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We study a two-layer energy balance model, that allows for vertical exchanges between a surface layer and the at-
mosphere. The evolution equations of the surface temperature and the atmospheric temperature are coupled by the
emission of infrared radiation by one level, that emission being partly captured by the other layer, and the effect of
all non-radiative vertical exchanges of energy. Therefore, an essential parameter is the absorptivity of the atmosphere,
denoted εa. The value of εa depends critically on greenhouse gases: increasing concentrations of CO2 and CH4 lead
to a more opaque atmosphere with higher values of εa. First we prove that global existence of solutions of the system
holds if and only if εa ∈ (0,2), and blow up in finite time occurs if εa > 2. (Note that the physical range of values for
εa is (0,1]). Next, we explain the long time dynamics for εa ∈ (0,2), and we prove that all solutions converge to some
equilibrium point. Finally, motivated by the physical context, we study the dependence of the equilibrium points with
respect to the involved parameters, and we prove in particular that the surface temperature increases monotonically with
respect to εa. This is the key mathematical manifestation of the greenhouse effect.

A simple yet valuable approach to the study of the cli-
mate system comes from the use of Energy Balance Models
(EBMs), which had originally been introduced in the six-
ties independently by Budyko and Sellers. The description
provided by EBMs can be improved by increasing the ver-
tical resolution. In this paper, we consider vertical layers
to represent the very important exchanges occurring be-
tween surface and the atmosphere and we study the sensi-
tivity with respect to parameters which are partly related
to the greenhouse effect.

I. INTRODUCTION

A. Energy Balance Models

The climate is a multiphase system featuring variability
over many temporal and spatial scales. Its evolution can
be written in terms of extremely complicated conservation
laws for energy, momentum, and chemical species for three-
dimensional (3D) fields1,2. Given such a level of complex-
ity, it is far from trivial to relate data, theories, and numerical
models3. Indeed, the theoretical and numerical investigation
of the climate system relies on the use of models that differ
wildly in terms of scope, details, and overall complexity, rang-
ing from extremely low dimensional models to Earth system
models, which are some of the heaviest users of high perfor-

mance computing facilities4.
A simple yet extremely valuable approach to the study of

the climate system comes from the use of Energy Balance
Models (EBMs), which had originally been introduced in the
sixties independently by Budyko5 and Sellers6. Such models
describe in a very simplified yet effective way the evolution
of the zonally averaged temperature on the Earth’s surface,
thus reducing the problem to a single 1D field. The planet
receives radiation from the Sun (mostly in the form of visi-
ble and ultraviolet radiation); part of this radiation is scattered
back to space through an elastic process where no energy is
exchanged, and part is absorbed, mostly at surface. Then,
radiation is emitted by the planet, mostly in the form of in-
frared radiation. The incoming solar radiation is unequally
distributed over the surface of the planet, hence the balance
between absorbed and emitted radiation will depend on lati-
tude. A variety of physical processes, mostly associated with
the large-scale motion of the geophysical fluids (the atmo-
sphere and the ocean) are responsible for transporting heat
from warm to cold regions, thus acting effectively as agents
of diffusion. An EBM evolution equation reads as

γ

[
∂T
∂ t
− k

∂

∂x

(
(1− x2)

∂T
∂x

)]
= Rs−Re, (I.1)

where T (t,x) is the surface temperature, measured in Kelvin
degrees, at colatitude θ = sin−1 x, x ∈ (−1,1) is the space
variable, t > 0 is the time variable, Rs and Re are the average
amount of solar energy flowing into and out a unit area of
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the Earth surface per unit time. The constant γ represents the
effective heat capacity (which is the energy needed to raise the
temperature by one kelvin), while the quantity kγ = D is the
effective thermal conductivity, which controls the efficacy of
the latitudinal diffusion of energy. As hinted above, this is a
very simplified way to represent the effect of the action of the
geophysical fluids in the climate system.

The fundamental laws of thermodynamics impose that the
amount of energy radiated from Earth to space depends on the
temperature. As a first approximation, we can assume that
the Earth emits as a black body with a surface temperature
T . Therefore, we assume that function Re follows the Stefan-
Boltzmann law

Re(T ) = σBT 4

where σB = 5.67 · 10−8Wm−2K−4 is the Stefan-Boltzmann
constant.

The energy absorbed by the Earth is a fraction of the in-
coming solar radiation Q

Rs = Q(t,x)β (T ),

where β is the effective coalbedo. The effective coalbedo de-
pends on many local factors as cloud cover, composition of
the Earth’s atmosphere, presence of ice on the Earth’s sur-
face, etc., and, by and large, has to do with the color of the
planet as seen from space: darker hues absorb more solar ra-
diation than light ones. It is possible to provide a reasonable
parametrization of the coalbedo as a function of the tempera-
ture via piecewice linear function of the form

β (T ) =


β− T ≤ T−
β−+

T−T−
T+−T−

(β+−β−) T ∈ [T−,T+]
β+ T ≥ T+.

Indeed, the polar regions, where the temperature is lower, can
be covered by snow and ice and have a higher cloud cover,
leading to a smaller coalbedo with respect to equatorial re-
gion, which are free of snow and ice and covered with land
and open water. Typical reference values for the parameters
of the equation above are

β− = 0.3, β+ = 0.7, T− = 250K, T+ = 280K,

see, for instance,7 (Chapter 2).
The solar radiation Q can be taken of the form

Q(t,x) = r(t)q(x) (I.2)

where r(t) is a positive, possibly periodic, function allowing
for seasonal cycle and q(x) is the latitudinal-dependent inso-
lation function, which depends on the geometry of the Sun-
Earth system1.

B. Multistability and Critical Transitions

Many authors studied the well-posedness, uniqueness of
solutions, asymptotic behaviour, existence of periodic so-
lutions, free boundary problem and numerical approxima-
tions of these models. We recall the results of North and

co-workers8–10, Ghil11, Held and Suarez12, Diaz and co-
authors13–15, Hetzer16–18, and many others. Chen and Ghil19

studied in detail a more sophisticated version of the problem
above, comprising of an atmosphere described by an EBM
coupled to a ocean described through (approximate) fluid dy-
namical equations, finding low-frequency variability associ-
ated with the occurrence of a Hopf bifurcation.

We remark that the EBM described above, despite its sim-
plicity, has been instrumental for discovering the multistabil-
ity of the Earth’s climate. Indeed, as anticipated by Budyko5

and Sellers6 and analysed in detail by Ghil11, the model al-
lows for the presence of two competing asymptotic states for
the same values of the parameters. Such states correspond
to the current warm climate and the so-called snowball state,
characterised by global glaciation and surface temperatures of
the order of 220 K. Paleoclimatic evidences collected in the
’90s20 have shown that, indeed, our planet has spent in the
distant past many million years in snowball conditions, the
departure from which has allowed the evolution of multicel-
lular life4,21. Between the two competing climates, one can
find a saddle solution which lives on an invariant set that be-
longs to the boundary between the two competing basins of at-
traction; see discussion in Lucarini and Bodai and references
therein22–24.

We remark that one of the key manifestations of the multi-
stability of the climate is the existence - in models and obser-
vations - of critical transitions, which lead the system to quali-
tative (and de facto irreversible) changeovers from one regime
of operation to a qualitatively different one25. A paradigmatic
example of such critical transition is the saddle-node bifurca-
tion whereby the warm state and the snowball states becomes
the only viable attractor11.

In Earth system sciences such critical behaviour is asso-
ciated with the so-called tipping points (TPs)26. Indeed,
the history of the Earth’s climate features periods of rela-
tively smooth response to perturbations alternating with rapid
changes due to TPs4,27,28. We are now at risk of experienc-
ing within our lifetime the collapse of the Amazon Forest29

(forest to savannah transition) or of the Atlantic meridional
overturning circulation30 (transition from vigorous to very
weak circulation). The nearing of a tipping points is flagged
by the increased sensitivity of a system to perturbations and
by the increase in the correlation time of generic signals31;
see a more complete theory in32,33 and extension to a time-
dependent framework in34.

C. From one to two Layers

The EBM described in the equations above can be improved
by increasing the vertical resolution. Indeed, considering var-
ious vertical layers it is possible to represent, at least approx-
imately, the very important vertical exchanges processes oc-
curring between surface and the atmosphere, and, possibly,
between different atmospheric levels (e.g. troposphere and
stratosphere)35. Hence, instead of considering just one verti-
cally homogeneous layer, a more accurate description of the
climate system can be obtained via the following two-layer
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energy balance model (2LEBM), that allows for vertical ex-
changes between a surface layer and the atmosphere:



γa

[
∂Ta
∂ t − ka

∂

∂x

(
(1− x2) ∂Ta

∂x

)]
=−λ (Ta−Ts)+ εaσB|Ts|3Ts−2εaσB|Ta|3Ta +Ra,

γs

[
∂Ts
∂ t − k0

∂

∂x

(
(1− x2) ∂Ts

∂x

)]
=−λ (Ts−Ta)−σB|Ts|3Ts + εaσB|Ta|3Ta +Rs,

(1− x2) ∂Ta
∂x |x=±1 = 0 = (1− x2) ∂Ts

∂x |x=±1,

Ta(0,x) = T (0)
a (x),

Ts(0,x) = T (0)
s (x).

(I.3)
Ta represents the temperature of the atmospheric layer while
Ts stands for the surface temperature. The energy coupling
between the two layers occurs through two different terms.
One involves the emission of infrared radiation by one level,
that emission being captured by the other layer. The other
one is linear with the difference between the temperature of
the two layers and describes succinctly the effect of all non-
radiative vertical exchanges of energy due to the action of the
geophysical fluids (see36 (Chapter 10)). Notice that when the
atmospheric temperature is lower than the surface one, this
term tends to warm up the atmosphere and cool down the sur-
face. Note that the atmosphere is assumed to have, in gen-
eral, non-unitary absorptivity εa, because it is treated as a grey
rather than black body. One needs to keep in mind that out of
fundamental physical principles 0 ≤ εa ≤ 1. The value of εa
depends critically on greenhouse gases: increasing concentra-
tions of CO2 and CH4 lead to a more opaque atmosphere with
higher values of εa; see an instructive discussion in35. Indeed,
εa measures the greenhouse effect: an estimate of εa for a
basic Energy Balance Model for present-day conditions gives
εa ≈ 0.627 (Chapter 2)).

Similarly to the one-layer model, Rs is the solar radiation
absorbed at the surface. It is a fraction of the incoming solar
flux Q

Rs(t) = Q(t,x)βs(Ts), (I.4)

where βs is the coalbedo function. In general, βs is modelled
as a nondecreasing positive and bounded function (as, for in-
stance, the piecewise linear function showed for the one-layer
case). We also introduce the term Ra, which represents the
solar radiation absorbed by the atmospheric layer

Ra(t) = Q(t,x)βa(Ta), (I.5)

and is much smaller than Rs, because the atmosphere is al-
most transparent in the visible range. Note that most of
such absorption occurs in the stratosphere, whereas the tro-
posphere, the atmospheric layer that is closest to surface and
that contains most of the mass, plays a lesser role, unless pol-
lutants like black carbon are present. Indeed, as well known,
the atmosphere is a system warmed from below, because the
external forcing coming from the absorption of the solar radi-
ation acts prevalently at surface1. We choose for the incoming
flux Q(t,x) the representation (I.2). Finally, the generalized

Neumann boundary condition arises naturally when one per-
forms the change of variable θ = sin−1 x between the colati-
tude θ and the new space variable x.

Note that related two slabs or two boxes models have been
studied before in37–39. However, in these works the authors
considered coupled linear evolution equations with no diffu-
sion, or diffusion only on one layer.

We also remark that atmospheres can be very opaque to in-
frared radiation (much more than the Earth’s) as a result of
their composition and/or sheer mass thereof. The most obvi-
ous example is Venus, where the surface pressure is 90 times
larger than the Earth’s and the atmosphere is overwhelmingly
composed of CO2. The planet Venus is conjectured, in fact,
to have undergone a runaway greenhouse transition in a now
distant past40–42.

The runaway greenhouse effect emerges when the surface
warming leads to excessive evaporation of surface water, with
the resulting water vapour contributing to further increasing
the opacity of the atmosphere, up to full evaporation of the
available water, eventual loss of water vapour to space, and
transition to a fundamentally different climate (a divergent be-
haviour, at all practical levels). In a much weaker form, the
water vapour feedback contributes to a great amplification of
the greenhouse effect on the Earth with respect to what would
be realised in absence of water1.

D. Outline of the main findings

In this paper we study a simplified version of the two-layer
system given in (I.3) where we neglect the effect of latitudinal
variation of the fields, so that the system of partial differential
equations can be reduced to the following autonomous ODE
problem:

γaT ′a =−λ (Ta−Ts)+ εaσB|Ts|3Ts

−2εaσB|Ta|3Ta +Ra(Ta),

γsT ′s =−λ (Ts−Ta)−σB|Ts|3Ts + εaσB|Ta|3Ta +Rs(Ts),

Ta(0) = T (0)
a ,

Ts(0) = T (0)
s .

(I.6)
It appears that the parameter εa plays a major role in the qual-
itative behaviour of the solution of (I.6).

• If εa ∈ (0,2), we prove that the solution is global in
time, remains positive and bounded, and converges to
some equilibrium point (with positive components), see
Proposition II.1 in section II A.

• on the other hand, if εa > 2, we prove that there is blow
up in finite time, at least for some solutions, see Propo-
sition II.6 in section II D.

Next, when εa ∈ (0,2), in order to analyze the influence
of the different parameters, we focus on the problem where
Ra = 0 and Rs is piecewise linear: we assume that there exist
q > 0, Ts,+ > Ts,− > 0 and βs,+ > βs,− > 0 such that Rs(Ts) =
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Analysis of a two-layer energy balance model: long time behaviour and greenhouse effect 4

qβs(Ts) where

βs(T ) =


βs,− T ≤ Ts,−,

βs,−+(βs,+−βs,−)
T−Ts,−

Ts,+−Ts,−
T ∈ [Ts,−,Ts,+],

βs,+ T ≥ Ts,+.
(I.7)

Then we prove the following results:

• For all λ ≥ 0, all solutions converge to some equi-
librium point, see Proposition II.2. All the equilib-
rium points (Ta,Ts) remain in a compact subset inde-
pendent of λ , and satisfy Ta < Ts. Moreover, there is
at most one warm equilibrium (Ts > Ts,+, where Ts,+
appears in (I.7)), and at most one cold equilibrium
(Ts < Ts,−, where Ts,− appears in (I.7)), and these equi-
librium points are asymptotically exponentially stable,
see Proposition II.3. Furthermore, there exists at most
a finite number of equilibria (Proposition II.3) and we
are able to describe the asymptotic behaviour of the so-
lutions of our problem.

Moreover, we have the following monotonicity proper-
ties: assume that (T (εa,λ )

a ,T (εa,λ )
s ) is a warm or a cold

equilibrium (hence assume that T (εa,λ )
s /∈ [Ts,−,Ts,+]),

then, as a function of εa and λ , we prove that the surface
temperature T (εa,λ )

s

– increases as εa grows (see Proposition II.4),

– and decreases as λ grows (see Proposition II.5);

and the atmosphere temperature T (εa,λ )
a

– increases as εa grows, at least if εa ∈ [1,2) (see
Proposition II.4),

– increases as λ grows if εa ∈ [0,1) and decreases
as λ grows if εa ∈ (1,2) (see Proposition II.5).

As a consequence, an increment of εa causes a rise of
Ts (see Corollary II.1).

• When λ = 0 (or λ > 0 and εa ∈ (0,1]) we can describe
more precisely the stability of the system: there are ex-
actly one, two or three equilibrium points, and we are
able to detail the asymptotic behaviour of all solutions.
Indeed, in this case, the number of equilibrium points
is perfectly determined by the values of εa, σB, q, and
the parameters Ts,−, Ts,+, βs,−, βs,+ appearing in the
structure of function βs, see section V. Moreover, if
there are three equilibrium points (one warm, one cold
and one intermediate), then we have proved that the in-
termediate equilibrium is unstable, i.e. we clarify the
multistable nature of the climate system.

This paper is structured as follows:

• In Section II, we state the main results:

– global existence when εa ∈ (0,2) (see Proposition
II.1),

– blow up in finite time if εa > 2 (see Proposition
II.6),

– asymptotic behaviour if εa ∈ (0,2) (see Proposi-
tions II.2 and II.3),

– monotonicity of the equilibrium points with re-
spect to parameters εa and λ (see Propositions
II.4 and II.5) and application to the asymptotic be-
haviour (Corollary II.1).

• In Section III, we mention some open problems.

• In Section IV, we study the well-posedness of the prob-
lem (existence, uniqueness, positivity of solutions).

• In Section V, we analyze the behaviour of all solutions
when λ = 0 and Ra = 0.

• In Section VI, we consider the case of λ > 0 and Ra =
0.

• In Section VII, we derive several results showing the
sensitivity of the equilibria with respect to parameters
λ and εa.

• In Appendix B we derive upper bounds for the number
of equilibria which, in the physical case εa ∈ (0,1], is
equal to three.

• In Appendix A, we show that solutions may blow up in
finite time.

II. STATEMENT OF THE MAIN RESULTS

A. Global existence, positivity and boundedness for εa ∈ (0,2)

We make the following assumptions:

• let the coefficients λ , q and σB be such that

λ ≥ 0, q > 0, σB > 0. (II.1)

• let βa,βs : R→ R be globally Lipschitz continuous and
such that βa ≥ 0 and βs > 0, and define

Ra = qβa(Ta), Rs = qβs(Ts). (II.2)

• let the initial conditions satisfy

T (0)
a ≥ 0, T (0)

s ≥ 0. (II.3)

• let εa be in the following range

εa ∈ (0,2). (II.4)

Proposition II.1. Under the assumptions (II.1)-(II.4), prob-
lem (I.6) admits a unique solution, which is defined and
bounded for any t ∈ [0,+∞). Moreover

∀ t ∈ (0,+∞), Ta(t)> 0 and Ts(t)> 0. (II.5)

The proof of Proposition II.1 is given in Section IV.
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Analysis of a two-layer energy balance model: long time behaviour and greenhouse effect 5

B. Asymptotic behaviour of the solutions when εa ∈ (0,2)
and λ ≥ 0

When εa ∈ (0,2), the solution of (I.6) is global in time.

Proposition II.2. Consider εa ∈ (0,2) , λ ≥ 0, T (0)
s ≥ 0 and

T (0)
s ≥ 0. Then, the solution of (I.6) converges to an equilib-

rium point.

Proposition II.2 follows from a general result concerning
cooperative systems (see Smith43). We complete this general
convergence result in two directions:

• first, explaining how the convergence occurs when λ =
0 and Ra = 0 (see Section V, where we give a complete
description of the basins of attraction of the different
equilibrium points for λ = 0, and Section VI forλ > 0),

• finally, proving some properties of the equilibrium
points in the general case λ ≥ 0:

Proposition II.3. Assume that εa ∈ (0,2), λ ≥ 0, q> 0, βs > 0
is given by (I.7), and Ra = 0. Then

• problem (I.6) has at least one equilibrium point (Ta,Ts)
and at most a finite number of equilibria. In particular,
there are at most three equilibrium points for λ = 0 and
any εa ∈ (0,2), and for any λ > 0 and εa ∈ (0,1],

• all equilibrium points (Ta,Ts) of problem (I.6) belong
to a compact subset of (0,+∞)2 which is independent
of λ ,

• problem (I.6) has at most one cold equilibrium (Ta,Ts)
(that is, Ts ≤ Ts,−), and at most one warm equilibrium
(Ta,Ts) (namely, Ts ≥ Ts,+),

• a cold equilibrium point (Ta,Ts) is asymptotically expo-
nentially stable,

• a warm equilibrium point (Ta,Ts) is asymptotically ex-
ponentially stable.

The asymptotic behaviour of the solution of our system, for
the case λ = 0, is summarized in the phase space shown in
Figure 1 below (see the proof in Section V C for λ = 0 and in
Section VI E for λ > 0).

