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ESTIMATES FOR THE AVERAGE SCALAR CURVATURE OF THE

WEIL-PETERSSON METRIC ON THE MODULI SPACE Mg

GEORG SCHUMACHER AND STEFANO TRAPANI

Abstract. We give a precise estimate for the average scalar curvature of the Weil-Petersson metric on
the moduli space Mg as g → ∞ up to the order 1/g2.

1. Introduction and Statement of the Result

The curvature of the Weil-Petersson metric recently attracted further interest. In this note we will
give the precise estimate for the average of the scalar curvature SWP of the Weil-Petersson metric on the
moduli space Mg as g tends to infinity. The result is the value
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The proof of the asymptotics will be based upon methods of Algebraic Geometry. Wolpert showed in
[W1, W2] that Mumford’s canonical class κ1 (the tautological class obtained from the universal curve)
from [Mu1, Mu2] (cf. [A-C1, A-C2]) is the cohomology of the Weil-Petersson form extended to the
compactification up to the factor 2π2 together with the fact that its restriction to the boundary equals
to the Weil-Petersson cohomomology of the boundary (interpreted as related to moduli of punctured
surfaces of lower genus).

The finiteness of the Weil-Petersson volume itself is a consequence of Masur’s estimates [Ma], whereas
the curvature was computed by Wolpert [W3] and Fischer-Tromba [Tro]. These results implied strong
negativity properties, in particular the strict negativity of the scalar curvature. It is known that the scalar
curvature tends to −∞ towards the boundary. Precise estimates of the curvature of the Weil-Petersson
metric towards the boundary are contained in [S] and [T] with a later developments by Liu-Sun-Yau
[L-S-Y1, L-S-Y2].

Estimates of the Weil-Petersson volume had been given by Mirzakhani [Mi], Mirzakhani-Zograf [M-Z],
Penner [Pe], Grushevsky [Gr], Zograf [Zo1, Zo2] and previously in [S-T]. The algebraic aspect is contained
in the push-pull formulas by Arbarello and Cornalba [A-C1, A-C2].

The Weil-Petersson volume of the moduli spacesMg,n of Riemann surfaces of genus g with n punctures
is denoted by

Vg,n =

∫

Mg,n

κ3g−3+n
1 .

Finally the relationship of intersection numbers and volumes as related to two dimensional gravity ought
to pointed out. Pertinent references are [Dij, F-P, Ge, Ko, M-Z, Wi].

We showed the following estimates.

Theorem 1 ([S-T]). (i) Let g > 1. Then

(1) Vg,0 ≥ 1

28
Vg−1,2 +

1

672
Vg−1,1 +

1

14

[g/2]∑

j=2

Vj,1Vg−j,1 −
1

28
(V g

2
,1)

2,

with V g

2
,1 = 0, if g is odd.

(ii) There exist constants 0 < c < C, independent of n such that

(2) cg(2g)! ≤ Vg,n

(3g − 3 + n)!
≤ Cg(2g)!

for all fixed n ≥ 0 and large g.
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Concerning (2), a lower estimate for n = 1 is due to Penner [Pe, Theorem 6.2.2], and the upper
estimates for n ≥ 1 were first shown by Grushevsky in [Gr, Sec. 7].

Bounds for the curvature of the Weil-Petersson metric were proven by Wu and Wolf in [W-W] and Wu
in [Wu1, Wu2]. A recent result is the following:

Theorem 2 (Bridgeman-Wu, [B-W]). Denote by SWP the scalar curvature of the Weil-Petersson form

ωWP , and by dVWP its volume element. There exist constants 0 < c < C such that

(3) c · g ≤

∫
Mg

(−SWP ) dVWP∫
Mg

dVWP

≤ C · g

for all g.

We will show that the Bridgeman-Wu estimate follow in an algebraic way using (1).
The actual asymptotics of the Weil-Petersson volume (containing (2)) was computed by Mirzakhani

and Zograf. (We use the above normalization for the Weil-Petersson volume.)

Theorem 3 ([M-Z, Theorem 1.2]). There exists a constant C ∈ (0,∞) such that for any given k ≥ 1,
n ≥ 0

(4) Vg,n = CMZ
(3g − 3 + n)! (2g − 3 + n)! 2g−3+n

π2g√g


1 +

k∑

j=1

c
(j)
n

gj
+O

(
1

gk+1

)


as g → ∞.

The theorem contains further characterizations of the polynomials c
(j)
n – we will need the case k ≤ 1,

and n ≤ 2. The Mirzakhani-Zograf constant CMZ is conjectured to be CMZ = 1/
√
π.

