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An important problem in analysis on fractals is the existence of a self-similar energy on finitely ramified fractals.
The self-similar energies are constructed in terms of eigenforms, that is, eigenvectors of a special nonlinear
operator. Previous results by C. Sabot and V. Metz give conditions for the existence of an eigenform. In this
paper, I prove this type of result in a different way. The proof given in this paper is based on a general fixed-point
theorem for anti-attracting maps on a convex set.
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1 Introduction

The subject of this paper is analysis on fractals. Much of analysis on fractals is built based on the notion of
an energy. Therefore, an important problem is the construction of self-similar Dirichlet forms on fractals, i.e.
energies. In this paper, we investigate the finitely ramified fractals. This means more or less that the intersection
of each pair of copies of the fractal is a finite set. Examples of finitely ramified fractals are the Sierpinski Gasket
(or Sierpinski triangle) and its generalizations, the Vicsek Set and the Lindstrøm Snowflake, while a well-known
example of infinitely ramified fractal is the Sierpinski Carpet.

The Gasket can be constructed in the following way. Take an equilateral triangle T0 (0-step of the construc-
tion), next divide T0 into 4 copies of it and remove the central one; call T1 the set so obtained (1-step of the
construction); next use the same process on every of the remaining three triangles and call this set T2, and so on.
The Gasket will be the intersection of all Tn. The Vicsek set and the Carpet are obtained taking a square as the
0-step of the construction. In Figures 1 and 2 the 0-step and 1-step in the construction of the Gasket are depicted.
In Figures 3 and 4 the Vicsek Set and the Carpet are depicted (1-step of the construction). We see in Figures
2 and 3 that in the Gasket and in the Vicsek Set, the intersection of two copies of the fractal either is empty or
consists of a singleton, while in the Carpet, depicted in Figure 4, the intersection of some two copies of the fractal
consists of a line-segment.

An important and general class of finitely ramified fractals is that of the P.C.F. self-similar sets, introduced
by J. Kigami in [2] and a general theory with many examples can be found in [3]. In this paper, we consider a
subclass of the class of the P.C.F. self-similar sets, with a very mild additional requirement, which is described
in Section 2. This is the same setting as in other papers of mine e.g., [6] and is essentially the same setting as
in [1], and in other papers ([9], [8]). We require that every point in the initial set is a fixed point of one of the
contractions defining the fractal. Moreover, we require that the fractal is connected. All fractals considered in
this paper are subsets of a metric space X generated by a finite set Ψ of maps from X to X , in the sense that the
fractal F is the unique non-empty compact subset of X such that

F =
⋃
ψ∈Ψ

ψ(F). (1.1)
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2 Roberto Peirone: Fixed Points of maps and Eigenforms on Fractals

On such a class of fractals, the basic tool used to construct a Dirichlet form is a self-similar discrete Dirichlet
form defined on a special finite subset V (0) of the fractal. This subset is a sort of boundary of the fractal. For
example, in the Gasket, we have V (0) = {P1, P2, P3} and in the Vicsek Set we have V (0) = {P1, P2, P3, P4}
(see Figures 2 and 3). Such self-similar discrete Dirichlet forms are the eigenforms, i.e., the eigenvectors of a
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Figure 1. The Gasket, 0-step
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Figure 2. The Gasket, 1-step
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Figure 3. The Vicsek Set
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Figure 4. The Carpet
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special nonlinear operator Λr called renormalization operator, which depends on a set of positive weights ri
placed on the cells of the fractal.

Thus, an important problem in analysis on fractals is whether on a given P.C.F. self-similar set there exists an
eigenform with prescribed weights. Another important problem is whether such an eigenform is unique up to a
multiplicative constant (it can be easily verified that a positive multiple of an eigenform is an eigenform as well).
In this paper, we will consider only the problem of the existence of an eigenform.

In some specific cases (e.g., the Gasket) an explicit eigenform can be given. The first result of existence of
an eigenform on a relatively general class of fractals was given by T. Lindstrøm in [4], where it was proved
that there exists an eigenform with all weights equal to 1 on the nested fractals, a class of fractals with good
properties of symmetry including for example, the Lindstrøm snowflake. C. Sabot in [8] proved a rather general
criterion for the existence of an eigenform, and V. Metz in [5] improved the results in [8]. In fact, he removed
an additional requirement present in the paper of Sabot and also, considered more general classes of fractals than
those considered in [8] and in the present paper. Moreover, the result given in [5] provides a condition for the
existence of an eigenform, which is in some sense almost necessary and sufficient although it does not cover
some usual cases (see Remark 3.3). More details on the existence results of Sabot and Metz are given in Section
3.

In this paper, I prove essentially the same existence result as that in [5], here described in Section 3, Theorem
3.2. Note that in [5], other criteria are also given, but apparently less appropriate in the context considered here.
Strictly speaking, the result given here is slightly weaker than the result of Metz here described in Theorem 3.2.
However, I think that, in the practical cases, the ranges of application of the two results are probably essentially
the same. Moreover, the condition ”almost” necessary and sufficient for the existence here mentioned in Remark
3.3 can be also deduced from the result given in this paper. See Remark 6.9 for the details.

The idea behind the proof given here is entirely different. Note that it avoids almost completely the use of the
theory of Hilbert’s projective metric and also the use of the notion of P -parts is reduced and limited to the last
theorem (Theorem 6.8) and a preliminary lemma. Instead, the proof is based on a natural and general principle.

This principle is that a map from the (non-empty) interior of a compact and convex set A in Rn into itself
has a fixed point if it is anti-attracting. To illustrate it, in this situation call repulsing a map φ from A into itself
if it has the following property: for every x ∈ ∂A, φ sends a suitable neighborhood of x toward the interior of
A. The name repulsing appears to be appropriate since every point of the boundary is repulsing for φ. Then,
it is well-known that a repulsing map φ has a fixed point on A. We say that the map is anti-attracting if, more
generally, for every x ∈ ∂A, it sends a suitable neighborhood of x in a direction which is not opposite to a given
element x̃ chosen in the interior of A. The previous, of course, are informal definitions.

Moreover, I will use a stronger notion of anti-attracting map, namely, I will require that the map is anti-
attracting with respect to a point x̃, which is not constant but depends continuously on x. In the original version
of this paper, I have used only the versions of the fixed point theorems with constant x̃. The proof of the final
result was definitely simpler than in the present version. However, after the referee asked for a better comparison
with the previous result, I realized that in that version, the result was substantially weaker than that of Metz.

