
Vol.:(0123456789)

Drugs (2024) 84:1251–1273 
https://doi.org/10.1007/s40265-024-02086-5

REVIEW ARTICLE

Asthma and Cardiovascular Diseases: Navigating Mutual 
Pharmacological Interferences

Mario Cazzola1   · Clive P. Page2   · Nicola A. Hanania3   · Luigino Calzetta4   · Maria Gabriella Matera5   · 
Paola Rogliani1 

Accepted: 14 August 2024 / Published online: 26 September 2024 
© The Author(s) 2024

Abstract
Asthma and cardiovascular disease (CVD) often co-exist. When a patient has both conditions, management requires an 
approach that addresses the unique challenges of each condition separately, while also considering their potential interactions. 
However, specific guidance on the management of asthma in patients with CVD and on the management of CVD in patients 
with asthma is still lacking. Nevertheless, health care providers need to adopt a comprehensive approach that includes both 
respiratory and CVD health. The management of CVD in patients with asthma requires a delicate balance between control-
ling respiratory symptoms and minimising potential cardiovascular (CV) risks. In the absence of specific guidelines for the 
management of patients with both conditions, the most prudent approach would be to follow established guidelines for each 
condition independently. Careful selection of asthma medications is essential to avoid exacerbation of CV symptoms. In 
addition, optimal management of CV risk factors is essential. However, close monitoring of these patients is important as 
there is evidence that some asthma medications may have adverse effects on CVD and, conversely, that some CVD medica-
tions may worsen asthma symptoms. On the other hand, there is also increasing evidence of the potential beneficial effects 
of asthma medications on CVD and, conversely, that some CVD medications may reduce the severity of asthma symptoms. 
We aim to elucidate the potential risks and benefits associated with the use of asthma medications in patients with CVD, and 
the potential pulmonary risks and benefits for patients with asthma who are prescribed CVD medications.
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1  Introduction

Although there is a growing consensus that allergic asthma 
is a risk factor for cardiovascular disease (CVD) [1–4], 
data on the relationship between these two conditions in 
both prospective and retrospective studies are controver-
sial. Numerous investigations have indicated a notable 

Key Points 
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requires a careful approach to avoid worsening of either 
condition. This means that health care providers need to 
be cautious when choosing medications to ensure they 
don't negatively affect the other condition.

There are no specific guidelines for treating patients 
with both asthma and CVD, so health care providers 
should closely follow the established guidelines for each 
condition. Regular monitoring is important to detect any 
adverse effects early.

Some asthma medications may help with CVD, and 
some CVD medications may relieve asthma symptoms. 
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correlation between asthma and a heightened incidence 
of CVD [5, 6]. Longitudinal analysis of data from the 
Framingham Offspring Cohort identified a link between 
asthma and lifetime risk of CVD [7]. Cox regression 
analysis showed an adjusted association between asthma 
and CVD incidence (hazard ratio [HR], 1.28; 95% CI 
1.07–1.54) after adjustment for established CV risk fac-
tors, including age, sex, smoking status, dyslipidaemia, 
hypertension, and diabetes. The Nord-Trøndelag health 
study (HUNT) in Norway reported that adults with active 
asthma had an estimated 29% higher risk of developing 
acute myocardial infarction (MI) (adjusted HR, 1.29; 95% 
CI 1.08–1.54) compared with adults without asthma [8]. In 
other studies, the risk of CVD was reported to be between 
32% [9] and 42% [10]. An analysis of 30 cohort studies 
involving 4,157,823 participants showed that patients 
with late-onset asthma had a higher risk than those with 
early-onset asthma (39 vs 26%) [11]. Among asthmatics, 
those who experience exacerbations have a higher risk of 
developing ischaemic heart disease or heart failure than 
those who remain free of exacerbations [12]. In addition, 
people with allergic asthma are more likely to develop 
CVD than those with non-allergic asthma [12]. In the 
HUNT study, there was a significant association between 
asthma control and acute MI risk, with highest risk in 
adults with uncontrolled asthma (adjusted HR, 1.73; 95% 
CI 1.13–2.66) compared to adults with controlled asthma 
(p for trend < 0.05) [8]. Other analyses have shown that the 
increased risk of CVD associated with asthma is restricted 
to certain subgroups, such as smokers [7] and women (39% 
in women vs 19% in men) [11]. Conversely, several stud-
ies, including the Atherosclerosis Risk in Communities 
study, which found that those who had ever had asthma 
had an adjusted relative risk of coronary heart disease 
of 0.87 (95% CI 0.66–1.14), while those who currently 
had asthma had an adjusted relative risk of 0.69 (95% CI 
0.46–1.05) [13], have suggested that there is no signifi-
cant correlation between asthma and CVD [14, 15]. Find-
ings from the Italian College of General Practitioners data-
base showed that although CVD and hypertension were 
more common in people diagnosed with asthma than in the 
general population, asthma seemed to have a weak asso-
ciation with these diseases [16]. In addition, the adjusted 
odds ratio (OR) for acute or previous MI was 0.98 (95% 
CI 0.90–1.07) [14].

Despite the conflicting data, it is commonly accepted 
that asthma and CVD can interact bidirectionally when 
they occur simultaneously [4]. Asthmatics are at increased 
risk of hypertension, coronary heart disease, stroke, and 
heart failure, while those with CVD often have poorer 
asthma control and more exacerbations [17]. A compre-
hensive approach that addresses their individual problems 

and potential interactions is needed to manage both condi-
tions simultaneously.

This article aims to provide a thorough guide to the drugs 
used to treat patients with asthma and CVD, focusing on 
safety, efficacy, and the importance of an individualised 
treatment plan.

2 � Understanding the Relationship Between 
Asthma and CVD

The relationship between asthma and CVD involves com-
plex mechanisms [1, 17]. Chronic inflammation is common 
to both diseases [18]. Airway inflammation characterises 
asthma and is linked to airway hyperresponsiveness (AHR) 
[18]. Systemic inflammation is crucial in CVD, contribut-
ing to atherosclerosis, endothelial dysfunction, and plaque 
formation (Fig. 1) [18]. The MESA (Multi‐Ethnic Study 
of Atherosclerosis) has documented that subjects with 
persistent asthma have elevated carotid plaque scores and 
increased levels of inflammatory biomarkers compared with 
those without asthma [19]. The presence of a high carotid 
plaque score is a strong predictor of clot-induced strokes 
and major CV events (MACE), as the carotid artery runs 
along both sides of the neck. Poorly controlled asthma may 
increase systemic inflammation, potentially worsening CVD, 
while patients with CVD may have increased airway inflam-
mation, leading to more frequent asthma exacerbations [4].

Immune dysregulation further complicates the asthma-
CVD relationship, as immune cells and inflammatory medi-
ators are involved in the pathogenesis of both conditions 
[2]. Allergic asthma is characterised by type (T)2 immune 
responses that drive eosinophilic inflammation and IgE 
production through specific cytokines [20]. Both clinical 
and preclinical studies suggest a potential pathogenic role 
for eosinophils in CVD. Patients with asthma are prone to 
develop atherosclerosis, vasospasm and acute MI, possi-
bly due to excessive release of cysteinyl leukotrienes from 
eosinophils [21]. High levels of eosinophils in the blood 
and vasoconstriction have been associated with anginal 
attacks [22]. Nevertheless, it is interesting to note that whilst 
increased eosinophils in the asthmatic lung may contribute 
to the pathology, eosinophil-derived interleukin (IL)-4 and 
eosinophil cationic protein have been shown to have repara-
tive properties in the diseased heart and aorta [2].

In addition, oxidative stress, resulting from an imbal-
ance between reactive oxygen species (ROS) and anti-
oxidants, is implicated in both asthma and CVD [23]. 
ROS  can damage cellular components and promote 
inflammation, contributing to airway remodelling in 
asthma [21] and endothelial dysfunction in CVD [24]. 
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Endothelial dysfunction, characterised by impaired vaso-
dilation and pro-thrombotic properties, precedes athero-
sclerosis and CV events [24].

Sympathetic activation, triggered by stress, can worsen 
asthma symptoms due to bronchoconstriction and airway 
inflammation through β1- and α-adrenoceptor (AR) acti-
vation [25]. In CVD, it results in hypertension, vasocon-
striction, and increased cardiac workload, increasing the 
risk of CV adverse events (AEs) [26].

