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The coronavirus disease 2019 (COVID-19) has been a global pandemic for more than 2 years and it still impacts our daily lifestyle
and quality in unprecedented ways. A better understanding of immunity and its regulation in response to SARS-CoV-2 infection is
urgently needed. Based on the current literature, we review here the various virus mutations and the evolving disease
manifestations along with the alterations of immune responses with specific focuses on the innate immune response, neutrophil
extracellular traps, humoral immunity, and cellular immunity. Different types of vaccines were compared and analyzed based on
their unique properties to elicit specific immunity. Various therapeutic strategies such as antibody, anti-viral medications and
inflammation control were discussed. We predict that with the available and continuously emerging new technologies, more
powerful vaccines and administration schedules, more effective medications and better public health measures, the COVID-19
pandemic will be under control in the near future.
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FACTS

1. SARS-CoV-2 infection-associated immune responses are
central to the pathogenesis of COVID-19.

2. Innate immune systems sense viral RNA through TLR3,
TLR7, and RIG-1 and hyperactivate innate immune
responses.

3. Dysregulated neutrophil extracellular traps (NET) forma-
tions induce immune-thrombosis and exacerbate inflam-
mation in the lungs of patients with COVID-19.

4. Lymphocytopenia induced by apoptosis and syncytia
formation promotes the COVID-19 progression.

5. SARS-CoV-2 vaccines often could not block infection but
provide immunity to reduce disease severity.

OPEN QUESTIONS

1. How to determine the importance of specific CD8+ T cells in
the immunity to SARS-CoV-2?

2. How will the COVID-19 pandemic end? Will COVID-19
become endemic?

3. How will the Omicron variant evolve? What immune
properties will the next variant have?

4. Will herd immunity built up by vaccination and natural
infections end the transmission of SARS-CoV-2 virus?

Pandemic infectious diseases have wreaked havoc on human
society multiple times, including the times of the “Plague of
Athens” (over 100,000 deaths in 430 BC), Yersinia pestis (50 million
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deaths in 1340) or “Spanish influenza” (50 million deaths in 1918).
These also include several viral diseases like HIV (40 million deaths
in 1980–2000), H1N1 “Swine flu” (300,000 deaths in 2009), yellow
fever, Zika, Ebola, SARS, MERS, and the current coronavirus disease
2019 (COVID-19) caused by Severe Acute Respiratory Syndrome
CoronaVirus 2 (SARS-CoV-2). Despite that more than two years
have passed since the first appearance of COVID-19, the lifestyle,
economic activities, and social behaviors of our world are still
being impacted by this pandemic [1]. With over 500 million
confirmed COVID-19 cases (over 6% of the world population) and
circa 6.5 million deaths worldwide, the causing virus, SARS-CoV-2
[2–6], shows a rapidly expanding genealogy to now warranting a
classification for at least 13 variants and appears to become
endemic, with mutations at the N-terminus and the receptor-
binding region, including p.Glu484Lys found in the most
dangerous variants [7], Fig. 1. The variants of concern (VoC) have
been Alpha, Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and
Omicron (B.1.1.529), with Delta and Omicron being the most
alarming ones [8]. Dreadfully, a new variant with the Delta
backbone and Omicron spike has emerged [9]. Great progress has
been made in controlling the COVID-19 pandemic, however, much
of the efforts still focus on reducing infection and disease severity
by vaccination (more than 11 billion vaccine doses administered)
[10–12], which occasionally caused some adverse effects [13]. In
the meantime, the virus tends to evolve into variants with high
transmission and low pathogenicity [14]. Unfortunately, it is
almost certain that the virus will gain new mutations, possibly with
higher pathogenicity.
Here, we review the yin and yang of innate and adaptive

immunity of acute SARS-CoV-2 infection and emphasize open
outstanding questions.

UNDERLYING INFLAMMATORY CONDITIONS AND INFECTION
SEVERITY
The majority of people infected with SARS-CoV-2 experience mild
to moderate respiratory illness, including fever, cough, shortness

of breath, muscle aches, headache, loss of taste and smell, sore
throat, congestion, or runny nose; while some become seriously ill
and require medical attention, especially the elderly and those
with underlying medical conditions such as cardiovascular disease,
diabetes, chronic respiratory disease, or cancer [15]. Clearly, the
inflammatory conditions, as well as the immune status of patients,
are critical in determining the course of the disease progression
[12].
The deceased among COVID-19 patients exhibited a strong

association with age [1]. The group at 30 or younger had fewer
mortalities, while the group at 65 or older showed dramatically high
mortality (Data.CDC.gov). In most countries, more death was
observed in infected men than in infected women [16]. A higher
COVID-19 death rate was also observed in smokers, obese
individuals, and patients suffering from chronic kidney disease,
cardiovascular disease, or cancer [17]. The biggest change in the
death rate is associated with the recent appearance of the Omicron
variant, which is highly transmissible with a death rate lower than
other VoC [18, 19]. Of course, this alteration in the death rate could
be due to the success of vaccination. Indeed, it has been reported
that among the unvaccinated, especially those over 75-year-old, the
mortality is still very significant [20].
As flying mammals, bats are a super zodiac reservoir of viruses,

especially coronaviruses. However, bats have a unique immune
system that is well balanced between defense and immune
tolerance, which prevents them from developing pathological
changes after viral infection. They have enhanced constitutive
expression of Interferons (IFNs), interferon-stimulated genes, and
several heat-shock proteins. On the other hand, bats have reduced
stimulator of interferon genes (STING) and suppressed NLR family
pyrin domain containing 3 (NLRP3) inflammasome [21]. On
contrary to bats, humans are not completely resistant to some
coronavirus infection [21]. It is interesting to note that unlike
infections with other viruses such as smallpox, measle, or rabies,
exposure to SARS-CoV-2, especially with the Omicron variant, of
individuals who received a vaccine or recovered from a prior
infection with other variants, could result in disease, yet with

Fig. 1 The mutation landscape of the spike proteins of selected SARS-CoV-2 variants. The top panel shows the mutation profiling and
prevalence of spike proteins across 13 SARS-CoV-2 lineages that received a Greek designation and 7 recently emerged SARS-CoV-2 variants
with public attention. The parent lineages of the new SARS-CoV-2 variants were depicted in the table. The bottom images show the side and
top view of the 3-dimension structure for the Omicron spike protein with mutation amino acids mapped [170]. Note: the insertion mutations
are not profiled.
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milder or no symptoms [22]. Such evasion of the immune system
makes the elimination of the virus more difficult. Genetic variation
in the SARS-CoV-2 virus is certainly a major contributing factor to
incomplete immune protection. Most work until now strongly
supported the notion that SARS-CoV-2 does not infect circulating
blood leukocytes, since they do not express the SARS-CoV-2
receptor, the angiotensin-converting enzyme 2 (ACE2). A very
recent study [23] suggested that up to 6% of blood monocytes
can be infected with the virus, however, this requires further
confirmation. Another important factor is that the mucosal SARS-
CoV-2 specific IgM and IgA decay very fast [24]. It is also possible
that virus neutralization could only be achieved by the receptor-
binding domain (RBD)-specific antibodies and that the RBD is
hidden by protein folding until right before binding to ACE2 [25].

INNATE IMMUNITY
Numerous studies throughout the last two years have established
the innate immune system as a critical defender against SARS-
CoV-2. In the best cases, innate immunity eliminates SARS-CoV-2
without activation of the adaptive immune system, thus creating a
so-called “never-COVID” cohort. This notion is strongly supported
by a recently launched human SARS-CoV-2 challenge study
(NCT04865237), in which 36 young health volunteers were
intranasally administrated with 10 TCID50 of SARS-CoV-2/
human/GBR/484861/2020 (a D614G containing pre-alpha wild-
type virus; Genbank accession number OM294022). Surprisingly,
16 volunteers (~44.4%) remained uninfected upon the deliberate
SARS-CoV-2 exposure. Their C-reactive protein (CRP), SARS-CoV-2
neutralizing antibody, and spike-specific IgG remain negative,
excluding the contributions of adaptive immune cells in such
protections [26]. However, the innate immune defenders can also
become deleterious when inappropriately activated during SARS-
CoV-2 infections [27].

