
Received October 9, 2019, accepted November 6, 2019, date of publication November 12, 2019, date of current version November 25, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2953043

Exploiting Information-Centric Networking
to Federate Spatial Databases
ANDREA DETTI , GIULIO ROSSI, AND NICOLA BLEFARI MELAZZI
CNIT/Electronic Engineering Department, University of Rome Tor Vergata, 00133 Rome, Italy

Corresponding author: Andrea Detti (andrea.detti@uniroma2.it)

This work was supported in part by the H2020 EU-JP Fed4IoT project (www.fed4iot.org, EU contract 814918).

ABSTRACT This paper explores the methodologies, challenges, and expected advantages related to the use
of the information-centric network (ICN) technology for federating spatial databases. ICN services allow
simplifying the design of federation procedures, improving their performance, and providing so-called data-
centric security. In this work, we present an architecture that is able to federate spatial databases and evaluate
its performance using a real data set coming from OpenStreetMap within a heterogeneous federation formed
by MongoDB and CouchBase spatial database systems.

INDEX TERMS Information-centric networks, performance evaluation, databases.

I. INTRODUCTION
Spatial databases play a central role in modern informa-
tion management systems, managing large volumes of spa-
tial objects [1], which are characterized by a georeferenced
geometry (point, polygon, etc.) and a set of properties. Spatial
databases supporting spatial functionality are used for many
applications, including geographic information system (GIS),
navigation software, journey planners, Internet of Things
(IoT), etc. A typical spatial query searches for objects inter-
secting an area, or close to a given point, or contained in a
given area. Many commercial products exist belonging both
to the SQL and NoSQL database families.

A database system (DBS) is normally owned by a single
entity that assures the reliability of the offered services and
the stored information. Many DBSs also support a distributed
deployment, usually in a cloud, where a cluster of database
nodes forms a common storing space handled by a central
database management system (DBMS).

Instead, a federated database system is a collection of
cooperating but autonomous component DBSs [2] transpar-
ently integrated through a common access interface, as shown
in Fig. 1. A database federation can foster the development of
services needing to access data stored in separate DBSs and
which cannot be merged in a single DB. For instance, orga-
nizations managing different information sources are often
autonomous and willing to share their data only if they retain
control of such data.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yulei Wu .

FIGURE 1. Federated database system (FDBS).

A contemporary use case for a federated database comes
out from the request of the European Commission to mem-
ber states to deploy national access points exposing national
transport information (traffic status, train schedules, etc.) to
foster the development of cross-border multimodal trans-
port services. The federation of these national databases
and their capability to appear as a unique database (DB)
would simplify the development of cross-border journey
planners offering a single point of access to the whole
data-set. Another use case concerns smart city IoT applica-
tions for which the smart behavior of an application often
arises out of the integration of cross-domain (health, trans-
port, security, etc.) information stored in different databases.
Accordingly, the ETSI ISG CIM group is now discussing
how to integrate cross-domain context/IoT information; the
federation of different DBSs is a possible solution to such
issue.

165248 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-0803-1392
https://orcid.org/0000-0001-6245-5543
https://orcid.org/0000-0003-0801-8443

A. Detti et al.: Exploiting Information-Centric Networking to Federate Spatial Databases

FIGURE 2. ICN forwarding engine model and packets ([4]).

The federation of DBSs poses many challenges, including
the following:
• Data heterogeneity - information can be stored with
different structures, such as different tags to indi-
cate the same concept, different formats, or different
semantics.

• System heterogeneity - the possibility that federated
databases have different capabilities, query languages,
etc.

• Efficient and secure wide-area communications - the
need to design network services to have fast and secure
database operations (e.g., queries)

In this paper, we focus on the third challenge described
above and propose a solution based on the use of an
information-centric network (ICN) [3] interconnecting the
different database sites.

An ICN is a new network layer designed to provide
users with named objects rather than end-to-end connections.
A named object is a bundle of data with a limited size of a
few kB, uniquely identified by a hierarchical name. To some
extent, ICN services resemble those of a content delivery
network, but with a finer, packet-level granularity.

We propose to exploit typical ICN services, such as rout-
ing by name, in-network caching, and multicast, to effi-
ciently solve geographical queries and to support a global
indexing scheme that shortens query latency and reduce
DBS load. We also leverage ICN’s data-centric security to
ensure provenance and the validity of data and signaling.
Besides, we implemented our proposed ICN solution and
tested it by setting up a federation whose sites use het-
erogeneous spatial databases with spatial features, namely,
the NoSQL MongoDB and CouchBase. The proposed archi-
tecture, however, can include other kinds of NoSQL or SQL
spatial databases (e.g., PostGIS) if they support the storage of
spatial data in GeoJSON data format.