C. The influence of the parameters εa and λ on the
equilibrium points

Since all solutions converge to equilibrium points, it is in-
teresting to study the behaviour of such points with respect to
the parameters εa and λ . We consider the case where Ra = 0,
and βs is given by (I.7). Our results are the following:

Proposition II.4. Fix λ ≥ 0. Assume that (T eq,ε∗a
a ,T eq,ε∗a

s ) is
a warm [respectively cold] equilibrium point of problem (I.6)
with εa = ε∗a . More precisely, assume that T eq,ε∗a

s /∈ [Ts,−,Ts,+].

Ta

Ts C1

Peq
1

Peq
2

Peq
3 C2

Ta,threshold

Ts,threshold

FIG. 1: In the phase space we sketch by black and green
arrows the convergence of initial conditions according to

their belonging to the basins of attraction of the three
equilibria (2−1/4T ∗s,1,T

∗
s,1), (2

−1/4T ∗s,2,T
∗

s,2) and
(2−1/4T ∗s,3,T

∗
s,3), solutions of (6.1).

Then, there exists a unique warm [respectively cold] equi-
librium point (T eq,εa

a ,T eq,εa
s ) of problem (I.6) for εa close to

ε∗a . This equilibrium is also asymptotically exponentially sta-
ble. Moreover, the functions εa 7→ T eq,εa

s and εa 7→ T eq,εa
a are

locally analytic, and the following monotonicity properties
hold:

• locally, function εa 7→ T eq,εa
s is increasing. Hence,

the surface temperature equilibrium increases as εa in-
creases;

• locally, function εa 7→ T eq,εa
a is increasing if ε∗a ∈ (1,2).

Therefore, for such range of ε∗a , the atmosphere temper-
ature equilibrium increases as εa increases.

Note that we were not able to determine the variations of
T eq,εa

a when ε∗a ∈ (0,1). However, we have established not
only the sign of the derivative of T eq,εa

s with respect to εa, but
also its value, which is interesting to predict the evolution of
T eq,εa

s with respect to εa. From the previous proposition we
deduce the following

Corollary II.1. Fix λ ≥ 0. Let (T eq,ε∗a
a ,T eq,ε∗a

s ) be a warm
equilibrium of problem (I.6) associated to the parameter ε∗a .
Assume that T eq,ε∗a

s > Ts,+. Then

• for all εa ∈ [ε∗a ,2), there exists a unique warm equi-
librium of problem (I.6) with parameter εa. Further-
more, function εa 7→ T eq,εa

s is analytic and increasing on
[ε∗a ,2) and function εa 7→ T eq,εa

a is analytic on [ε∗a ,2);

• given ε+a > ε∗a , the solution of problem (I.6) with param-
eter ε+a and initial conditions (T eq,ε∗a

a ,T eq,ε∗a
s ) converge

to the warm equilibrium (T eq,ε+a
a ,T eq,ε+a

s ).

We can interpret the second item of Corollary II.1 as fol-
lows: if the absorptivity parameter increases, jumping from
ε∗a to ε+a , then the former warm equilibrium (T eq,ε∗a

a ,T eq,ε∗a
s ),
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Analysis of a two-layer energy balance model: long time behaviour and greenhouse effect 6

which is no more an equilibrium, converges to the new warm
equilibrium, (T eq,ε+a

a ,T eq,ε+a
s ), associated to ε+a . Furthermore,

since T eq,ε+a
s > T eq,ε∗a

s , the surface temperature rises as the pol-
lution parameter increases.

Let us now analyse the dependence of the equilibria on the
coupling parameter λ .

Proposition II.5. Fix εa ∈ (0,2). Assume that (T eq,λ ∗
a ,T eq,λ ∗

s )
is a warm [respectively cold] equilibrium point of problem
(I.6) with λ = λ ∗ ≥ 0. More precisely, assume that T eq,λ ∗

s /∈
[Ts,−,Ts,+].

Then, there exists a unique equilibrium point (T eq,λ
a ,T eq,λ

s )
of problem (I.6) for λ close to λ ∗. Such equilibrium is also
asymptotically exponentially stable. Furthermore, the func-
tions λ 7→ T eq,λ

s and λ 7→ T eq,λ
a are locally analytic, and the

following monotonicity properties hold:

• locally, function λ 7→ T eq,λ
s is decreasing. Thus, the sur-

face temperature equilibrium decreases as λ increases;

• locally, function λ 7→ T eq,λ
a is

– increasing if εa ∈ (0,1),
– decreasing if εa ∈ (1,2).

Hence, the atmosphere temperature equilibrium be-
haves monotonically with respect to λ , and the mono-
tonicity depends on εa.

Observe that we have determined not only the sign of the
derivative of T eq,λ

s and T eq,λ
a with respect to λ , but also their

values. This information can be useful to predict the evolution
of T eq,λ

s and T eq,λ
a with respect to λ .

D. Blow up in finite time when εa > 2

We complete the results of Proposition II.2 on the global
existence and boundedness of solutions of (I.6) for εα ∈ (0,2)
by studying the case of εα > 2, which, as discussed above, has
a mathematical motivation but a less solid physical interpreta-
tion.

We prove the following result about the ODE system (I.6).
When εa > 2, we give

• a precise result on a simplified model (assuming that
λ = 0 and Ra = 0): all solutions blow up in finite time.

• a general result directly on (I.6) (assuming only that
λ ≥ 0): there exist some solutions that blow up in fi-
nite time.

Let us consider the following assumptions:

• let λ , q and σB satisfy

λ = 0, q > 0, σB > 0, (II.6)

• let βa = 0 and βs > 0 be defined by (I.7), so that

Ra = qβa(Ta) = 0, Rs = qβs(Ts), (II.7)

• let εa be such that

εa > 2. (II.8)

Proposition II.6.
a) Under assumptions (II.3),(II.6)-(II.8), problem (I.6) ad-

mits a unique maximal solution that blows up in finite time.
b) Under the following weaker assumptions

• let λ > 0, q > 0, σB > 0,

• let βa ≥ 0 and βs > 0 be globally Lipschitz continuous,

• let εa > 2,

and (II.3), there exist solutions of problem (I.6) that blow up
in finite time.

The proof of Proposition II.6 is postponed in Appendix A.

III. EXTENSIONS AND OPEN QUESTIONS

A. Some open questions directly related to our results

There are some properties that we were not able to prove
which are of interest:

• the monotonicity of εa 7→ T eq,εa
a , where T eq,εa

a is a warm
equilibrium, in the case ε?a ∈ [0,1) (see Proposition
II.4). From numerical computations (see right columns
of Figures 2, 3, 4), we expect that εa 7→ T eq,εa

a is also
increasing in these cases.

• we obtained in Proposition II.4 local results concerning
the behaviour of warm (or cold) equilibria, and global
ones in Corollary II.1 concerning the behaviour of the
solution (Ta,Ts) when εa jumps to a higher value (that
is, if suddenly there is an increase of concentration of
CO2). However, it would be interesting to go further
and, for instance, to understand the behaviour of (Ta,Ts)
starting from a warm equilibrium point in the case of a
lowering of the value of εa. Our numerical tests suggest
that there is some hysteresis phenomenon, with the ex-
istence of a tipping point for which the solution of our
system could jump from a warm equilibrium to a cold
one. An analytic proof of such phenomenon would be
of great concern.

B. A periodic extension

It would be natural to investigate problem (I.6) in presence
of a seasonal effect:

Ra = r(t)qβa(Ta), Rs = r(t)qβs(Ts),

where the function r is positive and periodic in time. We ex-
pect the equilibrium points to be replaced by cycles, but a
careful analysis of this model should be carried out.
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Analysis of a two-layer energy balance model: long time behaviour and greenhouse effect 7

Ts

εa

Ta

εa

FIG. 2: Sensitivity of equilibrium T eq
s (above) and T eq

a
(below) with respect to εa in the case λ = 0

Ts

εa

Ta

εa

FIG. 3: Sensitivity of equilibrium T eq
s (above) and T eq

a
(below) with respect to εa in the case λ = 1

C. Inverse problem question

It would also be interesting to investigate the problem of
determining the values of εa and λ , as well as the insola-
tion parameter q (appearing in the expression of Rs), from
(the fewest possible) measurements of the solution. We refer

Ts

εa

Ta

εa

FIG. 4: Sensitivity of equilibrium T eq
s (above) and T eq

a
(below) with respect to εa in the case λ = 2

to44 for the determination of two coefficients in a reaction-
diffusion equation (invasion model), and to45–47 concerning
Budyko-Sellers parabolic equation (possibly involving mem-
ory effects).

IV. WELL-POSEDNESS

In the following we prove Propositions II.1 and II.2.

A. Local existence

Let us introduce the function F : R2→ R2 defined by

F
(

Ta
Ts

)
= 1

γa

[
−λ (Ta−Ts)+ εaσB|Ts|3Ts−2εaσB|Ta|3Ta +Ra

]
1
γs

[
−λ (Ts−Ta)−σB|Ts|3Ts + εaσB|Ta|3Ta +Rs

]  .

(IV.1)

So, problem (I.6) can be recast into the form

(
Ta

Ts

)′
= F

(
Ta

Ts

)
,(

Ta

Ts

)
(0) =

(
T (0)

a

T (0)
s

)
.

Then, the Cauchy-Lipschitz theorem implies that there exists
a unique maximal solution (Ta,Ts) defined on the maximal
time interval (τ−a,s,τ

+
a,s), where −∞≤ τ−a,s < 0 < τ+a,s ≤+∞.

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

01
36

67
3



Analysis of a two-layer energy balance model: long time behaviour and greenhouse effect 8

B. Positivity of the solution

Now, since we are investigating positive initial conditions,
let us prove the following result.

Lemma IV.1. Assume that T (0)
a ≥ 0 and T (0)

s ≥ 0. Then, as
long as the solution (Ta,Ts) exists, we have Ta(t) > 0 and
Ts(t)> 0 for positive times.

Proof of Lemma IV.1. Let us first consider initial conditions
(T (0)

a ,T (0)
s ) lying on the boundary of the set

Q :=
{(Ta

Ts

)
,Ta > 0,Ts > 0

}
,

and let us study the behaviour of F .
In the case T (0)

a > 0 and T (0)
s = 0, we have

F
(

Ta > 0
Ts = 0

)
=

 1
γa

[
−λTa−2εaσBT 4

a +Ra

]
1
γs

[
λTa + εaσBT 4

a +Rs

]  .

Observe that the second component is positive, and so F
points inward the set Q. Therefore, the associated solution
stays in Q for at least a certain period of time (small enough).

If T (0)
a = 0 and T (0)

s > 0, we get

F
(

Ta = 0
Ts > 0

)
=

 1
γa

[
λTs + εaσBT 4

s +Ra

]
1
γs

[
−λTs−σBT 4

s +Rs

] .

In this case the first component is positive and this implies
that F points inward the set Q. Once again, we find that the
associated solution lives in Q for a certain amount of time.

Finally, if T (0)
a = 0 and T (0)

s = 0, one has that

F
(

Ta = 0
Ts = 0

)
=

(
1
γa

Ra
1
γs

Rs

)
.

We recall that Rs(0)> 0. If also Ra(0)> 0, then once again
we deduce that F points inward the set Q. If instead Ra(0) =
0, then T ′a(0) = 0 = Ta(0), that implies Ta(t) = o(t). On the
other hand, T ′s (0) =

1
γs

Rs(0), hence close to t = 0 we have

that Ts(t) =
Rs(0)

γs
t +o(t). We note that

T ′a(t) =

=
1
γa

[
−λ (Ta−Ts)+ εaσB|Ts|3Ts−2εaσB|Ta|3Ta

]
+

1
γa

Ra

≥ 1
γa

[
−λ (Ta−Ts)+ εaσB|Ts|3Ts−2εaσB|Ta|3Ta

]
,

where we have used that Ra is nonnegative. Le us now treat
separately the cases λ > 0 and λ = 0.

If λ > 0, we have

1
γa

[
−λ (Ta−Ts)+ εaσB|Ts|3Ts−2εaσB|Ta|3Ta

]
=

1
γa

[
λTs

]
+

1
γa

[
−λTa + εaσB|Ts|3Ts−2εaσB|Ta|3Ta

]
=

1
γa

[
λ

Rs(0)
γs

t +o(t)
]
+

1
γa

[
o(t)

]
=

1
γa

[
λ

Rs(0)
γs

t +o(t)
]
,

which implies that

T ′a(t)≥
1
γa

[
λ

Rs(0)
γs

t +o(t)
]

if λ > 0.

By integration, we get that Ta(t) > 0 for t > 0 small. Since
also Ts > 0 for λ small enough, we conclude that the solution
stays in Q for a certain amount of time.

The same property is true if λ = 0: indeed, in this case, we
have that for t > 0 small enough

1
γa

[
−λ (Ta−Ts)+ εaσB|Ts|3Ts−2εaσB|Ta|3Ta

]
=

=
1
γa

[
εaσB|Ts|3Ts−2εaσB|Ta|3Ta

]
=

1
γa

[
εaσB

(Rs(0)
γs

t +o(t)
)4
−2εaσBo(t)4

]
=

1
γa

[
εaσB

Rs(0)4

γ4
s

t4 +o(t4)
]
.

Therefore

T ′a(t)≥
1
γa

[
εaσB

Rs(0)4

γ4
s

t4 +o(t4)
]
,

and by integrating in time, we obtain that Ta(t) > 0 for t >
0 small. Recalling that Ts(t) > 0 for t > 0 small, then the
solution remains in Q for an interval of time small enough.

Let us now consider

(
T (0)

a

T (0)
s

)
∈Q. We claim that the as-

sociated solution stays in Q for all positive times (as long
as it exists). We have already proved that the solution be-
longs to Q for small positive times. Now we proceed by con-
tradiction: assume that the solution leaves Q and let t0 be
the first exit time. Then, either (Ta(t0) > 0,Ts(t0) = 0), or
(Ta(t0) = 0,Ts(t0)> 0), or (Ta(t0) = 0,Ts(t0) = 0). However,
in the first two cases, F would point inward, a contradiction
with the minimality of t0. In the latter case we would have that
T ′s (t0) =

1
γs

Rs(0) > 0. However, since Ts(t0) = 0, we would
get that

Ts(t) =
Rs(0)

γs
(t− t0)+o(t− t0),

which implies that Ts would be negative before t0. This fact
contradicts the minimality of t0. Therefore, as long as the
solution exists, it remains inside Q.

C. Bounds on the solution for εa ∈ (0,2)

We will prove the following

Lemma IV.2. Assume that εa ∈ (0,2). Let µ ∈ (ε
1/4
a ,21/4)

and Ma be large enough such that

(T (0)
a ,T (0)

s ) ∈ [0,Ma]× [0,µMa].

Then, the solution (Ta,Ts) of (I.6) does not leave the rectangle
[0,Ma]× [0,µMa] for positive times.
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Analysis of a two-layer energy balance model: long time behaviour and greenhouse effect 9

From the above Lemma it is easy to deduce the following

Corollary IV.1. Assume that εa ∈ (0,2). Then, if T (0)
a and

T (0)
s are nonnegative, the maximal solution of (I.6) exists on
[0,+∞).

Proof of Lemma IV.2. Let the initial condition be on the rect-
angle [0,Ma]× [0,Ms]. On the right hand side of the rectangle,
we have

F
(

Ma
Ts

)
=(

1
γa

[
−λ (Ma−Ts)+ εaσB|Ts|3Ts−2εaσBM4

a +Ra(Ma)
]

· · ·

)
,

while on the top side, we have

F
(

Ta
Ms

)
=(

· · ·
1
γs

[
−λ (Ms−Ta)−σBM4

s + εaσB|Ta|3Ta +Rs(Ms)
])

.

We are interested in the sign of first component of F
(

Ma
Ts

)
and in the sign of the second component of F

(
Ta
Ms

)
to check

if F points inward the rectangle on these two sides. We note
that

−λ (Ma−Ts)+ εaσB|Ts|3Ts−2εaσBM4
a +Ra(Ma)

≤−λ (Ma−Ms)+ εaσBM4
s −2εaσBM4

a +Ra(Ma)

= εaσB

[
M4

s −2M4
a

]
−λ (Ma−Ms)+Ra(Ma),

and

−λ (Ms−Ta)−σBM4
s + εaσB|Ta|3Ta +Rs(Ms)

≤−λ (Ms−Ma)−σBM4
s + εaσBM4

a +Rs(Ms)

= σB

[
εaM4

a −M4
s

]
−λ (Ms−Ma)+Rs(Ms).

To simplify the analysis, we set

Ms = µMa,

with µ to be chosen later. Then[
M4

s −2M4
a

]
= (µ4−2)M4

a and
[
εaM4

a−M4
s

]
= (εa−µ

4)M4
a .

Therefore, if εa ∈ (0,2), by choosing µ ∈ (ε1/4
a ,21/4), we have

µ
4−2 < 0 and εa−µ

4 < 0.

Then, since Ra and Rs are globally Lipschitz, F points in-
ward the rectangle [0,Ma]× [0,µMa] on all the sides if Ma is

chosen sufficiently large. We finally obtain that this rectangle
is invariant: if µ ∈ (ε

1/4
a ,21/4) and Ma sufficiently large, then(

T (0)
a

T (0)
s

)
∈ [0,Ma]× [0,µMa]

=⇒
(

Ta(t)
Ts(t)

)
∈ (0,Ma)× (0,µMa)

as soon as t > 0 and as long as the solution exists. Thus, we
further deduce that

εa ∈ (0,2),T (0)
a ≥ 0,T (0)

s ≥ 0

=⇒ the solution
(

Ta
Ts

)
is bounded,

which yields global existence (for positive times). This con-
cludes the proof of Proposition II.1.

D. Proof of Proposition II.2: general asymptotic behaviour

We first recall some definitions from43. A set D ⊂ Rn is
p-convex (see43 (page 33)) if for all x,y ∈ D such that xi ≤ yi
for all i = 1, . . . ,n

[x,y]⊂ D.

Given a p-convex set D, a C1-system of differential equations
on D

x′i(t) = Fi(x1(t), . . . ,xn(t)) = Fi(x(t)) i = 1, . . . ,n

is called cooperative if

∂Fi

∂x j
(x)≥ 0 i 6= j, x ∈ D,

and competitive if the reverse inequalities hold (see43 (page
34)).

Furthermore, we recall the following result (see43 (Theo-
rem 2.2, page 3)).

Theorem IV.1. Consider a cooperative or competitive system
on a p-convex set D⊂ R2.

If t 7→ x(t) is a solution defined on [0,+∞), then there exists
T ≥ 0 such that x(t) is monotone for t ≥ T .

Moreover, if the solution x(t) is bounded, then it converges
to some equilibrium point.

Let us consider the 2-convex set Q = [0,+∞)× [0,+∞).
Let εa ∈ (0,2) and λ ≥ 0 and observe that

Ts 7→
1
γa

[
λTs + εaσB|Ts|3Ts−λTa−2εaσB|Ta|3Ta +Ra(Ta)

]
and

Ta 7→
1
γs

[
λTa−σB|Ts|3Ts−λTs + εaσB|Ta|3Ta +Rs(Ts)

]
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Analysis of a two-layer energy balance model: long time behaviour and greenhouse effect 10

are nondecreasing on [0,+∞) (indeed it is easy to check that
the derivatives of these maps are nonnegative). Thus, system
(I.6) is cooperative if the vector field F is C1. However, F =
( f1, f2) is globally Lipschitz continuous because of functions
βa and βs. Thus, since we cannot apply Theorem IV.1 to our
system, we need to verify if the monotonicity property of the
solution still holds under our weaker assumptions.

Let us consider the following subset of Q

P+ := {(Ta,Ts) ∈Q : f1(Ta,Ts)≥ 0 and f2(Ta,Ts)≥ 0},

P− := {(Ta,Ts) ∈Q : f1(Ta,Ts)≤ 0 and f2(Ta,Ts)≤ 0}.