CELLULAR INNATE IMMUNITY
Genetic evidence indicates that cell-mediated innate immunity
plays a key role in resistance to COVID-19 and in the pathogenesis
of severe disease [28–30]. Genes emerging as playing a key role
include chemokines and their cognate receptors and members of
the IFN pathway. Cellular and innate immune receptors recogniz-
ing SARS-CoV-2 belong to different classes [31]. Mouse and human
genetic data unequivocally prove that GU-rich RNA sequences are
recognized by Toll-like receptor 7 (TLR7) in plasmacytoid dendritic
cells (pDC) and TLR8 in conventional DC and myeloid cells [32].
These TLR receptors are located in the endosomal compartment
and trigger IFN production (pDC), antigen presentation and
uncontrolled inflammation at later stages. Consistent with these
in vitro and in vivo mouse data, TLR7 genetic deficiency was
associated with severe disease [33]. Cytosolic receptors including
the retinoic acid-inducible gene-1 (RIG-1) complex have also been
suggested to sense SARS-CoV-2 nucleic acids [31]. Finally, recent
evidence suggests that surface C-type lectins interact with the
glycosidic components of spike and play an important role in viral
entry [34–37].
Pro-inflammatory macrophages are the major immune cell type

that expresses high levels of ACE2 [38]. Upon SARS-CoV-2
infection, these macrophages release inflammatory cytokines
and chemokines including C-C motif chemokine ligand 7 (CCL7),
CCL8 and CCL13 to recruit and activate T cells. In turn, T cells
produce IFN-γ and other cytokines to further activate macro-
phages [39]. This positive feedback loop drives the elevation and
continuation of the pathological inflammation. Epidemiological
data show that older adults and people with underlying health
conditions exhibited a dramatically high rate of severe disease and
mortality [17]. Along with aging, there is a tendency of increasing
inflammatory macrophages [40]. This not only explains why

chronic inflammatory disease occurrence is more prevalent but
also provides a possibility accounting for the high incidence of
severe COVID-19 cases in older people. Along with this scenario, it
is reasonable to comprehend why SARS-CoV-2 infection in those
with underlying medical conditions also exhibited a higher
prevalence in severe disease and mortality [12].
Single-cell sequencing in combination with cytometry by time

of flight (CyTOF), Cite-Sequencing, or multi-color flow cytometry
has been particularly informative to describe the deviations of
innate immune cells in COVID-19 patients. Early on it was
demonstrated that granulocytes and monocytes were dramatically
altered in patients with severe disease courses, while moderate
and mild disease courses showed rather regular inflammatory cell
activation programs with high level human leukocyte antigen-DR
(HLA-DR) and CD11c expression [27]. In severe COVID-19,
monocytes are characterized by high level expression of alarmins
and CD163, while major histocompatibility complex (MHC)
molecules are reduced. Within the neutrophil compartment, cell
states reminiscent of myeloid-derived suppressor like cells are
observed in severe COVID-19 and at the same time cellular
programs necessary for neutrophil extracellular traps (NET)-
formation are overexpressed. Further, the appearance of neutro-
phil precursors in the blood is evident for emergency myelopoiesis
in patients with severe COVID-19. Mononuclear phagocytes are
extremely plastic and diverse and undergo different forms of
activation and tolerance [41, 42]. Macrophages’ function has an
adaptive component which has been referred to as “training”.
Trained innate immunity underlies pathogen agnostic protection
associated with selected vaccines, infections and cytokines such as
interleukin-1 (IL-1) [43]. There is evidence that trained innate
immunity can contribute to resistance against COVID-19. For
instance, if mothers were indirectly exposed to live polio vaccine
because of vaccination, their babies were found to have decreased
symptomatic infection with COVID-19 [44]. The relevance of
trained innate immunity to COVID-19 and to vaccines in current
use remains to be defined.
A major clinical problem of severe COVID-19 is the development

of an “acute respiratory distress syndrome” (ARDS) associated with
prolonged respiratory failure and high mortality. Also, here innate
immune cells are related to this pathophysiological reaction in
severe COVID-19 [45]. In ARDS patients, CD163-expressing
monocyte-derived macrophages that acquired a profibrotic
transcriptional phenotype accumulate [45]. The profibrotic pro-
grams of lung macrophages in COVID-19 are reminiscent of
cellular reprogramming previously identified in idiopathic pul-
monary fibrosis. Strikingly, the in vitro exposure of monocytes to
SARS-CoV-2 sufficiently induced such a profibrotic phenotype [45].
Other innate immune cells are also altered in COVID-19 [46]. For

example, in severe COVID-19 patients, Nature killer (NK) cells
showed a prolonged expression of IFN-stimulated genes (ISGs),
while tumor necrosis factor (TNF)-induced genes were observed in
mild and moderate disease. Further, NK cells in severe COVID-19
showed impaired function against SARS-CoV-2 infected cells and
impaired anti-fibrotic activity [46]. Other studies suggested that
untimely transforming growth factor β (TFGβ) responses limit the
antiviral functions of NK cells in severe disease [47]. Surprisingly,
other blood-derived cells including megakaryocytes, and erythroid
cells were also characterized by an increased expression of ISGs in
severe but not mild COVID-19 further supporting prolonged IFN
response being directly related to disease severity [48].
Further, SARS-CoV-2 seems to trigger an innate functionality in a

subset of T cells, namely highly activated CD16+ T cells, which
occur mainly in severe COVID-19 in the CD4, CD8 and γδ T cell
compartments [49]. It was demonstrated that increased genera-
tion of C3a in severe COVID-19 induced this peculiar T cell
phenotype. Functionally, CD16 enabled immune-complex-
mediated, T cell receptor (TCR)-independent degranulation and
cytotoxicity, which so far, seems to be specific to SARS-CoV-2.
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These functions were further linked to the release of neutrophil
and monocyte chemoattractants and microvascular endothelial
cell injury, the latter being made responsible for the hetero-
geneous and manifold clinical symptoms involving many different
organs in severe COVID-19. Worrisome is the persistence of the
cytotoxic phenotype of CD16+ T cell clones beyond acute disease
which might also be involved in pathophysiological mechanisms
associated with long COVID. However, this clearly requires further
investigation. Innate functionality of CD16+ T cells not only seems
to play an important pathophysiological role, but the proportion
of these cells together with plasma levels of complement proteins
upstream of C3a were shown to be associated with fatal
outcomes.

HUMORAL INNATE IMMUNE RESPONSE TO SARS-COV-2
INFECTION
Innate immunity consists of a cellular and a humoral arm [50].
Components of the humoral arm of innate immunity are a diverse
set of molecules, such as Complement components, collectins
(e.g., Mannose-binding lectin, MBL), ficolins, and pentraxins (e.g., C
reactive protein, CRP, and PTX3) [50, 51]. These fluid phase pattern
recognition molecules have functions similar to antibodies (ante-
antibodies). Among these ante-antibodies, MBL was found to bind
spike by recognizing its glycosidic moieties and to inhibit SARS-
CoV-2 [36]. All VoCs including Omicron were recognized by MBL.
MBL haplotypes were found to be associated with disease severity
[36]. Pentraxin 3 (PTX3), but not its distant relative CRP bound the
SARS-CoV-2 nucleoprotein, but it remains to be elucidated
whether its recognition amplifies inflammation [36]. Indeed,
PTX3 has emerged as an important biomarker of disease severity
with for instance death as the endpoint [52–56]. The results have
been extended to long COVID [57] with PTX3 being part of a
disease severity signature.
Complement has emerged as a pathway of amplification of

inflammation and tissue damage [58]. The lectin pathway may
play a role in complement activation. Small pilot studies suggest
that targeting complement by inhibiting the C3 convertase or by
blocking mannose-associated serine protease (MASP) and the
lectin pathway may be beneficial in COVID-19 [49, 59–63].
Whether these therapeutic approaches might also impact the
functionality of the highly activated CD16+ T cells with innate
immune function requires further investigation [49].
Thus, humoral innate immunity (ante-antibodies) plays an