To the best of our knowledge, this is the first work to
propose the use of ICN services for the federation of hetero-
geneous spatial databases. Its main contributions are
• a methodology for federating spatial databases using the
services of an information-centric network,

• a global indexing strategy based on a greedy adaptive
tessellation algorithm that enables query routing,

• a real implementation based on two popular databases
currently used in production systems, and

• a comprehensive performance evaluation considering
heterogeneous databases.

II. RELATED CONCEPTS AND WORKS
A. INFORMATION-CENTRIC NETWORKS
An ICN is a communication architecture providing users
with data items rather than end-to-end communication
pipes [3], [5]. The network addresses are hierarchical names
(e.g. dbs#1/poi/1502) that do not identify end-hosts but
data items.

A data item and its unique name form the so-called named
object. A named object is a small data unit (e.g., 4 KB long)
and may contain an entire content (e.g., a document, a video,
etc.) or a chunk of it. The names used for addressing
the chunks of the same content have a common prefix
(e.g., dbs#1/poi/1502), followed by a sequence number
identifier (e.g., s1, s2, s3, etc.).

An ICN is formed by nodes logically classified as con-
sumers, producers, and routers. Consumers pull named
objects provided by producers, possibly going through inter-
mediate routers. The consumer-to-producer path is labeled as
upstream and the reverse path as downstream.

Any node uses the forwarding engine shown in Figure 2
and is connected to other nodes through channels called faces,
which can be based on different transport technologies such
as Ethernet, TCP/IP sockets, etc.

VOLUME 7, 2019 165249

A. Detti et al.: Exploiting Information-Centric Networking to Federate Spatial Databases

The data units exchanged in ICN are Interest packets and
Data packets. To download a named object, a consumer
issues an Interest packet, which contains the object name
and is forwarded to the producer. The forwarding process
is referred to as routing by name since the upstream face is
selected through a name-based prefix matching based on a
forwarding information base (FIB) containing name prefixes,
such as dbs#1 in Fig. 2. The FIB is usually configured by
routing protocols, which announce name prefixes rather than
IP subnetworks [6]. During the Interest forwarding process,
the node temporarily keeps track of the forwarded Interest
packets in a pending information table (PIT), which stores
the name of the requested object and the identifier of the face
from which the Interest came from (downstream face).

When an Interest reaches a node (producer or an intermedi-
ate router) having the requested named object, the node sends
back the object within a Data packet whose header includes
the object name. The Data packet is forwarded downstream
to the consumer by consuming (i.e., deleting) the information
previously left in the PITs like bread crumbs.

Each forwarding engine can cache the forwarded Data
packet to serve subsequent requests of the same object (in-
network caching) [7]. Usually, data freshness is loosely con-
trolled by an expiry approach. Any Data packet includes a
meta info field reporting the freshness period specified by the
producer, which indicates how long the data can be stored in
the network cache.

The forwarding engine also supportsmulticast distribution
for both Interest and Data packets. Interest multicasting takes
place when there are more upstream faces for a given prefix
(e.g., index/notify in Fig. 2), and the incoming Interest
is forwarded to all of them. Data multicasting is implemented
as follows: when a node receives multiple Interests for the
same object, the engine forwards only the first packet and
discards the subsequent ones, appending the identifier of the
arrival downstream faces in the PIT; then when the requested
Data packet arrives, the node forwards a copy of it to each
downstream face contained in the PIT.

ICN security is built on the notion of data-centric security;
the content itself is made secure rather than the connections
over which it travels. The ICN security framework provides
each entity with a private key and an ICN digital certificate
signed by a trust anchor and uniquely identified by a name
called key locator [8]. Each Data packet is digitally signed by
the content owner and includes the key locator of the digital
certificate to be used for signature verification. For access
control purposes, Interest packets can be signed too.

B. SPATIAL DATABASES
Database systems may be based either on a relational
model or a non-relational model also called NoSQL.

Relational databases, such as Oracle MySQL, Post-
greSQL/PostGIS, Microsoft SQL, etc., allow complex oper-
ations by using a standardized language, that is, the SQL
one. Even though every SQL database has its characteristics,
to migrate from one engine to another is not so difficult,

thus simplifying database integration, that is, the merging of
different bases in a single one. Many SQL databases support
spatial data and related functionality such as range and prox-
imity queries, spatial indexing, etc.