We are going to prove the following

Lemma IV.3. If (T (0)
a ,T (0)

s ) ∈ P+ then each component t 7→
Ta(t), t 7→ Fs(t) of the solution of (I.6) is nondecreasing, that
is, the solution of (I.6) nondecreasing.

Similarly, if (T (0)
a ,T (0)

s ) ∈ P− then the solution of (I.6) is
nonincreasing.

Thanks to the above result we can prove the following The-
orem.

Theorem IV.2. Given (T (0)
a ,T (0)

s ) ∈ Q, the solution
(Ta(t),Ts(t)) of (I.6) converges to some equilibrium point.
Moreover, there exists T ≥ 0 such that t 7→ Ta(t) and t 7→ Ts(t)
are monotone for t ≥ T .

Proof of Lemma IV.3. We prove the result using a regular-
ization argument. Given n ≥ 1, there exist βa,n,βs,n : R→ R
of class C1, globally Lipschitz continuous, such that βa,n ≥ 0,
βs,n > 0 and

sup
R
|βa,n−βa| ≤

1
n
, and sup

R
|βs,n−βs| ≤

1
n
.

Given an initial condition (T (0)
a ,T (0)

s ) ∈Q, consider the asso-
ciated solution (Ta,n,Ts,n) of the regularized problem

(
Ta

Ts

)′
= Fn

(
Ta

Ts

)
,

(
Ta

Ts

)
(0) =

(
T (0)

a

T (0)
s

)
,

where Fn is defined by replacing βa and βs by βa,n and βs,n,
respectively, in (IV.1). The regularized vector field Fn is C1

and cooperative (indeed, its first component, denoted by fn,1,
is nondecreasing with respect to Ts and the second component,
denoted by fn,2, is nondecreasing with respect to Ta.)

We now consider (T (0)
a ,T (0)

s ) ∈ P+ and we assume that

f1(T
(0)

a ,T (0)
s )> 0,

f2(T
(0)

a ,T (0)
s )> 0.

Since it holds that

fn,1(T
(0)

a ,T (0)
s )→ f1(T

(0)
a ,T (0)

s ),

fn,2(T
(0)

a ,T (0)
s )→ f2(T

(0)
a ,T (0)

s ),

as n→ ∞, then for n large enough

fn,1(T
(0)

a ,T (0)
s )> 0,

fn,2(T
(0)

a ,T (0)
s )> 0.

Recalling that the regularized system is cooperative, we get
that

d
dt

(
fn,1(Ta,n(t),Ts,n(t)) fn,2(Ta,n(t),Ts,n(t))

)
=

=
(

∂ fn,1

∂Ta
(Ta,n(t),Ts,n(t))+

∂ fn,2

∂Ts
(Ta,n(t),Ts,n(t))

)
·
(

fn,1(Ta,n(t),Ts,n(t)) fn,2(Ta,n(t),Ts,n(t))
)

+
∂ fn,1

∂Ts
(Ta,n(t),Ts,n(t)) f 2

n,2(Ta,n(t),Ts,n(t))

+
∂ fn,2

∂Ta
(Ta,n(t),Ts,n(t)) f 2

n,1(Ta,n(t),Ts,n(t))

≥ (∇ ·Fn

(
Ta,n(t)
Ts,n(t)

)
)
(

fn,1(Ta,n(t),Ts,n(t)) fn,2(Ta,n(t),Ts,n(t))
)
.

By integrating the above first order differential inequality, we
deduce that the quantity

fn,1(Ta,n(t),Ts,n(t)) fn,2(Ta,n(t),Ts,n(t))

remains positive. Therefore, for every t ≥ 0

fn,1(Ta,n(t),Ts,n(t))> 0,

fn,2(Ta,n(t),Ts,n(t))> 0.

This implies that the solution (Ta,n,Ts,n) of the regularized
problem is increasing in time and since for every t ≥ 0 it holds
that

Ta,n(t)→n→∞ Ta(t),

Ts,n(t)→n→∞ Ts(t),

we deduce that the solution (Ta,Ts) of the original problem is
nondecreasing in time.

We now prove that the same property is true if

f1(T
(0)

a ,T (0)
s ) = 0,

f2(T
(0)

a ,T (0)
s )> 0.
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Analysis of a two-layer energy balance model: long time behaviour and greenhouse effect 11

Consider an initial condition (T (0)
a ,T (0)

s ) such that the above
relations hold. Then, since f1 is strictly increasing with re-
spect to the second variable, we have that for all η > 0

f1(T
(0)

a ,T (0)
s +η)> 0.

Moreover,

f2(T
(0)

a ,T (0)
s +η)→ f2(T

(0)
a ,T (0)

s ) as η → 0+,

and therefore we have that for η > 0 small enough

f1(T
(0)

a ,T (0)
s +η)> 0,

f2(T
(0)

a ,T (0)
s +η)> 0.

Then, the solution (T (η)
a ,T (η)

s ) corresponding to the initial
condition (T (0)

a ,T (0)
s +η) is nondecreasing in time thanks to

the previous step. Furthermore, since for every t ≥ 0 it holds
that

T (η)
a (t)→η→0+ Ta(t),

T (η)
s (t)→η→0+ Ts(t),

we conclude that the solution (Ta,Ts) of the original problem
is nondecreasing in time, that is, what we wanted to prove.

If we now consider the case

f1(T
(0)

a ,T (0)
s )> 0,

f2(T
(0)

a ,T (0)
s ) = 0,

we can proceed similarly to the previous case by introducing
the approximated initial condition (T (0)

a +η ,T (0)
s ) and deduce

that the solution of the original problem is again nondecreas-
ing. This concludes the case (T (0)

a ,T (0)
s ) ∈ P+.

One can adapt the strategy proposed for (T (0)
a ,T (0)

s )∈ P+ to
the case of an initial condition in P− and conclude the proof
of Lemma IV.3.

Proof of Theorem IV.2. If (T (0)
a ,T (0)

s ) ∈ P+, then the solu-
tion is nondecreasing, and bounded thanks to Lemma IV.2.
Therefore, it converges to some limit, that has to be an equi-
librium point. Similarly, if (T (0)

a ,T (0)
s ) ∈ P− then the solution

converges to some limit, that again has to be an equilibrium
point. This solves the case of an initial condition that verifies
the property

f1(T
(0)

a ,T (0)
s ) f2(T

(0)
a ,T (0)

s )≥ 0.

We now assume that

f1(T
(0)

a ,T (0)
s ) f2(T

(0)
a ,T (0)

s )< 0.

Then, either it holds that

∀t ≥ 0, f1(Ta(t),Ts(t)) f2(Ta(t),Ts(t))< 0,

or there exists τ ≥ 0 such that

f1(Ta(τ),Ts(τ)) f2(Ta(τ),Ts(τ)) = 0.

In the second case, the solution has entered the set P+ ∪P−
and from the previous analysis we deduce that it converges
monotonically to some equilibrium point. In the first case,
each function t 7→ f1(Ta(t),Ts(t)) and t 7→ f2(Ta(t),Ts(t)) has
a precise sign for every t ≥ 0. Therefore Ta and Ts are mono-
tone. Because of the boundedness the solution (Ta,Ts) con-
verges with some monotonicity to a limit which is an equilib-
rium point. This concludes the proof of Theorem IV.2.

V. ANALYSIS OF THE ASYMPTOTIC BEHAVIOUR FOR
λ = 0 AND Ra = 0

We assume here that λ = 0, q > 0, σB > 0, βa = 0 (consid-
ering that Ra is negligible with respect to Rs), β is given by
(I.7), and εa ∈ (0,2) (since the solutions are unbounded when
εa ≥ 2).

We already know that any solution converges to some equi-
librium point. The goal here is to be more precise about the
monotonicity of the solution.

A. There are one, two or three equilibrium points

Equilibrium points of (I.6) when λ = 0 and Ra = 0 are
(Ta,Ts) solutions of{

εaσB|Ts|3Ts−2εaσB|Ta|3Ta = 0,
−σB|Ts|3Ts + εaσB|Ta|3Ta +Rs(Ts) = 0.

(V.1)

Since we are interested in the behaviour of positive initial con-
ditions, we look for nonnegative equilibrium points. From the
first equation of (V.1), we have

T 4
s = 2T 4

a ,

which gives

Ts = 21/4Ta. (V.2)

Substituting this last identity in the second equation of (V.1),
we obtain

σB(−1+
εa

2
)T 4

s +Rs(Ts) = 0,

that is equivalent to

σB(1−
εa

2
)T 4

s = qβs(Ts). (V.3)

Observe that this last equation is of the same type than the
one satisfied by equilibrium points of a one-layer model. By
considering βs : R→ R as in (I.7), that is, continuous, pos-
itive, nondecreasing, constant on the intervals [0,Ts,−] and
[Ts,+,+∞) and linear on [Ts,+,Ts,+], we deduce that there can
be exactly one, two, or three equilibrium points, depending on
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Analysis of a two-layer energy balance model: long time behaviour and greenhouse effect 12

the values of the parameters σB, εa, q, and those that appear
in βs. No other situations are possible. Indeed it is easy to see
that function

g : [0,+∞)→ R, g(Ts) = σB(1−
εa

2
)T 4

s −qβs(Ts) (V.4)

is continuous, negative at Ts = 0 and goes to +∞ as Ts→+∞.
Thus, the mean value theorem ensures that there exists at least
a point Ts ∈ (0,+∞) such that (V.3) is satisfied. Moreover,
g is strictly increasing on [0,Ts,−], hence g can be equal to 0
on [0,Ts,−] at most once. One can use the same argument to
prove that also in [Ts,+,+∞) g can have at most one zero. Fi-
nally, g is strictly convex on [Ts,−,Ts,+], an so it can assume
the value 0 at most twice on this set. Such argument implies
that g can be equal to 0 at most four times on R+. However,
if it takes twice the value 0 on [Ts,−,Ts,+], this would mean
that the curve of Ts 7→ σB(1− εa

2 )T
4

s intersects twice the seg-
ment {(Ts,qβs(Ts)),Ts ∈ [Ts,−,Ts,+]}. In this case it cannot
intersect anymore the half-line {(Ts,qβs,+),Ts ∈ [Ts,+,+∞)}
because, by convexity, it will remain above the half line on
which the previous segment lies. Thus, this observation re-
duces the number of possible zeros of g on R+ to three. We
describe such values in the following pictures:

• the intersection between the graph of T 7→σB(1− εa
2 )T

4

and the graph of T 7→ qβs(T ) is exactly one point (see
Figure 5)

or the “degenerate" cases where the intersection is ei-
ther Ts,− or Ts,+,

• the graph of T 7→ σB(1− εa
2 )T

4
s intersects the graph of

T 7→ qβs(T ) three times (see Figure 6)

• the “degenerate" cases where the intersections between
the graph of T 7→ σB(1− εa

2 )T
4

s and the graph of T 7→
qβs(T ) are exactly two (see Figure 7)

In the case where we have only one equilibrium point, all
solutions converge to such equilibrium. When there are more
than one equilibrium points, every solution converges to one
of them. In the following we precise the nature of such equi-
libria.

We will also show that the equilibrium points have some
monotonicity property with respect to the parameter εa. More
precisely, we will prove that

• in situations as those described in Figure 5, (A) the
equilibrium point has the same monotony of εa, that is,
if εa increases the equilibrium point increases;

• in situations as those of Figure 6, (A): the equilibrium
points enjoy the following property: if εa increases,
the “cold" and the “warm" equilibrium points increase,
while the intermediate decrease.

We will extend later on these properties to the case λ > 0.
For the sake of shortness, in what follows we analyse the

most common cases of one a three equilibria. With similar
techniques one can study the case of two intersection between
the curves qβs(T ) and σB(1− εa

2 )T
4.

qβs,−

qβs,+

T 7→σB(1− εa
2 )T 4

T ∗s,1

qβs

(a)

qβs,−

qβs,+

T 7→σB(1− εa
2 )T 4

T ∗s,1

qβs

(b)

qβs,−

qβs,+

T 7→σB(1− εa
2 )T 4

T ∗s,1

qβs

(c)

FIG. 5: In this figure we show the possible cases of one
intersection between the curves T 7→ σB(1− εa

2 )T
4 and

T 7→ qβs(T ). In (a) there is a unique “warm" equilibrium, in
(c) a unique “cold" equilibrium and in (b) an equilibrium at
an intermediate surface temperature between Ts,− and Ts,+.

qβs,−

qβs,+

T 7→σB(1− εa
2 )T 4

T ∗s,1 T ∗s,2 T ∗s,3

qβs

(a)

qβs,−

qβs,+

T 7→σB(1− εa
2 )T 4

T ∗s,1 T ∗s,2 T ∗s,3

qβs

(b)

FIG. 6: In (a) and (b) we show possible cases of three
intersection between the curves T 7→ σB(1− εa

2 )T
4 and

T 7→ qβs(T ). In particular, in (a) there are one “cold", one
intermediate and one “warm" equilibrium, while in (b) there

are one “cold" and two intermediate equilibrium.
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Analysis of a two-layer energy balance model: long time behaviour and greenhouse effect 13

qβs,−

qβs,+

T 7→σB(1− εa
2 )T 4

T ∗s,2T ∗s,1

qβs

(a)

qβs,−

qβs,+

T 7→σB(1− εa
2 )T 4

T ∗s,1 T ∗s,2

qβs

(b)

qβs,−

qβs,+

T 7→σB(1− εa
2 )T 4

T ∗s,1 T ∗s,2

qβs

(c)

FIG. 7: In these pictures we represents three possible cases of
two intersections between the curves T 7→ σB(1− εa

2 )T
4 and

T 7→ qβs(T ). In (a) and in (c) there are one “cold" and one
intermediate equilibrium and in (b) one “cold" and one

“warm" equilibrium.

B. Monotonicity and convergence when there is only one
equilibrium

Here we study the case where (V.3) has one and only one
solution that we denote by T ∗s,1. This case corresponds to a
unique equilibrium point of (I.6), which is (2−1/4T ∗s,1,T

∗
s,1).

Note that we have
σB(1− εa

2 )T
4

s < qβs(Ts) if Ts < T ∗s,1,
σB(1− εa

2 )T
4

s = qβs(Ts) if Ts = T ∗s,1,
σB(1− εa

2 )T
4

s > qβs(Ts) if Ts > T ∗s,1.

In the phase plane, let us consider once again the line

C1 : Ts = 21/4Ta

and the set

C2 := {(Ta,Ts)∈R2,−σB|Ts|3Ts+εaσB|Ta|3Ta+qβs(Ts)= 0}.

Let us analyse the set C2. We claim that, given Ts, there exists
one and only one value Ta, denoted T (2)

a (Ts), such that

εaσB|Ta|3Ta = σB|Ts|3Ts−qβs(Ts).

Indeed, the function

ψ : R→ R, ψ(Ta) =−σB|Ts|3Ts + εaσB|Ta|3Ta +qβs(Ts)
(V.5)

is strictly increasing and has infinite limits as Ta→±∞. More-
over, if Ts ≥ 0, we have

ψ(2−1/4Ts) =−σBT 4
s +

εa

2
σBT 4

s +qβs(Ts)

= qβs(Ts)−σB(1−
εa

2
)T 4

s .

Therefore 
ψ(2−1/4Ts)> 0 if Ts < T ∗s,1,
ψ(2−1/4Ts) = 0 if Ts = T ∗s,1,
ψ(2−1/4Ts)< 0 if Ts > T ∗s,1.

Since 0 = ψ(T (2)
a (Ts)), the monotonicity of ψ gives
T (2)

a (Ts)< 2−1/4Ts if Ts < T ∗s,1,

T (2)
a (Ts) = 2−1/4Ts if Ts = T ∗s,1,

T (2)
a (Ts)> 2−1/4Ts if Ts > T ∗s,1.

Moreover, T (2)
a (Ts) = 0 if σB|Ts|3Ts = qβs(Ts). The latter

equality has at least once solution and at most three, as we
have seen in Section V A. More precisely, in Section V A, we
studied the intersections between the graph of Ts 7→ qβs(Ts)
and the graph of Ts 7→ σB(1− εa

2 )T
4

s , while here we are inter-
ested in the intersections between the graph of Ts 7→ qβs(Ts)
with the graph of Ts 7→ σBT 4

s . However, the argument of con-
vexity still applies and thus we can have one, two or three
intersections (depending on the values of σB, q, and the pa-
rameters appearing in βs). Therefore, we shall analyse these
different cases. Finally, for Ts large, we have

T (2)
a (Ts)∼ ε

−1/4
a Ts as Ts→ ∞.

Let us introduce the following subdomains of Q:

Q1 := {(Ta,Ts) ∈Q, Ts > 21/4Ta

and −σBT 4
s + εaσBT 4

a +qβs(Ts)> 0},

Q2 := {(Ta,Ts) ∈Q, Ts > 21/4Ta

and −σBT 4
s + εaσBT 4

a +qβs(Ts)< 0},

Q3 := {(Ta,Ts) ∈Q, Ts < 21/4Ta

and −σBT 4
s + εaσBT 4

a +qβs(Ts)< 0},

Q4 := {(Ta,Ts) ∈Q, Ts < 21/4Ta

and −σBT 4
s + εaσBT 4

a +qβs(Ts)> 0}.

Observe that Q1, Q2, Q3 and Q4 are open subdomains of Q,
and they are separated by C1 and C2.

Figure 8 below represents in phase space the case of one
solution, Ts,1, of the equation σB|Ts|3Ts = qβs(Ts). Whereas,
in Figure 9 we sketch the sets Q1, Q2, Q3 and Q4 when
σB|Ts|3Ts = qβs(Ts) admits three solutions, denoted by Ts,1,
Ts,2 and Ts,3.

We are now going to study the behaviour of the solutions of
(I.6) when the initial condition varies on Q. We consider the
case of one solution of σB|Ts|3Ts = qβs(Ts). The remain case
can be treated analogously.

We have that:
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Analysis of a two-layer energy balance model: long time behaviour and greenhouse effect 14

Ta

Ts C1

Q1

Q3
Q2

T ∗s,1

Ts,1

C2

Q4

FIG. 8: In the phase space we represent the case of one
equilibrium point (2−1/4T ∗s,1T ∗s,1), which is solution of (6.1),
and therefore intersection of the curves C1 : Ts = 21/4Ta and

the one defined by the set C2 = {(Ta,Ts) ∈ R2 :
−σB|Ts|3Ts + εaσB|Ta|3Ta +qβs(Ts) = 0}. In particular, here

we consider the case of one solution of the equation
σBT 4

s = qβs(Ts). We subdivide the set
Q = {(Ta,Ts) : Ta > 0, Ts > 0} in the subsets Q1, Q2, Q3

and Q4. We describe with arrows the behaviour of the vector
field on the boundaries of Q1, Q2, Q3 and Q4.

Ta

Ts C1

C2

Q2

Q1

Q2 Q3

Q4
Ts,1

Ts,2

Ts,3

T ∗s,1

FIG. 9: In the phase space we represent the case of one
equilibrium point (2−1/4T ∗s,1T ∗s,1), which is solution of (6.1),
and therefore intersection of the curves C1 : Ts = 21/4Ta and

the one defined by the set C2 = {(Ta,Ts) ∈ R2 :
−σB|Ts|3Ts + εaσB|Ta|3Ta +qβs(Ts) = 0}. In particular, here

we consider the case of three solutions of the equation
σBT 4

s = qβs(Ts). We subdivide the set
Q = {(Ta,Ts) : Ta > 0, Ts > 0} in the subsets Q1, Q2, Q3

and Q4. We describe with arrows the behaviour of the vector
field on the boundaries of Q1, Q2, Q3 and Q4.

• (T (0)
a ,T (0)

s ) ∈ Q1: the solution (Ta,Ts) cannot leave
Q1 since the vector field points inward the boundary.
Therefore the solution cannot leave Q1. Furthermore,
since T ′a > 0 and T ′s > 0 in Q1, then Ta and Ts are in-
creasing. However, Ta and Ts are also bounded, which
means that (Ta,Ts) converges to the unique equilibrium
point.