important role in COVID-19. MBL represents a non-redundant
pathway of resistance against SARS-CoV-2 VoC. The pentraxins
CRP and PTX3 provide important prognostic indicators, with PTX3
integrating myeloid cell and endothelial cell activation. It will be
important to further explore the value and significance of ante-
antibodies as biomarkers (PTX3), candidate therapeutics (MBL)
and therapeutic targets (complement).
Macrophages and monocytes express a variety of pattern

recognition receptors (PRRs), including TLRs, (NOD)-like receptor
family proteins (NLRs), absent in melanoma 2 (AIM2) and the cyclic
GMP-AMP synthase (cGAS)-STING pathway. These can trigger
innate immune responses to viral infection through direct
infection and sensing of SARS-CoV-2 or by detecting damage-
associated molecular patterns (DAMPs) or pathogen-associated
molecular patterns (PAMPs) released by infected cells that act as a
feedforward mechanism propagating the systemic inflammatory
response.
Single-cell sequencing and flow cytometric analyses have

established the presence of SARS-CoV-2 RNA in human lung
macrophages [30, 39] and blood monocytes [64]. Neither human
lung macrophages nor monocytes express the primary SARS-CoV-
2 internalization receptor ACE2, and as such alternative mechan-
isms for viral internalization have been proposed, including Fc-
receptor mediated uptake [23, 65]. Lung myeloid cells infected

with SARS-CoV-2 induce the transcriptional programs and signal-
ing cascades of innate immune response. SARS-CoV-2-infected
cells upregulate chemokines, cytokines, IFN pathway and TNF
associated genes [30, 39]. These act to inhibit viral expansion and
recruit monocytes and T cells to the site of infection. However,
excessive release of pro-inflammatory cytokines was early
identified in severe COVID-19 patients [66]. The detection of viral
RNA potentially drives activation of this transcriptional response
by endosomal TLR3 and TLR7, as well as SARS-CoV-2 E protein
detection on the cell membrane by TLR2 [67].
Recent reports have shown the presence of an oligomerized

apoptosis-associated speck-like protein containing a caspase-
activating and recruitment domain (CARD) alongside NLRP3 in
monocytes and lung macrophages from COVID-19 patients [68].
The monocytes displayed a concomitant activation of caspase-1,
and cleavage and translocation of the gasdermin D pore complex
to the plasma membrane, a downstream event of inflammasome
activation that facilitates cytokine release and precedes the
inflammatory lytic cell death process known as pyroptosis. Indeed,
sera from COVID-19 patients are enriched for IL-1β, IL-18 and
lactate dehydrogenase (LDH), indicative of ongoing pyroptosis
[68]. In the lungs of COVID-19 individuals, inflammasome
activation is not exclusive to SARS-CoV-2-infected cells, suggesting
that paracrine signals caused by SARS-CoV-2 infection can induce
pyroptosis in neighboring cells, potentiating the inflammatory
response and disease severity [64].
Inhibitors targeting inflammasome pathway components,

including caspase-1 and NLRP3 reduced pathology in a huma-
nized mouse model of SARS-CoV-2 infection [65], suggesting
therapeutic targeting of the NLRP3 inflammasome may provide
translational benefit as society proceeds to live alongside SARS-
CoV-2. However, it is important to bear in mind that most studies
on human patients rely on post-mortem tissues and therefore
represent the most severe form of the disease. Consequently, it
remains to be seen whether inflammasome inhibition can yield
effective results in mild forms of COVID-19.
The innate immune response to SARS-CoV-2 infection is not

limited to macrophages and monocytes, and is frequently
associated with abnormal activation and recruitment of neutro-
phils. It has been reported that there is a dramatic increase in
myeloid-derived suppressor-like cells (MDSC-like) [69], particularly
in those at severe stages of COVID-19, contributing to the
pathogenesis of SARS-CoV-2 infection. MDSCs may delay the
clearance of the SARS-CoV-2 virus and inhibit T cell proliferation
and functions. Neutrophils are known to release NET and the
imbalance between NET formation and degradation plays a
central role in the pathophysiology through trapping inflamma-
tory cells and preventing the recruitment of tissue repairing cells.
Strategies that dysregulate the formation of NET or destruct NET
with agents such as DNase could represent new therapies for
COVID-19 patients, especially those suffering from severe illness
[2], see below.

NET-DRIVEN VASCULAR OCCLUSIONS DRIVE PATHOLOGY IN
SEVERE COVID-19
During the membrane rupture of granulocytes in the process of
NET formation the preformed pro-inflammatory cytokines (e.g., IL-6)
and chemokines (e.g., IL-8, CCL3) as well as antimicrobial peptides
(e.g., bactericidal/permeability-increasing protein and histones),
serine proteases (e.g., neutrophil elastase and proteinase 3), other
enzymes (e.g., myeloperoxidase, lactoferrin, lysozyme and phos-
pholipase A2), and reactive oxygen species (ROS) are released into
the vicinity of NET. The activity of the soluble mediators fades as
NET formed in high neutrophil densities tends to aggregate. These
aggregates act anti-inflammatorily as NET-borne proteases proteo-
lytically degrade inflammatory mediators and toxic histones
[70, 71]. Importantly, DNA-bound proteases are not antagonized
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by anti-proteases [72]. Thus, the formation of NET is considered a
double-edged sword that initially initiates inflammation and later
helps to orchestrate its resolution.
The imbalance between NET formation and degradation can also

drive inflammation, e.g., by occluding vessels and ducts [73]. First
reports about the role of NET in patients with COVID-19 were
already published soon after the onset of the pandemic describing
elevated levels of NET markers such as cell-free DNA, citrullinated
Histone H3 (citH3), and myeloperoxidase-DNA (MPO-DNA) com-
plexes in the sera of these patients [74]. Single cell sequencing of
blood-derived neutrophils from peripheral blood supported a
reprogramming of a subset of neutrophils towards NET formation-
related transcriptional programs especially in severe COVID-19 [27].
Serum from patients with COVID-19 as well as the virus itself were
reportedly able to trigger NET formation accompanied by increasing
levels of intracellular ROS [74–76]. This ROS-NET pathway together
with the activation of neutrophils, the formation of neutrophil-
platelet aggregates, and intravascular aggregation of NET enriched
with complement and tissue factors form occlusive NET-derived
immunothromboses, Fig. 2. This is particularly dangerous in the
microvasculature, where severe organ damage occurs due to
disrupted microcirculation [72, 77–79]. Because of their central role
in the pathophysiology of COVID-19, NET is a prime target for
therapeutical intervention. Therapeutic doses of heparin were
shown to prevent the aggregation of NET by nano- and
microparticles and the efficiency of this therapy in COVID-19
patients was shown recently [80, 81]. Furthermore, Heparin is known
to accelerate the DNase I-mediated degradation of NET and first
trials with Dornase Alfa, a recombinant DNase, have been under-
taken [82, 83]. Disulfiram was also reportedly successful in the
reduction of NET, increase of survival, and improvement of blood
oxygenation in animal models, which makes it a new promising
candidate for the treatment of NET-related pathologies in patients
with COVID-19 [84]. Lastly, inhibitors of peptidyl-arginine deiminases
(PADs) are discussed as therapies to treat NET-related thrombotic
complications in patients with COVID-19, however, no clinical trial
has been conducted yet [85].

TARGETING THE TYPE I IFN PRODUCTION BY SARS-COV-2
While innate immunity constitutes the first line of host defense
against virus infection, the type-I IFN response is the core that
endows antiviral activities to host cells, which consists of two
major consecutive steps including IFN production and the
expression of ISGs [86]. Here, we specifically focus on the
regulation of type-I IFN production, which is the first and critical
step for an effective innate immune response and therefore is
primarily targeted by SARS-CoV-2 proteins for suppression.