The precise definitions and theorems (Theorem 4.4 and Theorem 4.5) are discussed in Section 4. Since at least
the versions with constant x̃ of such theorems, especially Theorem 4.4, are simple consequences of Brouwer’s
fixed point Theorem, we can reasonably conjecture that at least some version of them could be already known,
but since I do not know any reference to them, I prove them in this paper. In the proof of the existence result
described in this paper, which, as previously told, is based on a natural and general result, we cannot however
avoid a technical point. Namely, in Lemma 6.3 we use a rather technical result proved in [8]. Such a type of
result, is in any case, a key-point also in the proofs in [8] and in [5].

Note that in [8] and in [5] also sufficient conditions for non-existence of an eigenform as well as the uniqueness
of the eigenforms are discussed. These problems are not discussed in this paper, apart from in Section 3, which
is a Section devoted to previous results. Finally, note that many examples of fractals are known where for some
prescribed weights there exist no eigenforms. A natural conjecture was considered in literature, namely whether
on every fractal (of the type considered in this paper) there exists an eigenform for a suitable set of weights.

Such a problem has been solved in [6] and in [7] by two different points of view. More precisely, in [7] an
example of a fractal is shown where for every set of weights there exist no eigenforms on the fractal. However,
in [6] a weak form of the conjecture is proved. Namely, it is proved that there exists always an eigenform with
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4 Roberto Peirone: Fixed Points of maps and Eigenforms on Fractals

suitable weights but with respect to a suitable set of maps generating the fractal, which is not necessarily the
original set of maps (as Ψ in (1.1)).

2 Notation

In this Section, we introduce the notation, based on that of [6]. This type of construction was firstly considered
in [1]. A notion similar to that of a fractal triple was discussed first in [2], Appendix A, and called an ancestor.

First, we define the general fractal setting. The basic notion is that of fractal triple. By this, we mean a triple(
V (0), V (1),Ψ

)
, where V (0) is a finite set with N ≥ 2 elements, V (1) is a finite set and Ψ is a finite set of

one-to-one maps from V (0) into V (1) satisfying V (1) =
⋃
ψ∈Ψ ψ

(
V (0)

)
. Put

V (0) = {P1, ..., PN}.

We require that

a) for each 1 ≤ j ≤ N , there exists a (unique) function ψj ∈ Ψ such that ψj(Pj) = Pj , and Ψ = {ψ1, ..., ψk},
with k ≥ N ;

b) Pj 6∈ ψi
(
V (0)

)
when i 6= j (in other words, if ψi(Ph) = Pj with i ∈ {1, ..., k}, j, h ∈ {1, ..., N}, then

i = j = h);

c) all pairs of points in V (1) can be connected by a path every edge of which is contained in a set of the form
ψi(V

(0)); in other words for every Q,Q′ ∈ V (1) there exists a sequence of points Q0, ..., Qn ∈ V (1) such
thatQ0 = Q,Qn = Q′ and for every h = 1, ..., n there exists ih = 1, ..., k such thatQh−1, Qh ∈ ψih(V (0)).

Note that V (0) ⊆ V (1). As discussed in Introduction, V (0) is seen as a sort of boundary of the fractal. By
definition, a 1-cell (or simply a cell) is a set of the form Vi := ψi

(
V (0)

)
with i = 1, ..., k. The points Pj ,

j = 1, ..., N , will be called vertices. Let

J = J
(
V (0)

)
=
{
{j1, j2} : j1, j2 ∈ {1, ..., N}, j1 6= j2

}
.

Based on a fractal triple, we can construct in a standard way a (unique) finitely ramified fractal, more precisely
a P.C.F. self-similar set. See, for example, [2], Appendix A, for the details of such a construction.

Next, we define the Dirichlet forms on V (0), invariant with respect to an additive constant. Namely, denote by
D
(
V (0)

)
, or simply D, the set of functionals E from RV (0)

into R of the form

E(u) =
∑

{j1,j2}∈J

E{j1,j2}
(
u(Pj1)− u(Pj2)

)2
,

where E{j1,j2} ≥ 0. The numbers E{j1,j2} will be called coefficients of E. Denote by D̃
(
V (0)

)
, or simply D̃,

the set of the irreducible Dirichlet forms, i.e.

D̃ = {E ∈ D : E(u) = 0 if and only if u is constant}.

We remark that, in particular, if E ∈ D and all coefficients of E are strictly positive, then E ∈ D̃. However, there
are forms in D̃ that have some coefficients equal to 0. More precisely, if E ∈ D, then E ∈ D̃ if and only if the
graph G(E) defined on V (0) as

G(E) :=
{
{Pj1 , Pj2} : E{j1,j2} > 0

}
,

is connected. This means that for every Pj , Pj′ ∈ V (0) there exists a sequence j0 = j, j1, ..., jn = j′ such that
E{jh−1,jh} > 0 for every h = 1, ..., n.

Note that a form E ∈ D is uniquely determined by its coefficients. Thus, we can identify E ∈ D with the set
of its coefficients E{j1,j2} in RJ . In fact,

E{j1,j2} =
1

4

(
E
(
χ{Pj1

} − χ{Pj2}

)
− E

(
χ{Pj1}

+ χ{Pj2
}
))
.
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Accordingly, we will equip D with the euclidean metric in RJ . We will also use the following convention:

E ≤ E′ ⇐⇒ E(u) ≤ E′(u) ∀u ∈ RV
(0)

,

E � E′ ⇐⇒ Ed ≤ E′d ∀d ∈ J.

Note that E � E′ implies E ≤ E′ but the converse does not hold. The following lemma is standard. I merely
sketch the proof.

Lemma 2.1 If E1, E2 ∈ D̃ there exist positive constants c, c′ such that cE1 ≤ E2 ≤ c′E1.

P r o o f. Let
S :=

{
u ∈ RV

(0)

: u(P1) = 0, ||u|| = 1
}
.

The ratio E2

E1
attains its minimum c and its maximum c′ over S. Thus, for every non-constant u ∈ RV (0)

, putting

ũ :=
u− u(P1)

||u− u(P1)||
, we have ũ ∈ S, thus

E2(u)

E1(u)
=
E2(ũ)

E1(ũ)
∈ [c, c′].

Next, we recall the definition of the renormalization operator Λr. For every r ∈W :=]0,+∞[k, everyE ∈ D
and every v ∈ RV (1)

, define

S1,r(E)(v) =

k∑
i=1

riE(v ◦ ψi).

Here, an element r of W can be written as (r1, ..., rk) and the number ri > 0 is called the weight placed on the
cell Vi. Note that S1,r(E) is a sort of sum of E on all cells. It is easy to see that S1,r(E) is a Dirichlet form on
RV (1)

. Now, for u ∈ RV (0)

let

L(u) =
{
v ∈ RV

(1)

: v = u on V (0)
}
,

and let us define Λr(E)(u) for u ∈ RV (0)

as

Λr(E)(u) = inf {S1,r(E)(v) : v ∈ L(u)} .