Therefore, recognising the connections between asthma 
and CVD is important for effective disease management.

3 � Diagnostic and Management Challenges

Evaluating patients with asthma and CVD is challenging due 
to shared characteristics, especially in older adults [4, 27, 

28]. Accurate diagnosis is essential to differentiate between 
the two conditions as treatments for one can worsen the 
other. However, emerging evidence suggests that some drugs 
for asthma may benefit CVD, and vice versa.

Currently, asthma guidelines lack explicit recommenda-
tions for CV assessment in asthmatics, while CVD guide-
lines lack clear directives for pulmonary assessment in 
CVD patients. This ambiguity contributes to limited spe-
cific guidance on managing asthma in patients with CVD 
and vice versa.

Health care providers should adopt a comprehensive 
approach addressing both respiratory and CVD health. 
This involves optimising asthma management to reduce 
inflammation and improve symptom control and imple-
menting strategies to reduce CV risk factors like hyperten-
sion, dyslipidaemia, and diabetes.

Fig. 1   Potential pathogenetic mechanisms of the association between 
asthma and CVD chronic airway inflammation in asthma may con-
tribute to systemic inflammation, suggesting that the vasculature is 
systemically exposed to inflammation generated in the lungs. Sys-
temic inflammation is critical in CVD, contributing to atherosclero-
sis, endothelial dysfunction and plaque formation. IL-6 is a key effec-
tor cytokine in the atherosclerotic T1 process as it directly inhibits T 
regulatory cells, allowing the proatherogenic T1 response to occur. 
IL-6 also causes endothelial dysfunction, the first step in arterial 
damage and atherosclerotic plaque formation, propagates inflamma-

tion and predicts future atherosclerotic CVD events. Oxidative stress, 
resulting from an imbalance between ROS and antioxidants, is also 
implicated in both asthma and CVD. ROS can damage cellular com-
ponents and promote inflammation, contributing to airway remodel-
ling in asthma and endothelial dysfunction in CVD. Endothelial dys-
function, characterised by impaired vasodilation and pro-thrombotic 
properties, precedes atherosclerosis and CVD events. IL interleukin, 
IFN-γ interferon γ, IgE immunoglobulin E, ROS reactive oxygen spe-
cies, T1 type 1, TNF-α tumour necrosis factor α
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4 � Cardiovascular Impact of Asthma 
Pharmacotherapy

Inhaled corticosteroids (ICS), adjusted according to dis-
ease severity, are the mainstay of asthma treatment [28, 29]. 
Other controller medications like inhaled long-acting β2-
agonists (LABAs), inhaled long-acting muscarinic agents 
(LAMAs) and leukotriene modifiers can also be used [28, 
29]. If symptoms persist or lung function does not improve 
on a low to medium dose of ICS alone, it may be neces-
sary to add a LABA, preferably in a fixed-dose combination 
(FDC) [27, 28]. Short-acting β2-agonists (SABAs) provide 
rapid relief of asthma symptoms such as bronchoconstric-
tion. However, treatment with SABA monotherapy alone is 
no longer recommended by the Global Initiative for Asthma 
(GINA) at any stage [29]. Instead, GINA suggests that a 
more effective rescue treatment strategy is to use the bude-
sonide/formoterol combination rather than SABA alone [29]. 
The GINA also indicates that leukotriene receptor antago-
nists (LTRA) may be considered as a substitute for low-dose 
ICS in step 2 and as an adjunct to ICS in steps 3 and 4 [29]. 
If asthma is not adequately controlled on optimal therapy 
with a medium-dose ICS/LABA, it is appropriate to increase 
the ICS dose. If increasing the ICS dose does not improve 
asthma control, it is advisable to add a LAMA before con-
sidering oral corticosteroids (OCS) or a biologic agent [29, 
30]. Occasionally, severe asthma can also be treated with 
macrolides, predominantly azithromycin [28].

While some asthma therapies may carry CV risks, they 
may also confer benefits for managing CVD (summarised 
in Table 1) [4].

4.1 � Inhaled Corticosteroids

Inhaled corticosteroids reduce airway inflammation, which 
has a beneficial effect on airflow obstruction, AHR and 
exacerbations, and minimise the use of OCS that can cause 
significant systemic AEs and appear to increase the risk of 
CVD [31–34]. OCS can cause sodium and fluid retention 
issues, leading to hypertension or heart failure exacerba-
tions [35].

Only a few published observational studies exist on the 
effects of ICS on CV risk in patients with asthma. These 
studies have shown that medium to high doses of ICS are 
generally associated with a lower CV risk compared with 
OCS. This is due to the lower systemic bioavailability of ICS 
[33, 34]. Furthermore, low-dose ICS do not increase this risk  
[36]. Higher doses of ICS may cause venous thromboembo-
lism, albeit to a lesser extent than OCS [37], but have also 
been associated with reduced CV and all-cause mortality in 
women with asthma [38]. ICS may also reduce atheroscle-
rosis by acting directly on the arterial wall through systemic 

absorption or indirectly by reducing airway inflammation 
and the spread of inflammatory mediators in the circulation 
[39].

The effect on the CV system associated with ICS varies 
depending on the ICS used and can be attributed to several 
factors, including systemic bioavailability, drug potency, 
pharmacokinetics and the specific safety profile of each cor-
ticosteroid [40, 41]. High systemic bioavailability can lead 
to systemic effects [40, 41]. Beclomethasone dipropionate, 
budesonide, flunisolide and triamcinolone acetonide have 
significant systemic bioavailability [40], which may result 
in a slightly higher risk of systemic AEs than corticosteroids 
with lower bioavailability. Conversely, fluticasone propion-
ate, fluticasone furoate, mometasone furoate and ciclesonide 
have very low systemic bioavailability [40], which reduces 
the risk of systemic AEs. The amount of ICS available sys-
temically is influenced by the efficiency of hepatic first-pass 
metabolism, which is high for fluticasone furoate, fluticasone 
propionate, mometasone furoate and ciclesonide, but low 
for budesonide, flunisolide, triamcinolone acetonide and 
beclomethasone dipropionate [42].

The potency of any ICS is influenced by several factors, 
such as its binding affinity to the glucocorticoid receptor. 
The hierarchy of potency among the available agents (from 
highest to lowest) is fluticasone furoate > mometasone > 
fluticasone propionate > beclomethasone > ciclesonide > 
budesonide > triamcinolone > flunisolide [41]. However, 
there is disagreement about the exact order of potency, and 
it has been suggested that the type of inhaler device used to 
administer the ICS can also play a role in determining rela-
tive potency [43]. Higher potency alone would result in more 
significant systemic effects, but the structural changes that 
allow for higher potency also facilitate efficacy at a lower 
dose, as well as lower rate and extent of bioavailability and 
high clearance [41]. In fact, the rate at which the drug is 
metabolised and cleared from the body also influences the 
duration of systemic exposure [40, 41]. Ciclesonide is a 
prodrug that is activated in the lungs and has low systemic 
bioavailability, which significantly reduces the risk of sys-
temic AEs [44].

Unfortunately, comparisons of the safety profile of ICS 
remain indirect, limited, focused on therapies that also 
include ICS (ICS/LABA, triple therapy), and mainly on 
chronic obstructive pulmonary disease (COPD) [45].

In any case, although ICS are generally safe at recom-
mended doses, health care providers should consider poten-
tial interactions with commonly prescribed CV drugs. ICS 
are metabolised by cytochrome P450 3A (CYP3A) enzymes, 
primarily CYP3A4 [46], which can be inhibited when multi-
ple drugs compete for this enzyme, leading to increased sys-
temic drug concentrations and potential toxicity [47]. Many 
CV drugs, such as β-blockers, calcium channel blockers and 
some antiarrhythmics, are also metabolised by the hepatic 
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CYP system. Therefore, dose adjustment may be required, 
especially in elderly patients on polypharmacy.