As depicted in Fig. 3, the type-I interferon production is initiated
by the recognition of the double-strand RNA (dsRNA) generated
during the virus life cycle by the RIG-1-like receptors (RLRs),
including the RIG-1 and/or melanoma differentiation gene 5
(MDA5) in the cytoplasm, or the TLRs in the endosome [87]. Upon
loading with dsRNA, RIG-1 and MDA5 can interact with the
adapter mitochondrial antiviral signaling protein (MAVS), leading
to the formation of a signaling complex consisting of TANK-
binding kinase 1 (TBK1) and inducible IκB kinase (IKKi). The TBK1/
IKKi complex then phosphorylates interferon regulatory factor 3/7
(IRF3/7), promoting their translocation into the nucleus to drive
IFN-α/β expression. Meanwhile, the TLRs, such as TLR3, could also
recognize PAMPs in the endosome to induce cytokines and
chemokines production, enhancing the innate immune response
[87].
During this process, it was reported that SARS-CoV-2 encoded at

least 14 proteins, accounting for about half of the total proteins
encoded by the virus, to interfere with IFN production [88–90].
These proteins include the structural membrane (M), nucleocapsid
(N) proteins, the accessory proteins (3, 6, 8, and 9b), and the
nonstructural proteins (NSP1, 3, 5, 6, 12,13, 14, and 15) generated
from a large open reading frame (ORF) encoding 1ab by papain-
like proteinase (NSP3, NLpro) and 3C-like proteinase (NSP5,
3CLpro) -mediated cleavage. Suppression of IFN production by
the SARS-CoV-2 proteins was primarily executed through four
types of mechanisms, including escaping viral RNA recognition (by
N, ORF9b, NSP1, and NLpro), compromising RIG-1 or TLRs
signaling (by M, N, 3CLpro, NSP12, ORF3b, ORF6, ORF7b, and
ORF9b), targeting the TBK1 complex (by M, N, NSP13, ORF9b,), and
interfering with IRF3 activation (by M, N, NLpro, 3CLpro, NSP1,
NSP12–15, ORF3b, ORF6, and ORF8), Fig. 3. Corresponding to the
extensive interference of IFN production by SARS-CoV-2-encoded
proteins, patients with COVID-19 usually exhibited a delayed type-
I IFN response [90], i.e., IFN production was inhibited at the early
stage of SARS-CoV-2 infection, which allows the virus to achieve
successful replication in the host cells, undermining the asympto-
matic infection. Enhancing IFN response at this stage turned out
to help restrict SARS-CoV-2 infection [91–93].
Subsequent to a latent IFN response, the patients with COVID-

19, particularly those in severe forms, exhibited a substantially
exaggerated IFN response manifested with uncontrolled cyto-
kine storm and inflammation, corresponding to another arm of
the delayed type-I IFN response at the late stage [90], on which
recent studies shed lights. Zhao et al. reported that an
expression level-based dual-role of the structural N protein
may be partially accountable, where the low-dose N protein was
suppressive while the high-dose was promotive, for the
activation of IFN signaling. This worked out by dually regulating

Fig. 2 NETosis. Immune fluorescence detects the NET components citrullinated Histone H3 and neutrophil elastase (both green) as well as
extranuclear DNA (DAPI; red) in the vessels of a central human lung. Note, the intravascular DNA-enzyme-histone complexes fill the whole
lumen of many vessels (some of the clogged vessels are marked with asterisks).
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the phosphorylation and nuclear translocation of IRF3 [94].
Alternatively, Ren et al. found that SARS-CoV-2 may activate IFN
response unexpectedly via the cGAS-STING signaling pathway,
which was induced by the cytoplasmic micronuclei produced in
the multinucleate syncytia between cells expressing spike and
ACE2 [95]. And the results were further confirmed indepen-
dently by Zhou et al., who demonstrated that cell-cell fusion was
sufficient to induce cytoplasmic chromatin, and the cytoplasmic
chromatin-cGAS-STING pathway, but not the MAVS-mediated
viral RNA sensing pathway, contributes to interferon and pro-
inflammatory gene expression upon cell fusion [96]. Interest-
ingly, several SARS-CoV-2 proteins (3CLpro, ORF3a, and ORF9)
were also able to target STING to regulate the IFN response [97],
likely indicating a complex feedback interaction between SARS-
CoV-2 and the innate immunity, and therefore a well-balanced
immune interference targeting IFN response is required for
COVID-19 therapy.

ADAPTIVE IMMUNITY: HUMORAL IMMUNITY TO SARS-COV-2
Adaptive immunity provides pathogen-specific immunity, which
eradicates infection and provides long memory and recall of the
immune responses, Fig. 4. By producing antibodies, B cells play a
critical role in anti-viral immunity. Different classes of antibodies
such as IgM, IgA, IgG, and IgE, are involved in humoral immune
responses to viral infections. These antibody classes are char-
acterized by their intrinsic properties, functions, tissue distribu-
tions, and half-lives. Upon SARS-CoV-2 infection or vaccination,
IgD and IgM are the first antibody types produced. The positive
test of IgM antibody indicates that the virus may be present or a
patient recently recovered from the infection and that the virus-
specific immune response has begun [98]. During SARS-CoV-2
infection, symptoms start around day 5 and the body begins to
produce IgM antibodies around 7–8 days post-infection [99]. Due
to inadequate affinity maturation, IgM antibodies have a relatively
low affinity compared to IgG. On the other hand, due to their

Fig. 3 Targeting type I IFN production by SARS-CoV-2. a Schematic demonstration of the viral proteins. Those marked with asterisks were
reported to regulate IFN production. b IFN production signaling pathways targeted by SARS-CoV-2 proteins. SARS-CoV-2 infection induces a
delayed type-I IFN response, which is underlaid by the inhibited RIG-I/MDAS-MAVS signaling at the early stage and the cytoplasmic-
micronuclei-activated cGAS-STING signaling at the late stage.
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pentameric nature, IgM antibodies have high avidity for antigens
and play critical roles in opsonization.
IgG antibodies usually appear later during an immune response

because of the time needed for their affinity maturation to acquire
high avidity and more potent capacity to neutralize pathogens,
activate the complement pathway, and kill infected cells through
antibody-dependent cellular cytotoxicity (ADCC). IgG antibodies
have a relatively long half-life in serum and are associated with B
cell memory. IgG antibodies to SARS-CoV-2 do not develop until
around 14 days post-infection [100]. A positive test for IgG is a
good indication of having been infected or vaccinated. Interest-
ingly, among those infected by SARS-CoV-2, detectable IgG
antibodies are mainly IgG1 & IgG3 [101].
IgA antibodies are produced right following IgM with serum

levels higher than IgM and are the main antibody class in mucosal
surfaces and secretions. It has been reported that the SARS-CoV-2-
specific IgA can be detected prior to the appearance of IgM and
dominates the early neutralizing responses [102]. IgA forms dimers
upon secretion to increase avidity. IgA antibodies secreted into
the respiratory tract play a key role in mucosal immunity to SARS-
CoV-2 infection by facilitating aggregation and preventing the
initial infection of host cells. It is important to note that detectable
levels of neutralizing antibodies against SARS-CoV-2 start declin-
ing within three months following mild and asymptomatic

infections. This might predict transient immunity and heightened
risk of reinfection.
Intriguingly, several groups have reported a clear association

between the extent of T cell immunity and humoral response in
convalescent individuals [103–105]. Patients with severe COVID-19
were found harboring low mutation frequencies in their heavy-
chain variable region genes in the early weeks after infection,
notably in those antibodies against the spike protein [106],
indicating suboptimal immunoglobulin maturation. Furthermore,
a delay in the emergence of antibodies, including the anti-SARS-
CoV-2 neutralizing antibodies, has also been noted in severe forms
compared with milder forms of COVID-19 [107, 108]. These are in
line with the fact that CD4+ T cells are essential for sustaining
germinal center (GC) formation and B cell differentiation leading
to isotype switch and immunoglobulin maturation, two features of
T cell-dependent humoral response. Consistently, defective GC
formation is associated with CD4+ T cell depletion in the lymph
nodes of severe COVID-19 patients [109]. This defect and delay to
develop antibodies against spike protein may contribute to viral
dissemination and longer persistence of SARS-CoV-2 in patients
[110]. Moreover, premature T cell depletion due to apoptosis was
associated with a lower B-cell response in individuals infected with
filovirus [111] or retrovirus [112, 113]. Therefore, to what extent
whereby the death of CD4+ T cells by apoptosis [114] may

Fig. 4 The SARS-CoV-2 Omicron variant with high mutational burden exhibits increased antibody evasion. In a typical SARS-CoV-2
infection, the virus presented in the lymphoid organs evokes T helper cells which facilitate the activation of both humoral and cellular
immune responses. Antibodies and effector CD8+ T cells were then released into circulation. Antibodies neutralize virus and eliminate
infected cells through ADCC. CD8+ T cells kill infected cells through cytotoxicity. However, as for SARS-CoV-2 Omicron, the effects of antibody-
mediated protection were dramatically reduced, which is possibly brought about by over 30 mutations in the genes encoding spike proteins.
There are 3 possibilities explaining the sudden appearance of Omicron: 1. Omicron may have been transmitted within a neglected population
without sufficient medical surveillance; 2. It could be outcompeted in a patient with chronic COVID-19 infections; 3. It may be zoonotic and
just spilled back into human.
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correlate with a delay in mounting an efficient humoral response
and in developing sequelae merits further investigation.