• (T (0)
a ,T (0)

s ) ∈ Q3: also in this case the vector field
points inward Q3. Thus, (Ta,Ts) remains in Q3. More-
over, T ′a < 0 and T ′s < 0 in Q3 and so the solution con-
verges to the equilibrium point;

• (T (0)
a ,T (0)

s ) ∈ Q2: in this region Ta is increasing and
Ts is decreasing. Therefore, we can have three possible
scenarios:

– the solution never leaves Q2: it converges to the
unique equilibrium point;

– there exists a minimal value τ > 0 such that
(Ta(τ),Ts(τ)) ∈Q2 ∩Q1. In this case the vector
field F drives the solution inside Q1, and the solu-
tion converges monotonically (increasingly) to the
equilibrium point;

– there exists a minimal value τ > 0 such that such
that
(Ta(τ),Ts(τ)) ∈ Q2 ∩Q3. Thus the vector field
F drives the solution inside Q3 from which the
solution converges monotonically (decreasingly)
to the equilibrium point.

• (T (0)
a ,T (0)

s )∈Q4: the situation is similar to the previous
case.

Therefore, the solution converges to the unique equilibrium
point with some monotonicity: if the initial condition lies in
Q2 or Q4, then the solution first enters in Q1 or Q3 and then
it converges monotonically to the equilibrium (see Figure 10).

Ta

Ts

T ∗s,1

εaσBT 4
a = σBT 4

s −qβs(Ts)

Ts = 21/4Ta

FIG. 10: In the phase space we sketch by black arrows the
convergence of initial conditions lying in each subset Q1,

Q2, Q3 and Q4, determined by the the curves
C1 : Ts = 21/4Ta and the one defined by the set C2 =

{(Ta,Ts) ∈ R2 : −σB|Ts|3Ts + εaσB|Ta|3Ta +qβs(Ts) = 0}, to
the unique equilibrium point (2−1/4T ∗s,1,T

∗
s,1), solution of

(6.1). In particular, here we consider the case of one solution
of the equation σBT 4

s = qβs(Ts).
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Analysis of a two-layer energy balance model: long time behaviour and greenhouse effect 15

C. Monotonicity when there are three equilibrium points

This is the most interesting case from a physical point of
view. We assume that equation (V.3) has three solutions T ∗s,1 ∈
(0,Ts,−), T ∗s,2 ∈ (Ts,−,Ts,+), and T ∗s,3 > Ts,+, see Figure 6, case
(A). Hence, problem (I.6) has three equilibrium points: Peq

1 =
(T ∗a,1,T

∗
s,1), Peq

2 = (T ∗a,2,T
∗

s,2) and Peq
3 = (T ∗a,3,T

∗
s,3), with T ∗a,i =

2−1/4T ∗s,i (i = 1,2,3).
Since the system is cooperative and the solutions are

bounded, every solution will converge to an equilibrium point
(see43). We shall study in details the nature of such equilibria.

1. Local stability of the equilibrium points

First we look at the stability of the equilibrium points: since
β ′s(T

∗
s,1) = 0, we have

DF
(

T ∗a,1
T ∗s,1

)
=

(
− 8εaσB

γa
(T ∗a,1)

3 4εaσB
γa

(T ∗s,1)
3

4εaσB
γs

(T ∗a,1)
3 − 4σB

γs
(T ∗s,1)

3

)
.

The trace of this matrix is negative, while the determinant is
equal to

32
γaγs

εaσ
2
B(T

∗
a,1)

3 (T ∗s,1)
3− 16

γaγs
ε

2
a σ

2
B(T

∗
s,1)

3 (T ∗a,1)
3

=
16

γaγs
(2− εa)εaσ

2
B(T

∗
a,1)

3 (T ∗s,1)
3

and it is positive. Then, we conclude that the two eigenvalues
have a negative real part which implies that the equilibrium
point Peq

1 is asymptotically exponentially stable.
The same can be proved for the equilibrium point Peq

3 . Con-
cerning the equilibrium point Peq

2 , we compute the Jacobian
matrix at (T ∗a,2,T

∗
s,2):

DF
(

T ∗a,2
T ∗s,2

)
=

(
− 8εaσB

γa
(T ∗a,2)

3 4εaσB
γa

(T ∗s,2)
3

4εaσB
γs

(T ∗a,2)
3 1

γs
[−4σB(T ∗s,2)

3 +qβ ′s(T
∗

s,2)]

)
.

The determinant of DF(T ∗a,2,T
∗

s,2) is given by

γaγs detDF
(

T ∗a,2
T ∗s,2

)
= 16(2− εa)εaσ

2
B(T

∗
a,2)

3 (T ∗s,2)
3−8εaσB(T ∗a,2)

3 qβ
′
s(T
∗

s,2)

= 8εaσB(T ∗a,2)
3
( d

dTs

[
(1− εa

2
)σBT 4

s −qβs(Ts)
])
|Ts=T ∗s,2

.

The function Ts 7→ (1− εa
2 )σBT 4

s −qβ (Ts) is equal to 0 at T ∗s,2,
and its derivative at T ∗s,2 is negative when there are 3 equi-
librium points (otherwise, by convexity, there would not be a
third intersection relative to Ts,3). Therefore detDF(Peq

2 )< 0,
and this implies that the equilibrium point Peq

2 is unstable.

2. The decomposition in subdomains

Let us consider again the line

C1 : Ts = 21/4Ta

and the curve

C2 := {(Ta,Ts),−σB|Ts|3Ts + εaσB|Ta|3Ta +qβs(Ts) = 0}.

We recall that equation

σB|Ts|3Ts = qβs(Ts),

can have at most 3 solutions, denoted by Ts,i. Let us assume
that there is only one solution, Ts,1, as in Figure 11.

qβs,−

qβs,+

T 7→σBT 4

Ts,1

qβs

FIG. 11: In the picture we show the case of a unique
intersection between the curves T 7→ σBT 4 and T 7→ qβs(T ).

In particular, the solution of the equation σBT 4
s = qβs(Ts),

denoted by Ts,1, is attained for T < Ts,−.

Let ψ be the function defined in (V.5), and T (2)
a (Ts) be the

unique value for which ψ(T (2)
a (Ts)) = 0, that is, (Ta,Ts) ∈ C2.

Note that

Ts < Ts,1 ⇐⇒ T (2)
a (Ts)< 0,

Ts = Ts,1 ⇐⇒ T (2)
a (Ts) = 0,

Ts > Ts,1 ⇐⇒ T (2)
a (Ts)> 0.

Moreover, as we observed in section V B, it holds that

ψ(2−1/4Ts) = qβs(Ts)−σB(1−
εa

2
)T 4

s .

Therefore

• if Ts ∈ (0,T ∗s,1) then ψ(2−1/4Ts)> 0 (see Figure 6 (A)).

Hence T (2)
a (Ts) < 2−1/4Ts and we deduce that C2 is on

the left of the line C1;

• if Ts ∈ (T ∗s,1,T ∗s,2) we obtain that T (2)
a (Ts)> 2−1/4Ts, and

thus C2 is on the right of the line C1;

• if Ts ∈ (T ∗s,2,T ∗s,3) then T (2)
a (Ts)< 2−1/4Ts. Therefore C2

is on the left of the line C1;

• if Ts > T ∗0,3 we get that T (2)
a (Ts)> 2−1/4Ts which means

that C2 is on the right of the line C1.
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Analysis of a two-layer energy balance model: long time behaviour and greenhouse effect 16

Let us now consider the following subdomains of Q:

Q1 := {(Ta,Ts) ∈Q : Ts ∈ (0,T ∗s,1), Ts > 21/4Ta,

−σBT 4
s + εaσBT 4

a +qβs(Ts)> 0},

Q′1 := {(Ta,Ts) ∈Q : Ts ∈ (T ∗s,1,T
∗

s,2), Ts < 21/4Ta,

−σBT 4
s + εaσBT 4

a +qβs(Ts)< 0},

Q2 := {(Ta,Ts) ∈Q : Ts > 21/4Ta,

−σBT 4
s + εaσBT 4

a +qβs(Ts)< 0},

Q3 := {(Ta,Ts) ∈Q : Ts > T ∗s,3, Ts < 21/4Ta,

−σBT 4
s + εaσBT 4

a +qβs(Ts)< 0},

Q′3 := {(Ta,Ts) ∈Q : Ts ∈ (T ∗s,2,T
∗

s,3), Ts > 21/4Ta,

−σBT 4
s + εaσBT 4

a +qβs(Ts)> 0},

Q4 := {(Ta,Ts) ∈Q : Ts < 21/4Ta,

−σBT 4
s + εaσBT 4

a +qβs(Ts)> 0}

which are sketched in Figure 12 below.
As before, we look at the vector field F on the boundary of

each subdomain. On the line C1, we have

F
(

Ta = 2−1/4Ts
Ts

)
=

(
0

1
γs

[
qβs(Ts)−σB(1− εa

2 )|Ts|3Ts

])
.

Therefore, F
(

Ta = 2−1/4Ts
Ts

)
is vertical and its second com-

ponent is positive if and only if Ts ∈ (0,T ∗s,1)∪ (T ∗s,2,T ∗s,3), and
negative on (T ∗s,1,T

∗
s,2)∪ (T ∗s,3,+∞).

On the curve C2 we have

F
(

Ta
Ts

)
=

(
1
γa

[
εaσB|Ts|3Ts−2εaσB|Ta|3Ta

]
0

)
.

Hence in this case F
(

Ta
Ts

)
is horizontal. It heads right if and

only if the point (Ta,Ts) is above the line C1 whereas it heads
left if and only if (Ta,Ts) is below C1. This completes the
explanation of Figure 12.

3. Monotonicity and convergence

The easiest cases to analyse are the following

• (T (0)
a ,T (0)

s ) ∈ Q1: the solution does not leave Q1, the
functions Ta and Ts are increasing and the solution
(Ta,Ts) converges to the equilibrium point Peq

1 ;

Ta

Ts C1

Q1

T ∗s,1

T ∗s,2

T ∗s,3

Q′3

Q3

Q2

Q′1Ts,−

Ts,+

Q4

C2

Ts,1

Peq
1

Peq
2

Peq
3

FIG. 12: In the phase space we consider the case of three
intersections between the curves C1 : Ts = 21/4Ta and the one

defined by the set C2 = {(Ta,Ts) ∈ R2 :
−σB|Ts|3Ts + εaσB|Ta|3Ta +qβs(Ts) = 0}. We denote by
(2−1/4T ∗s,1,T

∗
s,1), (2

−1/4T ∗s,2,T
∗

s,2) and (2−1/4T ∗s,3,T
∗

s,3) the
three equilibria and by Q1, Q′1, Q2, Q3, Q′3, Q4 the subsets
of Q = {(Ta,Ts) : Ta > 0, Ts > 0} bordered by C1 and C2.

We describe with arrows the behaviour of the vector field on
the boundaries of the aforementioned subsets. Notice that we

are considering the case in which the equation
σBT 4

s = qβs(Ts) has a unique solution.

• (T (0)
a ,T (0)

s ) ∈Q′1: the solution does not leave Q′1, the
functions Ta and Ts are decreasing and the solution
(Ta,Ts) converges to the equilibrium point Peq

1 ;

• (T (0)
a ,T (0)

s ) ∈Q′3: the solution does not leave Q
′
3, the

functions Ta and Ts are increasing and the solution
(Ta,Ts) converges to the equilibrium point Peq

3 ;

• (T (0)
a ,T (0)

s ) ∈Q3: the solution does not leave Q3, the
functions Ta and Ts are decreasing and the solution
(Ta,Ts) converges to the equilibrium point Peq

3 .

It remains to study the behaviour of the solution when the ini-
tial condition belongs either to Q2 or Q4. Let us define

Cleft := ∂Q2∩Q, and Cright := ∂Q4∩Q. (V.6)

Consider an initial condition in the region Q4. As long as the
solution is in Q4, Ta decreases and Ts increases. Therefore,
either the solution does not leave Q4, and it converges mono-
tonically to some equilibrium point, or it reaches Cright. The
latter case, however, cannot happen at an equilibrium point.
Hence, either the solution attains ∂Q1, enters Q1 and con-
verges increasingly to Peq

1 , or it gets to ∂Q′1, enters Q′1 and it
converges decreasingly to Peq

1 , or it move to ∂Q′3 enters Q′3
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Analysis of a two-layer energy balance model: long time behaviour and greenhouse effect 17

and it converges increasingly to Peq
3 , or it reaches ∂Q3, enters

Q3 and it converges decreasingly to Peq
3 .

Analogously, if the initial condition is of the form (T (0)
a ,0)

with T (0)
a > 0, then the solution immediately enters Q4 and it

behaves as explained above.
A similar argument can be adopted for initial conditions

lying on Q2, or of the form (0,T (0)
s ) with T (0)

s ≥ 0. Hence, we
have a complete description of the behaviour of the solution
with initial condition in Q.

Now, we study what happens backward in time. We are
going to prove the following

Lemma V.1. Given an initial condition in Cright that is not
an equilibrium point, there exists τ > 0 such that Ts(−τ) = 0
and Ta(−τ) > 0. Therefore, the solution at time −τ is on the
horizontal axis.

Proof of Lemma V.1. Consider an initial condition lying in
Cright that is not an equilibrium point, and let the time go back-
ward. Then, the vector field F drives the solution towards Q4
so that the solution cannot reach again Cright. Moreover, when
time goes backward, Ta increases and Ts decreases, hence the
solution moves to the south-east direction. Therefore, either
there exists τ > 0 such that Ts(−τ) = 0, or Ts remains positive.
We shall prove that the latter possibility cannot happen.

By contradiction, assume that Ts remains positive. If Ta is
bounded, then the solution has to converge to some equilib-
rium point. However, such behaviour is not compatible with
the monotonicity of the solution that moves in the "south-east
direction". Therefore Ta must be unbounded and diverge to
+∞. In this case (I.6) implies that also T ′s diverges to infinity.
Moreover,

γs

γa

T ′s
T ′a

=
−σB|Ts|3Ts + εaσB|Ta|3Ta +Rs

εaσB|Ts|3Ts−2εaσB|Ta|3Ta
→−1

2
as Ta→+∞,

therefore

−3
4

γa

γs
T ′a ≤ T ′s ≤−

1
4

γa

γs
T ′a

for Ta large enough. By integration, we deduce that Ts→−∞,
which contradicts the assumption. Therefore, we conclude
that there exists τ > 0 such that Ts(−τ) = 0, and Lemma V.1
is proved.

We use the above result to prove the following

Lemma V.2. There exists a unique value Ta,threshold > 0 such
that

• if T (0)
a ∈ (0,Ta,threshold), the solution starting from

(T (0)
a ,0) converges to Peq

1 ,

• if T (0)
a = Ta,threshold, the solution starting from (T (0)

a ,0)
converges to Peq

2 ,

• if T (0)
a > Ta,threshold, the solution starting from (T (0)

a ,0)
converges to Peq

3 .

Proof of Lemma V.2. Consider the subsets of initial conditions:

I1 := {T (0)
a > 0 : the solution starting from (T (0)

a ,0)

converges to Peq
1 },

I3 := {T (0)
a > 0 : the solution starting from (T (0)

a ,0)

converges to Peq
3 }.

Since two solutions with different initial conditions on the hor-
izontal axis cannot cross each other because of the uniqueness,
I1 and I3 are intervals. Moreover, we claim that I1 and I3
are open because Peq

1 and Peq
3 are asymptotically exponentially

stable. Let us prove the latter property for I1. There exists
η1 > 0 such that any solution starting from an initial condi-
tion in the ball B(Peq

1 ,η1), with center Peq
1 and radius η1, con-

verges to Peq
1 . If T (0)

a ∈ I1, there exists τ0 > 0 such that the
solution (Ta,Ts) with initial condition (T (0)

a ,0) is, at time τ0,
in the ball B(Peq

1 , η1
3 ). By continuity with respect to the initial

condition (Gronwall’s lemma), there exists η0 > 0 such that,
if |T (0)

a − T̃ (0)
a | < η0, then the solution (T̃a, T̃s) starting from

(T̃ (0)
a ,0) satisfies

‖(Ta(τ0),Ts(τ0))− (T̃a(τ0), T̃s(τ0))‖<
η1

3
;

This implies that (T̃a(τ0), T̃s(τ0)) ∈ B(Peq
1 , 2η1

3 ), and the solu-
tion (T̃a, T̃s) converges to Peq

1 . This proves that I1 is open.
We observe that since I1 and I3 are open intervals con-

tained in (0,+∞), we cannot have I1 ∪I3 = (0,+∞). This
implies that there exists Ta,threshold such that the solution start-
ing from (Ta,threshold,0) converges neither to Peq

1 nor to Peq
3 .

The only possibility that remains is that this solutions does
not leave Q4, and therefore goes monotonically to Peq

2 . Since
Peq

2 is unstable then we have that I1 = (0,Ta,threshold), and
I3 = (Ta,threshold,+∞). This concludes the proof of Lemma
V.2.

We observe that a similar argument applies for solutions
starting from the vertical axis. Hence, also in this case
there exists a threshold value Ts,threshold such that the solu-
tion with initial condition of the form (0,T (0)

s ), with T (0)
s <

Ts,threshold converges to P1
eq, whereas if T (0)

s > Ts,threshold the
solution converges to P3

eq. And finally, the solution starting in
(0,Ts,threshold) converges to the unstable equilibrium P2

eq.
Therefore, the trajectories of the solutions starting from

(Ta,threshold,0) and (0,Ts,threshold) merge in Peq
2 and separate the

quadrant Q into two subdomains that are the attraction basins
of Peq

1 and of Peq
3 , see Figure 1.

D. Weaker assumptions on the coalbedo βs

In this section we discuss the results obtained till now in
presence of a more general function βs. Propositions II.1 and
II.2 are stated and proved just requiring global lipschitz con-
tinuity and positivity on βs. The piecewise linear assumption
(I.7) has been used in Proposition II.3 mainly to determine the
number of equilibria of system (I.6), see section V A.
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Analysis of a two-layer energy balance model: long time behaviour and greenhouse effect 18

1. Influence of the assumptions on βs on the number of
equilibrium points

Under weaker assumptions on βs, equation (V.3) can have
more than three solutions. For instance, if we assume βs to be
positive and to have to some limit for Ts→+∞, then (V.3) can
have several solutions on [Ts,+,+∞). There can be even a con-
tinuum of solutions if qβs and Ts 7→ σB(1− εa

2 )T
4

s coincide on
some compact interval. However, there are some quite general
assumptions for βs that lead to a finite number of equilibrium
points for problem (I.6).

If we assume that βs is positive and converges to some fi-
nite limit as Ts → +∞ and additionally that βs is analytic on
[Ts,+,+∞), then equation (V.3) cannot have an infinite number
of solutions on [Ts,+,+∞). Indeed, if we consider the differ-
ence

Ts 7→ σB(1−
εa

2
)T 4

s −qβs(Ts), (V.7)

which is an analytic function as well, it would have an infi-
nite number of zeros contained in a compact set. This would
imply that the above function equals 0 on [Ts,+,+∞), that is a
contradiction with the behaviour at +∞.

If we assume βs to be concave on [Ts,+,+∞) in place of the
analyticity on the same interval, then (V.7) is strictly convex
on [Ts,+,+∞) and can have at most two zeros on [Ts,+,+∞).

If instead we assume that βs is analytic and positive on
[0,Ts,−] and concave on [Ts,−,+∞), then (V.7) has a finite
number of zeros. This fact can be proved combining the two
previous arguments: the function has a finite number of zeros
on [0,Ts,−] by analyticity (otherwise it would be equal to zero,
which is not true for Ts = 0) and has a finite number of zeros
on [Ts,−,+∞) by convexity.

Finally, let βs be analytic and positive on [0,Ts,−], concave
on [Ts,−,Ts,+], analytic on [Ts,+,+∞) and converge to some
limit as Ts → +∞. Then (V.7) has at most a finite number
of zeros on [0,Ts,−] and [Ts,+,+∞), and at most 2 zeros on
[Ts,−,Ts,+], hence a finite number of zeros on [0,+∞). These
assumptions cover the case of a piece-wise linear function βs
that we mainly use in the paper.