4.2 � Bronchodilators

Bronchodilators are essential for treating asthma symp-
toms and, when used with an ICS, help prevent exacerba-
tions [31]. There are several classes of bronchodilators, 
each with different mechanisms and benefits. β2-Agonists 
are widely used, while muscarinic acetylcholine receptor 
(mAChR) antagonists and methylxanthines are appropriate 
for some patients [20]. However, bronchodilators, mainly 
β2-agonists, can cause CV AEs [4, 48], especially in regular 
users, because they can stimulate sympathetic nerve activity, 
potentially causing vasospasm [21], thereby compromising 
vascular health [49] and increasing CV risk [50].

4.2.1 � β2‑agonists

All β2-agonists carry a significant risk of CV AEs, par-
ticularly tachycardia and arrhythmias [51]. Individuals 
with asthma have an enhanced sympathetic response to 
β2-agonists, which may increase CV risk, as suggested by 
evidence that even a single clinical dose of inhaled salbuta-
mol reduces flow-mediated dilation and increases peripheral 
arterial stiffness in asthmatic patients [52]. Salbutamol also 
increases plasma noradrenaline levels, which may be of con-
cern in people with underlying CVD [53].

The risk of CV AEs stems from to the activation of β1 
adrenergic receptors (β1-ARs) in the heart, resulting in 
increased heart rate and contractility [54]. β1-ARs dominate 
in the normal heart (77% compared to 23% for β2-ARs) [55], 
but β2-ARs, with a 2.5-fold higher density in the sinoatrial 
node compared to the right atrial myocardium, play a crucial 
role in regulating cardiac chronotropism [56]. Despite sig-
nificant homology (65–70%) between β1- and β2-ARs [51], 
cardiac β2-ARs exhibit more efficient coupling to adenylyl 
cyclase than β1-ARs [57].

β2-Agonists are categorised into full agonists (e.g., iso-
proterenol, formoterol) that fully activate β2-ARs and partial 
agonists (e.g., salmeterol, vilanterol) that activate β2-ARs 
without eliciting maximal responses (Fig. 2) [54, 58]. While 
both types have similar downstream effects in airway smooth 
muscle (ASM), full agonists are preferred in acute exacerba-
tions because β2-ARs may be desensitised in patients with 
asthma due to regular prior use of β2-agonists and as a result 
of inflammatory mediators characteristic of the disease [59]. 
Conversely, the heart has fewer β2-ARs than ASM, possibly 
explaining the improved safety profile of partial agonists 
[58].

β2-Agonists can induce atrial fibrillation [60], arrhyth-
mias [61], acute MI [48], congestive heart failure, cardiac 
arrest, and even sudden cardiac death [62]. These risks 

increase in individuals with long QT syndrome [62] and are 
aggravated by electrolyte imbalances, prevalent in up to 98% 
of severe asthmatics taking β2-agonists [63]. The increased 
risk of acute MI generally occurs primarily in the first 3 
months of therapy and then decreases [64].

Activation of β2-ARs triggers the Na+–K+ ATPase pump 
[65], leading to potassium uptake into cells and potentially 
causing hypokalaemia. Hypokalaemia is associated with 
various arrhythmias, including torsades de pointes, poly-
morphic ventricular tachycardia, ventricular fibrillation, 
and ventricular ectopy [66]. It can also cause localised 
changes in conduction velocity and regional variability in 
action potential duration, fostering the formation of func-
tional re-entry circuits [67]. Hypokalaemia contributes to 
arrhythmogenesis by reducing cardiac repolarisation reserve 
and increasing intracellular calcium levels [68], thereby 
promoting abnormal electrical activity and potentially life-
threatening rhythm disturbances. Hypokalaemia has been 
associated with β2-agonist overdose in severe asthma or 
salbutamol abuse [69, 70], but some research suggests that 
the increased risk of atrial fibrillation in individuals with 
uncontrolled asthma cannot be solely attributed to β2-agonist 
use [71].

Observational studies link inhaled β2-agonists to an 
increased risk of acute MI [48, 72, 73], possibly due to 
increased heart rate and oxygen demand resulting from β-AR 
overstimulation, leading to myocardial injury and ischaemia 
[74]. Some researchers suggest that asthma-like symptoms 
may signal the onset of ischaemic heart disease [75]. How-
ever, other studies have not found this association [76, 77].

β-Agonists have been associated with higher rates of 
hospitalisation for heart failure and increased all-cause 
mortality in patients with left ventricular dysfunction [78], 
including intensive care unit (ICU) patients without chronic 
pulmonary disease [79]. However, the ABCHF study sug-
gested that it is unlikely that previously occurring asthma or 
β-agonist use have a strong relationship to the development 
of idiopathic dilated cardiomyopathy [80]. A large study 
found no long-term mortality association after adjusting for 
various factors, suggesting that factors beyond β-agonist use, 
particularly heart failure severity, may influence mortality 
risk [81].

In heart failure patients experiencing dyspnoea, inhaled 
β2-agonists offer benefits like improved CV function, 
increased cardiac output, reduced peripheral vascular resist-
ance, and better pulmonary capillary wedge pressures [82]. 
They also relieve bronchoconstriction, easing respiratory 
effort and thereby reducing cardiac workload [83]. However, 
caution is needed due to potential mild hypokalaemia and 
arrhythmias [61], particularly when hypoxaemia is present 
[84].

Rare cases of sudden death in patients with asthma 
have been linked to β2-agonist use [58], possibly due to 
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exacerbation of underlying CVD and β2-agonist–induced 
cardiac arrhythmias [27].

However, a recent nested case–control analysis using the 
UK Clinical Practice Research Datalink of asthma patients 
showed that the use of SABA or ICS/LABA combination 
therapy was not associated with a higher risk of MACE 
such as stroke, heart failure, acute MI, arrhythmia or CV 
death compared with ICS (SABA vs ICS: HR 1.29; 95% CI 
0.96–1.73; ICS/LABA vs ICS, HR 0.75; 95% CI 0.33–1.73) 
[85].

4.2.2 � Muscarinic Acetylcholine Receptor Antagonists

Muscarinic acetylcholine receptor (mAChR) antagonists 
used to treat asthma are all non-selective against the 5 
mAChRs subtypes and therefore, can antagonise cardiac M2 
and M3 mAChRs if the plasma levels are sufficiently high, 
which raises concerns about potential CV risks of this drug 
class [86]. Activation of cardiac M2 mAChRs induces nega-
tive chronotropic and inotropic responses and blocking these 

receptors may cause CV AEs [87]. Cardiac M3 mAChRs 
play a role in modulating cardiac membrane repolarisa-
tion, regulating rhythm, and protecting against myocardial 
damage [88–90], especially in pathological conditions like 
ischaemia, hypertrophy, arrhythmia, and heart failure [91]. 
However, blocking M3 mAChRs eliminates this protective 
effect.

While short-acting muscarinic antagonists (SAMAs) 
exhibit non-selective binding properties, some LAMAs have 
longer residence times at M3 mAChRs and shorter residence 
times at M2 mAChRs, potentially reducing this risk [91].

In young patients with asthma, inhaled ipratropium bro-
mide did not significantly affect heart function [92], but high 
doses were associated with a 69% increase in arrhythmia 
incidence [93]. However, clinical trials of LAMAs in asthma 
subjects showed that less than 2% of patients reported CV 
AEs with inhaled tiotropium bromide [94–96].

A study analysing CV AEs reported during treatment 
with aclidinium, tiotropium, glycopyrronium, and ume-
clidinium in patients mainly with COPD, but also in some 

Fig. 2   β2-agonists can be divided into three groups: full agonists, 
such as isoproterenol or formoterol, which completely shift the bal-
ance towards the activated conformation, favouring active recep-
tor state (R*); partial agonists, such as salmeterol or ultra-LABAs 
(vilanterol, indacaterol), which less frequently stabilise a different 
receptor conformation, leading to a relatively higher affinity for R* 
(although lower than that of a full agonist); and inverse agonists, 

which bind to the receptor in its inactive state, thus shifting the bal-
ance away from R* towards another conformation. A neutral antag-
onist has similar affinity for both inactive receptor state (R) and R* 
conformations, maintains the equilibrium unchanged, and inhibits the 
effects of both agonists and inverse agonists. LABAs long-acting β2-
agonists
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subjects with asthma or bronchiectasis, found that tiotropium 
had fewer CV AE reports compared to ipratropium [97]. 
Other LAMAs were more frequently associated with CV 
AEs compared to tiotropium.