SQL databases are easy to use when data items are highly
structured. On the other side, NoSQL databases have emerged
for simplifying the management of heterogeneous data.
Indeed, most of NoSQL databases are based on the document-
oriented, where every document has a unique object iden-
tifier, is formed of an arbitrary structure of key/value
couples (schema-less), and is usually represented as a
JSON object or GeoJSON in case of spatial objects. The
storage space of a NoSQL database is logically organized
in data-sets, that is, groups of related objects, such as
a MongoDB/DocumentDB collection, a Cassandra column
family, or a CouchBase bucket. To some extent, a data-set
resembles a SQL table but without a schema. The storage
space of a NoSQL can be physically partitioned over different
servers (sharding) as a function of the system workload.
This feature, known as horizontal scalability, fits well with
cloud environments, where databases are usually deployed.
MongoDB, CouchBase, Cassandra, and DocumentDB are
examples of popular NoSQL databases, with the first two
offering also spatial features. Different from SQL databases,
the NoSQL ones have proprietary interfaces; thus, the change
of a database usually requires changing the application
too. Moreover, the functionality offered by current NoSQL
databases is usually fewer than the one offered by a SQL
one, both because SQL databases are much more mature and
because SQL data are structured.

An inalienable characteristic of a modern database is
the data indexing. An index is an internal data structure
where the references of stored data are sorted according to
a given field (column) of the data named index key. On one
hand, an index consumes storage spaces and computational
resources to be sorted; on the other hand, it drastically accel-
erates queries related to the indexed data fields, especially
when the database size grows. For this reason, the indexes
should be created only for those fields that are expected
to be frequently used in queries.1 Spatial databases have
specialized index structures that improve the speed of spatial
operations. In general, a spatial indexing method partitions
the geographical space in regions that can be further decom-
posed into subregions. The resulting region hierarchy forms
a tree data structure. The most popular indexing methods are
Grid, R-tree, and their variants [9], [10].

Grid methods decompose the space into a uniform grid; a
tile of the grid can be split iteratively into a given number of
smaller tiles, realizing amultilayer hierarchical grid structure.
A reference of a spatial object is inserted in the smallest tile
that fully contains it. Spatial queries can be carried out, inter-
secting the requested area with grid tiles and then accessing
the contained object references.

1SQL databases simplify this choice, providing statistics of executed
statements/queries.

165250 VOLUME 7, 2019

A. Detti et al.: Exploiting Information-Centric Networking to Federate Spatial Databases

R-trees recursively group spatial objects in their minimum
bounding rectangle (MBR), thus decomposing the space in
a tree of overlapping rectangles, whose number, size, and
position depend on the stored spatial objects; leaf nodes
contain only one spatial object [10]. A range query is carried
out using a recursive algorithm; starting from the root node,
it goes down in the tree.

The R-tree method is more efficient in terms of storage
consumed by the index structure, but the index may change
as a function of the inserted items. Conversely, a grid-based
index has the advantage that the structure of the index can
be created first and data will be added on an ongoing basis
without requiring any change to the index structure; however,
some nodes of the index can be unused. An index is usually
built by a centralized algorithm, but being a complex task,
literature works also proposed algorithms to build the index
using parallel computing approaches (e.g., MapReduce) [11].

In the case of federated databases, usually, there are two
indexing levels: local and global. The local index is the index-
ing function embedded in the local DBS. The global index is
instead a specific federation functionality used to understand
which sites have to be contacted to solve a federated query.

Recently, the topic of spatial global indexing is gaining
research interest for distributed IoT systems since most IoT
data are indeed georeferenced. In [12], the authors cope with
the problem of IoT sensor/service discovery by creating a
spatial index. Each sensor is characterized by the minimal
bounding rectangle of the spatial area it covers. Each sensor
is also associated with a gateway, and the gateway is charac-
terized by an Approximated Convex Polygon (ACP), which
contains all the sensors’ bounding rectangles. Every ACP is
collected in a global/centralized R-tree structure that is used
to support query routing toward gateways. The approach of
forming the global index with coarse areas (the ACPs) rather
than the whole set of sensor bounding rectangles reduces
the index size and the update frequency. Similarly, in [13],
the authors use a quadtree structure index based on geohash
codes, which stores the coverage areas of sensors (no gateway
in this case), even though with the coarse resolution related
to the configured geohash depth.