The form Λr(E) is called the restriction of S1,r(E) on V (0). Note that Λr maps D into D and D̃ into D̃.
If r ∈W , we say that E ∈ D̃ is an r–eigenform (with eigenvalue ρ) if there exists ρ > 0 such that

Λr(E) = ρE. (2.1)

We say that E is an r-degenerate eigenform (with eigenvalue ρ) if E ∈ D̃ \ D satisfies (2.1). The following
lemma is standard and can be easily proved

Lemma 2.2 i) The map (E, u) 7→ E(u) from D × RV (0)

to R is continuous.
ii) The map (r, E) 7→ Λr(E) from W ×D to D is continuous.

P r o o f. (i) is trivial, and for ii) see for example [6], Lemma 3.1.

The aim of this paper will be to give sufficient conditions for the existence of an r-eigenform.
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6 Roberto Peirone: Fixed Points of maps and Eigenforms on Fractals

3 Previous Results

We here adopt some notations of [5], or light variants of them. If E ∈ D, we denote by ker(E) the set E−1(0).
Moreover, we denote by DE the set {E′ ∈ D : ker(E′) = ker(E)}. The sets of the form DE , E ∈ D will be
called P-parts. Note that DE is the unique P-part containing E. We will put ker(DE) = ker(E). Of course,
D̃ and {0} are P-parts. We will call D̃ ands {0} the trivial P -parts. Note that in [8], instead of P-parts, the
equivalent notion of G-relation is used. Here G stands for a group, which in our case is the trivial group.

We observe thatDE only depends on the set graph G(E) defined in Section 2. Therefore, there are only finitely
many P-parts.

Given a P-part P , the P-part DΛr(E) is independent of E ∈ P and r ∈ W and will be denoted by Λ(P ). We
will say that a P-part P is Λ-invariant if Λ(P ) = P . Note that the trivial P -parts are Λ-invariant. Given two
P -parts P1 and P2 we put P1 � P2 if ker(P1) ⊆ kerP2.

We will now describe the existence results of Sabot and of Metz. We will reformulate them using our notation.
In the present context some statements can be simplified. We need to introduce a notion due to Sabot (see [8])
whose aim is to approximate Λr near E ∈ D \ D̃ by minimizing along functions in ker(E). Namely, we define
Λr,E(E) : ker(E)→ R as

Λr,E(E)(u) = inf
{
S1,r

(
E)(v) : v ∈ L(u), v ◦ ψi ∈ ker(E) ∀ i = 1, ..., k

}
∀u ∈ ker(E).

Of course, Λr,E(E) is independent ofE in a given P -part. We are now ready to state the existence result of Sabot(
ii) of Theorem 5.1 in [8]

)
.

Theorem 3.1 Suppose the nontrivial Λ-invariant P-parts are mutually incomparable (with respect to the order
�). Suppose for every non-trivial Λ-invariant P-part P there exist E ∈ P and E ∈ D̃ such that

inf
{Λr,E(E)(u)

E(u)
: u ∈ ker(E), u non-constant

}
> sup

{Λr(E)(u)

E(u)
: u ∈ RV

(0)

\ ker(E)
}
.

Then there exists an r-eigenform (and it is unique up to a multiplicative constant).
Now, I will describe the existence result of Metz. In [5], in fact there is a general but not easily verifiable

existence criterion (Theorem 25 there) and later more practical criteria are deduced. I will describe the criterion
which is the most appropriate in our setting, that is Corollary 28 combined with Theorem 25 in [5] and called
Sabot’s test there.

Theorem 3.2 Suppose that for every non-trivial Λ-invariant P-part containing a degenerate r-eigenform E
with eigenvalue ρ > 0 Λr,E has an eigenvector E ∈ D with eigenvalue strictly greater than ρ. Then there exists
an r-eigenform (and it is unique up to a multiplicative constant).

Note that in the statement of Theorem 3.2, we could avoid the use of the P-parts, and could instead use only
the degenerate r-eigenforms. However, referring to the P-parts clarifies better that we have to check only finitely
many possibilities. Also, it is important to note that the eigenvalue does not depend on the degenerate r-eigenform
in the given P-part (see [5], Corollary 13), so that in Theorem 3.2 the statement does not depend on the degenerate
r-eigenform E.

Remark 3.3 I here explain what are the main differences between the result of Metz and that of Sabot. First of
all, in Theorem 3.2 the hypothesis that the nontrivial Λ-invariant P-parts are mutually incomparable is removed.
Moreover, in the result by Metz, we are reduced to check only the P-parts containing a degenerate r-eigenform.
As observed in [5], Remark 34 and subsequent comments, this provides a condition for the existence of an
r-eigenform which is ”almost” necessary and sufficient. Namely, enumerate the nontrivial Λ-invariant P-parts
containing a degenerate r-eigenform as P1, ..., Ps. For every i = 1, ..., s, letEi be a degenerate r-eigenform with
eigenvalue ρi. Let

γi = sup
E∈D̃

inf
{Λr,Ei

(E)(u)

E(u)
: u ∈ ker(Ei), u non-constant

}
.

Then it follows from Theorem 3.2 that if

max{ρi : i = 1, ..., s} < min{γi : i = 1, ..., s},
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then there exists an r-eigenform. On the other hand, if

max{ρi : i = 1, ..., s} > min{γi : i = 1, ..., s},

then there exist no r-eigenforms. The proof of the latter statement proposed in [5], Remark 34, is not clear to me.
However, as mentioned there, it is also proved in the part i) of the result of Sabot (Theorem 5.1 in [8]).

In some sense, this condition is analogous to the fact that in the one-dimensional dynamics, a fixed point x of
a function f is attracting if |f ′(x)| < 1 and repelling if |f ′(x)| > 1. Note however that this condition does not
work in some usual fractals, e.g., when we have existence but not uniqueness.

4 The fixed point Theorems.

In this Section, we give two fixed point Theorems, useful for the following. They are simple variants of the
Brouwer fixed point Theorem. The first concerns maps from a convex and compact set not necessarily into itself
but such that any point x of the boundary is mapped not on the half-line with end-point at x and opposite to an
interior point depending on x. The second theorem is a variant of the first but for open convex sets. First, recall
some notation. An affine subset of Rn is a set in Rn of the form X + a where X is a linear subspace of Rn and
a ∈ Rn. Now, let Z be an affine set in Rn, and let v, w ∈ Z. Let

]v, w[:= {v + t(w − v) : t ∈]0, 1[},

[v, w[:=]v, w[∪{v}, ]v, w] :=]v, w[∪{w}, [v, w] :=]v, w[∪{v, w}.