Women generally exhibit higher gene expression of M3 
mAChRs compared to M2 mAChRs than men, resulting in a 
higher M3/M2 mAChR ratio [98, 99]. This increased M3/M2 
selectivity raises concerns when using LAMAs in women 
with medical conditions that rely heavily on M3 mAChR 
function, such as cardiac ischaemia, pathological cardiac 
hypertrophy, arrhythmia, and heart failure [89].

LAMA monotherapy or replacing a LABA with a LAMA 
in combination with an ICS is not recommended for the 
management of asthma [20]. However, ICS/LABA/LAMA 
FDCs are currently endorsed for Step 4 and Step 5 asthma 
treatment [20]. A meta-analysis found no significant increase 
in severe CV AEs with triple FDCs compared with ICS/
LABA FDCs, regardless of ICS doses [100]. Real-world evi-
dence indicates that triple therapy actually reduces the likeli-
hood of reported CV AEs compared to LAMA alone [97].

4.2.3 � Methylxanthines

Theophylline is no longer recommended as an add-on treat-
ment for asthma [20] due to its narrow therapeutic window 
and risk of causing tachycardia and severe arrhythmias, 
including sudden death, even at therapeutic levels [101]. 
However, theophylline is still used in some regions due to 
its affordability and availability in slow-release oral formu-
lations. A recent meta-analysis suggests that doxofylline, a 
newer methylxanthine derivative that is attracting increasing 
attention for its distinct pharmacological properties and ther-
apeutic advantages over traditional methylxanthines [102], 
could replace theophylline in the treatment of asthma due to 
its superior efficacy/safety profile [103]. The study showed 
that doxofylline was significantly more successful than theo-
phylline in reducing daily asthma events and minimising the 
likelihood of AEs. It was also as effective as theophylline 
in improving forced expiratory volume in 1 second (FEV1).

4.3 � Leukotriene Modifiers

Cysteinyl leukotrienes (CysLTs) are implicated in vari-
ous CV conditions including acute MI, ischaemic stroke, 
atherosclerosis, aortic aneurysm, and intimal hyperplasia 
[104, 105]. Specifically, CysLT receptor 1 expression rises 
in response to pro-inflammatory cytokines released from 
coronary atherosclerotic lesions [106].

Recent experimental research suggests that montelukast, 
an orally active CysLT receptor antagonist, could prevent 
cardiac remodelling after MI and preserve cardiac function 
by regulating inflammation and preventing cardiomyocyte 
hypertrophy [107]. Another CysLT receptor antagonist, 

zafirlukast, inhibits platelet function, thrombosis, and inte-
grin-mediated cell migration without causing bleeding, sug-
gesting potential benefits in certain CV conditions [108]. 
However, information concerning the effects of CysLTs 
receptor antagonists on the heart remains limited.

A Swedish population-based study showed that CysLTR-1 
antagonists may be beneficial in the prevention of secondary 
CVD, including ischaemic stroke [109]. In addition, a retro-
spective observational study found a significant association 
between the use of montelukast and a reduction in MACE 
in asthmatic patients [110]. In these individuals, ICS/LABA 
combinations reduced asthma exacerbations, but increased 
the risk of CV AEs compared with ICS+LTRA therapy. Fur-
thermore, an interventional study in patients with asthma 
showed that montelukast can reduce levels of CVD-related 
inflammatory biomarkers, such as C-reactive protein, and 
lipid levels [111], thereby reducing heart problems.

Recent data have shown that montelukast could prevent 
heart problems in older asthmatics [112]. The study showed 
reduced efficacy in the management of acute symptoms as 
evidenced by increased use of SABA (rate ratio [RR], 1.58, p 
< 0.001), but the addition of LTRA treatment was associated 
with a lower likelihood of CV events compared to LABA 
(OR, 0.86, p = 0.006).

4.4 � Macrolides

Macrolides, especially azithromycin, are occasionally 
used over the long term to reduce exacerbations in patients 
with asthma [113]. However, QTc (QT interval corrected for 
heart rate) prolongation may be of concern because it can 
lead to arrhythmias and potentially fatal torsades de pointes 
[114]. Macrolides can prolong the QT and QTc interval via 
their effect on the rapid delayed rectifier (IKr) potassium 
channel [115]. The risk is higher in the elderly (aged 60–80 
years) [116] and in patients predisposed to CV events [114].

Regular assessment of the QT interval should be per-
formed before starting macrolide therapy and periodically 
during treatment, to reduce the risk of serious CV AEs 
[115]. The British Thoracic Society guideline states that, 
for safety reasons, an ECG to assess the QTc interval should 
be performed before starting long-term macrolide therapy 
in adults with asthma [117]. If the QTc is > 450 ms for men 
and > 470 ms for women, this is considered a contraindi-
cation to starting macrolide therapy. In addition, an ECG 
should be done one month after starting treatment to check 
for new QTc prolongation. When detected, treatment should 
be stopped. Before starting low-dose macrolide therapy, it 
is important to review the patient's medical history for any 
evidence of heart disease, low serum potassium levels, slow 
pulse rate, family history of sudden death, or known pro-
longed QT interval. Patients with such a history should not 
be started on low-dose macrolide therapy without careful 



1259Asthma and CVD: Common Pharmacological Interferences

consideration and counselling regarding the increased risk 
of CV AEs. In addition, a comprehensive review of the 
patient's medication history should be performed to iden-
tify any medications that could potentially prolong the QTc 
interval, and patients taking such medications should not be 
prescribed low-dose macrolide therapy. Electrocardiogram 
assessment should always be repeated when starting a new 
drug that could potentially prolong the QTc interval, or when 
the dose is increased.

4.5 � Biologics

Several studies have investigated the association between 
biologics and CV risk in asthma patients.

Some data suggest that elevated total serum IgE levels 
are associated with the presence of multivessel disease and 
may play a role in differentiating the severity of coronary 
artery disease independent of conventional CV risk factors 
[118]. Indeed, the EXCELS study reported higher rates of 
CV, cerebrovascular and arterial thromboembolic events in 
patients treated with omalizumab, a monoclonal antibody 
(mAb) targeting IgE [119], occasional case reports have 
linked omalizumab to arterial and venous thromboembolic 
events [120], and a French pharmacovigilance study found 
an association between omalizumab and hypertension, ven-
tricular arrhythmias and venous thromboembolism [121].

However, a pooled analysis of 25 double-blind, placebo-
controlled randomized controlled trials (RCTs) did not 
confirm an increased CV risk [122]. Discrepancies among 
studies may arise from factors like varying coronary heart 
disease burdens and contributions from other treatments in 
more severe asthmatics, particularly OCS [123]. Current rec-
ommendations and expert opinions support omalizumab use 
in individuals with a history of CVD [124].

There is currently no evidence linking novel biologics 
targeting interleukin (IL)-5 or its receptor (mepolizumab, 
reslizumab and benralizumab) to an increased risk of CVD 
[119], which is consistent with the lack of genetic evidence 
implicating IL-5 inhibition in CV and thromboembolic AEs 
[125]. For example, the aforementioned French pharma-
covigilance study found that the association of IL-5 inhibi-
tors with hypertension, ventricular arrhythmias and venous 
thromboembolism was much weaker than that of omali-
zumab [119]. However, this is in contrast to the hypoth-
esis that IL-5 may protect against arterial plaque formation 
[126], so that IL-5 inhibition could theoretically increase 
the risk of CVD.

Dupilumab, a fully humanised mAb that inhibits the 
common receptor component for IL-4 and IL-13 signalling, 
may provide CV protection by reducing biomarkers associ-
ated with atherosclerosis and CV comorbidities [127]. This 
mAb has been reported to significantly reduce serum levels 

of CCL17 (or thymus and activation-regulated chemokine, 
TARC) [128], which is produced by conventional dendritic 
cells, signals through CCR4 on regulatory T (Treg) cells 
and drives atherosclerosis by suppressing Treg functions 
through yet undefined mechanisms [129] and is considered 
an extremely useful clinical biomarker not only for monitor-
ing the efficacy of treatment but also for ensuring successful 
treatment outcomes [130]. Furthermore, dupilumab signifi-
cantly affects the expression of atherosclerosis-related genes 
[131] and suppresses key immune and atherosclerosis/CV 
risk proteins [132].