ADAPTIVE IMMUNITY: CELLULAR IMMUNITY AND RESISTANCE
TO SARS-COV-2
Specific cellular immunity to SARS-CoV-2 is mediated by T cells.
These cells are naïve and circulate in the bloodstream and
peripheral lymphoid organs until encountering their specific
antigen peptide presented by MHC. The SARS-CoV-2 virus itself
or naked viral peptides could not activate T cells. High-affinity
interaction between self MHC presented SARS-CoV-2 peptides and
TCR induces proliferation and differentiation of T cells into cells
capable of contributing to the removal of virus-infected cells or
helping the production of antibodies. Class I MHC presented
endogenous antigen peptides that activate CD8+ T cells, while
class II MHC presented exogenous antigen peptides that activate
CD4+ T cells. SARS-CoV-2 specific T cells are critical in
the immunity to infection and susceptibility to severe disease
has been reported to correlate with HLA alleles [115]. It is known
that inflammatory monocytes and macrophages as well as DC
express ACE2 which permits the entry of SARS-CoV-2 into these
professional antigen-presenting cells to activate T cells, especially
CD8+ T cells. Although the ACE2 expression on macrophages and
DC is only at intermediate levels, the co-expression of CD209 (DC-
SIGN) could dramatically facilitate SARS-CoV-2 entry into DC [116].
It should be pointed out that in most cases, SARS-CoV-2 infections
do not elicit a dramatic inflammatory response in macrophages
and DC. IL-6 is almost undetectable and other cytokines such as IL-
1 are very low [117]. This may limit their migration to local
lymphoid tissue and maturation to cells with the expression of co-
stimulation molecules that are highly effective at presenting
antigen to recirculating T cells, indicating a robust T cell response
to SARS-CoV-2 may be difficult to induce and thus limit the
development of immunity. It is important to note that B cells can
also serve as SARS-CoV-2 antigen-presenting cells, especially those
with surface immunoglobulin specific to SARS-CoV-2 antigens.
Patients with COVID-19 at the severe stage were manifested

with decreased peripheral lymphocytes, termed lymphopenia or
lymphocytopenia, which was believed to promote the disease
progression [118]. Since lymphocytes barely express ACE2, it is
unlikely to be a direct target of the SARS-CoV-2 virus [119]. Two
major indirect mechanisms were proposed to account for
lymphocyte loss. One is the enhanced cell-autonomous death,
primarily by apoptosis. T cells isolated from patients with severe
COVID-19 exhibited an increased propensity to die via apoptosis,
as evidenced by a higher level of caspase activation and
phosphatidylserine exposure, and a high rate of spontaneous
apoptosis [114]. This was strongly associated with increased
soluble Fas ligand in sera, and with increased expression of Fas/
CD95 on T cells, particularly on CD4+ T cells [114, 120]. While both
extrinsic and intrinsic apoptosis, but not necroptosis, were found
to be involved, treatment with Q-VD, a pan-caspase inhibitor,
protected the isolated T cells from cell death and enhanced the
expression of Th1 transcripts [114]. Consistently, TNF-α and IFN-γ
were found prominently upregulated in the sera of patients with
severe COVID-19, which was related to a phenomenon called
cytokine storm or also viral sepsis [31]. This phenomenon is at
least in part induced by an inflammatory cell death PANoptosis,
abbreviated for the mixed cell death of pyroptosis, apoptosis, and
necroptosis. Importantly, the TNF-α/IFN-γ-induced lethality in
animals could be rescued, along with the increased level of
T cells, in Ripk3‒/‒Casp8‒/‒ mice, in which PANoptosis was
suppressed [121].
Another mechanism responsible for lymphocyte loss is non-

autonomously mediated by syncytia, which could be efficiently
induced by SARS-CoV-2 via its fusogenic spike protein dictated by
an embedded bi-arginine motif [122]. The multinucleated syncytia

were found to be able to internalize infiltrated live lymphocytes,
preferentially the CD8+ T cells, to form cell-in-cell structures, a
unique phenomenon that is prevalent in tumor tissues [123] and
plays important roles in clonal selection and immune homeostasis
and the like [124–126]. By defaults, as taking place in cancer cells,
the formation of the cell-in-cell structure primarily resulted in the
death of the internalized lymphocytes within syncytia, leading to a
rapid elimination, which could be rescued by either blocking
syncytia formation or cell-in-cell-mediated death, thus providing a
novel target for COVID-19 therapy [127–130]. Interestingly, the
two lymphopenia mechanisms seem to exhibit a preference for
the targeted lymphocytes, with the autonomous one for CD4+

T cells while the non-autonomous one for CD8+ T cells [114, 122],
whether the preference also applies to other types of lymphocytes
and its biological properties and potential implications warrant
further investigation. In addition to directly regulating the
cellularity of lymphocytes, syncytia were recently shown to be
able to activate the cGAS-STING signaling via inducing the naked
cytoplasmic micronuclei [95, 96], and to initiate inflammatory cell
death [131], both of which, though may help mount an anti-
infection immunity, would eventually promote inflammation and
tissue damages leading to severer clinical conditions. Coincidently,
the less pathogenic Omicron variant of SARS-CoV-2 displayed a
compromised ability to induce syncytia formation in cells
expressing human ACE2 [132–134]. Together, syncytia and various
types of cell death may serve as an important hub for
pathogenesis induced by SARS-CoV-2 infection.
Though it is generally recognized that T cell immunity plays a

central role in the control of SARS-CoV-2, its importance is still
underestimated and mechanistically unclear. A proper T cell
response is important to limit infection. Unlike antibodies, which
are less sustained and only those specific to RBD can neutralize,
T cells react to at least 30 epitopes of viral proteins and exhibit
sustained memory. That CD4+ T cells are more prone to undergo
apoptosis may also contribute to the development of “helpless”
CD8+ T cells, which are exhausted and shorter-lived cells
[135, 136], leading to defective T cell toxicity [137] and death of
CD8+ T cells [114] in patients with severe COVID-19. In addition,
the aforementioned highly activated CD16+ T cells also contribute
to the pathophysiology of COVID-19 [49]. Thus, preventing
lymphopenia, the death of T cells, and the inappropriate
functionality of CD16+ T cells could be of interest to limit
pathogenicity and probably long-term sequela. Consistently, the
use of caspase inhibitor in the early phase of infection has
provided protection for monkeys developing acquired immuno-
deficiency syndrome (AIDS) [138]. Therefore, similar strategies
might be of interest for SARS-CoV-2 infection. Meanwhile,
although COVID-19 in children is rarely severe, a subset of
patients developed multisystem inflammatory syndrome in
children with robust type II interferon and NF-kB responses,
manifested by a transient expansion of TRBV11-2 T cell clonotypes
and signs of inflammatory T cell activation [139]. An association
with HLA A*02, B*35 and C*04 alleles suggests a genetic
predisposition, yet to be validated in larger cohorts [139].
Whilst physical and mental stresses, either acute or chronic,

have a dramatic impact on the immune system, both innate and
adaptive immune components could be affected. Humans and
animals subjected to stress conditions exhibited significant
reduction in lymphocytes [140], increase in IL-6 production
[141], decrease in IFN-γ [142], augmentation in regulatory T cells
[142], and alteration in gut microbiota [143]. The induction of Fas
expression on lymphocytes by chronic stress [144] could account,
at least in part, for the lymphopenia development in COVID-19
patients mentioned above. It is imperative to emphasize that the
prevalence of stress associated with anxiety, depression, fear, and
inadequate social support during the COVID-19 pandemic should
not be ignored. There is a strong need to understand the stress
impact on COVID-19 experiences and stress management should
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be included in the care of patients, especially those suffering from
mental and psychological disorders.

