

0.015384742e𝐽𝑧 cos(2𝜃𝑧 + 𝑓 ) − 0.0082310824e2
√

𝐽𝑦 cos(𝜃𝑦 + 2𝑓 ) ,

(A.7)

𝑌 (𝑓 ) =0.15253593
√

𝐽𝑦 sin 𝜃𝑦 − 0.038529801e2
√

𝐽𝑦 sin 𝜃𝑦+

0.011312977𝐽 3∕2
𝑦 sin 𝜃𝑦 + 0.0030420108

√

𝐽𝑦𝐽𝑧 sin 𝜃𝑦+

0.011580803𝐽𝑦 cos 𝜃𝑦 sin 𝜃𝑦 + 0.0040746736𝐽 3∕2
𝑦 sin 3𝜃𝑦−

0.0079110266
√

𝐽𝑦𝐽𝑧 sin(𝜃𝑦 − 2𝜃𝑧)−

0.01330702𝐽𝑧 cos 𝜃𝑧 sin 𝜃𝑧+

0.001691008
√

𝐽𝑦𝐽𝑧 sin(𝜃𝑦 + 2𝜃𝑧)+

0.018042238e2
√

𝐽𝑦 sin(𝜃𝑦 − 2𝑓 )−

0.049106567e
√

𝐽𝑦 sin(𝜃𝑦 − 𝑓 )−

0.0039015441e𝐽𝑦 sin(2𝜃𝑦 − 𝑓 )+

0.004349965e𝐽𝑧 sin(2𝜃𝑧 − 𝑓 ) + 0.0079996739e𝐽𝑦 sin 𝑓+

0.0064257087e𝐽𝑧 sin 𝑓 + 0.091803411e
√

𝐽𝑦 sin(𝜃𝑦 + 𝑓 )+

0.010214749e𝐽𝑦 sin(2𝜃𝑦 + 𝑓 )−

0.011359961e𝐽𝑧 sin(2𝜃𝑧 + 𝑓 )+

0.006618954e2
√

𝐽 sin(𝜃 + 2𝑓 ) ,

(A.8)
12

𝑦 𝑦
𝑍(𝑓 ) = − 0.037811696
√

𝐽𝑦
√

𝐽𝑧 sin(𝜃𝑦 − 𝜃𝑧)−

0.005705595𝐽𝑦
√

𝐽𝑧 sin(2𝜃𝑦 − 𝜃𝑧)−

0.14171043
√

𝐽𝑧 sin 𝜃𝑧 + 0.039184292e2
√

𝐽𝑧 sin 𝜃𝑧−

0.0013614348𝐽𝑦
√

𝐽𝑧 sin 𝜃𝑧 − 0.0068725065𝐽 3∕2
𝑧 sin 𝜃𝑧−

0.0027392183𝐽 3∕2
𝑧 sin(3𝜃𝑧)−

0.012122967
√

𝐽𝑦
√

𝐽𝑧 sin(𝜃𝑦 + 𝜃𝑧)−

0.0051006101𝐽𝑦
√

𝐽𝑧 sin(2𝜃𝑦 + 𝜃𝑧)−

0.019654877e2
√

𝐽𝑧 sin(𝜃𝑧 − 2𝑓 )−

0.019284097e
√

𝐽𝑦
√

𝐽𝑧 sin(𝜃𝑦 − 𝜃𝑧 − 𝑓 )+

0.053069093e
√

𝐽𝑧 sin(𝜃𝑧 − 𝑓 )+

0.0081153711e
√

𝐽𝑦
√

𝐽𝑧 sin(𝜃𝑦 + 𝜃𝑧 − 𝑓 )−

0.018253022e
√

𝐽𝑦
√

𝐽𝑧 sin(𝜃𝑦 − 𝜃𝑧 + 𝑓 )−

0.083071445e
√

𝐽𝑧 sin(𝜃𝑧 + 𝑓 )−

0.020585513e
√

𝐽𝑦
√

𝐽𝑧 sin(𝜃𝑦 + 𝜃𝑧 + 𝑓 )−

0.0049915983e2
√

𝐽𝑧 sin(𝜃𝑧 + 2𝑓 ) .

(A.9)
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