In clinical trials, tezepelumab, a mAb blocking thymic 
stromal lymphopoietin, showed a numerical imbalance in 
cardiac events compared with placebo [133]. However, there 
is no evidence of a causal relationship between its use and 
these events in asthmatics.

5 � Pulmonary Impact of CVD 
Pharmacotherapy

Standard therapy for various CVDs typically includes β-AR 
blockers, angiotensin-converting enzyme inhibitors (ACE-
Is), angiotensin II type 1 receptor blockers (AT-1RBs), 
statins, anti-platelet agents, calcium channel blockers and 
diuretics [28]. Recently, the focus has also been on propro-
tein convertase subtilisin/kexin type 9 inhibitors (PCSK9-
Is), a relatively new targeted therapeutic modality for lower-
ing low-density lipoprotein-cholesterol [134]. While some 
of these treatments may cause AEs in asthmatics, they may 
also potentially benefit the progression of asthma (Table 2).

5.1 � β‑AR Blockers

β-AR blockers are effective in treating acute coronary syn-
dromes and preventing coronary events by primarily block-
ing β1-ARs, which inhibits the action of endogenous adren-
aline and noradrenaline on the heart [135]. This reduces 
myocardial demand by decreasing heart rate and force of 
contraction, resulting in lower mortality rates from CVD. 
β-AR blockers also benefit congestive heart failure, car-
diac arrhythmias, and hypertension, and this also in asth-
matic patients [28]. In those with heart failure or ischae-
mic heart disease and asthma, β-blockers may reduce the 
risk of pulmonary congestion and subsequent pulmonary 
exacerbations.

However, non-selective β-AR blockers, such as pro-
pranolol, nadolol, pindolol, labetalol, sotalol, carvedilol, 
and timolol, which act on both β1- and β2-ARs, may pose 
a risk to asthmatics due to their potential to induce bron-
chospasm and worsen respiratory symptoms [136–138]. 
They can also antagonise the effects of β2-agonists [136] 
and cause asthma exacerbations [138]. A meta-analysis of 



1260	 M. Cazzola et al.

Ta
bl

e 
2  

P
ul

m
on

ar
y 

im
pa

ct
 o

f C
V

D
 p

ha
rm

ac
ot

he
ra

py

AC
E 

an
gi

ot
en

si
n-

co
nv

er
tin

g 
en

zy
m

e,
 A

H
R 

ai
rw

ay
 h

yp
er

re
sp

on
si

ve
ne

ss
, A

ng
 I

I/A
T1

 A
ng

io
te

ns
in

 I
I/A

ng
io

te
ns

in
 I

I 
ty

pe
 1

 r
ec

ep
to

r, 
AR

 a
dr

en
oc

ep
to

r, 
C

YP
 c

yt
oc

hr
om

e 
P4

50
, E

IA
 e

xe
rc

is
e-

in
du

ce
d 

as
th

m
a,

 IC
S 

in
ha

le
d 

co
rti

co
ste

ro
id

, P
C

SK
9 

pr
op

ro
te

in
 c

on
ve

rta
se

 su
bt

ili
si

n/
ke

xi
n 

ty
pe

 9
, P

2Y
12

 p
ur

in
er

gi
c 

re
ce

pt
or

 P
2Y

 G
 p

ro
te

in
-c

ou
pl

ed
 1

2,
 T

xA
2 t

hr
om

bo
xa

ne
 A

2

C
ar

di
ov

as
cu

la
r a

ge
nt

Po
te

nt
ia

l r
is

ks
Po

te
nt

ia
l b

en
efi

ts

β 2
-A

R
 b

lo
ck

er
s

Po
te

nt
ia

l f
or

 b
ro

nc
ho

sp
as

m
 in

 p
at

ie
nt

s w
ith

 p
re

-e
xi

sti
ng

 a
irw

ay
 d

is
ea

se
, 

re
du

ce
d 

effi
ca

cy
 o

f β
2-

ag
on

ist
s a

nd
 o

cc
ur

re
nc

e 
of

 m
od

er
at

e 
an

d 
se

ve
re

 
as

th
m

a 
ex

ac
er

ba
tio

ns
, a

lth
ou

gh
 c

ar
di

os
el

ec
tiv

e 
β-

bl
oc

ke
rs

 m
ay

 h
av

e 
a 

lo
w

er
 ri

sk

Re
du

ce
d 

ris
k 

of
 p

ul
m

on
ar

y 
co

ng
es

tio
n 

an
d 

su
bs

eq
ue

nt
 e

xa
ce

rb
at

io
ns

 o
f 

lu
ng

 d
is

ea
se

 in
 p

at
ie

nt
s w

ith
 h

ea
rt 

fa
ilu

re
 o

r i
sc

ha
em

ic
 h

ea
rt 

di
se

as
e.

 
In

cr
ea

se
d 

β 2
-A

R
 re

gu
la

tio
n 

in
 th

e 
lu

ng
 w

ith
 re

du
ce

d 
ne

ed
 fo

r β
2-

ag
on

ist
s. 