We embraced the idea of having a global index as
in [12], [13]. However, in a federated database, we can’t
assume a spatial data locality. Indeed, every database can
contain data located in every part of theworld. For this reason,
the use of ACP/MBR-related approaches [12] for database
sites is not feasible since an MBR/ACP risks to have a huge
spatial coverage, thus making useless the global index.

In [14], the authors propose a new spatial indexing
approach which minimizes index rebalancing while being
efficient also in case of skew data, that is, data items that
are not uniformly distributed over the space. The proposed
solution, based on a multidimensional tree of MBRs, can be
distributed over the nodes of a cluster by partitioning the
space covered by the nodes of the tree among the differ-
ent nodes of the database cluster. Although efficient for a
cluster/cloud deployment in which RTT are negligible, this

algorithm may provide very prohibitive access delay if the
nodes of the cluster are distant each other, like it is in a
federated environment.

Finally, we point out that ETSI Context Information
Management Group is proposing the new IoTNGSI-LD stan-
dard [15], which foresees the federation of context brokers
(i.e., servers exposing IoT data) through the use of a central-
ized global index function named context registry.

In this paper, we propose a distributed global index strategy
based on a constrained and adaptive grid scheme for which
every database exposes to others the set of active tiles where it
has data. Thismeta information forms the global index, which
is replicated over all sites of the federation, thus reducing
access latency. Synchronization overhead is limited because
only those small sets of object insertions that create new
active tiles are followed by a synchronization procedure.
Moreover, ICN multicasting and caching make the procedure
efficient in terms of networking overhead.

C. FEDERATED DATABASE SYSTEMS
Even though the problem of database federation has been
known since the early ’80s, there is not much literature on the
topic because in recent years, the research focus has been on
different topics, including the ‘‘integration’’ of heterogeneous
data/databases (see, for example, AWS Data Lake) into a
single, uniform, non-redundant data store; database virtual-
ization and hybridization, that is, the inclusion of SQL and
NoSQL components in a single logical database [16]; etc.

However, ongoing IoT standardization actions
(e.g., NGSI-LD), as well as possible privacy-related regu-
lation issues (e.g., GDPR) preventing to move everything
to ‘‘sub-processor’’ premises (e.g., a cloud provider), may
revamp the research interest on federated databases since they
could have many real applications in the near future.

The paper [17] is one of the first works focusing on
the database federation concept. The authors discuss, even
though not entering in technical details, different design alter-
natives and a generic sequence of operations that should be
performed by a ‘‘federal controller’’ to execute a transac-
tion (e.g., a query) through the federation. The controller
identifies which are the target DBSs that should satisfy the
transaction, translates the request in their format, and then
collects the results. We propose a more distributed design and
the use of a neutral transaction format between the controller
and the remote DBSs. In so doing, the introduction of new
technology does not require changing existing sites.2 More-
over, we also provide an implementation of the proposed
concepts, exploiting ICN and considering the issue of global
indexing.

In [18], the author proposes solutions for problems arising
from the integration of heterogeneous ‘‘relational’’ databases
with different schemata and spatial object representations

2Wenote that because of the complexity of the issue, the design of a neutral
format solving the heterogeneity problem mentioned in the introduction is
outside the scope of this paper. However, the architecture and networking
solutions we are proposing are agnostic to the eventual neutral format.

VOLUME 7, 2019 165251

A. Detti et al.: Exploiting Information-Centric Networking to Federate Spatial Databases

(e.g., different projection schemes, geometric discrepancies
for boundary objects, etc.). Moreover, the paper explores
two possible solutions for global indexing based on Peano
keys and R-trees. Our work follows the position of [18]
regarding the need for a global index, but we use an adaptive
grid structure since we believe it is more stable for database
operations. We do not consider the problem of heterogeneity
of the spatial representations because we assume GeoJSON
as the common format; otherwise, the solutions proposed
in [18] can also be used in our framework. Finally, our work
is muchmore focused on the networking aspects and includes
a performance evaluation.

In [19], the authors presented an architecture for NoSQL
databases that is successfully tested with CouchDB, Mon-
goDB, and Cassandra. Different from ours, their system uses
classic TCP/IP and query flooding (no global index).