2. The influence on the asymptotic analysis

Once the number of equilibrium points have being deter-
mined, the asymptotic analysis remains essentially the same.
Assume that we are in one of the situations described in the
previous section: there is a finite number N of solutions T ∗s,i of
(V.3), βs is C1 at any T ∗s,i and

∀ i ∈ {1, · · · ,N}, d
dTs |Ts=T ∗s,i

(
σB(1−

εa

2
)T 4

s

)
6= qβ

′
s(T
∗

s,i),

that is, curves Ts 7→ σB(1− εa
2 )T

4
s and Ts 7→ qβs(Ts) are not

tangent on T ∗s,i for all i = 1, . . . ,N. Then, under such assump-
tions, the sign of (V.7) is alternatively negative and positive:
negative on [0,T ∗s,1], positive on [T ∗s,1,T

∗
s,2], · · · , positive on

[T ∗s,N ,+∞). This first implies that N has to be odd. Further-
more, it forces C2 to be first on the left of C1, then, after
the first equilibrium point, on the right, then, after the sec-
ond equilibrium point, again on the left and so on till the last
equilibrium point where it is on the right of C1. Finally, the
assumptions on βs determine also the direction of the vec-
tor field F on C1 and C2. F is horizontal on C2 because on
this curve its vertical component is equal to 0. Moreover, if
Ts ∈ (T ∗s,1,T ∗s,2) the sign of the first component of F is the same
as the one of

εaσBT 4
s −2εaσBT 4

a = εaσBT 4
s −2

(
σBT 4

s −qβs(Ts)
)

=−2
(

σB(1−
εa

2
)T 4

s −qβs(Ts)
)
,

which is negative on (T ∗s,1,T
∗

s,2). F is vertical on C1 and if
Ts ∈ (T ∗s,1,T

∗
s,2) the sign of the second component of F is the

same of

−σBT 4
s + εaσBT 4

a +qβs(Ts) =−σB(1−
εa

2
)T 4

s +qβs(Ts)

which is negative on (T ∗s,1,T
∗

s,2). Hence, if one consider, for
instance, a coalbedo functions as the black curve in left pic-
ture of Figure 13, a similar argument leads to the phase space
description (for N = 5) on the right of Figure 13.

T 7→σB(1− εa
2 )T 4

T ∗s,1 T ∗s,2 T ∗s,3 T ∗s,4 T ∗s,5

Ta

Ts

Ts=2
1
4 Ta

T ∗s,1

T ∗s,2

T ∗s,3

T ∗s,4

T ∗s,5
εaσBT 4

a =σBT 4
s −βs(Ts)

FIG. 13: On the top a non-piecewise coalbedo which
intersects five times the curve T 7→ σB

(
1− εa

2

)
T 4, and on the

bottom the associated phase space.
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Analysis of a two-layer energy balance model: long time behaviour and greenhouse effect 19

VI. ASYMPTOTIC BEHAVIOUR FOR λ > 0 AND Ra = 0

Equilibria of problem (I.6) are solutions (Ta,Ts) of the fol-
lowing system:{
−λ (Ta−Ts)+ εaσB|Ts|3Ts−2εaσB|Ta|3Ta = 0,
−λ (Ts−Ta)−σB|Ts|3Ts + εaσB|Ta|3Ta +qβs(Ts) = 0.

(VI.1)
Let us prove several properties of such points.

A. Equilibrium points: uniform bounds

Assume that (Ta,Ts) is an equilibrium point of problem
(I.6), that is, a solution of (VI.1). Therefore (Ta,Ts) solves{

λTs + εaσB|Ts|3Ts = λTa +2εaσB|Ta|3Ta,

λTs +σB|Ts|3Ts = λTa + εaσB|Ta|3Ta +qβs(Ts)

(VI.2)
Observe that, from the first equation in (VI.2), Ta = 0 if and
only if Ts = 0. However, the pair (Ta,Ts) = (0,0) does not
satisfy the second equation. Thus, the equilibrium points have
positive components.

Since Ta > 0, we have

λTa + εaσBT 4
a < λTa +2εaσBT 4

a < λ21/4Ta +2εaσBT 4
a .

Therefore, from the first equation in (VI.2) we deduce that

λTa+εaσBT 4
a < λTs+εaσBT 4

s < λ (21/4Ta)+εaσB(21/4Ta)
4.

The map T 7→ λT +εaσBT 4 is increasing on (0,+∞), and this
implies that

Ta < Ts < 21/4Ta. (VI.3)

We want to prove that the equilibrium points belong to a com-
pact set independent of λ . To this purpose, we compute the
difference of the two equations in (VI.2), which gives

σB(εa−1)T 4
s = εaσBT 4

a −qβs(Ts). (VI.4)

If εa ∈ (0,1], then εaσBT 4
a −qβs(Ts)≤ 0, and therefore

Ta ≤
(qβs,+

εaσB

)1/4
. (VI.5)

Since Ta < Ts, we also have

qβs(Ts) = εaσBT 4
a +σB(1− εa)T 4

s

εaσBT 4
s +σB(1− εa)T 4

s = σBT 4
s ,

from which we get

Ts >
(qβs,−

σB

)1/4
. (VI.6)

Thus, from (VI.3), (VI.5) and (VI.6) we obtain

(qβs,−
2σB

)1/4
< Ta ≤

(qβs,+

εaσB

)1/4
,

and
(qβs,−

σB

)1/4
< Ts ≤

(2qβs,+

εaσB

)1/4
,

that is, uniform bounds of the equilibria independent of λ > 0.
If εa ∈ (1,2), from (VI.4) and the left hand side of (VI.3)

we deduce that

εaσBT 4
a = σB(εa−1)T 4

s +qβs(Ts)> σB(εa−1)T 4
a +qβs(Ts).

Hence it holds that

σBT 4
a > qβs(Ts),

which gives

Ta >
(qβs,−

σB

)1/4
. (VI.7)

Using again (VI.4) and (VI.3), we get

εaσBT 4
a =σB(εa−1)T 4

s +qβs(Ts)<σB(εa−1)2T 4
a +qβs(Ts).

Thus we have

(2− εa)σBT 4
a < qβs(Ts)

which implies that

Ta ≤
( qβs,+

(2− εa)σB

)1/4
. (VI.8)

From (VI.3), (VI.7) and (VI.8) we obtain

(qβs,−
σB

)1/4
< Ta ≤

( qβs,+

(2− εa)σB

)1/4
,

and
(qβs,−

σB

)1/4
< Ts ≤

( 2qβs,+

(2− εa)σB

)1/4
.

Therefore, also in the case εa ∈ (1,2) we have found uniform
bounds, independent of λ > 0, for the equilibrium points. This
will be useful later (see in particular the proof of Corollary
II.1).

B. Equilibrium points: existence

As proved in Proposition II.2, problem (I.6) has at least one
equilibrium point which follows from the convergence of the
solutions. We can also directly prove their existence as fol-
lows.

Lemma VI.1. Given λ > 0 and εa ∈ (0,2), problem (I.6) has
at least one equilibrium point.

We are going to give two short proofs of this result, each
one having its own interest.
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Analysis of a two-layer energy balance model: long time behaviour and greenhouse effect 20

1. Geometrical proof of Lemma VI.1

Consider

C1 := {(Ta,Ts) ∈Q :

−λ (Ta−Ts)+ εaσB|Ts|3Ts−2εaσB|Ta|3Ta = 0}

and

C2 := {(Ta,Ts) ∈Q :

−λ (Ts−Ta)−σB|Ts|3Ts + εaσB|Ta|3Ta +qβs(Ts) = 0}.

We first analyse C1. Given Ts ≥ 0, there exists a unique value
Ta, that we denote T (1)

a (Ts), such that

λTa +2εaσB|Ta|3Ta = λTs + εaσB|Ts|3Ts,

that is, such that (Ta,Ts) ∈ C1. By the implicit function theo-
rem we deduce that C1 is a curve. Moreover, it contains (0,0)
and

T (1)
a (Ts)∼ 2−1/4Ts as Ts→+∞.

Let us now study C2. It contains points of the form (0,Ts). Let
Ts,max be the largest value Ts such that (0,Ts) ∈ C2, that is, the
largest value such that

λTs +σBT 4
s = qβ (Ts).

Then

Ts > Ts,max =⇒ λTs +σBT 4
s −qβs(Ts)> 0,

and therefore, for all Ts ≥ Ts,max, there exists a unique value
of Ta, denoted by T (2)

a (Ts), such that

λTa + εaσBT 4
a = λTs +σBT 4

s −qβs(Ts).

Note that

T (2)
a (Ts)∼ ε

−1/4
a Ts as Ts→+∞.

Consider now the function

Ts ∈ [Ts,max,+∞)→ R, Ts 7→ T (1)
a (Ts)−T (2)

a (Ts).

This map is continuous, positive for Ts = Ts,max (since
T (2)

a (Ts,max) = 0) and negative for Ts large. This implies that
the sets

C1,max := {(T (1)
a (Ts),Ts),Ts ≥ Ts,max}

and

C2,max := {(T (2)
a (Ts),Ts),Ts ≥ Ts,max}

have to intersect at least once. This implies that problem (I.6)
has at least an equilibrium point.

2. Analytical proof of Lemma VI.1

Equilibrium points (Ta,Ts) of problem (I.6) satisfy (VI.2).
Therefore, for such points it holds

qβs(Ts) =
(

λTs +σBT 4
s

)
−
(

λTa + εaσBT 4
a

)
=
(

λTs +σBT 4
s

)
−
(

λ

2
Ta +

1
2

[
λTa +2εaσBT 4

a

])
=
(

λTs +σBT 4
s

)
−
(

λ

2
Ta +

1
2

[
λTs + εaσBT 4

s

])
=

λ

2
(Ts−Ta)+σB(1−

εa

2
)T 4

s .

Thus, for nonnegative Ta and Ts, (Ta,Ts) solves (VI.2) if and
only if it verifies the equivalent system{

λTs + εaσBT 4
s = λTa +2εaσBT 4

a ,
λ

2 (Ts−Ta)+σB(1− εa
2 )T

4
s = qβs(Ts).

(VI.9)

Now we prove that (VI.9) has at least one solution. Indeed,
given Ts ≥ 0, the first equation in (VI.9) has a unique solution
Ta = T (1)

a (Ts). Furthermore, it holds that

T (1)
a (0) = 0 and T (1)

a (Ts)∼Ts→0 Ts,

T (1)
a (Ts)→Ts→+∞ +∞ and T (1)

a (Ts)∼Ts→+∞ 2−1/4Ts.

Moreover, as already observed in (VI.3), we have

∀Ts > 0, T (1)
a (Ts)< Ts < 21/4T (1)

a (Ts). (VI.10)

Finally, since Ts 7→ T (1)
a (Ts) is a smooth function, we obtain

that

dT (1)
a

dTs
(Ts) =

λ +4εaσBT 3
s

λ +8εaσB[T
(1)

a (Ts)]3
.

Therefore

1− dT (1)
a

dTs
(Ts) = 1− λ +4εaσBT 3

s

λ +8εaσB[T
(1)

a (Ts)]3

=
8εaσB[T

(1)
a (Ts)]

3−4εaσBT 3
s

λ +8εaσB[T
(1)

a (Ts)]3

= 4εaσB
2[T (1)

a (Ts)]
3−T 3

s

λ +8εaσB[T
(1)

a (Ts)]3
.

Thanks to (VI.10), we get that

2[T (1)
a (Ts)]

3−T 3
s > 23/4[T (1)

a (Ts)]
3−T 3

s

= [21/4T (1)
a (Ts)]

3−T 3
s > 0,

and so

1− dT (1)
a

dTs
(Ts)> 0.
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Analysis of a two-layer energy balance model: long time behaviour and greenhouse effect 21

This implies that the function

Φ1 : Ts 7→
λ

2
(Ts−T (1)

a (Ts)) (VI.11)

is strictly increasing on [0,+∞). Therefore the following
function

Φ : Ts 7→
λ

2
(Ts−T (1)

a (Ts))+σB(1−
εa

2
)T 4

s (VI.12)

is also strictly increasing on [0,+∞). Moreover, Φ(0) = 0,
and Φ(Ts) ∼ σB(1− εa

2 )T
4

s as Ts → ∞. Hence, there exists
at least one positive value of Ts, denoted by Ts,∗, such that
Φ(Ts,∗) = qβs(Ts,∗). Therefore (T (1)

a (Ts,∗),Ts,∗) solves (VI.9)
or, equivalently, it satisfies (VI.2). We have therefore analyti-
cally proved Lemma VI.1.

C. Number of equilibria

1. Existence of at most one warm equilibrium

By using the argument Section VI B 2, we deduce that there
exists at most one value Ts ∈ (0,Ts,−] and at most one value
Ts ≥ Ts,+ such that Φ(Ts) = qβs(Ts), that is, at most one "cold"
and one "warm" equilibrium.

Indeed, the existence two different warm equilibria would
imply the existence of two different values Ts, T̃s ≥ Ts,+ such
that

Φ(Ts) = qβs(Ts), and Φ(T̃s) = qβs(T̃s).

However, since Ts, T̃s ≥ Ts,+ then qβs(Ts) = qβs(T̃s). There-
fore, it would hold that Φ(Ts) = Φ(T̃s), which implies that
Ts = T̃s (because we recall that Φ is strictly increasing). This
proves the third point of Proposition II.3.

2. Existence of at most a finite number of equilibria

Now, let us prove that the number of equilibrium is finite
(for the case of a piecewise linear function such as βs).

Lemma VI.2. Given λ > 0 and εa ∈ (0,2), problem (I.6) has
at most a finite number of equilibrium points.

Proof of Lemma VI.2. We have already proved that there are
at most one cold and one warm equilibrium point. If the num-
ber of equilibria is infinite, there exists a sequence (Ts,n)n of
distinct values belonging to [Ts,−,Ts,+] satisfying

Φ(Ts,n) = qβs(Ts,n).

Such sequence admits a converging subsequence. Moreover,
it is possible to extract a strictly monotone subsequence. In-
deed, consider a convergent subsequence (Ts,ϕ(n))n and let Ts,∞
be the limit value. Define the set

A := {n ∈ N : Ts,ϕ(n) < Ts,∞}.

It is clear that A ∪(N\A ) =N, therefore either A , N\A , or
both sets have a infinite number of elements. We can then con-
struct a strictly monotone subsequence, (Ts,ψ(n))n, converging
to Ts,∞. Since it holds that

(Φ−qβs)(Ts,ψ(n)) = Φ(Ts,ψ(n))−qβs(Ts,ψ(n)) = 0,

by applying Rolle’s Theorem to the function Φ− qβs, we
obtain that if (Ts,ψ(n))n is increasing there exists T̃s,n ∈
(Ts,ψ(n),Ts,ψ(n+1)) (or T̃s,n ∈ (Ts,ψ(n+1),Ts,ψ(n)) if (Ts,ψ(n))n is
decreasing), such that

Φ
′(T̃s,n)−qβ

′
s(T̃s,n) = 0,

or, equivalently,

Φ
′(T̃s,n) = qβ

′
s(T̃s,n) = q

βs,+−βs,−
Ts,+−Ts,−

.

Since Φ is analytic on (0,+∞)48 (Proposition 2.20 p. 39) also
Φ′ is analytic. However, if Φ′ is equal to the same value an
infinite number of times on a compact set, then it must be
constant. This means that Φ must grow at most linearly at
infinity, which turns out to be false. Therefore, we conclude
that problem (I.6) has at most a finite number of equilibrium
points.

3. Convexity of function Φ and number of equilibrium points

Once we have established that the number of equilibrium
points is finite, it is natural to try to have an estimate of such
number. We recall that equilibrium points are of the form
(Ta = T (1)

a (Ts),Ts) where Ts satisfies

Φ(Ts) = qβs(Ts), (VI.13)

and Φ is defined in (VI.12). In the case λ = 0, function Φ is
convex, which implies that there exist at most 3 equilibrium
points. When λ > 0 we have obtained the following result
concerning the physically relevant case εa ≤ 1.

Lemma VI.3. Assume that εa ≤ 1 and let λ > 0. Then Φ,
defined in (VI.12), is strictly increasing and strictly convex on
[0,+∞). Therefore, problem (I.6) has at most three equilib-
rium points.

For what concerns the case εa ∈ (1,2), we have obtained
some information by using numerical tests. We describe such
results in the remark that follows.

Remark VI.1. Let λ > 0. Then, we observe thanks to some
numerical tests that there exists a unique universal constant
εa,0 ∈ (1.99,1.991), independent of λ > 0, such that

• if εa ∈ (0,εa,0), Φ is strictly convex on [0,+∞);

• if εa ∈ (εa,0,2), Φ is successively convex, concave and
convex on [0,+∞).

From the above numerical results we deduce that
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• if εa ∈ (0,εa,0), problem (I.6) has at most three equilib-
rium points;

• if εa ∈ (εa,0,2), problem (I.6) has at most five equilib-
rium points.

The proof of Lemma VI.3can be found in Appendix B. It
is based on a careful analysis of Φ′′. We also explain in Ap-
pendix B the results stated in Remark VI.1, which take advan-
tage of some computations from Lemma VI.3 and from some
numerical tests.

D. Local stability of the equilibrium points

1. Local stability of a warm (resp. cold) equilibrium point

Assume that there exists a warm equilibrium: (Ta,Ts) satis-
fying (VI.9) with Ts > Ts,+. Then, we have

DF
(

Ta
Ts

)
=

(
1
γa
[−λ −8εaσBT 3

a ]
1
γa
[λ +4εaσBT 3

s ]
1
γs
[λ +4εaσBT 3

a ]
1
γs
[−λ −4σBT 3

s ]

)
,

(VI.14)
where F is defined in (IV.1). It is easy to check that the trace
of the above matrix is negative. Moreover, from the charac-
teristic polynomial associated to the matrix, we deduce that it
has two different real eigenvalues. Moreover, a direct compu-

tation of the determinant of DF
(

Ta
Ts

)
matrix gives

γaγs detDF
(

Ta
Ts

)
= [λ +8εaσBT 3

a ][λ +4σBT 3
s ]

− [λ +4εaσBT 3
s ][λ +4εaσBT 3

a ]

= 4λσB

[
(1− εa)T 3

s + εaT 3
a

]
+16εa(2− εa)σ

2
BT 3

a T 3
s .

The bound in (VI.3) yields[
(1− εa)T 3

s + εaT 3
a

]
≥
[
(1− εa)T 3

s + εa2−3/4T 3
s

]
=
(

1− εa +2−3/4
εa

)
T 3

s .

Since εa ∈ (0,2) and 2−3/4−1 < 0, we obtain(
1+(2−3/4−1)εa

)
T 3

s ≥
(

1+2(2−3/4−1)
)

T 3
s

= (21/4−1)T 3
s > 0,

which implies that

γaγs detDF
(

Ta
Ts

)
≥ 4λσB (21/4−1)T 3

s +16εa(2− εa)σ
2
BT 3

a T 3
s > 0.

Therefore, the two eigenvalues of DF
(

Ta
Ts

)
are negative and

the warm equilibrium is asymptotically exponentially stable.
The same holds true for a cold equilibrium (Ts < Ts,−).