In the following, if Z is an affine subset of Rn, every topological notion on Z will be meant to be with respect to
the topology on Z inherited from the euclidean topology on Rn. For example, ifA ⊆ Z, we will denote by int(A)
the interior of A with respect to such a topology. The following lemma is standard and can be easily proved.

Lemma 4.1 Suppose Z is an affine subset of Rn and A is a convex subset of Z. Then
i) If v ∈ A and w ∈ int(A), we have ]v, w[⊆ int(A).
ii) int(A) is convex.

Let x̃, x be points of the affine subset Z of Rn. Then, we define

Extx̃(x) =
{
x̃+ t(x− x̃) : t > 1

}
.

Lemma 4.2 Let K be a compact convex subset of the affine subset Z of Rn. Then
i) For every x̃ ∈ int(K) and every x ∈ Z \ {x̃} there exists a unique y = px̃(x) ∈ ∂K of the form

y = x̃+ t(x− x̃), t > 0.
ii) The map (x̃, x) 7→ px̃(x) from

{
(x̃, x) ∈ int(K)× Z : x 6= x̃

}
into ∂K is continuous.

iii) Let x̃ ∈ int(K). If x ∈ ∂K, then px̃(x) = x;
if x ∈ K \ {x̃}, then x ∈ [px̃(x), x̃];
if x ∈ Z \ int(K), then px̃(x) ∈ [x, x̃].

iv) If x̃ ∈ int(K), x ∈ K \ {x̃} and x1 ∈ Extx̃(x) ∩K, then x1 ∈ [x, px̃(x)].
v) If x̃ ∈ int(K) and x ∈ Z \K, then y = px̃(x) is the unique point in ∂K satisfying x ∈ Extx̃(y) ∪ {y}.

P r o o f. (Sketch) i) Clearly, H := ∂K ∩ {x̃+ t(x− x̃) : t > 0} is non-empty by connectedness. In fact, the
point x̃+ t(x− x̃) belongs to int(K) for t = 0, and moreover, in view of the boundedness of K, it lies in Z \K
for sufficiently large t. Moreover, H cannot contain two different points by Lemma 4.1. ii) This follows at once
from the uniqueness of the point defining px̃(x). iii) It is easy to see that in the definition of px̃(x) we have t = 1
if x ∈ ∂K, t ≥ 1 if x ∈ K \ {x̃}, t ≤ 1 if x ∈ Z \ int(K). iv) and v) are trivial.

In order to prove the main results of this Section, we recall a standard version of Tietze’s Theorem where the
functions take values in a convex set in Rn. Stronger versions of this theorem are known but the present suffices
for our aims. We will use Lemma 4.3 also in Section 6.

Lemma 4.3 If f is a continuous function from a non-empty compact subset Y of a metric spaceX with values
in a convex set C in Rn, then there exists a continuous function f̃ : X → C that extends f .
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8 Roberto Peirone: Fixed Points of maps and Eigenforms on Fractals

P r o o f. Let f = (f1, ..., fn). Since every fi is continuous with values in R, the usual form of Tietze’s
Theorem provides continuous functions f̂i : X → R extending fi. Thus we find a continuous function f̂ : X →
Rn extending f . Now, let π be the projection of Rn over co

(
f(Y )

)
. Then the function f̃ defined as f̃ = π ◦ f̂

satisfies the Lemma.

Theorem 4.4 Let Z be an affine subset of Rn, let K be a non-empty compact convex subset of Z. Let θ be a
continuous map from ∂K to int(K) and let φ : K → Z be a continuous map such that φ(x) /∈ Extθ(x)(x) for
every x ∈ ∂K. Then φ has a fixed point on K.

P r o o f. In view of Lemma 4.3, we can extend θ to a continuous function, which we call θ as well, from Z to
int(K). Define φ̃ : K → K by

φ̃(y) =

{
pθ(y)

(
φ(y)

)
if φ(y) ∈ Z \K

φ(y) if φ(y) ∈ K
.

Since pθ(y)

(
φ(y)

)
= φ(y) when φ(y) ∈ ∂K, then φ̃ is continuous on all of K with values in K and amounts

to φ on φ−1(K). Thus it has a fixed point x ∈ K. We claim that φ(x) = x. In fact, if x ∈ ∂K and φ(x) 6=
x = φ̃(x), by the definition of φ̃ we have x = pθ(x)

(
φ(x)

)
and φ(x) ∈ Z \K. Thus, by Lemma 4.2 v) we have

φ(x) ∈ Extθ(x)(x), contrary to our assumption. Thus x ∈ int(K), and consequently φ(x) ∈ K. In fact, in the
opposite case, x = pθ(x)

(
φ(x)

)
∈ ∂K. Therefore x = φ̃(x) = φ(x).

Let Z andK be as in Theorem 4.4, let φ be a continuous map from int(K) into itself, and let θ be a continuous
map from ∂K to int(K). We say that x ∈ ∂K is anti-attracting for (φ, θ) if there exists a neighborhood Ux of x
in Z such that for every x ∈ Ux ∩ int(K) and every x′ ∈ Ux ∩ ∂K we have φ(x) /∈ Extθ(x′)(x). We say that φ is
θ-anti-attracting if every x ∈ ∂K is anti-attracting for (φ, θ).

Theorem 4.5 Let Z and K be as in Theorem 4.4. Let θ be a continuous map from ∂K into int(K), and let φ
be a θ-anti-attracting map from int(K) into itself. Then φ has a fixed point on int(K).

P r o o f. For every x ∈ ∂K, let Ux be a neighborhood of x in Z as in the definition of an anti-attracting point.
We can and do assume that Ux is open and, moreover, its closure has the same property, namely(

x ∈ Ux ∩ int(K), x′ ∈ Ux ∩ ∂K
)
⇒ φ(x) /∈ Extθ(x′)(x). (4.1)

Moreover, we can extend θ continuously on K \ {x̃} where x̃ is an arbitrary point in int(K) by putting θ(x) =
θ
(
px̃(x)

)
. By continuity we can choose Ux such that the following variant of (4.1) holds

x ∈ Ux ∩ int(K)⇒
(
x /∈ {x̃} ∪ θ(∂K), φ(x) /∈ Extθ(x)(x)

)
. (4.2)

By compactness, there exist x1, ..., xm ∈ ∂K such that

U :=

m⋃
i=1

Uxi ⊇ ∂K.