THERAPEUTIC ANTIBODY AGAINST SARS-COV-2
Monoclonals, whether of animal or human origin, have been used
for the development of most non polymerase chain reaction
(PCR)-based diagnostic tests. They usually target the nucleocapsid,
which is the most abundant protein of the virus. During the
pandemic, they have been used in hundreds of millions of rapid
tests. Herein, we will focus our attention on the use of human
monoclonal antibodies (hmAbs). Before the SARS-CoV-2 pan-
demic, hmAbs had been widely used to treat cancer, inflammatory
and autoimmune diseases [145]. With the exception of an
antibody against the respiratory syncytial virus approved for
clinical use in 1998 [146], hmAbs had not been used for infectious
diseases because they require large quantities to be delivered
intravenously and were too expensive compared to infectious
disease standard of care. The game started to change with a
pioneering work done by Antonio Lanzavecchia during the
2002–2003 outbreak of SARS-CoV-1 [147]. For the first time, his
lab was able to clone from a convalescent patient a B cell
producing antibody neutralizing the virus. Since then, many other
technologies became available to isolate hmAbs starting from the
B cells of convalescent or vaccinated donors. Many antibodies
were developed and tested in the clinic for HIV, and the improved
technology allowed to isolate antibodies that were more than
1000-fold more potent of the ones initially isolated against this
pathogen [148]. In this environment, the Wellcome Trust
published in 2019 a report stating that the time to develop
hmAbs for infectious diseases was mature (Wellcome Trust.
“Expanding Access to Monoclonal Antibody-Based Products.”
(2020)).
As soon as the SARS-CoV-2 pandemic started, multiple academic

and industrial laboratories isolated B cells from convalescent
people and generated numerous publications in prestigious
journals showing the identification of hmAbs able to neutralize
the virus in vitro, as well as protecting and treating mice, hamsters,
and non-human primates in vivo from viral challenge [149]. The
neutralizing antibodies are usually divided into four classes which
bind different regions of the spike, Fig. 5. In addition to the pre-
clinical evidence, several clinical studies showed that, when used
early after infection, hmAbs had very high efficacy in preventing

severe disease [150]. Given their efficacy, and since these were the
first therapeutic molecules developed during the pandemic,
numerous hmAbs received emergency use in the US and Europe:
REGN COV2 (Casirivimab and Imdevimab), Bamlanivimab (LY-
CoV555), Sotrovimab (VIR 7831 or S309), Evusheld (tixagevimab
and cilgavimab) and Bebtelovimab (LY-CoV1404) [150]. For more
than one year, hmAbs remained the only real therapeutic tool we
had against SARS-CoV-2. Unfortunately, hmAbs did not work in a
therapeutic setting during advanced severe disease in hospitalized
patients and many of them fell short with the emergence of SARS-
CoV-2 variants carrying different mutations on the spike protein,
the major target for neutralizing hmAbs. In fact, with the
emergence of the SARS-CoV-2 Omicron variant, 85% of hmAbs
approved for clinical use lost their potency against this virus [151].
Today we still have three approved hmAbs that work reasonably
well against Omicron and new potent monoclonals against this
variant are described in the literature [151]. In conclusion, the
COVID-19 pandemic has suggested prevention and therapeutic
potential of hmAbs to infectious diseases and that can be
developed faster than any other medicine. In addition, it is now
possible to develop extremely potent hmAbs that can be
administered intramuscularly rather than intravenously, facilitating
their administration outside the hospital. Therefore, hmAbs can be
considered at the forefront of medical interventions in the field of
infectious diseases as their characteristics make them essential
tools to tackle emerging pathogens and pandemics.

THE SARS-COV-2 VACCINATION
Exposure to attenuated pathogens or parts of the pathogens to
induce specific immunity against a pathogen started with
smallpox variolation in China more than 1000 years ago [152].
Edward Jenner employed cowpox to protect humans from
smallpox 800 years later. Since in Latin the word Vacca is for
cow, the term vaccination is adapted later by Jenner’s friend
Richard Dunning in 1800. In the last 200 years, various approaches
have been developed to shelter human beings from different
infections through vaccination. One of the most impressive results
of modern medicine is the development of highly effective
vaccines against SARS-CoV-2 in less than one year from the
beginning of the pandemic, Fig. 6. Since the appearance of SARS-
CoV-2, scientists have tried different ways to develop vaccines and
the most significant ones include modified mRNA encoding
S-protein (Moderna and BioNTech), the replication-defective viral
vector containing the S-protein sequence (Ad5-nCov-CanSino,
ChAdOx1 based AZD1222-A-AstraZeneca, GRAd-COV2-Reithera),
inactivated pathogenic SARS-CoV-2 (SinoVac, SinoPharm), and
recombinant viral subunit proteins (entire S-protein or RBD),
Table 1. Among the 10 billion doses delivered, so far the mRNA
vaccines from BioNTech and Moderna as well as the viral vector-
based vaccine from AstraZeneca and the inactivated vaccines
from Sinovac and Sinopharm occupy more than 95% of the
market.
Due to the emergency of the COVID-19 pandemic, scientists did

have the minimum sufficient time to evaluate the effectiveness of
vaccines developed, and there is large scope for improvement. For
example, the interval between doses (21 days for Pfizer; 28 days
for Moderna) seems too short, and understanding of the short-
lived antibody response (6 months) is still elusive. The cross-
reactivity with SARS and MERS might suggest the possibility of a
universal pan-coronavirus vaccine. More, as in other vaccinations,
there is the possibility that specific commensal microbiota,
helminths, nutrients (bile acids, butyrates) or antibiotics, not to
mention an immune-suppressive status, might impair the immune
response. So far, there are two most popular methods, antibody
levels and protection from infection in the real world, to evaluate
the effectiveness of a vaccine. Clearly, the antibody is a good
predictor and there are epidemiological data supporting a good

Fig. 5 The figure shows the SARS-CoV-2 spike protein receptor-
binding domain (RBD) bound by class 1/2 (blue), class 3 (orange)
and class 4 (green) neutralizing antibodies. The potency and
breadth of neutralization across SARS-CoV-2 variants are denoted
for each antibody class [171–173].

Q. Li et al.

1115

Cell Death & Differentiation (2022) 29:1107 – 1122



correlation between the antibody level and disease susceptibility
[153], especially considering the complexity of antibody classes
and their kinetics. Since the vaccines can only provide a reduction
in severity, there is no good model and specifics to quantitatively
analyze and accurately determine the protectability.
We have previously hypothesized that “there are many types or

subtypes of coronavirus” -or variants. Thus, if vaccines directly
targeting SARS-CoV-2 prove to be difficult to develop, the Edward
Jenner approach should be considered [154]. It has been noted
that a subset of T cells primed against seasonal coronaviruses
cross-react with SARS-CoV-2, and this is believed that it may
contribute to clinical protection, particularly in early life. The
coronaviruses belong to a family of enveloped single-stranded
positive-sense RNA viruses. Available information on cellular
immunity to other human coronaviruses (HCoVs), especially those
causing the common cold, could be valuable for elucidating
immunity to SARS-CoV-2. It is estimated that >90% of adults have
experienced prior exposure to common cold viruses. Whether the
cellular immunity to other coronaviruses such as SARS-CoV-1 last
is still a question, though it has been shown that T cell responses
can be elicited after 17 years [155]. Sustained T cell responses have
been seen in some patients infected with MERS, though remain to
be verified with longitudinal studies in more patients. Considering
the wide distribution of horseshoe bats in Southeast Asia and the
low SARS-CoV-2 infection rate in the area (3.1% in Southeast Asia,
14.9% in the Americas, and 22.5% In Europe according to the data
on WHO COVID-19 Dashboard as of February 2022), it is