2. Local stability of an intermediate equilibrium point

Assume that there exists an intermediate equilibrium point
(T̃a, T̃s) satisfying (VI.9) with T̃s ∈ (Ts,−,Ts,+). We compute
the Jacobian matrix of F at t (T̃a, T̃s):

DF
(

T̃a
T̃s

)
=

(
1
γa
[−λ −8εaσBT̃ 3

a ]
1
γa
[λ +4εaσBT̃ 3

s ]
1
γs
[λ +4εaσBT̃ 3

a ]
1
γs
[−λ −4σBT̃ 3

s +qβ ′s(T̃s)]

)
,

(VI.15)

where F is defined in (IV.1). Thus, we get

γaγs detDF
(

T̃a
T̃s

)
= [λ +8εaσBT̃ 3

a ]
[
λ +4σBT̃ 3

s −qβ
′
s(T̃s)

− λ +4εaσBT̃ 3
s

λ +8εaσBT̃ 3
a

(
λ +4εaσBT̃ 3

a

)]
. (VI.16)

Let us compute the derivative of the function Φ defined in
VI.12 at T̃s:

Φ
′(T̃s) =

λ

2
(1− dT (1)

a

dTs
(T̃s))+4σB(1−

εa

2
)T̃ 3

s

=
λ

2
(1− λ +4εaσBT̃ 3

s

λ +8εaσB[T
(1)

a (T̃s)]3
)+4σB(1−

εa

2
)T̃ 3

s ,

from which we obtain that

Φ
′(T̃s) = λ +4σBT̃ 3

s −
λ +4εaσBT̃ 3

s

λ +8εaσBT̃ 3
a

(
λ +4εaσBT̃ 3

a

)
.

(VI.17)
Indeed, explicit computations show that

Φ
′(T̃s)−

[
λ +4σBT̃ 3

s −
λ +4εaσBT̃ 3

s

λ +8εaσBT̃ 3
a

(
λ +4εaσBT̃ 3

a

)]

=
[

λ

2
(1− λ +4εaσBT̃ 3

s

λ +8εaσBT̃ 3
a
)−2εaσBT̃ 3

s

]
−
[
λ − λ +4εaσBT̃ 3

s

λ +8εaσBT̃ 3
a

(
λ +4εaσBT̃ 3

a

)]
=−λ

2
−2εaσBT̃ 3

s +
λ +4εaσBT̃ 3

s

λ +8εaσBT̃ 3
a

(
−λ

2
+λ +4εaσBT̃ 3

a

)
=−λ

2
−2εaσBT̃ 3

s +
1
2

[
λ +4εaσBT̃ 3

s

]
= 0.

By using (VI.17) in (VI.16) we obtain

γaγs detDF
(

T̃a
T̃s

)
= [λ +8εaσBT̃ 3

a ]
[
Φ
′(T̃s)−qβ

′
s(T̃s)

]
.

(VI.18)
Observe that the above formula is the generalization of that
obtained in section V C 1 (for the case λ = 0).

Now if εa < 1, then there exist at most three equilibrium
points (see Lemma VI.3). Assume that there are exactly three
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equilibrium points: one cold, one intermediate (T̃a, T̃s) and
one warm. Function Φ is strictly convex, and we have

Φ
′(T̃s)−qβ

′
s(T̃s)< 0,

(see Section V C 1), otherwise the convexity of Φ would pre-
vent the existence of the warm equilibrium. Therefore, we
deduce that the intermediate equilibrium point is unstable, as
in the case λ = 0.

E. Phase space analysis for λ > 0

In this section we extend to the case λ > 0 the study of the
phase space we have already done for the case λ = 0. Con-
sider again C1 and C2 defined in section VI B 1. We observe
that C2 has at most three intersection points with the vertical
axis (0,Ts). Indeed, the solutions of equation λTs +σBT 4

s =
qβs(Ts) are at most three because Ts 7→ λTs +σBT 4

s is strictly
convex and increasing. We have already observed in Section
VI C that equilibrium points are related to the solutions of the
equation Φ(Ts) = qβs(Ts), where Φ is defined in (VI.12). As-
sume that Φ is strictly convex ( which indeed happens at least
for εa < 1, see Lemma VI.3), and that there exist three equi-
librium points Ts,1 < Ts,2 < Ts,3 (that is, we are in the same
situation of Figure 6, case (A)). Then qβs(Ts)−Φ(Ts) is pos-
itive on (0,Ts,1), negative on (Ts,1,Ts,2), positive on (Ts,2,Ts,3)
and negative on (Ts,3,+∞). We use the following identity

λT (1)
a (Ts)+2εaσBT (1)

a (Ts)
4 = λTs + εaσBT 4

s ,

inside the expression of Φ(Ts) and we get

Φ(Ts) =
λ

2
(Ts−T (1)

a (Ts))+σB(1−
εa

2
)T 4

s

=
λ

2
Ts +σBT 4

s −
εaσB

2
T 4

s −
λ

2
T (1)

a (Ts)

=
(

λTs +σBT 4
s

)
− λ

2
Ts−

εaσB

2
T 4

s −
λ

2
T (1)

a (Ts)

=
(

λTs +σBT 4
s

)
− 1

2

(
λTs + εaσBT 4

s

)
− λ

2
T (1)

a (Ts)

=
(

λTs +σBT 4
s

)
− 1

2

(
λT (1)

a (Ts)+2εaσBT (1)
a (Ts)

4
)

− λ

2
T (1)

a (Ts)

=
(

λTs +σBT 4
s

)
−
(

λT (1)
a (Ts)+ εaσBT (1)

a (Ts)
4
)
.

We note that the function

ψ
(λ ) : R→ R, Ta 7→ λTa + εaσB|Ta|3Ta

is strictly increasing. Therefore, given Ts there exists one and
only one value T (2)

a (Ts) such that

ψ
(λ )(T (2)

a (Ts)) = λTs +σB|Ts|3Ts−qβs(Ts).

Thus, we obtain that

Φ(Ts) =
(

ψ
(λ )(T (2)

a (Ts))+qβs(Ts)
)

−
(

λT (1)
a (Ts)+ εaσBT (1)

a (Ts)
4
)
,

which implies

Φ(Ts)−qβs(Ts) = ψ
(λ )(T (2)

a (Ts))−ψ
(λ )(T (1)

a (Ts)).

Therefore, T (1)
a (Ts)− T (2)

a (Ts) and qβs(Ts)−Φ(Ts) have the
same sign, that is, T (1)

a (Ts)−T (2)
a (Ts) is positive on (0,Ts,1),

negative on (Ts,1,Ts,2), positive on (Ts,2,Ts,3) and negative on
(Ts,3,+∞). This describes the relative position of C1 with re-
spect to C2 which is similar to that represented in Figure 12
(the only difference is that, for the current case λ > 0, C1 is
no more a line, but the curve of the strictly increasing func-
tion Ta 7→ T (1)

s (Ta)). The direction of vector field F on the
curves C1 and C2 is similar to the described by arrows in Fig-
ure 12, therefore we will have same phase plane analysis as in
the case λ = 0. Note that the existence of the separatrix be-
tween the basins of attraction of the stable equilibrium points
follows exactly in the same way from the property that the
intermediate equilibrium point is unstable (which is proved in
section VI D 2), as in the case λ = 0. This concludes the proof
of Proposition II.3.

VII. SENSITIVITY OF THE EQUILIBRIA TO
PARAMETERS

A. Proof of Proposition II.5: monotonicity of the equilibrium
points with respect to λ

Consider the function G : R×R2→ R2 defined by

G(λ ,

(
Ta
Ts

)
)

=

 1
γa

[
−λ (Ta−Ts)+ εaσB|Ts|3Ts−2εaσB|Ta|3Ta

]
1
γs

[
−λ (Ts−Ta)−σB|Ts|3Ts + εaσB|Ta|3Ta +Rs

] .

(VII.1)

If (Ta,Ts) is an equilibrium point of (I.6) with parameter λ ,

that is, (Ta,Ts) solves (VI.2), then G(λ ,

(
Ta
Ts

)
) = 0.

Fixed λ > 0 and a point (Ta,Ts) ∈Q of differentiability for
βs, we differentiate with respect to the second variable of G:

D2G(λ ,

(
Ta
Ts

)
)

=

(
1
γa
[−λ −8εaσBT 3

a ]
1
γa
[λ +4εaσBT 3

s ]
1
γs
[λ +4εaσBT 3

a ]
1
γs
[−λ −4σBT 3

s +qβ ′s(Ts)]

)
.

(VII.2)

The stability of an equilibrium point (Ta,Ts) of (I.6) is re-
lated to the sign of determinant and of the trace of the matrix

D2G(λ ,

(
Ta
Ts

)
).

Now, assume that (T eq,λ ∗
a ,T eq,λ ∗

s ) is an equilibrium for
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problem (I.6) with parameter λ = λ ∗ for which it holds that

detD2G(λ ∗,

(
T eq,λ ∗

a

T eq,λ ∗
s

)
)> 0,

Tr D2G(λ ∗,

(
T eq,λ ∗

a

T eq,λ ∗
s

)
)< 0,

T eq,λ ∗
s /∈ [Ts,−,Ts,+].

Then, by applying the implicit function theorem to G, we de-
duce that there exists a neighborhood V ∗ of λ ∗ in R, a neigh-
borhood V eq,λ ∗ of (T eq,λ ∗

a ,T eq,λ ∗
s ) in R2, and a C1 function

Ψ
(εa) : V ∗→ V eq,λ ∗ , λ 7→Ψ

(εa)(λ )

such that
G(λ ,

(
Ta

Ts

)
) =

(
0
0

)
,(

Ta

Ts

)
∈ V eq,λ ∗

⇐⇒


(

Ta

Ts

)
= Ψ(εa)(λ ),

λ ∈ V ∗.

This fact ensures the existence and uniqueness of an equi-
librium of problem (I.6) for λ close to λ ∗. Such equilib-
rium, that we will denote by (T eq,λ

a ,T eq,λ
s ), will be close to

(T eq,λ ∗
a ,T eq,λ ∗

s ). Furthermore, for λ close to λ ∗, we still have
T eq,λ

s /∈ [Ts,−,Ts,+] and thus (T eq,λ
a ,T eq,λ

s ) is asymptotically
stable (by continuity of det and Tr). The analyticity of the
functions λ 7→ T eq,λ

s and λ 7→ T eq,λ
a can be deduced by the

analytic version of the implicit function theorem, see e.g.49

(Proposition 6.1, p. 138).
It is interesting to determine the monotonicity of λ 7→ T eq,λ

a

and λ 7→ T eq,λ
s . We differentiate with respect to λ the equation

0 = G(λ ,Ψ(εa)(λ )) = G(λ ,

(
T eq,λ

a

T eq,λ
s

)
),

we get

0 = D1G(λ ,

(
T eq,λ

a

T eq,λ
s

)
)+D2G(λ ,

(
T eq,λ

a

T eq,λ
s

)
) ·

(
∂T eq,λ

a
∂λ

∂T eq,λ
s

∂λ

)
.

Therefore, we deduce that(
∂T eq,λ

a
∂λ

∂T eq,λ
s

∂λ

)
=−D2G(λ ,

(
T eq,λ

a

T eq,λ
s

)
)−1 D1G(λ ,

(
T eq,λ

a

T eq,λ
s

)
).

Since we are interested in warm and cold equilibria, we have
that, for such points, β ′s(T

eq,λ
s ) = 0. We compute the inverse

of D2G(λ ,

(
T eq,λ

a

T eq,λ
s

)
)

D2G(λ ,

(
T eq,λ

a

T eq,λ
s

)
)−1 =

1

detD2G(λ ,

(
T eq,λ

a

T eq,λ
s

)
)

·

(
1
γs
[−λ −4σB|T eq,λ

s |3] −1
γa
[λ +4εaσB|T eq,λ

s |3]
−1
γs
[λ +4εaσB|T eq,λ

a |3] 1
γa
[−λ −8εaσB|T eq,λ

a |3]

)
.

Since

D1G(λ ,

(
T eq,λ

a

T eq,λ
s

)
) =

(
−1
γa
(T eq,λ

a −T eq,λ
s )

−1
γs
(T eq,λ

s −T eq,λ
a )

)

= (T eq,λ
s −T eq,λ

a )

(
1
γa

− 1
γs

)
,

we obtain that(
∂T eq,λ

a
∂λ

∂T eq,λ
s

∂λ

)

=
T eq,λ

s −T eq,λ
a

γa γs detD2G(λ ,

(
T eq,λ

a

T eq,λ
s

)
)

(
4σB(1− εa)|T eq,λ

s |3

−4εaσB|T eq,λ
a |3

)
.

We observe that we have already proved that T eq,λ
s −T eq,λ

a > 0
and therefore we conclude that T eq,λ

s is decreasing with re-
spect to λ because the second component of the above vector
is negative. Moreover, from the first component we deduce

that ∂T eq,λ
a

∂λ
has the same sign as 1− εa. In particular, in the

physical case, that is, for εa < 1, T eq,λ
a is increasing with re-

spect to λ . This concludes the proof of Proposition II.5.

B. Proof of Proposition II.4: monotonicity of the equilibrium
points with respect to εa

Given λ > 0, consider the function H : R×R2 → R2 de-
fined by

H(εa,

(
Ta
Ts

)
)

=

 1
γa

[
−λ (Ta−Ts)+ εaσB|Ts|3Ts−2εaσB|Ta|3Ta

]
1
γs

[
−λ (Ts−Ta)−σB|Ts|3Ts + εaσB|Ta|3Ta +Rs

] .

(VII.3)

We note that H(εa,

(
Ta
Ts

)
) = 0 if (Ta,Ts) solves (VI.2), that

is, if (Ta,Ts) is an equilibrium point of problem (I.6) with pa-
rameter λ .

Assume that (T eq,ε∗a
a ,T eq,ε∗a

s ) is an equilibrium point for
problem (I.6) with parameter εa = ε∗a such that

detD2H(ε∗a ,

(
T eq,ε∗a

a

T eq,ε∗a
s

)
)> 0,

Tr D2H(ε∗a ,

(
T eq,ε∗a

a

T eq,ε∗a
s

)
)< 0,

T eq,ε∗a
s /∈ [Ts,−,Ts,+].

Then, the implicit function theorem applied to H implies that
there exists a neighborhood V ∗ of ε∗a in R, a neighborhood
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V eq,ε∗a of (T eq,λ ∗
a ,T eq,λ ∗

s ) in R2, and a C1 function

Ψ̃
(λ ) : V ∗→ V eq,ε∗a , εa 7→ Ψ̃

(λ )(εa)

such that
H(εa,

(
Ta

Ts

)
) =

(
0
0

)
,(

Ta

Ts

)
∈ V eq,ε∗a

⇐⇒


(

Ta

Ts

)
= Ψ̃(λ )(εa),

εa ∈ V ∗.

Thus, there exists a unique equilibrium for problem (I.6) close
to (T eq,ε∗a

a ,T eq,ε∗a
s ) with εa close to ε∗a . We denote such equi-

librium by (T eq,εa
a ,T eq,εa

s ). Moreover, T eq,εa
s /∈ [Ts,−,Ts,+] for

εa close to ε∗a and (T eq,εa
a ,T eq,εa

s ) is asymptotically stable (by
continuity of det and Tr). The analyticity of the functions
εa 7→ T eq,εa

s and εa 7→ T eq,εa
a can be deduced by the analytic

version of the implicit function theorem, see for instance49

(Proposition 6.1, p. 138).
To study the monotonicity of εa 7→ T eq,εa

s we compute the
derivative of H with respect to εa:

0 =
d

dεa
H(εa,Ψ̃

(λ )(εa)) =
d

dεa

[
H(εa,

(
T eq,εa

a
T eq,εa

s

)
)
]
,

and we obtain that(
∂T eq,εa

a
∂εa

∂T eq,εa
s

∂εa

)
=−D2H(εa,

(
T eq,εa

a
T eq,εa

s

)
)−1 D1H(εa,

(
T eq,εa

a
T eq,εa

s

)
).

For what concerns the second component, we get that[
γaγs detD2H(εa,

(
T eq,εa

a
T eq,εa

s

)
)
]

∂T eq,εa
s

∂εa
=

=
(

λ +4εaσB|T eq,εa
a |3

)(
σB|T eq,εa

s |4−2σB|T eq,εa
a |4

)
+
(

λ +8εaσB|T eq,εa
a |3

)(
σB|T eq,εa

a |4
)

= λσB

(
|T eq,εa

s |4−|T eq,εa
a |4

)
+4εaσ

2
B |T eq,εa

a |3 |T eq,εa
s |4,

which is positive. Therefore, T eq,εa
s is increasing with respect

to εa.
With easy computations on the first component, we obtain

that[
γaγs

σB
detD2H(εa,

(
T eq,εa

a
T eq,εa

s

)
)
]

∂T eq,εa
a

∂εa
=

=
(

λ +4σB|T eq,εa
s |3

)(
|T eq,εa

s |4−2|T eq,εa
a |)4

)
+
(

λ +4εaσB|T eq,εa
s |3

)
|T eq,εa

a |4

= 4(εa−1)σB|T eq,εa
s |3|T eq,εa

a |4
)

+(λ +4σB|T eq,εa
s |3)

(
|T eq,εa

s |4−|T eq,εa
a |4

)
,

and this quantity is positive if εa≥ 1. This concludes the proof
of Proposition II.4.

Remark. We were not able to determine the sign of ∂T eq,εa
a

∂εa
if εa ∈ (0,1) which is not straightforward from the previous
expression. It is possible to rewrite the above expression as
follows

λ

(
|T eq,εa

s |4−|T eq,εa
a |4

)
+4σB|T eq,εa

s |3
(
|T eq,εa

s |4− (2− εa)|T eq,εa
a |4

)
,

that however does not give a hint of the sign for εa ∈ (0,1)
(observe that this quantity is positive when λ = 0). The knowl-
edge of the sign would be interesting, since εa ∈ (0,1) is the
relevant physical case.

C. Proof of Corollary II.1

Let (T eq,ε∗a
a ,T eq,ε∗a

s ) be a warm equilibrium, therefore
T eq,ε∗a

s > Ts,+. Then, thanks to Proposition II.4, there exists
δ ∗ > 0 such that for any εa ∈ (ε∗a − δ ∗,ε∗a + δ ∗) there exists
a unique warm equilibrium (T eq,εa

a ,T eq,εa
s ). Moreover, εa 7→

T eq,εa
s is increasing and T eq,εa

s > Ts,+ for all εa ∈ [ε∗a ,ε∗a +δ ∗).
One can iterate the procedure by applying Proposition II.4

for any (T eq,εa
a ,T eq,εa

s ) with εa ∈ [ε∗a ,ε
∗
a + δ ∗). Our aim is to

prove that there exists a unique warm equilibrium for any εa ∈
[ε∗a ,2)

Define

εa,max := sup{ε̃a ∈ [ε∗a ,2) :
∃ a warm equilibrium for all εa ∈ [ε∗a , ε̃a]}.

Then, there exists a unique warm equilibrium for all εa ∈
[ε∗a ,εa,max) and function εa ∈ [ε∗a ,εa,max) 7→ T eq,εa

s is increas-
ing. Thus, either εa,max = 2 and the proof is completed or
εa,max < 2. Assume that εa,max < 2. Observe that, as we have
proved in Section VI A, function εa ∈ [ε∗a ,εa,max) 7→ T eq,εa

s is
bounded and therefore T eq,εs

s → Ts,max as εa→ εa,max. More-
over, function εa ∈ [ε∗a ,εa,max) 7→ T eq,εa

a is also bounded and so
there exists a subsequence εa,n → εa,max such that T eq,εa,n

a →
Ta,max. Taking the limit εa,n → εa,max in (VI.1), we deduce
that (Ta,max,Ts,max) is an equilibrium point associated to εa,max.
Therefore, we have just proved that there exists a warm equi-
librium associated to the parameter εa,max. We can then apply
Proposition II.4 and deduce that there exists δ > 0 such that,
for every εa ∈ (εa,max− δ ,εa,max + δ ), there exists a unique
warm equilibrium point. However, this contradicts the defini-
tion of εa,max. Therefore εa,max = 2.

Finally, the analyticity of the functions εa ∈ [ε∗a ,2) 7→ T eq,εa
s

and εa ∈ [ε∗a ,2) 7→ T eq,εa
a can be deduced by the analytic ver-

sion of the implicit function theorem, see, e.g.,49 (Proposition
6.1, p. 138). This proves the first item of Corollary II.1.