Let K̃ := co
(
K \ U

)
. Note that, in view of Lemma 4.1 ii), we have

K̃ ⊆ int(K). (4.3)

We also have
∂K̃ ⊆ U. (4.4)

In fact, in the opposite case, there exists x ∈ ∂K̃ such that

x ∈ int(K) \ U ⊆ K \ U ⊆ K̃,
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and since int(K) \ U is open in Z, then x /∈ ∂K̃, a contradiction, thus (4.4) holds. By (4.3) and (4.4), for every
x ∈ ∂K̃ we have x ∈ Uxi ∩ int(K) for some i = 1, ...,m, thus by (4.1)

φ(x) /∈ Extθ(x)(x).

Next, x̃ /∈ U by (4.2). Therefore, x̃ ∈ K \ U ⊆ K̃, but in view of (4.4), x̃ /∈ ∂K̃, thus x̃ ∈ int(K̃). In particular,
the compact and convex set K̃ is non-empty.

Moreover, if x ∈ ∂K̃ ⊆ K \ {x̃}, then θ(x) ∈ int(K̃). In fact, on one hand, θ(x) ∈ K by hypothesis and
θ(x) /∈ U by (4.2) thus θ(x) ∈ K̃ by definition of K̃, on the other θ(x) /∈ ∂K̃ by (4.2) and (4.4). The map φ
from K̃ into Z thus satisfies all hypotheses of Theorem 4.4, thus φ has a fixed point on K̃ ⊆ int(K).

5 Anti-attracting forms on Fractals.

In this Section, we investigate the notions of Section 4 in the setting of forms in D. Recall that a form in D can
be seen as an element of RJ . So, we define specific sets in RJ which will play the roles of Z and K in Section
4. Moreover, we will investigate the notion of an anti-attracting form with respect to a map obtained normalizing
Λr. Let us define

L̃(x) :=
∑
d∈J

xd ∀x ∈ RJ ,

|x| :=
∑
d∈J

|xd| ∀x ∈ RJ ,

Z :=
{
x ∈ RJ : L̃(x) = 1

}
,

DN =:
{
E ∈ D : |E| = 1

}
=
{
E ∈ Z : Ed ≥ 0 ∀ d ∈ J

}
.

So, Z is an affine set in RJ and DN is a non-empty compact and convex subset of Z. Note that

max
d∈J

Ed ≥ m̃ :=
1

#(J)
∀E ∈ Z. (5.1)

We easily characterize int(DN ). In fact we have int(DN ) = D(1)
N where

D(1)
N := {E ∈ DN : Ed > 0 ∀ d ∈ J} ⊆ D̃.

We next want to study the map Λ̃∗r defined as

Λ̃∗r(E) :=
Λr(E)∣∣Λr(E)

∣∣ .
As it is known that if E ∈ D̃ satisfies Ed > 0 for every d ∈ J , so does Λr(E) (see, for example, [8], Prop. 1.15),
then Λ̃∗r maps continuously D(1)

N into itself. However, in general Λ̃∗r cannot be extended continuously on all of
DN . In fact, we could have Λr(E) = 0 for some E ∈ D \ D̃. We so need a nice decomposition of ∂DN . Let

D(2)
N := DN ∩ D̃ \ D(1)

N ,

D(3)
N = {E ∈ DN \ D̃ : Λr(E) 6= 0},

D(4)
N = {E ∈ DN \ D̃ : Λr(E) = 0},

where r ∈ W . In fact, it can be proved that the formula Λr(E) = 0 is independent of r ∈ W , but this is not
important for our considerations since we fix a given r ∈W . We easily have

∂DN = D(2)
N ∪ D

(3)
N ∪ D

(4)
N .
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Claerly, Λ̃∗r maps continuously D(1)
N ∪D

(2)
N ∪D

(3)
N into DN . Note also that, when E ∈ D(1)

N ∪D
(2)
N ∪D

(3)
N , then

E is a (possibly degenerate) r-eigenform if and only if it is a fixed point of Λ̃∗r.
We are going to prove that every point E ∈ ∂DN which is not an r-degenerate eigenform is anti-attracting for

Λ̃∗r. We need the following lemma, which is well-known, but however, I will prove it.

Lemma 5.1 If E,E′ ∈ D̃ and 0 < ρ < ρ′ we cannot have Λr(E) ≤ ρE and Λr(E
′) ≥ ρ′E′.

P r o o f. By contradiction, if Λr(E) ≤ ρE and Λr(E
′) ≥ ρ′E′, using an inductive argument we obtain

Λr
n(E) ≤ ρnE, Λr

n(E′) ≥ ρ′nE′ ∀n ∈ N.

However, in view of Lemma 2.1, there exist positive c and c′ such that cE′ ≥ E ≥ c′E′ which implies, Λr
n(E) ≥

c′Λr
n(E′) for every positive integer n, so that

ρnE ≥ Λr
n(E) ≥ c′Λrn(E′) ≥ c′ρ′nE′ ≥ c′

c
ρ′
n
E

and, since 0 < ρ < ρ′, this cannot hold for large n.

Now, for every form Ẽ ∈ int(DN ) = D(1)
N , according to the notation of the previous section, put

ExtẼ(E) =
{
Ẽ + t(E − Ẽ) : t > 1

}
∀E ∈ Z \ {Ẽ}.

Here, DN plays the role of K in Section 4. Next, define pẼ : Z \ {Ẽ} → ∂DN as in the previous section.

Lemma 5.2 Let r ∈ W and let θ be a continuous map from ∂DN to D(1)
N . Then every E ∈ D(4)

N is anti-
attracting for (Λ̃∗r, θ).

P r o o f. First, prove that there exists a neighborhood U of E such that

pθ(E′)(E)d ≤ 2Ed ∀E ∈ U ∩ DN , ∀E′ ∈ U ∩ ∂DN , ∀ d ∈ J. (5.2)

Note that by Lemma 4.2 iii), if E ∈ DN \ {θ(E′)} we have E ∈ [pθ(E′)(E), θ(E′)], thus

Ed ∈ [pθ(E′)(E)d, θ(E
′)d] ∀ d ∈ J. (5.3)

If d ∈ J satisfies Ed = 0, since θ(E) ∈ D(1)
N , thus θ(E)d > 0, by continuity we have Ed < θ(E′)d, thus by

(5.3) we have pθ(E′)(E)d ≤ Ed, and a fortiori (5.2). On the other hand, by continuity we have

Ed −→
E→E

Ed, pθ(E′)(E)d −→
(E,E′)→(E,E)

pθ(E)(E)d = Ed ∀ d ∈ J.