suggestive that some bat coronavirus(es) may provide natural
immunity to native residents. As Edward Jenner did with the
cowpox virus to protect humans from smallpox, we may try to
identify a bat coronavirus to protect humans from SARS-CoV-2.
A successful vaccine relies on various factors such as the

identification of the effective epitopes or viral components, the
delivery vectors, proper adjuvant, administration routes and the
physical and medical conditions of the recipients [156]. Even if we
have effective vaccines, the vaccination rate in a given time, social
acceptability/resistance, and inadequate social distance may allow
the virus to present in a population for sufficiently long to mutate
[157]. As it stands at the moment, none of the available vaccine
formulations seem to be capable of completely preventing virus
infection, at least when it comes to highly infective variants such
as the Omicron variant. What needs to be considered under these
circumstances with often only partial immune protective condi-
tions is that the virus is subjected to an unfavorable situation that
may force the virus to mutate.

WHAT WILL FOLLOW OMICRON
Among all the variants of SARS-CoV-2, Omicron brings the most
worries, confusion, and expectations. The fast transmission rate of
the Omicron variant has raised serious concerns among epide-
miologists, politicians, and disease control experts since it was first
reported from South Africa on November 24, 2021 [158]. Many
factors contribute to the fast spread. It is possible that the virus

Fig. 6 Heterologous prime-boost strategies with inactivated vaccine (1st) and mRNA vaccine (2nd) provide strong protections against
SARS-CoV-2. Inactivated SARS-CoV-2 vaccine reserves all viral proteins for immune recognition. Once immunized, these antigens could elicit a
T helper pool broadly targeting SARS-CoV-2 proteins. mRNA vaccine, on the other hand, elicits strong humoral and cellular immune responses
against the SARS-CoV-2 variants in individuals who previously received the inactivated vaccine. We hypothesized that the T helper pool
primed by inactivated vaccine could be activated upon mRNA vaccination, which facilitates the building of stronger immune response and
memory.

Q. Li et al.

1116

Cell Death & Differentiation (2022) 29:1107 – 1122



Ta
bl
e
1.

To
p
20

C
O
V
ID
-1
9
va
cc
in
es

in
u
se
.

N
o.

N
am

e
Pr
od

uc
ed

d
os
es

(K
)

Pe
rc
en

ta
g
e
(%

)
Ty

p
e

A
d
m
in
is
tr
at
io
n

C
om

m
on

si
d
e
ef
fe
ct
s

1
Pfi

ze
r
B
io
N
Te
ch

-
C
o
m
ir
n
at
y

5,
34

1,
27

7
28

.5
5

m
R
N
A
,m

o
d
ifi
ed

2
d
o
se
s,
3
w
ee

ks
ap

ar
t

Pa
in

at
th
e
in
je
ct
io
n
si
te
,F
at
ig
u
e,

H
ea
d
ac
h
e,

C
h
ill
s,
M
ya
lg
ia

2
M
o
d
er
n
a
-
Sp

ik
ev
ax

3,
22

9,
74

3
17

.2
6

m
R
N
A
,m

o
d
ifi
ed

2
d
o
se
s,
1
m
o
n
th

ap
ar
t

In
je
ct
io
n
si
te

p
ai
n
/s
w
el
lin

g
/e
ry
th
em

a,
Fa
ti
g
u
e,

H
ea
d
ac
h
e,

M
ya
lg
ia
,A

rt
h
ra
lg
ia
,N

au
se
a/
vo

m
it
in
g
,A

xi
lla
ry

sw
el
lin

g
/

te
n
d
er
n
es
s,
Fe
ve
r,
Im

m
u
n
e
th
ro
m
b
o
ti
c
th
ro
m
b
o
cy
to
p
en

ia

3
A
st
ra
Z
en

ec
a
-

Va
xz
ev

ri
a

2,
14

2,
29

4
11

.4
5

V
ir
al

ve
ct
o
r

2
d
o
se
s,

8–
12

w
ee

ks
ap

ar
t

R
ed

n
es
s
at

th
e
in
je
ct
io
n
si
te
,V

o
m
it
in
g
,D

ia
rr
h
o
ea
,F

ev
er
,

Sw
el
lin

g
,L

o
w

le
ve
ls
o
f
b
lo
o
d
p
la
te
le
ts

4
SI
I
-
C
o
vi
sh
ie
ld

1,
67

5,
06

8
8.
95

V
ir
al

ve
ct
o
r

2
d
o
se
s,

8–
12

w
ee

ks
ap

ar
t

R
ed

n
es
s
at

th
e
in
je
ct
io
n
si
te
,V

o
m
it
in
g
,D

ia
rr
h
o
ea
,F

ev
er
,

Sw
el
lin

g
,L

o
w

le
ve
ls
o
f
b
lo
o
d
p
la
te
le
ts

5
Si
n
o
va
c
-
C
o
ro
n
aV

ac
1,
40

5,
00

2
7.
51

In
ac
ti
va
te
d
vi
ru
s

2
d
o
se
s,
4
w
ee

ks
ap

ar
t

In
je
ct
io
n
si
te

p
ai
n
/s
w
el
lin

g
/e
ry
th
em

a,
Fa
ti
g
u
e,

H
ea
d
ac
h
e,

M
ya
lg
ia
,A

rt
h
ra
lg
ia
,N

au
se
a,

D
ia
rr
h
ea
,C

o
u
g
h
,C

h
ill
,P

ru
ri
tu
s,

Lo
ss

o
f
ap

p
et
it
e,

R
h
in
o
rr
h
ea
,S

o
re

th
ro
at
,N

as
al

co
n
g
es
ti
o
n
,

A
b
d
o
m
in
al

p
ai
n

6
Ja
n
ss
en

-
A
d
26

.C
O
V

2-
S

1,
35

4,
64

4
7.
24

V
ir
al

ve
ct
o
r

si
n
g
le

d
o
se

In
je
ct
io
n
si
te

p
ai
n
/s
w
el
lin

g
/r
ed

n
es
s,
H
ea
d
ac
h
e,

Fa
ti
g
u
e,

M
ya
lg
ia
,N

au
se
a,

C
o
u
g
h
in
g
,J
o
in
t
p
ai
n
,F

ev
er
,C

h
ill
s,
Im

m
u
n
e

th
ro
m
b
o
ti
c
th
ro
m
b
o
cy
to
p
en

ia

7
N
o
va
va
x-
N
U
VA

X
O
V
ID

92
7,
55

3
4.
96

Pr
o
te
in

su
b
u
n
it

2
d
o
se
s,
3
w
ee

ks
ap

ar
t

In
je
ct
io
n
si
te

p
ai
n
/t
en

d
er
n
es
s,
Fa
ti
g
u
e,

H
ea
d
ac
h
e,

M
ya
lg
ia
,

Jo
in
t
p
ai
n

8
B
ei
jin

g
C
N
B
G
-
B
B
IB
P-

C
o
rV

85
2,
61

4
4.
56

In
ac
ti
va
te
d
vi
ru
s

2
d
o
se
s,
3–

4
w
ee

ks
ap

ar
t

In
je
ct
io
n
si
te

p
ai
n
,
Fa
ti
g
u
e,

Le
th
ar
g
y,
Te
n
d
er
n
es
s,
Fe
ve
r

9
B
h
ar
at

-
C
o
va
xi
n

38
4,
40

0
2.
05

In
ac
ti
va
te
d
vi
ru
s

2
d
o
se
s,
4
w
ee

ks
ap

ar
t

In
je
ct
io
n
si
te

p
ai
n
/s
w
el
lin

g
,F

ev
er
,H

ea
d
ac
h
es
,I
rr
it
ab

ili
ty

10
Sh

ifa
-
C
O
V
Ir
an

B
ar
ak
at

35
0,
00

0
1.
87

In
ac
ti
va
te
d
vi
ru
s

2
d
o
se
s,
4
w
ee

ks
ap

ar
t

N
.A
.