Finally, we point out that in [4], we dealt with ICN
and NoSQL databases. However, in that paper, we explored
how ICN can be internally used to implement a distributed
database such as that shown in the right part of Fig. 1 (DBS
#n). Instead, in this paper, we explore how an ICN can be
used for a different and higher-layer problem: the federation
of heterogeneous DBSs. In [4], the data items are distributed
over the available databases of the cluster according to a
sharding logic. The sharding logic divides the storage space
into geographical zones and assigns each zone to a single
database of the cluster, which will be responsible for storing
objects intersecting its zones . In this paper, it is the user
who chooses in which database to store her data rather than
a sharding logic. Consequently, every database can store
every spatial object independently of the object location. This
additional degree of freedom, typical of a federated database,
is required to change the query resolution process. Indeed,
whereas in [4] the query routing is driven by the sharding
logic, in this paper, the query resolution is driven by a new
global indexing function that identifies the database to be
involved in the query and that has been properly designed and
optimized to exploit ICN functionality.

Besides, we note that the ICN distributed database that
we proposed in [4] can be considered as one of the possible
distributed DBSs that can join our proposed federated archi-
tecture like MongoDB, CouchBase, etc.

III. ICN FEDERATED DATABASES
We consider a federation formed by autonomous DBSs, each
one with its administrator and users, able to store GeoJ-
SON spatial data and to support a common set of spatial
operations, such as range queries. Every user is registered
to a home DBS and can execute Create, Read, Update, and
Delete (CRUD) operations only for objects stored in its
home DBS and through the local DBMS API (Fig. 3). The
user can access the federation functionality to extend the
scope of Read (queries) operations to the overall federa-
tion; a federated query searches for matching data through
the whole set of federated DBSs as if they were a single
one.

FIGURE 3. ICN federated database architecture.

Different from SQL ones, NoSQL databases do not (still)
have a standard language for querying the DB, and this
may potentially hamper a complete NoSQL/SQL federa-
tion because only a subset of functionality can be available
in some federation sites. In [19], the authors observe that
traditional query operations are supported by most NoSQL
databases (as well as SQL ones) and it is possible to trans-
late these operations from one language to another. Con-
cerning spatial databases, we verified that most databases
(MongoDB, CouchBase, CouchDB, PostGIS, etc.) support
spatial range queries, which are searches of objects inter-
secting or contained in a given geographical area and hav-
ing specific properties. For instance, a spatial range query
may be ‘‘search all objects included in the polygon P1 and
whose property ’POI type’ is equal to hotel.’’ In this paper,
we assume that the types of queries that a user can submit to
the federation are spatial range queries only because of their
wide availability.

The storage space of the federation is organized in data-
sets, each of which is identified by unique data-set identi-
fiers (did). A federated data-set is actually the union of the
homologous data-sets available in the federated DBSs. For
instance, assuming that the federation is formed by twoDBSs,
both having the data-set ‘‘POI,’’ the union of these local data-
sets forms the federated data-set with did = POI.

A data-set contains spatial objects structured as generic
GeoJSON objects. As made by many databases (e.g., Mon-
goDB), during an object insertion, the system automatically
adds an internal property called object name (oName), which
uniquely identifies the object in the database system. In our
case, the object name does something more because it identi-
fies a specific version of the object; thus, if the object content
is updated, its object name is automatically changed.

165252 VOLUME 7, 2019

A. Detti et al.: Exploiting Information-Centric Networking to Federate Spatial Databases

TABLE 1. Abbreviations.

A. FUNCTIONAL ARCHITECTURE
Figure 3 shows the functional architecture of the federated
database. The large gray box contains the federation functions
that we will discuss.

Federated queries are received by a federation front end
function (FED-FE) that controls the access rights of the user,
executes the requested queries interacting with the query
processor, and sends back the answer to the user. The query
processor carries out the query by interacting with local and
remote DBSs and collecting their answers. Preliminarily,
the query processor uses a global index function to single out
the subset of DBSs that might have matching objects, thus
reducing the query distribution scope. A DBMS adapter is
used to ‘‘translate’’ the queries generated by the federation
functions (query processor, global index, etc.) in the final
language used by the local DBMS.

The communications among federated DBSs are supported
by an information-centric network connected to the local
DBS through an ICN forwarder. The ICN could be pub-
lic or private, and it is offered by an ICN service provider.
The FIB of the ICN forwarder is automatically configured
by an ICN routing agent (e.g., NLSR [6]) that has a peering
relationship with the ICN access node (AN) of the provider.

B. JOINING PROCEDURE
To join a new DBS to the federation, the DBS administrator
obtains from the ICN service provider a unique database
identifier (dbsid) and a valid ICN certificate signed by the
provider. The (unsigned) certificate of the provider is the
security trust anchor of the federation.