In
ve

rs
e 

ag
on

ist
s e

ffe
ct

iv
e 

in
 re

du
ci

ng
 A

H
R

A
ng

io
te

ns
in

-c
on

ve
rti

ng
 e

nz
ym

e 
in

hi
bi

to
rs

D
ry

 c
ou

gh
 a

nd
 o

cc
as

io
na

lly
 b

ro
nc

ho
sp

as
m

 d
ue

 to
 in

cr
ea

se
d 

br
ad

yk
in

in
 

le
ve

ls
. W

or
se

ni
ng

 o
f a

st
hm

a 
se

ve
rit

y 
in

 p
at

ie
nt

s w
ith

 h
yp

er
te

ns
io

n
C

hr
on

ic
 re

du
ct

io
n 

in
 A

C
E 

ac
tiv

ity
 m

ay
 b

e 
be

ne
fic

ia
l

A
ng

io
te

ns
in

 II
 ty

pe
 1

 re
ce

pt
or

 a
nt

ag
on

ist
s

A
re

 g
en

er
al

ly
 w

el
l t

ol
er

at
ed

 b
ut

 m
ay

 c
au

se
 c

ou
gh

 in
 a

 sm
al

l p
er

ce
nt

ag
e 

of
 p

at
ie

nt
s

In
du

ce
 a

 sm
al

l r
ed

uc
tio

n 
in

 A
H

R
. A

tte
nu

at
in

g 
A

ng
 II

/A
T1

 a
ct

iv
at

io
n 

m
ay

 
be

 b
en

efi
ci

al
St

at
in

s
Ph

ar
m

ac
ol

og
ic

al
 in

te
ra

ct
io

n 
of

 a
to

rv
as

ta
tin

, l
ov

as
ta

tin
, a

nd
 si

m
va

st
at

in
 

w
ith

 c
or

tic
os

te
ro

id
s a

t t
he

 le
ve

l o
f C

Y
P3

A
4,

 w
ith

 a
 g

re
at

er
 ri

sk
 o

f 
m

us
cl

e-
re

la
te

d 
co

m
pl

ic
at

io
ns

Re
du

ce
d 

fr
eq

ue
nc

y 
of

 e
xa

ce
rb

at
io

ns
, a

st
hm

a-
re

la
te

d 
em

er
ge

nc
y 

de
pa

rt-
m

en
t v

is
its

, h
os

pi
ta

liz
at

io
ns

, a
nd

 sy
ste

m
ic

 c
or

tic
os

te
ro

id
 u

se
. I

m
pr

ov
ed

 
an

ti-
in

fla
m

m
at

or
y 

eff
ec

ts
 o

f I
C

S 
ev

en
 in

 sm
ok

er
s w

ith
 a

st
hm

a
A

nt
i-p

la
te

le
t a

ge
nt

s
H

yp
er

se
ns

iti
vi

ty
 re

ac
tio

n 
kn

ow
n 

as
 a

sp
iri

n-
ex

ac
er

ba
te

d 
re

sp
ira

to
ry

 
di

se
as

e
C

om
pe

tit
iv

e 
th

ie
no

py
rid

in
e 

P2
Y

12
 re

ce
pt

or
 a

nt
ag

on
ist

s m
ay

 re
du

ce
 

A
H

R
. T

xA
2 

sy
nt

he
ta

se
 in

hi
bi

to
rs

 m
ay

 re
du

ce
 A

H
R

 b
ut

 n
ot

 in
 p

at
ie

nt
s 

w
ith

 a
cu

te
 a

st
hm

a
C

al
ci

um
 c

ha
nn

el
 b

lo
ck

er
s

Im
pr

ov
em

en
t i

n 
lu

ng
 fu

nc
tio

n 
am

on
g 

in
di

vi
du

al
s w

ith
 m

ild
 a

st
hm

a,
 

no
ta

bl
y 

ev
id

en
t i

n 
ca

se
s o

f E
IA

. R
ed

uc
tio

n 
of

 th
e 

an
nu

al
 d

ec
lin

e 
in

 lu
ng

 
fu

nc
tio

n
D

iu
re

tic
s

En
ha

nc
em

en
t o

f t
he

 e
ffe

ct
s o

f h
yp

ok
al

ae
m

ia
 w

ith
 a

rr
hy

th
m

ia
 b

y 
co

n-
co

m
ita

nt
 u

se
 o

f β
2 a

go
ni

sts
 o

r I
C

S 
an

d 
a 

th
ia

zi
de

. M
et

ab
ol

ic
 a

lk
al

os
is

 
w

ith
 c

om
pe

ns
at

or
y 

hy
po

ve
nt

ila
tio

n 
an

d 
w

or
se

ni
ng

 o
f h

yp
er

ca
pn

ia
 w

ith
 

hi
gh

 d
os

es
 o

f l
oo

p 
di

ur
et

ic
s

Eff
ec

tiv
e 

in
 m

an
ag

in
g 

flu
id

 o
ve

rlo
ad

 c
on

di
tio

ns
 su

ch
 a

s c
on

ge
sti

ve
 h

ea
rt 

fa
ilu

re
 a

nd
 p

ul
m

on
ar

y 
oe

de
m

a,
 th

er
eb

y 
re

lie
vi

ng
 sy

m
pt

om
s o

f d
ys

p-
no

ea
, a

nd
 im

pr
ov

in
g 

ov
er

al
l l

un
g 

fu
nc

tio
n

PC
SK

9 
in

hi
bi

to
rs

In
 th

e 
Eu

ro
pe

an
 p

op
ul

at
io

n,
 g

en
et

ic
al

ly
 p

re
di

ct
ed

 in
hi

bi
tio

n 
of

 P
C

SK
9 

co
ul

d 
si

gn
ifi

ca
nt

ly
 in

cr
ea

se
 th

e 
ris

k 
of

 a
st

hm
a



1261Asthma and CVD: Common Pharmacological Interferences

RCTs revealed that short-term oral non-selective β-blocker 
use in patients with asthma led to an average decrease in 
FEV1 of 10.2% in 11.1% of patients, along with a reduction 
in β2-agonist response in 20% of patients [136]. However, 
the impact on FEV1 differed according to the specific non-
selective β-blocker employed. Administration of labetalol 
did not result in a statistically significant alteration in FEV1 
compared to placebo (− 2.7%, p = 0.43), whereas proprano-
lol did (− 17%, p < 0.001).

Cardioselective β1-AR blockers like metoprolol, ateno-
lol, acebutolol, betaxolol, esmolol, bisoprolol and nebivolol 
do not increase the risk of asthma exacerbations in patients 
with CVD and asthma [137, 139]. However, they lack com-
plete specificity for β1-ARs, and exhibit variable selectivity, 
potentially antagonising β2-ARs at therapeutic doses [139]. 
A systematic review of blinded, placebo-controlled RCTs 
examining the effects of single dose or continuous treatment 
cardio-selective β-blockers in patients with reversible air-
way disease] indicated that the first dose of active treatment 
resulted in a minor reduction in FEV1 (7.46%) compared to 
the placebo, without any associated respiratory symptoms 
[140]. Subsequent continued treatment, which lasted from 
three days to four weeks, did not demonstrate any significant 
difference in FEV1, symptoms, or frequency of inhaler use 
compared to the placebo. Meanwhile, the response to β2-
agonists remained unchanged.

Recent research has found a significant association 
between the use of oral timolol or intravenous propranolol 
and an increased risk of asthma attacks, regardless of asthma 
history [141]. Conversely, oral celiprolol, a combination of 
celiprolol and propranolol, bisoprolol, and atenolol, intrave-
nous practolol and intravenous sotalol were associated with 
a reduced likelihood of exacerbating asthma symptoms. No 
documented asthma-related deaths associated with cardiose-
lective β1-blockers have been reported in the published liter-
ature, except one potential death in an asthmatic reported in 
the VigiBase dataset, although there was insufficient infor-
mation to establish definitive causality [142]. However, the 
absence of reports of asthma deaths does not definitively 
rule out their occurrence.

β-AR blockers can vary in their properties [143]. Some 
exhibit inverse agonist activity at different β-ARs and exert 
beneficial effects on airway epithelial and immune cells by 
inhibiting constitutive pro-inflammatory signalling via the 
non-canonical β-arrestin 2/extracellular signal-regulated 
kinase pathway (Fig. 3) [144]. Conversely, variations in the 
degree of intrinsic sympathomimetic activity (ISA) are asso-
ciated with the downregulation of β2-ARs [54].

Guidelines recommend avoiding β-AR blockers with ISA 
for CVD treatment [145]. Conversely, chronic inverse ago-
nist treatment may benefit asthmatics. Nadolol, a non-selec-
tive β-AR blocker acting as an inverse agonist, reduced AHR 
and did not neutralise the effect of salbutamol in subjects 

with mild to moderate asthma [146, 147]. Similarly, in 
patients with mild or moderate asthma taking regular biso-
prolol, a cardioselective β1-AR blocker acting as an inverse 
agonist, the response to salbutamol after mannitol challenge 
was comparable to placebo [148]. However, large trials are 
needed to confirm these preliminary findings.

When deciding whether to prescribe β-blockers to 
patients with chronic airway diseases, it is important to make 
a thorough assessment of their clinical characteristics, air-
way disease severity and concomitant CVD [149]. A com-
prehensive risk-benefit assessment of the specific β-blockers 
to be prescribed to asthmatic patients with CVD comorbidi-
ties is needed. The potential benefits of β-blockers in the 
management of CVD should be carefully weighed against 
the potential risk of exacerbation of respiratory symptoms. 
Based on current evidence, it is advisable to prioritise 
selective β-blockers over non-selective β-blockers for the 
treatment of patients with asthma, as selective β1-ARs are 
less likely to worsen pulmonary symptoms compared with 
non-selective β-blockers that also act on β2-ARs [150]. This 
approach aims to minimise respiratory AEs while providing 
the necessary CV benefits. However, even when using selec-
tive β1-AR blockers, careful consideration of drug dose and 
timing is essential [149].

Co-administering β2-agonists and β-AR has shown promise 
in patients with asthma and CVD. Prolonged use of inhaled 
β2-agonists can cause reduced β2-AR responsiveness, known 
as desensitisation, affecting disease control [151]. This desen-
sitisation involves several intracellular signalling pathways 
[58]. Patients with CVD and chronic airway disease often 
experience increased cardiac adrenergic activity [54], lead-
ing to further desensitisation of β2-ARs through G protein-
coupled receptor kinase 2 (GRK2)-mediated phosphorylation, 
β-arrestin 2 binding and receptor internalisation, and reduced 
airway relaxation and bronchoprotection [152, 153]. Long-
term use of β-blockers can reverse β2-AR desensitisation [151] 
potentially reducing the need for β2-agonists [154].

In an experimental model of congestive heart failure, 
combining the β2-agonist indacaterol with the β-blocker 
metoprolol effectively reversed cardiac remodelling, reduced 
infarct size, lowered blood pressure and heart rate, restored 
ejection fraction, and left ventricular dimensions, and nor-
malised gene expression and cyclic adenosine monophos-
phate levels, while decreased cardiac GRK2 expression 
[155]. These findings suggest that stimulating β2-ARs while 
blocking β1-ARs may benefit failing heart treatment, possi-
bly by promoting cardiac progenitor cell expansion.