We have used the fact that, since E ∈ D(4)
N ⊆ ∂DN , by Lemma 4.2 iii) we have pθ(E)(E) = E. Thus (5.2) holds

for a suitable U , also for d such that Ed > 0, and (5.2) is proved. We now prove by contradiction that, possibly
restricting U , given E ∈ U ∩ D(1)

N , E′ ∈ U ∩ ∂DN we have

Λ̃∗r(E) /∈ Extθ(E′)(E). (5.4)

By Lemma 4.2 iv) we have Êd ∈ [Ed, pθ(E′)(E)d] if Ê ∈ Extθ(E′)(E) ∩DN , for every d ∈ J . Thus, by (5.2), if
(5.4) does not hold we have

Λ̃∗r(E)d ≤ 2Ed ∀ d ∈ J. (5.5)

Take a positive ε which we will specify later. Since E ∈ D(4)
N , by definition we can choose U such that(

Λr(E)
)
d
< ε ∀E ∈ U ∩ D(1)

N , ∀ d ∈ J. (5.6)
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For such E, by the definition of Λ̃∗r we have αΛ̃∗r(E) = Λr(E) for some α > 0 (depending on E). Thus, by
(5.1) and (5.6), for some d ∈ J we have

αm̃ ≤ α
(
Λ̃∗r(E)

)
d

=
(
Λr(E)

)
d
< ε.

It follows that α < ε
m̃ . Hence, in view of (5.5) we have(

Λr(E)
)
d

= α
(
Λ̃∗r(E)

)
d
≤ 2

ε

m̃
Ed ∀ d ∈ J.

Thus, we have Λr(E) � 2ε

m̃
E, hence Λr(E) ≤ 2ε

m̃
E. Fix Ẽ ∈ D(1)

N and take c > 0 so that Λr(θ(E
′)) ≥ cẼ (see

Lemma 2.1). Thus, if we choose ε so that
2ε

m̃
< c, we have contradicted Lemma 5.1. Such a contradiction shows

that (5.4) holds and the Lemma is proved.

Lemma 5.3 Let r ∈W and let θ be a continuous map from ∂DN to D(1)
N . Then every E ∈ D(2)

N ∪ D
(3)
N such

that Λ̃∗r(E) 6= E is anti-attracting for (Λ̃∗r, θ).

P r o o f. Since pθ(E)(E) = E we have Λ̃∗r(E) /∈ [E, pθ(E)(E)] = {E}. By continuity, there exists a

neighborhood U of E such that for every E ∈ U ∩ D(1)
N and every E′ ∈ U ∩ ∂DN we have Λ̃∗r(E) /∈

[E, pθ(E′)(E)], thus, by Lemma 4.2 iv), Λ̃∗r(E) /∈ Extθ(E′)(E).

6 The Final Results.

In view of Lemmas 5.2 and 5.3, we can use Theorem 4.5, provided that also every degenerate r-eigenform in
∂DN is anti-attracting for (Λ̃∗r, θ). However, this does not necessarily hold, but depends on the r-eigenform.
More precisely, we have to study carefully the local behavior of Λr near a degenerate r-eigenform. Recall that if
E ∈ D \ D̃, E 6= 0, then ker(E) strictly contains the set of the constant functions. We say that the degenerate
r-eigenform E ∈ D(3)

N with eigenvalue ρ is Ẽ-repulsing if

∃ ρ′ > ρ : Λr,E(Ẽ)(u) ≥ ρ′Ẽ(u) ∀u ∈ ker(E). (6.1)

Recall that Λr,E(Ẽ) has been defined in Section 3. We also say that the degenerate r-eigenform is repulsing if it

is Ẽ-repulsing for some Ẽ ∈ D(1)
N . We now prove that if θ is a continuous map from ∂DN to D(1)

N then every
degenerate r-eigenform E ∈ D(3)

N , θ(E)-repulsing, is anti-attracting for (Λ̃∗r, θ). We need some preliminary
lemmas. Here, we consider E ∈ D(3)

N fixed in the following lemmas.

Lemma 6.1 If E, Ẽ ∈ D(1)
N , then the ratio

E

Ẽ
attains a minimum ηE,Ẽ on the set of all non-constant functions

in ker(E).

P r o o f. The proof is similar to that of Lemma 2.1.

Lemma 6.2 If E, Ẽ ∈ D(1)
N , we have

i) ηE,Ẽ > 0.

ii) E(u) ≥ ηE,ẼẼ(u) ∀u ∈ ker(E).

iii) There exists uE,Ẽ ∈ ker(E)∩S such that E(uE,Ẽ) = ηE,ẼẼ(uE,Ẽ), where S is the set defined in Lemma
2.1.

P r o o f. Trivial.

The following Lemma is the most technical point in this paper, where we use a previous result of Sabot (a
similar result was proved later by Metz in [5]) whose proof is rather long.
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12 Roberto Peirone: Fixed Points of maps and Eigenforms on Fractals

Lemma 6.3 Let r ∈ Wand let Ẽ ∈ D(1)
N . If E ∈ D(3)

N and Λ̃∗r(E) = E, then for every α < 1 there exists a
neighborhood U of E such that

Λr(E)(u) ≥ αηE,ẼΛr,E(Ẽ)(u) ∀E ∈ U ∩ D(1)
N ∀u ∈ ker(E).

P r o o f. This is a consequence of the arguments in [8]. For example, by [8], Prop. 4.23 (see also Prop. 23
in [5]) there exists a neighborhood U of E such that for every E ∈ U ∩ D(1)

N and every u ∈ ker(E) we have
Λr(E)(u) ≥ αΛr,E(E)(u). The Lemma follows from Lemma 6.2 ii) and the definition of Λr,E(E).

Lemma 6.4 Let r ∈W and let θ be a continuous map from ∂DN to D(1)
N . Suppose a degenerate r-eigenform

E ∈ D(3)
N is θ(E)-repulsing. Then E is anti-attracting for (Λ̃∗r, θ).

P r o o f. By Lemma 6.3 and (6.1), given α ∈]0, 1[, we find a neighborhood U of E such that, if E ∈ U ∩D(1)
N

and u ∈ ker(E) we have
Λr(E)(u) ≥ ρ′αηE,θ(E)θ(E)(u). (6.2)

On the other hand, since the ratio θ(E)
θ(E′) attains all values on the compact set S defined in Lemma 2.1, it can be

easily seen, using Lemma 2.2 i) and the continuity of θ, that, given σ > 0, possibly restricting U , if E′ ∈ U we
have

(1− σ)θ(E′)(u) ≤ θ(E)(u) ≤ (1 + σ)θ(E′)(u) ∀u ∈ RV
(0)

.