11
M
ed

ic
ag

o
-
V
LP

30
4,
00

0
1.
63

V
ir
u
s-
lik
e
p
ar
ti
cl
es

2
d
o
se
s,
3
w
ee

ks
ap

ar
t

In
je
ct
io
n
si
te

p
ai
n
/s
w
el
lin

g
,C

h
ill
s,
Fa
ti
g
u
e,

Jo
in
t
ac
h
es
,

H
ea
d
ac
h
e,

M
ild

fe
ve
r,
M
u
sc
le

ac
h
es
,N

as
al

co
n
g
es
ti
o
n
So

re
th
ro
at
,C

o
u
g
h
,N

au
se
a,

D
ia
rr
h
ea

12
Sa
n
o
fi
G
SK

-
V
id
p
re
vt
yn

30
2,
88

0
1.
62

Pr
o
te
in

su
b
u
n
it

2
d
o
se
s,
3
w
ee

ks
ap

ar
t

N
.A
.

13
G
am

al
ey
a
-
G
am

-
C
o
vi
d
-V
ac

27
0,
11

6
1.
44

V
ir
al

ve
ct
o
r

2
d
o
se
s,
3
w
ee

ks
ap

ar
t

In
je
ct
io
n
si
te

p
ai
n
/s
w
el
lin

g
/e
ry
th
em

a,
Fa
ti
g
u
e,

H
ea
d
ac
h
e,

M
ya
lg
ia
,A

rt
h
ra
lg
ia
,N

au
se
a/
vo

m
it
in
g
,A

xi
lla
ry

sw
el
lin

g
/

te
n
d
er
n
es
s,
Fe
ve
r,

14
C
u
re
va
c
-
C
V
n
C
o
V

79
,7
80

0.
43

m
R
N
A
,u

n
m
o
d
ifi
ed

2
d
o
se
s,
4
w
ee

ks
ap

ar
t

Fa
ti
g
u
e,

H
ea
d
ac
h
e,

C
h
ill
s,
M
u
sc
le

p
ai
n
,F

ev
er

15
C
an

Si
n
o
-
C
o
n
vi
d
ec
ia

28
,7
30

0.
15

V
ir
al

ve
ct
o
r

si
n
g
le

d
o
se

H
ea
d
ac
h
es
,F
at
ig
u
e,

In
je
ct
io
n
si
te

re
ac
ti
o
n
s

16
Fi
n
la
y
-
So

b
er
an

a-
02

26
,2
00

0.
14

C
o
n
ju
g
at
e
va
cc
in
e

2
d
o
se
s,
4
w
ee

ks
ap

ar
t

In
je
ct
io
n
si
te

p
ai
n
,
In
fl
am

m
at
io
n
at

th
e
in
je
ct
io
n
si
te
,
G
en

er
al

d
is
co

m
fo
rt

17
Va

xi
n
e-
Sp

ik
o
G
en

18
,0
00

0.
10

R
ec
o
m
b
in
an

t
p
ro
te
in

2
d
o
se
s,
3
w
ee

ks
ap

ar
t

In
je
ct
io
n
si
te

p
ai
n
/e
ry
th
em

a/
sw

el
lin

g
/i
n
d
u
ra
ti
o
n
,A

xi
lla
ry

sw
el
lin

g
/t
en

d
er
n
es
s
ip
si
la
te
ra
l
to

th
e
si
d
e
o
f
in
je
ct
io
n
,
Fe
ve
r,

H
ea
d
ac
h
e,
Fa
ti
g
u
e,
M
ya
lg
ia
,A

rt
h
ra
lg
ia
,N

au
se
a,
Vo

m
it
in
g
,C

h
ill
s

18
G
am

al
ey
a
-
Sp

u
tn
ik
-

Li
g
h
t

5,
83

5
0.
03

V
ir
al

ve
ct
o
r

si
n
g
le

d
o
se

M
ild

p
ai
n
at

th
e
in
je
ct
io
n
si
te
,F

ev
er
,H

ea
d
ac
h
es
,F
at
ig
u
e,

M
u
sc
le

ac
h
es

19
C
h
u
m
ak
o
v
-
C
o
vi
-V
ac

3,
01

2
0.
02

In
ac
ti
va
te
d
vi
ru
s

2
d
o
se
s,
2
w
ee

ks
ap

ar
t

N
.A
.

20
Va

ln
ev
a
-
V
LA

20
01

2,
23

2
0.
01

In
ac
ti
va
te
d
vi
ru
s

2
d
o
se
s,
4
w
ee

ks
ap

ar
t

R
ed

n
es
s
at

th
e
in
je
ct
io
n
si
te
,V

o
m
it
in
g
,D

ia
rr
h
o
ea
,F

ev
er
,

Sw
el
lin

g
,L

es
s
si
d
e
ef
fe
ct
s

R
ef
er
en

ce
s
ci
te
:
[1
70

,1
74

].

Q. Li et al.

1117

Cell Death & Differentiation (2022) 29:1107 – 1122



begins to spread shortly after the initial infection and long before
the appearance of symptoms. Omicron is approximately 10 times
more contagious than wild-type SARS-CoV-2 or 2.8 times as
infectious as Delta. The newly emerged new Omicron BA.2 is even
more contagious [159]. Mutation analysis of Omicron and its BA.2
variants indicates that their spike proteins carry large amounts of
mutations far more than the previous VoC, Fig. 1. Of the
mutations, D614G is a well-known mutation that confers
enhanced infectivity by multiple mechanisms including a bi-
modular impact on the stability of spike trimer [160, 161]; the
mutations in K417 and E484 of the RBD region were believed to
alter spike affinity to ACE2 [162]; the N501Y mutation had been
shown to change virus tropism by endowing cross-species
transmission to mice [163], therefore creating a potential
intermediate host that helps virus spreading [164]. Indeed, latest
studies identified Omicron infection in rats and mice [165–167],
supporting the zoonotic transmission of the new SARS-CoV-2
variant of concerns. It is expected that the mutations in the
Omicron RBD together altered the affinity to ACE2, however,
protein structural analysis did not find a higher affinity [168]. The
contributing factors to the highly contagious nature remain a
mystery. Nevertheless, the high ability to spread and the
seemingly less pathogenicity have ignited the hope of herd
immunity and the ending of the pandemic. The question is
whether Omicron is indeed less pathogenic now but can acquire
increased pathogenicity through further mutations. There is no
guarantee that the next variant will be milder. The most
worrisome is the appearance of Deltacron, which has the
backbone of the Delta variant and the spike of Omicron.
Information on the transmission speed and pathogenicity of
Deltacron is urgently needed.
There is a lot of debate regarding the effectiveness of the

existing vaccines against Omicron. Almost all vaccine-induced
immunity could be invaded by the Omicron variant. Due to their
lower ability to induce antibodies, the inactivated vaccines are
believed to be not as effective in providing protection against
infection. Scientists are waiting for the recent information on the
disease severity of patients infected with Omicron from China
mainland, where nearly 90% have received inactivated vaccines,
and that from Hong Kong, where the majority of people are
immunized with the RNA vaccines. It should be noted that a
multinational study showed that recipients immunized first with
inactivated vaccine followed by an RNA vaccine showed the
highest RBD specific antibody and Omicron specific T cells as
compared to two immunizations with a single vaccine type. May
inactivated vaccine induces more T helper cells due to being
presented by MHC class II, Fig. 6? It has been reported that
heterologous immunization with inactivated vaccine followed by
an mRNA booster elicits strong humoral and cellular immune
responses against the SARS-CoV-2 Omicron variant [169].
Finally, how will the COVID-19 pandemic end? Will Omicron be

the last variant? If not, what properties will the next variant have?
The biggest question is whether COVID-19 will become endemic.
We just hope that, with the immunity built up by vaccination and
infection in the population, the endemic is not as deadly. Clearly,
we have to learn the new routines of SARS-CoV-2.
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