To prove the second item, let the former warm equilibrium
point (T eq,ε∗a

a ,T eq,ε∗a
s ) be the initial condition of our system

with parameter ε+a > ε∗a . Since (T eq,ε∗a
a ,T eq,ε∗a

s ) is an equilib-
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rium of problem (I.6) with parameter ε∗a , we have
−λ (T eq,ε∗a

a −T eq,ε∗a
s ) = 2ε

∗
a σB|T

eq,ε∗a
a |4− ε

∗
a σB|T

eq,ε∗a
s |4,

−λ (T eq,ε∗a
s −T eq,ε∗a

a ) = σB|T
eq,ε∗a

s |4− ε
∗
a σB|T

eq,ε∗a
a |4

−qβs(T
eq,ε∗a

s ).
(VII.4)

Thanks to the first identity of (VII.4), we obtain

γaT ′a(0) =

=−λ (T eq,ε∗a
a −T eq,ε∗a

s )+ ε
+
a σB|T

eq,ε∗a
s |4−2ε

+
a σB|T

eq,ε∗a
a |4

= 2ε
∗
a σB|T

eq,ε∗a
a |4− ε

∗
a σB|T

eq,ε∗a
s |4 + ε

+
a σB|T

eq,ε∗a
s |4

−2ε
+
a σB|T

eq,ε∗a
a |4

= (ε+a − ε
∗
a )σB|T

eq,ε∗a
s |4−2(ε+a − ε

∗
a )σB|T

eq,ε∗a
a |4

= σB(ε
+
a − ε

∗
a )
(
|T eq,ε∗a

s |4−2|T eq,ε∗a
a |4

)
< 0.

(VII.5)

And from the second identity of (VII.4), we deduce that

γsT ′s (0) =

=−λ (T eq,ε∗a
s −T eq,ε∗a

a )−σB|T
eq,ε∗a

s |4 + ε
+
a σB|T

eq,ε∗a
a |4

+qβs(T
eq,ε∗a

s )

= σB|T
eq,ε∗a

s |4− ε
∗
a σB|T

eq,ε∗a
a |4−qβs,+−σB|T

eq,ε∗a
s |4

+ ε
+
a σB|T

eq,ε∗a
a |4 +qβs,+

= (ε+a − ε
∗
a )σB|T

eq,ε∗a
a |4 > 0.

(VII.6)

Let us define the subsets of Q

Q
(λ ,ε+a )
1 := {(Ta,Ts) ∈Q,Ts ∈ (0,T eq,ε+a

s,1 ) :{
−λ (Ta−Ts)+ ε+a T 4

s −2ε+a T 4
a > 0,

−λ (Ts−Ta)−σBT 4
s + ε+a σBT 4

a +qβs(Ts)> 0,
},

Q
′,(λ ,ε+a )
1 := {(Ta,Ts) ∈Q,Ts ∈ (T eq,ε+a

s,1 ,T eq,ε+a
s,2 ) :{

−λ (Ta−Ts)+ ε+a T 4
s −2ε+a T 4

a < 0,
−λ (Ts−Ta)−σBT 4

s + ε+a σBT 4
a +qβs(Ts)< 0,

},

Q
(λ ,ε+a )
2 := {(Ta,Ts) ∈Q :{
−λ (Ta−Ts)+ ε+a T 4

s −2ε+a T 4
a > 0,

−λ (Ts−Ta)−σBT 4
s + ε+a σBT 4

a +qβs(Ts)< 0,
},

Q
(λ ,ε+a )
3 := {(Ta,Ts) ∈Q,Ts > T eq,ε+a

s,3 :{
−λ (Ta−Ts)+ ε+a T 4

s −2ε+a T 4
a < 0,

−λ (Ts−Ta)−σBT 4
s + ε+a σBT 4

a +qβs(Ts)< 0,
},

Q
′,(λ ,ε+a )
3 := {(Ta,Ts) ∈Q,Ts ∈ (T eq,ε+a

s,2 ,T eq,ε+a
s,3 ) :{

−λ (Ta−Ts)+ ε+a T 4
s −2ε+a T 4

a > 0,
−λ (Ts−Ta)−σBT 4

s + ε+a σBT 4
a +qβs(Ts)> 0,

},

Q
(λ ,ε+a )
4 := {(Ta,Ts) ∈Q :{
−λ (Ta−Ts)+ ε+a T 4

s −2ε+a T 4
a < 0,

−λ (Ts−Ta)−σBT 4
s + ε+a σBT 4

a +qβs(Ts)> 0,
}.

Observe that from (VII.5)-(VII.6) we deduce that
(T eq,ε∗a

a ,T eq,ε∗a
s ) belongs to the subset Q

(λ ,ε+a )
4 (that gen-

eralizes Q4 in Figure 12). Since Ts(0) = T eq,ε∗a
s > Ts,+, then as

long as (Ta,Ts) remains in Q
(λ ,ε+a )
4 , Ts increases and therefore

it will remain bigger than Ts,+. Then, several possibilities can
happen

• either (Ta,Ts) remains forever in Q
(λ ,ε+a )
4 . In this case

Ts is increasing and (Ta,Ts) converges to the new warm
equilibrium,

• or it enters into Q
′(λ ,ε+a )
3 . In this case the solution in-

creasingly attains the new warm equilibrium,

• or it enters into Q
(λ ,ε+a )
3 . Hence, the solution decreas-

ingly converges to the new warm equilibrium.

This concludes the proof of Corollary II.1.

VIII. CONCLUDING REMARKS

First, we observe that the mathematical analysis of the
problem we present in this paper can be completed with some
physics-informed comments. Indeed, showing that having
larger values of εa leads to a warmer temperature at surfaces
amounts to mathematically proving the greenhouse effect for
this simple model. In the case of a very opaque atmosphere,
if one wants to proceed along the lines of Eq. I.3, in order to
respect the basic laws of thermodynamics, one needs to con-
sider multiple layers that behave radiatively as black bodies
stacked on top of each other.

Let us nonetheless assume that if one considers a model
with a single atmospheric layer having (an unphysical) εa ≥ 1,
amounts to representing by and large a very opaque atmo-
sphere. Then the fact that the sensitivity of the atmospheric
temperature with respect to εa is positive for 1< εa < 2, mean-
ing that larger values of εa lead to higher atmospheric temper-
ature, can be roughly interpreted as a signature of the runaway
greenhouse effect, which indeed manifests itself when εa ≥ 2
leading to a blow-up in finite time of the solution.

Moreover, larger values of λ correspond to having a
stronger coupling between the surface layer and the atmo-
sphere (the two temperatures being identical, ceteris paribus,
in the λ → ∞ limit). Since the incoming solar radiation is pri-
marily absorbed at surface, larger values of λ allow for a more
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efficient upward transfer of energy to the atmosphere, thus de-
creasing the surface temperature, as a result of enhanced ver-
tical sensible or latent heat transport.

Finally, we would like to point out that the results of this
paper will be used in the study of the 1D two-layer energy
balance model (I.3), which we will develop in future works.
The key mathematical questions are the same: global exis-
tence, long time behaviour, influence of the different param-
eters. However, problem (I.3) is composed of two nonlinear
and degenerate parabolic equations, which brings many math-
ematical challenges. For such partial differential equations,
comparison results will probably derive bounds from the ODE
system studied in the present work. Furthermore, problem
(I.3) is particularly interesting when the function q is not con-
stant, and depends on x (the insolation being not the same at
the poles or at the equator), and then the study of the equilib-
rium points is one of the interesting challenges.
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Appendix A: Proof of Proposition II.6

Let us prove that blow up in finite time occurs for problem
(I.6) when εa > 2, first under quite restrictive hypothesis (part
a) of Proposition II.6), then under weaker assumptions (part
b) of Proposition II.6).

1. Proposition II.6, part a)

Consider the following problem
γaT ′a = εaσB|Ts|3Ts−2εaσB|Ta|3Ta,

γsT ′s =−σB|Ts|3Ts + εaσB|Ta|3Ta +Rs(Ts),

Ta(0) = T (0)
a ,

Ts(0) = T (0)
s ,

(A.1)

when βs is given by (I.7). Observe that, under assumptions
(II.3),(II.6)-(II.8) one can still carry out the same proof of

Proposition II.1 to show that a unique maximal solution of
problem (I.6) exists for t ∈ [0,T ∗). Moreover, thanks to
Lemma IV.1, such solution is positive on (0,T ∗).

On the other hand, the boundedness of solutions established
in Section IV C was based on the fact that εa < 2. Thus, this
property cannot be deduced when εa ≥ 2.

a. Lack of equilibrium points

Equilibrium points are stationary solutions of (A.1): they
solve the system{

εaσB|Ts|3Ts−2εaσB|Ta|3Ta = 0,
−σB|Ts|3Ts + εaσB|Ta|3Ta +Rs = 0.

(A.2)

Since Ts ≥ 0 and Ta ≥ 0, from the first equation of (A.2) we
get

Ts = 21/4Ta,

and, plugging such identity into the second equation of (A.2),
we obtain

(εa−2)σBT 4
a +qβs(Ts) = 0,

which has no solutions because εa ≥ 2 and qβs > 0.
Remark. Observe that, by replacing Ta by 2−1/4Ts in the

ODE (A.1) satisfied by Ts, we get

γsT ′s = (
εa

2
−1)σBT 4

s +Rs(Ts),

where blow up in finite time occurs when εa
2 − 1 > 0. Of

course, this procedure is not rigorous, but anyhow it gives an
insight of blow up in finite time for εa > 2.

b. Monotonicity of the solution

Now let us consider the sets

C1 = {(Ta,Ts) ∈Q,εaσB|Ts|3Ts−2εaσB|Ta|3Ta = 0},

and

C2 = {(Ta,Ts) ∈Q,−σB|Ts|3Ts +εaσB|Ta|3Ta +Rs(Ts) = 0}.

Observe that (Ta,Ts) ∈ C1 if and only if Ts = 21/4Ta with Ta ≥
0. Given Ts ≥ 0, we will denote T (1)

a (Ts) the value for which
(T (1)

a (Ts),Ts) ∈ C1. Hence, we have T (1)
a (Ts) = 2−1/4Ts.

Now, let us analyse C2. Since there are no equilibrium
points in Q, C2 does not intersect C1 in Q.

Moreover, C2 contains points of the form (0,Ts). Indeed,
such points satisfy

−σB|Ts|3Ts +Rs(Ts) = 0, (A.3)

which has at least one solution (function Ts 7→ −σB|Ts|3Ts +
Rs(Ts) is positive for Ts close to 0 and negative for Ts large).

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

01
36

67
3



Analysis of a two-layer energy balance model: long time behaviour and greenhouse effect 28

More precisely, we have proved in Section V that, when βs is
given by (I.7), (A.3) can have one, two or three solutions Ts
depending on the values of the parameters appearing in βs, on
q and σB.

We further observe that if −σB|Ts|3Ts +Rs(Ts) > 0, there
is no Ta ≥ 0 such that (Ta,Ts) ∈ C2. On the other hand, if
−σB|Ts|3Ts +Rs(Ts) ≤ 0, there exists a unique value Ta ≥ 0
such that (Ta,Ts)∈C2. We denote such value T (2)

a (Ts). There-
fore

C2 = {(T (2)
a (Ts),Ts),σB|Ts|3Ts ≥Rs(Ts)}.

Note that the set

J := {Ts,σB|Ts|3Ts ≥Rs(Ts)}

is a union of intervals where the extremal points of such inter-
vals are zeros of the map Ts 7→ σB|Ts|3Ts−Rs(Ts).

Finally, we note that

(Ta,Ts) ∈ C2 =⇒ Ts ∼ ε
1/4
a Ta as Ts→ ∞.

This gives the asymptotic shape of C2.
We claim that

∀Ts ∈J , T (2)
a (Ts)< T (1)

a (Ts). (A.4)

Indeed, first we observe that on a compact connected compo-
nent of J it holds that

∀Ts ∈ ∂J , T (2)
a (Ts)< T (1)

a (Ts)

because T (2)
a (Ts) = 0 on ∂J . Moreover, there is no Ts such

that T (2)
a (Ts) = T (1)

a (Ts). Therefore, by continuity, (A.4) holds
true on all the compact connected components of J .

Furthermore, on the unbounded connected component,
since εa > 2, the asymptotics of T (2)

a (Ts) and T (1)
a (Ts) give

that

Ts large enough =⇒ T (2)
a (Ts)< T (1)

a (Ts).

Since there is no Ts such that T (2)
a (Ts) = T (1)

a (Ts), the sign
of T (2)

a (Ts)− T (1)
a (Ts) cannot change in the unbounded con-

nected component (by continuity), and therefore (A.4) holds
true. This implies that C2 remains strictly above C1. In the
following we will consider the set

E := {(Ta,Ts) ∈Q,σBT 4
s −Rs(Ts)< εaσBT 4

a <
1
2

εaσBT 4
s },

see Figure 14.
Now, let us rewrite the vector field F defined in (IV.1) under

the current assumptions

F
(

Ta
Ts

)
=

 1
γa

[
εaσB|Ts|3Ts−2εaσB|Ta|3Ta

]
1
γs

[
−σB|Ts|3Ts + εaσB|Ta|3Ta +Rs(Ts)

] .

(A.5)
Assume that T (0)

s < 21/4T (0)
a . Then, as long as the solution

(Ta,Ts) remains below C1, we have T ′a ≤ 0 and T ′s > 0, hence,

Ta

Ts C1
C2

T1,∗

E

(a)

Ta

Ts C1
C2

T3,∗

E

T1,∗

T2,∗

(b)

FIG. 14: In the phase space we represent the sets
C1 = {(T1,T2) ∈ Q̄ : εaσB|Ts|3Ts−2εaσB|Ta|3Ta = 0},

C2 = {(Ta,Ts) ∈ Q̄ : −σB|Ts|3Ts+εaσB|Ta|3Ta+Rs(Ts) = 0}
and

E = {(Ta,Ts) ∈ Q̄ : σBT 4
s −Rs(Ts)< εaσBT 4

a < 1
2 εaσBT 4

s }.
In (a) we show the case in which −σB|Ts|3Ts +Rs(Ts) = 0
has a unique solution and in (b) the case of three solutions.

in the phase plane, the solution goes monotonically in the
“north-west" direction, and attains C1 in finite time (other-
wise, it would have to converge to some equilibrium point
which, however, does not exist). Hence, under assumption
T (0)

s < 21/4T (0)
a , the solution enters E .

Analogously, if the initial condition is above C1 and not in
E , then it enters E in finite time. And if the initial condition
belongs to E , then the solution cannot leave E , since the vec-
tor field goes inward E .

Therefore, no matter where the initial condition is located
in Q̄, the solution enters E (in a monotonical way). When it is
in E , then T ′a > 0 and T ′s > 0, that is, Ta and Ts are increasing.
Therefore, since the temperatures cannot converge to some
equilibrium point, they both go to +∞ as t → τ+a,s, which is
the maximum existence time (see Section IV A) that, at this
stage of the proof, can be finite or infinite.

c. Asymptotic behaviour in the phase plane

As already noted, the solution, once entered in E , remains
in such set for all time of existence. Hence, there exists τ0
such that

∀ t ∈ [τ0,τ
+
a,s), T (2)

a (Ts(t))< Ta(t)< T (1)
a (Ts(t)).

Since T (1)
a (Ts(t)) = 2−1/4Ts(t), and T (2)

a (Ts(t)) ∼ ε
−1/4
a Ts(t)

as t → τ+a,s, then the quotient Ts(t)
Ta(t)

remains bounded between
two positive constants.

Assume for the moment that the behaviour is perfectly lin-
ear, that is, there exists µ∗ > 0 such that

∀ t ∈ [τ0,τ
+
a,s), Ts(t) = µ∗Ta(t). (A.6)

Then, since (Ta,Ts) ∈ E , this linear behaviour would imply
that µ∗ ∈ [21/4,ε

1/4
a ], and moreover

µ∗ =
T ′s (t)
T ′a(t)

.
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From (A.1) we would have

γs

γa

T ′s (t)
T ′a(t)

=
−σB|Ts|3Ts + εaσB|Ta|3Ta +Rs

εaσB|Ts|3Ts−2εaσB|Ta|3Ta

=
−σBµ4

∗T 4
a + εaσBT 4

a +Rs

εaσBµ4
∗T 4

a −2εaσBT 4
a

=
εa−µ4

∗ +
Rs

σBT 4
a

εa(µ4
∗ −2)

→ εa−µ4
∗

εa(µ4
∗ −2)

, as Ta→+∞.

Thus, µ∗ would solve the equation

γs

γa
µ∗ =

εa−µ4
∗

εa(µ4
∗ −2)

, with µ∗ ∈ [21/4,ε
1/4
a ].

We observe that the map y ∈ [2,εa] 7→ γs
γa

y1/4 is strictly in-
creasing, whereas the map y ∈ (2,εa) 7→ εa−y

εa(y−2) is decreasing,
it goes to +∞ as y→ 2+, and to 0 as y→ εa. Therefore, there
exists a unique value y∗ ∈ (2,εa) such that

γs

γa
y1/4
∗ =

εa− y∗
εa(y∗−2)

,

and so a unique value µ∗ ∈ (21/4,ε
1/4
a ) such that

γs

γa
µ∗ =

εa−µ4
∗

εa(µ4
∗ −2)

. (A.7)

Such value is µ∗ = y1/4
∗ . To sum up, if (A.6) would hold,

µ∗ would have to be the unique value in (21/4,ε
1/4
a ) solving

(A.7).
Of course, the linear behavior (A.6) can not be ensured.

However, from the above argument we are able to prove – in
the general case – the following bound from below of the ratio
Ts(t)
Ta(t)

.

Lemma A.1. Let τ0 be any value for which (Ta(τ0),Ts(τ0)) ∈
E . Then, there exists µ ∈ (21/4,µ∗) such that

∀ t ≥ τ0, Ts(t)≥ µTa(t). (A.8)

What is important in Lemma A.1 is the fact that (A.8) holds
for some µ > 21/4. This fact is crucial to prove that blow up
in finite time occurs.
Proof of Lemma A.1. Let us consider system (A.1) as a first
order non-autonomous ODE in Ts, with Ta the new variable.
Indeed, since the map

ϕ : [τ0,τ
+
a,s)→ [Ta(τ0),+∞), t 7→ ϕ(t) = Ta(t)

is increasing, we can consider its inverse

ϕ
−1 : [Ta(τ0),+∞)→ [τ0,τ

+
a,s), z 7→ ϕ

−1(z),

and then consider

u : [Ta(τ0),+∞)→ [Ts(τ0),+∞), u(z) = Ts(ϕ
−1(z)).

We have

u′(z) = T ′s (ϕ
−1(z)) (ϕ−1)′(z) =

T ′s (ϕ
−1(z))

ϕ ′(ϕ−1(z))
=

T ′s (ϕ
−1(z))

T ′a(ϕ−1(z))

=
γa

γs

−σBTs(ϕ
−1(z))4 + εaσBTa(ϕ

−1(z))4 +Rs(Ts(ϕ
−1(z)))

εaσBTs(ϕ−1(z))4−2εaσBTa(ϕ−1(z))4

=
γa

γs

−σBu(z)4 + εaσBz4 +Rs(u(z))
εaσBu(z)4−2εaσBz4

=
γa

γs

εaz4−u(z)4 + Rs(u(z))
σB

εa(u(z)4−2z4)
.

Note that

u(z)
z

=
Ts(ϕ

−1(z))
ϕ(ϕ−1(z))

=
Ts(ϕ

−1(z))
Ta(ϕ−1(z))

> 21/4

since (Ta,Ts) is above C1. Therefore the quantity u(z)4− 2z4

is positive. Let us now consider the set

U := {(z,x),z ∈ [Ta(τ0),+∞),x > 21/4z},

and the function

f : U → R, f (z,x) :=
γa

γs

εaz4− x4 + Rs(x)
σB

εa(x4−2z4)
.