It follows that ηE,θ(E) ≥
1

1+σηE,θ(E′). Thus, in view of (6.2), we have

Λr(E)(u) ≥ ρ′′αηE,θ(E′)θ(E′)(u) ∀u ∈ ker(E) (6.3)

for every E ∈ U ∩ D(1)
N and every E′ ∈ U ∩ ∂DN , where ρ′′ = 1−σ

1+σρ
′ > ρ for sufficiently small σ > 0.

Next, note that Λr(E) = ρE, hence |Λr(E)| = ρ|E| = ρ. Thus, for u ∈ ker(E), in view of (6.3) we have

Λ̃∗r(E)(u)

=
Λr(E)(u)

|Λr(E)|
|Λr(E)|
|Λr(E)|

≥ ρ′′

ρ
αηE,θ(E′)

|Λr(E)|
|Λr(E)|

θ(E′)(u).

Also, possibly restricting U , by the continuity of Λr we can assume that |Λr(E)| ≥ α|Λr(E)|. Hence,

Λ̃∗r(E)(u) ≥ α2 ρ
′′

ρ
ηE,θ(E′)θ(E

′)(u).

Since ρ′′ > ρ we can choose α such that α2 ρ
′′

ρ > 1. Thus if u ∈ ker(E) is non-constant we have

Λ̃∗r(E)(u) > ηE,θ(E′)θ(E
′)(u). (6.4)

It follows that E is anti-attracting for (Λ̃∗r, θ) as Λ̃∗r(E) /∈ Extθ(E′)(E) for every E ∈ U ∩ D(1)
N and every

E′ ∈ U ∩ ∂DN . In fact, in the opposite case, for some E ∈ U ∩ D(1)
N and some E′ ∈ U ∩ ∂DN , by Lemma 4.2

iv), we have
Λ̃∗r(E) ∈ [E, pθ(E′)(E)]. (6.5)

On the other hand, by Lemma 4.2 iii) we have

E ∈ [pθ(E′)(E), θ(E′)]. (6.6)
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Next, possibly restricting U , in view of Lemma 2.2 i), since the set S defined in Lemma 2.1 is compact, we can
assume that for every E ∈ U ∩ DN and every u ∈ S we have

|E(u)− E(u)| < δ, δ := min
{
θ(E′′)(u) : E′′ ∈ ∂DN , u ∈ S

}
. (6.7)

Note that the minimum defining δ does exist since ∂DN and S are compact and the map (E′′, u) 7→ θ(E′′)(u) is
continuous by Lemma 2.2 i) and the continuity of θ. On the other hand, we have δ > 0 as θ takes values in D(1)

N
and every u ∈ S is non-constant.

Thus, if we fix E ∈ U ∩ D(1)
N and E′ ∈ U ∩ ∂DN and put u := uE,θ(E′), since u ∈ ker(E) ∩ S, in view of

(6.7) we have E(u) < θ(E′)(u). Thus, by (6.6) we have pθ(E′)(E)(u) ≤ E(u), thus, by (6.5) and Lemma 6.2
iii) we have Λ̃∗r(E)(u) ≤ E(u) = ηE,θ(E′)θ(E

′)(u). This contradicts (6.4) and the Lemma is proved.

Theorem 6.5 Suppose that there exists a continuous map θ : ∂DN → D(1)
N such that every degenerate

r-eigenform E ∈ D(3)
N is θ(E)-repulsing. Then there exists an r-eigenform.

P r o o f. Suppose there exist no r-eigenforms, in particular Λ̃∗r(E) 6= E for every E ∈ D(2)
N . By Lemmas

5.2, 5.3 and 6.4, the hypothesis of Theorem 4.5 is satisfied with K = DN , and φ = Λ̃∗r. Thus, there exists
E ∈ D(1)

N such that Λ̃∗r(E) = E, hence E is an r-eigenform.

We now want to prove that, in the hypothesis of previous theorem, we can remove the continuity of θ. In other
words, if every r-degenerate eigenform E in D(3)

N is repulsing, that is repulsing with respect to some θ(E), we
can choose such a function θ to be continuous. We need two simple lemmas.

Lemma 6.6 We have Λr,E(
s∑

h=1

ahEh) ≥
s∑

h=1

ahΛr,E(Eh) whenever ah ≥ 0 and Eh ∈ D̃.

P r o o f. This is a standard and simple fact (see [5], Proposition 2 ii) for the analogous statement on Λr).

Lemma 6.7 i) D(3)
N ∪ D

(4)
N is closed.

ii) If P is a P-part, then P ⊆
⋃{

P ′ : P ′ is a P-part, P � P ′
}

.

P r o o f. i) If Eh ∈ D(3)
N ∪D

(4)
N and Eh −→

h→+∞
E, then E ∈ D(3)

N ∪D
(4)
N . In fact, in the opposite case, we have

E ∈ D̃, but then there exists δ > 0 such that E(u) ≥ δ for every u ∈ S, where S is as usual, the set defined in
Lemma 2.1. By Lemma 2.2 i) and the compactness of S we have, for large h, Eh(u) > 0 for every u ∈ S. This
easily implies Eh(u) > 0 for every non-constant u ∈ RV (0)

, thus Eh ∈ D̃, a contradiction. ii) Clearly, the kernel
of the limit of a sequence in P contains ker(P ).

Theorem 6.8 Suppose that every degenerate r-eigenform E ∈ D(3)
N is repulsing. Then there exists a continu-

ous map θ : ∂DN → D(1)
N such that every degenerate r-eigenform E ∈ D(3)

N is θ(E)-repulsing, thus there exists
an r-eigenform.

P r o o f. Since on every P-part the eigenvalue of possible degenerate r-eigenforms does not depend on the
r-eigenform as observed in Section 3, and we have finitely many P-parts, the degenerate r-eigenforms in D(3)

N
have only finitely many eigenvalues. Call them ρi > 0, i = 1, ..., n. Let

Bi =
{
E ∈ D(3)

N : Λr(E) = ρiE
}
.

Also using Lemma 6.7 i), we easily see that the setsBi are closed and mutually disjoint. Now, when P is a P-part
put Bi,P = Bi ∩ P , and, if P ′ is another P-part, put Bi,P � Bi,P ′ if P � P ′. We define

Bi =
{
Bi,P : P P-part, Bi,P 6= ∅

}
.