5.2 � Angiotensin‑Converting Enzyme Inhibitors 
and Angiotensin II Type 1 Receptor Blockers

 ACE-Is and AT-1RBs are used to treat hypertension and 
heart failure. ACE-Is inhibit the conversion of angiotensin 
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(Ang) I to Ang II, a potent vasoconstrictor, while AT-1RBs 
block Ang II effects by antagonising its receptors. Angio-
tensin-converting enzyme is also involved in the metabolism 
of bradykinin and ACE-Is are more efficient at inhibiting 
bradykinin degradation than Ang II synthesis [156].

 ACE-Is are often associated with cough in patients with 
respiratory disease and can occasionally induce bronchos-
pasm due to bradykinin accumulation in the airways [157]. 
The incidence of this particular side effect is not well defined, 
with percentages ranging from 2.8 to 40%, depending on fac-
tors such as ethnicity, genotype, pre-existing CVD, assess-
ment techniques and the specific ACE-I prescribed [157]. 
Cough typically occurs within the first two weeks after ini-
tiating ACE-I treatment, although delayed onset is possible 
[157]. In hypertensive patients with asthma, ACE-Is have 
been associated with worse asthma outcomes, including 

increased need for rescue medication such as SABAs, more 
frequent emergency department visits or hospital admissions, 
and a greater reliance on systemic corticosteroids [158, 159].

Some evidence suggests that individuals with active 
asthma, particularly older women with a higher body mass 
index, may have reduced tolerance to ACE-Is [160]. How-
ever, not all studies have consistently observed a risk of 
bronchoconstriction or asthma exacerbation [161]. Given the 
variability in individual responses to ACE-Is, further inves-
tigation is warranted if a potential risk is identified [162].

Conversely, AT-1RBs do not usually induce cough even 
in patients intolerant to ACE-Is [163] and may even slightly 
reduce AHR [164]. Individuals with active asthma are at a 
higher risk of ACE-I intolerance, leading to a greater likeli-
hood of switching to AT-1RBs, especially in severe asthma 
and older age groups [160].

Fig. 3   Chronically administered β2-AR inverse agonists, by deacti-
vating spontaneously active β2-ARs, exert their beneficial effects on 
both airway epithelial and immune cells by suppressing constitutive 
pro-inflammatory signalling via non-canonical β-arrestin 2-mediated 
pathways. In addition, deactivation of β2-ARs by inverse agonists pre-

vents phosphorylation of these receptors, thereby preventing desen-
sitisation and down-regulation. AHR airway hyperresponsiveness, AR 
adrenoceptor, ASM airway smooth muscle, β2-ARs beta-2 adrenergic 
receptors, GRK2 G-protein coupled receptor kinase 2, IL interleukin, 
MAPK p38 mitogen-activated protein kinase
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The renin-angiotensin system inf luences inf lam-
mation, potentially affecting asthma pathophysiology 
(Fig. 4) [165]. Two pathways, mediated by ACE/Ang II/
AT1-R and ACE2/Ang-1-7/Mas receptor, are involved. 
Balancing these pathways is crucial for organ and system 
homeostasis. Increased ACE/ACE2 activity ratio favours 
pro-inflammatory effects by enhancing Ang II formation 
and Ang-(1–7) degradation [166]. Ang II over-activates 
AT1-Rs, inducing vasoconstriction and increasing pro-
inflammatory cytokine levels, effects related to the ability 
of Ang II to activate nuclear factor (NF)-κB via AT1-Rs 
[167]. Conversely, Mas receptor activation by Ang-(1–7) 
promotes anti-inflammatory effects by inhibiting NF-κB 
signalling, potentially resolving inflammation [168].

Research indicates harmful effects of Ang II/AT1 acti-
vation on inflammation, pulmonary remodelling, and AHR 
in asthma [169]. Elevated circulating ACE levels are sig-
nificantly associated with asthma development [170]. 

Patients with severe acute asthma often have elevated 
levels of Ang II [171]. Furthermore, Ang II exacerbates 
methacholine and endothelin-1–induced bronchoconstric-
tion [172, 173] and provokes contraction of human ASM 
through the RhoA/Rho-associated coiled-coil–containing 
protein kinase 2 signalling pathway [174].

Chronic reduction of ACE activity and pharmacologi-
cal strategies targeting Ang II/AT1 activation may offer 
long-term benefits in asthma. The AT1-R blockade may 
exert its effect in part by enhancing the Ang-(1–7)/Mas 
receptor pathway [169]. However, large RCTs are needed 
to validate these findings and to determine the safety and 
efficacy of ACE-Is and AT-1RBs in asthma.

5.3 � Statins

Statins, commonly used for lowering cholesterol and pre-
venting CVD [175], are now recognised for their potential 

Fig. 4   Schematic view of the RAS cascade and proinflammatory 
effects of angiotensin II. Activation of the RAS results increased 
production of inflammatory cytokines (in this figure only a few are 
shown), which play pivotal roles in increasing pulmonary inflamma-
tion and promote hyperplasia of smooth muscle cells and bronchoc-
onstriction. Chronic reduction of ACE activity and the use of phar-
macological strategies aimed at attenuating Ang II/AT1 activation 

may have long-term benefits in the treatment of patients with asthma. 
ACE angiotensin converting enzyme, ACE2 angiotensin convert-
ing enzyme 2, Ang-(1–5) angiotensin-(1–5), Ang-(1–7) angioten-
sin-(1–7), Ang-(1–9) angiotensin-(1–9), AT1 AT1 receptor, AT2 AT2 
receptor, IL interleukin, MAS Mas receptor (MAS1), NF-κB nuclear 
factor-κB, Nox nicotinamide adenine dinucleotide phosphate oxidase, 
ROS reactive oxygen species, TNF-α tumour necrosis factor α
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benefits in lung health. Earlier concerns about statins caus-
ing drug-induced interstitial lung disease (ILD) [176] have 
been contradicted by recent findings showing a reduced risk 
of ILD and idiopathic pulmonary fibrosis with statin use, 
particularly at higher dosages [177]. Statins affect respira-
tory processes such as AHR, adaptive immunity, and T2 
inflammation by targeting metabolites in the mevalonate 
pathway [178]. These anti-inflammatory and immunomodu-
latory effects hold promise for asthma management.

By inhibiting 3-hydroxy-3-methylglutaryl coenzyme 
A reductase, a key enzyme in the mevalonate pathway, 
statins modulate inflammatory cells involved in both lung 
and systemic inflammation, including eosinophils, neu-
trophils, macrophages, mast cells, T cells and dendritic 
cells, and can attenuate AHR (Fig. 5) [166, 179]. Statins 
can also reduce pro-inflammatory cytokines, inhibit lym-
phocyte proliferation, exert antioxidant effects, increase 
endothelial nitric oxide synthase expression, and suppress 
ASM proliferation [180]. However, their effectiveness as 
an asthma treatment is still uncertain [180], with conflict-
ing data from trials possibly due to inadequate drug levels 
in the lungs [178].

Nevertheless, some studies suggest that statin treatment 
is associated with reduced asthma-related emergency vis-
its, hospitalisations, and corticosteroid use [181], and a 
reduced risk of exacerbations in adult asthmatics [182]. 
Meta-analyses also suggest that statins may reduce exac-
erbations and improve asthma management, relieving 
symptoms and decreasing inflammatory markers with-
out affecting lung function [183, 184]. Moreover, statins 
may enhance the anti-inflammatory effects of ICS even in 
smokers with asthma [185–187], although pharmacoki-
netic interactions between statins and corticosteroids at 
the level of CYP3A4 may increase systemic concentrations 
and AEs [188], such as muscle-related AEs [189, 190] and 
increases in blood glucose levels [191, 192].

Inhaled statins present a potential new option for asthma 
treatment, bypassing hepatic metabolism and allowing for 
lower doses with greater efficacy and reduced systemic 
AEs [178].