Let again δ be the Q-divisor related to the boundary components of the moduli space (see also below),
and denote by κ1 the Mumford class. Recall that the class [ωWP ] of the Weil-Petersson form was computed
in [W1, W2] as 2π2κ1. Set η = [−Ric(ωWP )/2π].

Main Theorem. The average total scalar curvature of the Weil-Petersson metric on the moduli space

Mg satisfies the estimate
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The precise value is

Eg =
κ3g−4
1 · δ
κ3g−3
1

where δ =

[g/2]∑

j=0

δj.(6)

Note that the ampleness of κ1 implies that Eg is positive.

2. Proof

Let D denote the compactifying divisor of Mg with components ∆j for j = 0, . . . , [g/2]. These give
rise to Q-divisors δj such that in terms of the generally used notation

[∆1] = 2δ1 and [∆j ] = δj for j 6= 1.

Then δ :=
∑[g/2]

j=0 δj so that

D = δ + δ1.

Note that there exist branched two-sheeted coverings Mg−1,2 → ∆0, Mg−1,1 × M1,1 → ∆1, and

Mg/2,1 ×Mg/2,1 → ∆g/2 for even g yielding extra factors 1/2 in Lemma 1.
.
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Two classical facts are needed. Mumford’s direct image bundle λ satisfies [Mu1]

κ1 = 12λ− δ,

and by [H-M] the canonical bundle K
Mg,0

is equal to

K
Mg,0

= 13λ− 2δ − δ1.

In [T, Corollary 5.5] it was shown by means of a a singular Mumford good hermitian metric that η is
the Chern class of the dual of the logarithmic tangent bundle T

Mg,0
(logD). Therefore

(7) [η] = K
Mg,0

+ [D].

Now (5) can be shown:
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1
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1
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1
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1

=
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1
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3g−4
1

κ3g−3
1

The main result consists of the estimate for Eg. The special value for V1,1 etc. are taken from [S-T].

Lemma 1.

κ3g−4
1 · δ0
κ3g−3
1

=
1

2

Vg−1,2

Vg,0
(8)

κ3g−4
1 · δ1
κ3g−3
1

=
1

2
· V1,1 · Vg−1,1

Vg,0
=

1

48
· Vg−1,1

Vg,0
(9)

κ3g−4
1 · δj
κ3g−3
1

=
Vj,1 · Vg−j,1

Vg,0
for 2 ≤ j ≤ [(g − 1)/2](10)

κ3g−4
1 · δg/2
κ3g−3
1

=
1

2

(Vg/2,1)
2

Vg,0
for g even.(11)

Remark 1. Lemma 1, and (5) together with (1) imply the Bridgeman-Wu Theorem 2.

We will apply the Mirzakhani-Zograf estimate (4), and the following values contained in [M-Z, Remark
1.2]:

c
(1)
0 =

7

12
− 17

6π2
(12)

c
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1 =

1

3
− 5

6π2
(13)
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+

1
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.(14)

Lemma 2.

1
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=

1
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√
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(16)
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=
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2

√
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(
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for 2 ≤ j ≤ [(g − 1)/2]
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for g even.
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The computation of (15) is the following.

1

2

Vg−1,2

Vg,0
=

1

2

(3g − 4)! (2g − 3)! 2g−2π2g √g

(3g − 3)! (2g − 3)! 2g−3 π2g−2
√
g − 1

· C̃g =

=
π2

3g

(
g

g − 1

)3/2

· C̃g =
π2

3g

(
1 +

3

2g
+O

(
1
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where

C̃g =

(
1 + c

(1)
2

1

g − 1
+O

(
1

g2

))/(
1 + c

(1)
0

1

g
+O

(
1

g2
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The coefficients c
(1)
n do not contribute to the remaining terms up to order three in 1/g.

We need an elementary estimate:
Let l ≤ k ≤ n be positive integers, then (n − k)(k − l) ≥ 0, i.e. n−k+l

l ≥ n
k . So we derive the well

known inequality

(19)

(
n

k

)
=

k∏

l=1

n− k + l

l
≥

(n
k

)k

.

The function

f(x) := log

(
h

x

)x

= x(log h− log x)

attains its maximum value at x = h/e so that its minimum will be taken at either end of a given interval.
The binomial coefficients in (17) attain asymptotic lower estimates for 2 ≤ j ≤ [g/2] at j = 2 namely

(
3g − 4

3j − 2

)
≥

(
3g − 4

4

)4

and

(
2g − 4

2j − 2

)
≥ (g − 2)2.

Hence, summing up all terms of the type (17) yields a term of growth order at most O(1/g7). The last
term (18) has a at most a negative exponential growth with respect to g and can also be disregarded.

This proves the main theorem. �
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