Thus, u satisfies the following differential equation{
u′(z) = f (z,u(z)), z ∈ [Ta(τ0),+∞),

u(Ta(τ0)) = Ts(τ0).
(A.9)

Now, since Ts(τ0)> 21/4Ta(τ0), we can choose µ ∈ (21/4,µ∗)
– where µ∗ is the value for which (A.7) holds – such that
Ts(τ0)> µTa(τ0). Graphically, we are choosing µ ∈ (21/4,µ∗)
so that the point (Ta(τ0),Ts(τ0)) is above the line Ts = µTa.
Then, the function

v : [Ta(τ0),+∞)→ R, v(z) := µz

is a subsolution of the first order non-autonomous equation
(A.9). Indeed,

f (z,v(z)) =
γa

γs

εaz4− v(z)4 + Rs(v(z))
σB

εa(v(z)4−2z4)

=
γa

γs

(εa−µ4)z4 + Rs(v(z))
σB

εa(µ4−2)z4

≥ γa

γs

(εa−µ4)z4

εa(µ4−2)z4

=
γa

γs

εa−µ4

εa(µ4−2)

>
γa

γs

εa−µ4
∗

εa(µ4
∗ −2)

= µ∗ > µ = v′(z).

Moreover,

v(Ta(τ0)) = µTa(τ0)< Ts(τ0) = u(Ta(τ0)).
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To sum up, we have{
u′(z) = f (z,u(z)),
u(Ta(τ0)) = Ts(τ0)

and

{
v′(z)< f (z,v(z)),
v(Ta(τ0))< u(Ta(τ0))

.

We claim that

∀z≥ Ta(τ0), v(z)< u(z).

Indeed, if there exists z1 such that v(z1) = u(z1), we would
have

v′(z1)< f (z1,v(z1)) = f (z1,u(z1)) = u′(z1).

Such inequality implies that v−u is strictly decreasing near z1
and equal to 0 at z1. Therefore, v−u would have to be positive
before z1, which contradicts the minimality of z1. Thus, we
have that

∀z≥ Ta(τ0)

Ts(ϕ
−1(z)) = u(z)> µz = µϕ(ϕ−1(z)) = µTa(ϕ

−1(z)),

which implies that

∀ t ∈ [τ0,τ
+
a,s), Ts(t)> µTa(t).

The proof of Lemma A.1 is therefore complete.

d. Blow up in finite time

In this section we prove that τ+a,s < ∞. From the first equa-
tion in (A.1) we get that

γa
T ′a(t)
Ta(t)4 =

εaσB|Ts|3Ts−2εaσB|Ta|3Ta

Ta(t)4

= εaσB
Ts(t)4

Ta(t)4 −2εaσB.

Using Lemma A.1, we deduce that there exists µ ∈ (21/4,µ∗)
such that

∀ t ∈ [τ0,τ
+
a,s), γa

T ′a(t)
Ta(t)4 ≥ εaσB(µ

4−2).

Then, for all τ ∈ [τ0,τ
+
a,s), we have

γa

∫
τ

τ0

T ′a(t)
Ta(t)4 dt ≥

∫
τ

τ0

εaσB(µ
4−2)dt.

By computing the integrals we get

γa

[ −1
3Ta(t)3

]τ

τ0
≥ εaσB(µ

4−2)(τ− τ0), ∀τ ∈ [τ0,τ
+
a,s)

which gives

εaσB(µ
4−2)(τ− τ0)≤

γa

3Ta(τ0)3 −
γa

3Ta(τ)3

≤ γa

3Ta(τ0)3 , ∀τ ∈ [τ0,τ
+
a,s).

Since µ > 21/4, we obtain that

τ− τ0 ≤
γa

3εaσB(µ4−2)Ta(τ0)3 , ∀τ ∈ [τ0,τ
+
a,s)

which implies that τ+a,s is finite:

τ
+
a,s ≤ τ0 +

γa

3εa σB (µ4−2)Ta(τ0)3 .

This concludes the proof of Proposition II.6, part a).

2. Proposition II.6, part b)

In order to deal with the case λ > 0 and Ra≥ 0 we consider
the set of points

C
(g)
1 = {(Ta,Ts),

−λ (Ta−Ts)+εaσB|Ts|3Ts−2εaσB|Ta|3Ta +Ra(Ta) = 0},

and

C
(g)
2 = {(Ta,Ts),

−λ (Ts−Ta)−σB|Ts|3Ts + εaσB|Ta|3Ta +Rs(Ts) = 0}.

Observe that for Ta large, there exists a unique value Ts such
that

λTs + εaσB|Ts|3Ts = λTa +2εaσB|Ta|3Ta−Ra(Ta),

that is, (Ta,Ts) ∈ C
(g)
1 . Such value, denoted by T (1,g)

s (Ta),
satisfies

T (1,g)
s (Ta)∼ 21/4Ta as Ta→ ∞.

Analogously, given Ts large enough, there is one and only
value of Ta such that

λTa + εaσB|Ta|3Ta = λTs +σB|Ts|3Ts−Rs(Ts),

namely, such that (Ta,Ts) ∈ C
(g)
2 . We denote this value

T (2,g)
a (Ts), and we claim that it satisfies

T (2,g)
a (Ts)∼ ε

−1/4
a Ts as Ts→ ∞.

Therefore, we have

T (2,g)
a (T (1,g)

s (Ta))∼ ε
−1/4
a T (1,g)

s (Ta)∼
( 2

εa

)1/4
Ta

as Ta→ ∞.

Hence, there exists Ta,∗ such that

Ta ≥ Ta,∗ =⇒ T (2,g)
a (T (1,g)

s (Ta))< Ta.

We now consider the set

E (g) :=
⋃

Ta≥Ta,∗

(T (2,g)
a (T (1,g)

s (Ta)),Ta)×{T (1,g)
s (Ta)},
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or, in other words, the set of (Ta,Ts) ∈Q such that Ta ≥ Ta,∗
and such that{
−λ (Ta−Ts)+ εaσB|Ts|3Ts−2εaσB|Ta|3Ta +Ra(Ta)> 0,
−λ (Ts−Ta)−σB|Ts|3Ts + εaσB|Ta|3Ta +Rs(Ts)> 0.

Then, we deduce that if the initial condition (T (0)
a ,T (0)

s ) be-
longs to E (g), the solution never leaves E (g). Furthermore,
the components Ta and Ts are increasing and blow up in finite
time.

Appendix B: Proof of Lemma VI.3 and Remark VI.1

1. Preliminary computations

When studying the convexity of Φ, a useful tool is a suitable
expression of Φ′′. This is the goal of this section.

Let us first consider function Φ1, defined in (VI.11). By
computing the second derivative, we get

Φ
′′
1(Ts) =−

λ

2
d2T (1)

a

dT 2
s

(Ts).

We introduce the following function

ρ(Ts) :=
T (1)

a (Ts)

Ts
. (B.1)

Thanks to (VI.10), we know that ρ(Ts) ∈ (2−1/4,1). We re-
place T (1)

a (Ts) by ρ(Ts)Ts in the first equation of (VI.9) and
we obtain the identity

λ (1−ρ(Ts))Ts = εaσB(2ρ(Ts)
4−1)T 4

s ,

that can be rewritten as follows

2ρ(Ts)
4−1

1−ρ(Ts)
=

λ

εaσBT 3
s
. (B.2)

Let us introduce the map

L : x ∈ [2−1/4,1) 7→ L(x) :=
2x4−1
1− x

, and Kph :=
λ

εaσB
.

(B.3)
Observe that L is strictly increasing on [2−1/4,1) and it holds
that

ρ(Ts) = L−1
(Kph

T 3
s

)
from which we deduce the following identity

T (1)
a (Ts) = Ts ρ(Ts) = Ts L−1

(Kph

T 3
s

)
.

We compute the second derivative of T (1)
a with respect to Ts

and we get

d T (1)
a

dTs
(Ts) = L−1

(Kph

T 3
s

)
+Ts

d
dTs

(
L−1
(Kph

T 3
s

))
,

and

d2 T (1)
a

dT 2
s

(Ts) = 2
d

dTs

(
L−1
(Kph

T 3
s

))
+Ts

d2

dT 2
s

(
L−1
(Kph

T 3
s

))
.

The derivation rule of an inverse function gives

d
dTs

(
L−1
(Kph

T 3
s

))
=
−3Kph

T 4
s

1

L′
(

L−1
(

Kph
T 3

s

)) ,
and therefore we obtain

d2

dT 2
s

(
L−1
(Kph

T 3
s

))
=

12Kph

T 5
s

1

L′
(

L−1
(

Kph
T 3

s

)) +
3Kph

T 4
s

d
dTs

[
L′
(

L−1
(

Kph
T 3

s

))]
[
L′
(

L−1
(

Kph
T 3

s

))]2 .

Using the latter expression inside the second derivative of T (1)
a

we get

d2 T (1)
a

dT 2
s

(Ts) =
−6Kph

T 4
s

1

L′
(

L−1
(

Kph
T 3

s

))
+

12Kph

T 4
s

1

L′
(

L−1
(

Kph
T 3

s

)) +
3Kph

T 3
s

d
dTs

[
L′
(

L−1
(

Kph
T 3

s

))]
[
L′
(

L−1
(

Kph
T 3

s

))]2

=
6Kph

T 4
s

1

L′
(

L−1
(

Kph
T 3

s

))
1+

Ts

2

d
dTs

[
L′
(

L−1
(

Kph
T 3

s

))]
[
L′
(

L−1
(

Kph
T 3

s

))]
 .

We observe that

1+
Ts

2

d
dTs

[
L′
(

L−1
(

Kph
T 3

s

))]
[
L′
(

L−1
(

Kph
T 3

s

))]
= 1+

Ts

2
d

dTs

{
lnL′

(
L−1
(Kph

T 3
s

))}
= 1+

Ts

2
d

dTs

{
ln
(

L′(ρ(Ts))
)}

.

On the other hand we have that

ln
(
L′(ρ)

)
= ln

(
8ρ3−6ρ4−1

(1−ρ)2

)
= ln

(
8ρ

3−6ρ
4−1

)
−2ln(1−ρ) ,

hence

d
dTs

{
ln
(
L′(ρ(Ts))

)}
=

d
dTs

{
ln
(
8ρ(Ts)

3−6ρ(Ts)
4−1

)
−2ln(1−ρ(Ts))

}
=

[
24ρ(Ts)

2 (1−ρ(Ts))

8ρ(Ts)3−6ρ(Ts)4−1
+

2
1−ρ(Ts)

]
ρ
′(Ts)

=

[
24ρ(Ts)

2 (1−ρ(Ts))

8ρ(Ts)3−6ρ(Ts)4−1
+

2
1−ρ(Ts)

]
−3Kph

T 4
s

1
L′(ρ(Ts))

.
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Using the latter expression, we have that

1+
Ts

2

d
dTs

[
L′
(

L−1
(

Kph
T 3

s

))]
[
L′
(

L−1
(

Kph
T 3

s

))] =

= 1−
3Kph

2T 3
s

[
24ρ(Ts)

2 (1−ρ(Ts))

8ρ(Ts)3−6ρ(Ts)4−1
+

2
1−ρ(Ts)

]
· 1

L′(ρ(Ts))

= 1− 3
2

[
24ρ(Ts)

2 (1−ρ(Ts))

8ρ(Ts)3−6ρ(Ts)4−1
+

2
1−ρ(Ts)

]
· L(ρ(Ts))

L′(ρ(Ts))

= 1− 3
2

[
24ρ(Ts)

2 (1−ρ(Ts))

8ρ(Ts)3−6ρ(Ts)4−1
+

2
1−ρ(Ts)

]
· (2ρ(Ts)

4−1)(1−ρ(Ts))

8ρ(Ts)3−6ρ(Ts)4−1
.

Let us introduce the following function on [2−1/4,1)

N : ρ 7→ 1− 3
2

[ 24ρ2 (1−ρ)

8ρ3−6ρ4−1
+

2
1−ρ

] (2ρ4−1)(1−ρ)

8ρ3−6ρ4−1

= 1− 3
2

[24ρ2 (2ρ4−1)(1−ρ)2

(8ρ3−6ρ4−1)2 +
2(2ρ4−1)

8ρ3−6ρ4−1

]
.

(B.4)

This gives the following expressions of Φ′′1

Φ
′′
1(Ts) =−

3λKph

T 4
s L′(ρ(Ts))

N(ρ(Ts)). (B.5)

We use the above identity for Φ′′: thanks to (B.3) we have that
L(ρ(Ts)) =

Kph
T 3

s
and therefore we get

Φ
′′(Ts) =−

λ

2
d2 T (1)

a

dT 2
s

(Ts)+12σB(1−
εa

2
)T 2

s

=− 3λ

K1/3
ph

L(ρ(Ts))
4/3

L′(ρ(Ts))
N(ρ(Ts))+12σB(1−

εa

2
)
( Kph

L(ρ(Ts))

)2/3

= 3λ
(1−ρ(Ts))

2/3 (2ρ(Ts)
4−1)4/3

K1/3
ph

·
[
− N(ρ(Ts))

8ρ(Ts)3−6ρ(Ts)4−1
+4(

1
εa
− 1

2
)

1
(2ρ(Ts)4−1)2

]
.

Let us define

ρs := ρ(Ts) = L−1
(Kph

T 3
s

)
,

and the following function on (2−1/4,1)

N∗ : ρ 7→
[
− N(ρ)

8ρ3−6ρ4−1
+4(

1
εa
− 1

2
)

1
(2ρ4−1)2

]
. (B.6)

Thus, we rewrite Φ′′ as follows

Φ
′′(Ts) =

( 3λ

K1/3
ph

(1−ρs)
2/3 (2ρ

4
s −1)4/3

)
N∗(ρs). (B.7)

2. Proof of Lemma VI.3

Our aim is to prove that

εa < 1 =⇒

{
N∗(ρ)> 0
∀ρ ∈ (2−1/4,1).

(B.8)

We note that

N∗(ρ) = 4(
1
εa
− 1

2
)

1
(2ρ4−1)2 −

1
8ρ3−6ρ4−1

·
(

1− 3
2

[24ρ2 (2ρ4−1)(1−ρ)2

(8ρ3−6ρ4−1)2 +
2(2ρ4−1)

8ρ3−6ρ4−1

])
= 4(

1
εa
− 1

2
)

1
(2ρ4−1)2 −

1
8ρ3−6ρ4−1

+
3/2

8ρ3−6ρ4−1

·
[24ρ2 (2ρ4−1)(1−ρ)2

(8ρ3−6ρ4−1)2 +
2(2ρ4−1)

8ρ3−6ρ4−1

]
.

The function ρ 7→ 8ρ3−6ρ4−1 is increasing and positive on
(2−1/4,1). Therefore, for all ρ ∈ (2−1/4,1), we have

N∗(ρ)≥ 4(
1
εa
− 1

2
)

1
(2ρ4−1)2 −

1
8ρ3−6ρ4−1

=
1

2ρ4−1

(
4(

1
εa
− 1

2
)

1
2ρ4−1

− 2ρ4−1
8ρ3−6ρ4−1

)
.

We observe that the function ρ 7→ 1
2ρ4−1 is decreasing on

(2−1/4,1) and is equal to 1 for ρ = 1. Whereas the function

Ñ : ρ ∈ (2−1/4,1) 7→ Ñ(ρ) :=
2ρ4−1

8ρ3−6ρ4−1

is strictly increasing on (2−1/4,1). Indeed,

Ñ′(ρ) =
8ρ3(8ρ3−6ρ4−1)− (2ρ4−1)(24ρ2−24ρ3)

(8ρ3−6ρ4−1)2

=
8ρ2

(8ρ3−6ρ4−1)2

(
(8ρ

4−6ρ
5−ρ)− (2ρ

4−1)(3−3ρ)
)

=
8ρ2

(8ρ3−6ρ4−1)2

(
2ρ

4−4ρ +3
)
≥ 0 on (2−1/4,1).

Therefore Ñ is increasing on (2−1/4,1). Hence,

(2ρ
4−1)N∗(ρ)≥ 4(

1
εa
− 1

2
)−1 =

4−3εa

εa
.

Therefore, if εa ≤ 1 (actually the same holds for εa <
4
3 ), N∗ is

positive on (2−1/4,1) and so Φ′′ is positive on (0,+∞), thanks
to (B.7). This was the main part of Lemma VI.3.

Now, if εa ≤ 1, Φ is strictly convex and strictly increasing
on [0,+∞) (see the proof of Lemma VI.1). Thus, equation
Φ(Ts) = qβs(Ts) can have at most one solution on [0,Ts,−],
one on [Ts,+,+∞) and two on [Ts,−,Ts,+]. If there are two
solutions on [Ts,−,Ts,+], the strict convexity of Φ implies that
there cannot be other solutions on [Ts,+,+∞). Therefore, in
this case, there are at most three solutions. This concludes the
proof of Lemma VI.3.
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3. On Remark VI.1

For εa ∈ [1,2), we used numerical tools have an idea the
convexity of Φ. First we note that N is equal to 1 for ρ =
2−1/4, converges to −2 for ρ → 1−, hence has at least one
zero. By plotting such function we observe that it is decreas-
ing on [2−1/4,1) and it has a unique zero, ρ0, whose value is
approximately 0,89 (see Figure 15).

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
-2

-1.5

-1

-0.5

0

0.5

1

FIG. 15: Graph of function N, defined in (B.4).

This gives information on the convexity of T (1)
a and of Φ1.

Concerning N∗, we observe that that there exists a unique
value εa,0 ∈ (1.99,1.991) such that:

• N∗ is positive on (2−1/4,1) as long as εa < εa,0,

• N∗ has exactly two zeros in (2−1/4,1) for all εa ∈
(εa,0,2), it is negative between these two zeros and pos-
itive elsewhere,

see see Figure 16 . Therefore, following the numerical re-
sults, the convexity of Φ is described in Remark VI.1. Con-

0.85 0.9 0.95 1
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-0.5

0

0.5

1
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a
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 = 1.9139
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 = 1.9417

a
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a
 = 1.9608

a
 = 1.9704

a
 = 1.9802

a
 = 1.99

a
 = 1.994

a
 = 1.999

(a)

FIG. 16: The graph N∗ for εa close to 2.

cerning the number of equilibrium points, it remains to study
the case εa ∈ (εa,0,2), where the function Φ (from numerical
tests) is respectively convex, concave and convex over the in-
terval [0,+∞). Let us assume that such behaviour is satisfied.
Then, since Φ is strictly increasing, equation Φ(Ts) = qβs(Ts)
has at most one solution in [0,Ts,−] and at most one solution
in [Ts,+,+∞). If we have four solutions of the equation

Φ(Ts) = qβs(Ts)

in the interval [Ts,−,Ts,+] then, by Rolle’s Theorem,

Φ
′(Ts) = q

βs,+−βs,−
Ts,+−Ts,−

admits three solutions. Applying again Rolle’s Theorem we
deduce that Φ′′ vanishes at least twice. And since Φ′′ has at
most two zeros, we conclude that there cannot be five solu-
tions of

Φ(Ts) = qβs(Ts)

in the interval [Ts,−,Ts,+].
Therefore, the equation of the equilibrium points can have

at most six solutions over all [0,+∞). In this case there
would be one equilibrium point in [0,Ts,−], one in [Ts,+,+∞),
and four in (Ts,−,Ts,+). Let us denote them by Ts,i, with
i = 1, . . . ,6. As explained above, there exist three values
T̃s, j ∈ [Ts,−,Ts,+], j = 1,2,3, such that

Φ
′(T̃s, j) = qβ

′(T̃s, j)

and Ts,2 < T̃s,1 < Ts,3 < T̃s,2 < Ts,4 < T̃s,3 < Ts,5. However, Φ

is strictly convex on [T̃s,3,+∞) and Φ′(Ts,5) > qβ ′(Ts,5) thus
the existence of Ts,6. Therefore, we conclude that there exist
at most five equilibrium points.

In the picture that follows we have plot the graph of Φ, for
εa = 1.997 and ten values of λ from 0.005 to 0.05, and the
graph of βs. Even for such a big value of εa > εa,0 the drawing
suggests that for physical relevant parameters of βs there are
at most three equilibrium points of our system (see Figure 17).
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FIG. 17: Intersection of the graph of Φ with εa = 1.997 and
βs, with ten values of λ in {0,005, ...,0.05}.
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