It is challenging to draw definitive conclusions regard-
ing the efficacy and safety of statins for the management 
of asthma due to the limited strength of the available evi-
dence. Given the anti-inflammatory capabilities of statins, 
which have the potential to improve asthma control and 

Fig. 5   Mevalonate pathway and mechanism of action of statins. The 
mechanism by which statins could be used for the treatment of asth-
matic patients seems to be the same as that observed for cholesterol 

lowering. AHR bronchial hyperresponsiveness, CoA coenzyme A, 
SQase squalene synthase
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reduce asthma exacerbations, their use may be an option as 
additional therapy to conventional treatment. However, it is 
essential to carry out long-term prospective clinical trials 
in specific populations to establish the efficacy and safety 
of statins as anti-inflammatory agents for the treatment of 
asthma.

5.4 � Anti‑platelet Agents

Anti-platelet agents like aspirin, clopidogrel, and ticagrelor 
are essential for managing and preventing ischaemic heart 
disease and valvular heart disease [179]. Recent evidence 
suggests that platelets play a role in asthma [193], interacting 
with dendritic cells and contributing to allergen sensitisa-
tion [194]. Additionally, platelets are crucial for recruiting 
eosinophils and neutrophils to the lung, forming extracel-
lular traps, and influencing the adaptive immune response 
by promoting Th2 cells and T2 innate lymphoid cell acti-
vation [195]. They also facilitate the transition from IgM 
to IgE antibodies, inhibit eosinophil apoptosis in the lung, 
and induce allergic reactions to innocuous environmental 
allergens. While interfering with platelet activation is a 
promising way to modulate inflammatory responses [28], 
the mechanisms involved in inflammation are different from 
those involved in blood clotting [196]. As a result, existing 
antiplatelet drugs are unlikely to provide any therapeutic 
benefit in the treatment of asthma.

Indeed aspirin, which targets cyclooxygenase-1 and 
inhibits thromboxane A2 synthesis in platelets [197], may 
exacerbate conditions like aspirin-exacerbated respiratory 
disease (AERD) [198]. Aspirin-exacerbated respiratory dis-
ease is characterised by symptoms like rhinorrhoea, bron-
chospasm, and hives due to an imbalance in arachidonic acid 
metabolism associated with excessive production of CysLTs, 
IL-33/thymic stromal lymphopoietin and prostaglandin (PG)
D2, and reduced production of airway PGE2 [199]. Aspi-
rin-exacerbated respiratory disease affects approximately 
7% of asthmatics [200], with a higher prevalence in those 
with nasal polyposis [201]. The P2Y12 inhibitors, such as 
clopidogrel, prasugrel and ticagrelor, which prevent ADP-
mediated platelet activation and aggregation, are alternative 
drugs for aspirin-intolerant individuals requiring anti-plate-
let therapy [202].

In asthmatics, prasugrel reduced AHR [203], whereas 
ticagrelor did not significantly affect lung function [204]. 
Combining clopidogrel with montelukast showed a syner-
gistic effect [205]. As discussed above, platelet activation 
associated with inflammation is based on unidirectional ago-
nism at P2Y1 receptors, which is distinct from the puriner-
gic signalling involved in platelet aggregation [206]. Novel 
drugs that selectively inhibit platelet-dependent inflamma-
tion without causing bleeding have potential as anti-inflam-
matory agents [207].

Platelet derived thromboxane A2 (TxA2), a potent platelet 
agonist, can cause bronchoconstriction and airway inflam-
mation [207]. While TxA2 synthetase inhibitors have shown 
benefit in asthma [207], their efficacy during acute asthma 
attacks is limited [208] due to the production of alternative 
bronchoconstrictors like PGD2 and PGF2 alpha because of 
alterations in the arachidonic acid pathway [209].

5.5 � Calcium Channel Blockers

Calcium channel blockers inhibit the influx of calcium ions 
into cells, thereby relaxing smooth muscle in blood vessels 
and the heart, which is helpful in the treatment of hyperten-
sion, angina pectoris and some cardiac arrhythmias [210].

Research suggests that calcium plays an important role 
in the pathophysiology of asthma. Increased intracellular 
calcium levels in ASM cells contribute to bronchoconstric-
tion, AHR and inflammation [211]. Blocking calcium chan-
nels can alleviate these effects and reduce ASM contraction, 
relieve bronchoconstriction induced by various stimuli and 
induce bronchodilation [212].

Oral calcium channel blockers do not worsen asthma 
and may even have beneficial effects on lung function, par-
ticularly in patients with mild asthma and exercise-induced 
asthma [213]. A retrospective observational study found 
that calcium channel blockers reduced the annual decline in 
lung function in asthmatics, probably because of their anti-
inflammatory effects and inhibition of airway remodelling 
[214]. However, they must be used with caution as they can 
also induce angioedema, occasionally necessitating intuba-
tion [215].

5.6 � Diuretics

Diuretics are essential for managing fluid retention and 
blood pressure in individuals with both asthma and CVD. 
However, their effect on respiratory function, particularly in 
asthmatics, requires careful consideration. Thiazides, loop 
diuretics, and potassium-sparing diuretics, each with distinct 
mechanisms of action, regulate fluid balance.

Thiazides may exacerbate hypokalaemia when used with 
β2-agonists or ICS [216], as β2-agonists can translocate 
potassium into cells and corticosteroids may increase uri-
nary potassium excretion [217]. Hypokalaemia can weaken 
respiratory muscles [218] and potentially trigger cardiac 
arrhythmias [66]. Thiazides may also induce metabolic alka-
losis, reducing ventilatory drive and worsening respiratory 
symptoms in asthmatics [219].

Loop diuretics, effective in treating fluid overload in heart 
failure, may cause electrolyte imbalances like hypokalae-
mia [220]. High doses can induce metabolic alkalosis by 
excessive loss of chloride and hydrogen ions in the urine, 
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potentially worsening hypercapnia, particularly in those with 
respiratory impairment [221].

Potassium-sparing diuretics are less likely to cause 
hypokalaemia but should be used cautiously in individu-
als with renal impairment or at risk of hyperkalaemia, as 
elevated potassium levels may adversely affect respiratory 
function [222].

5.7 � PCSK9 Inhibitors

PCSK9-Is have pleiotropic effects, such as anti-inflam-
matory and anti-allergic properties, beyond lipid control 
[223]. It has been postulated that PCSK9 expression may 
contribute to inflammation and that PCSK9-Is may reduce 
inflammation by downregulating PCSK9 expression [224]. 
PCSK9 inhibition was observed to suppress the development 
of AHR, monocytosis in bronchoalveolar lavage fluid and 
systemic pro-inflammatory mediators in the lungs of mice 
fed a high-fat diet [225]. However, a drug target Mendelian 
randomization analysis in the European population revealed 
that genetically predicted inhibition of PCSK9 could signifi-
cantly increase the risk of asthma [226]. Given the genetic 
variations between different ethnic groups, it is important to 
recognize that the efficacy and side effects of PCSK9-Is may 
differ between populations. To achieve a more comprehen-
sive conclusion, future studies should incorporate subgroup 
analyses involving diverse populations.

6 � Conclusion

The concomitant management of asthma and CVD requires 
a comprehensive approach. Although currently there are 
no specific guidelines specifically addressing the optimal 
treatment of patients with both asthma and CVD, it is advis-
able to adhere to the existing  guidelines for the treatment 
of asthma alongside with those for the treatment of CVD, 
carefully selecting asthma therapies to avoid worsening CV 
symptoms, controlling CV risk factors like hypertension, 
hyperlipidaemia, diabetes, obesity, and promoting smoking 
cessation.

Collaboration between pulmonologists and cardiologists 
is crucial for developing personalised treatment plans. Close 
monitoring and tailoring of treatment to individual patient 
factors and comorbidities, with regular follow-up and com-
munication between health care providers, are essential for 
comprehensive management.

Continuing advancements in knowledge underscore the 
importance of remaining updated to provide optimal care for 
patients with asthma and CVD. There is a pressing need to 
enhance comprehension of the interplay between these two 
diseases and develop evidence-based guidelines and treat-
ment protocols. Evaluating the efficacy, safety and long-term 

outcomes of different treatment strategies is essential to 
improve clinical practice. Future research should investigate 
the pathways linking the exacerbation of one disease to the 
other, considering both respiratory and CV parameters, to 
guide appropriate therapeutic interventions. Furthermore, 
advances in pharmacogenomics and precision medicine offer 
hope for personalised therapeutic approaches to asthma and 
CVD, using genetic profiles to tailor drug response and 
minimise AEs.
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