We enumerate the P-parts that intersect Bi as Ph, h = 1, ..., si, and put Bi,h := Bi,Pi,h
, thus the sets Bi,h,

h = 1, ..., si, are the elements of Bi. We order the sets Pi,h so that the sets Bi,h, h = 1, ..., s′i, with 1 ≤ s′i ≤ si,
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14 Roberto Peirone: Fixed Points of maps and Eigenforms on Fractals

are the maximal elements of Bi (with respect to the order �). Note that, by Lemma 6.7 ii), the sets Bi,h,
h = 1, ..., s′i, are closed. Let

B′i =

s′i⋃
h=1

Bi,h,

thus B′i is closed.
By hypothesis, for every Bi,h, h = 1, ..., s′i there exists Ei,h ∈ D(1)

N such that an arbitrarily fixed E ∈ Bi,h is
Ei,h-repulsing. But, by the definition of Λr,E this implies that every E ∈ Bi,h is Ei,h-repulsing. Put θ = Ei,h
on Bi,h. Now, let

Li,h =
⋃{

Bi,h′ : h′ = 1, ..., si, Bi,h′ 6� Bi,h
}
.

By Lemma 6.7 ii) again, Li,h is closed. Since Bi,h and Li,h are disjoint closed subset of Bi, by Tietze’s Theorem
(in its usual form) there exists a continuous function αi,h : Bi → R that attains the value 1 on Bi,h, the value 0
on Li,h, and is strictly between 0 and 1 elsewhere. In particular, αi,h attains the value 0 on the sets of the form
Bi,h′ , h′ = 1, ..., s′i, h

′ 6= h, as they are subsets of Li,h by definition. We now extend θ on Bi putting

θ(E) =

s′i∑
h=1

βi,h(E)Ei,h, βi,h(E) :=
αi,h(E)
s′i∑
h=1

αi,h(E)

.

Note that, given E ∈ Bi, then E ∈ Bi,h′ for some h′ = 1, ..., si, and there exists h = 1, ..., s′i such that

Bi,h′ � Bi,h, therefore αi,h(E) > 0, thus the function
s′i∑
h=1

αi,h is positive on Bi. Also, observe that, since D(1)
N

is convex, then θ(E) ∈ D(1)
N . Since αi,h′ amounts to 1 onBi,h′ and to 0 on the otherBi,h, the function so defined

in fact extends θ.
Next, suppose E ∈ Bi so that in the definition of θ(E) we can restrict the sum to the h’s that satisfy

Ker(Pi,h) ⊇Ker(E), as we have αi,h(E) = 0 for the other h’s. Let Ei,h ∈ Bi,h, so that by definition we
have Λr,E ≥ Λr,Ei,h

. Thus, also using Lemma 6.6, for every u ∈ kerE ⊆ kerEi,h, we have

Λr,E
(
θ(E)

)
(u) ≥

s′i∑
h=1

βi,h(E)Λr,E(Ei,h)(u)

≥
s′i∑
h=1

βi,h(E)Λr,Ei,h
(Ei,h)(u)

≥
s′i∑
h=1

βi,h(E)ρ′i,hEi,h(u)

≥ min
h
{ρ′i,h}

s′i∑
h=1

βi,h(E)Ei,h(u) = min
h
{ρ′i,h}θ(E)(u),

where ρ′i,h are numbers greater than ρi. These numbers exist since Ei,h is Ei,h-repulsing. In sum, E is θ(E)-

repulsing and θ : Bi → D(1)
N is continuous. Since the sets Bi are mutually disjoint closed subsets of the compact

set ∂DN and θ is a continuous function from
n⋃
i=1

Bi with values in the convex set D(1)
N , using Lemma 4.3, θ can

be extended continuously to all of ∂DN with values in D(1)
N .

Remark 6.9 We now compare Theorem 6.8 with Theorem 3.2. First, note that when Theorem 6.8 is applicable
also Theorem 3.2 is so. To prove this, we use a variant of an argument in [5], namely Lemma 8 there. Here we
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use similar considerations but replacing Λr with Λr,E . Suppose the hypothesis of Theorem 6.8 is satisfied, that

is, for every degenerate r-eigenform E ∈ D(3)
N with eigenvalue ρ

∃Ẽ ∈ D(1)
N ,∃ ρ′ > ρ : Λr,E(Ẽ)(u) ≥ ρ′Ẽ(u) ∀u ∈ ker(E). (6.8)

We now want to prove that the hypothesis of Theorem 3.2 is satisfied. Let E be a nonzero degenerate r-
eigenform with eigenvalue ρ > 0. It immediately follows that E

|E| ∈ D
(3)
N , thus E satisfies (6.8). Note in fact,

that by definition we have Λr,E = Λ
r, E
|E|

. Also, note that we can associate to the P-part containing E a partition

{W1, ..Ws} of V (0) such that ker(E) is the set of the functions in RV (0)

that are constant on every Wi. This fact
is well-known. The graph G(E) defined in Section 2 is disconnected as E /∈ D̃ and the sets W1, ...,Ws are the
components of G(E). DefineD(E) to be the set of the restrictions of E ∈ D to ker(E). Note that the coefficients
E{j1,j2} of an element E of D(E) are not unique, since different sets of coefficients can give the same function
on ker(E). However, we can find a canonical set of coefficients. Select Pj(h) ∈Wh and put

E(u) =

s∑
h,h′=1

Ej(h),j(h′)

(
u(Pj(h))− u(Pj(h′))

)2
(6.9)

with Ej(h),j(h′) ≥ 0 1. Moreover, put DN (E) =
{
E ∈ D(E) : |E| = 1

}
. Here, |E| is defined as usual using the

coefficients of E given by (6.9). Next, define Λ̃∗r,E(E) =
Λr,E(E)

|Λr,E(E)| . Consider now the set

A :=
{
E ∈ DN (E) : Λr,E(E)(u) ≥ ρ′E(u) ∀u ∈ ker(E)

}
.

Then A is non-empty by (6.8), convex and compact. Moreover, Λ̃∗r,E maps continuously A into itself, thus
it has a fixed point on A. As a consequence Λr,E has an eigenvector in DN with eigenvalue greater than ρ, thus
satisfies the hypothesis of Theorem 3.2.

On the other hand, Theorem 6.8 is (at least apparently) slightly weaker since in the hypothesis of Theorem 3.2
it is not clear that we find a function Ẽ ∈ D(1)

N satisfying (6.1). In fact, this would be trivial if the eigenvector E
given in Theorem 3.2 belongs to D̃, since we can approximate it with forms inD(1)

N . In general this approximation
does not work to obtain (6.1) for u ∈ ker(E).

However, I think that in the usual cases where Theorem 3.2 works so also does Theorem 6.8. In particular,
note that the condition given in Remark 3.3 can be deduced from Theorem 6.8. I also suspect that refining the
argument in Theorem 6.8 we could obtain the exact statement of Theorem 3.2.
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