The ICN routing agent (Fig. 3) establishes a peering rela-
tionship with the ICN access node (AN) and announces the

prefix dbsid. The routing agent concurrently receives the
identifiers of other DBSs of the federation. To support global
indexing functionality (discussed later on), the routing agent
also announces the prefix {dbsid}/index/data and the
multicast prefix index/notify. After the propagation of
these routing announcements, any Interest whose name con-
tains one of these prefixes will reach the joined DBS.

To avoid the joining of unauthorized DBSs or the tamper-
ing of ICN routing plane information, any routing announce-
ment is signed by the DBS, and the signature is verified at the
receiving side, that is, by any other routing agents both in the
ICN network and in the remote DBSs.

C. QUERY RESOLUTION
A spatial range query is solved by a query processor as shown
in Fig. 4. In the following explanation, we denote as local
query processor the query processor receiving the query from
the user and remote query processors the query processors of
remote DBSs participating to the query resolution.

Initially, the local query processor selects the DBSs of
the federation deemed worthy to send the query. A simple
choice, named query flooding, would be to send the query
to all the DBSs. Query flooding has the advantage of not
requiring any knowledge about what is stored in the databases
but has the cons of possibly overloading them with queries
for which they haven’t matched data. When the federation
grows, it is necessary to be more efficient by adopting query
routing strategies that reduce the query scope by identifying
the subset of databases that might have matching objects.
To this aim, the local query processor asks the global index
function by passing to it the spatial area queried by the user;
in turn, the global index function replies with the identi-
fiers of the DBSs having objects in that area (e.g., local
dbs#1, dbs#2, and dbs#3 in Fig. 4). This knowledge comes
out from a sharing of metadata among the databases of the
federation, for which every database provides to the other a
coarse vision of spatial regions (active tiles) in which it has
stored objects, as described in Section III-D1. The local query
processor subsequently relays the query to the selected DBSs
and eventually collects the query results using the following
ICN procedure.

For relaying a query to a remote DBS, a naming func-
tion computes an ICN name, called qName, composed of
the identifier of the remote DBS (dbsid), the q marker
identifying that it is a query name, the data-set identifier
(did), the query statement, and a randomnonce; for example,
dbs#2/q/POI/{query}/1234 is a possible qName. For
each remote DBS, a qName is computed, and an Interest
packet (qInterest) is sent out.3 ICN forwarders route by name
a qInterest to the remote DBSs exploiting the database iden-
tifier (dbsid) contained in the qName and their FIB entries.

3We note that all the used Interest and Data packets are unmodified
ICN packets.Wemerely called them qInterest, qData, oInterest, etc., to better
identify them during the explanation.

VOLUME 7, 2019 165253

A. Detti et al.: Exploiting Information-Centric Networking to Federate Spatial Databases

FIGURE 4. Query procedure executed by the query processor.

The qInterest is handled by the remote query processor,
which extracts the query statement inside the qName and
relays the query to the local DBMS thereafter. This query
is made in such a way to retrieve only the names (oNames)
of the objects matching the query conditions rather than the
whole objects’ information. The resulting list of oNames
is packaged in a Data packet called qData, which is sent
back to satisfy the qInterest. An oName is formed by the
identifier of the database system (dbsid), the o marker
identifying that this is an object name, the data-set identifier
(did), and a unique string that identifies a specific version
of the object; for example, dbs#2/o/POI/{_id}-v1 is a
possible oName, where {_id} is a unique identifier of the
object in the specific DBS, possibly equal to the ID natively
provided by the DBMS, and v1 is a version number.
When all qData packets coming from remote DBSs are

received by the local query processor, the latter has the whole
list of oNames of federated objects matching the query condi-
tion. These objects are then pulled through parallel oInterest-
oData packet exchanges.

In so doing, we are solving a query in two phases: a fetch-
names phase and a fetch-objects phase (Fig. 4). This may
sound as a temporal inefficiency, but we have chosen this
approach to exploit the ICN in-network caching as hereafter
discussed.

D. EXPLOITATION OF IN-NETWORK CACHING
Even though caching can dramatically accelerate query res-
olution, its usage should be carefully designed in database
applications when it is not acceptable to send back stale

data. For this reason, we used the two-phase query resolution
strategy proposed in [4] and hereafter more widely discussed.

Before devising the two-phase strategy, we had consid-
ered a simpler one-phase strategy made of a qInterest-
qData exchange only, for which the returning qData packet
merely contained the whole set of matching objects. How-
ever, we observed that the result of a query statement may
change over time because of object insertions or removals.
Consequently, in-network caching could not be used for
qData to avoid the risk of sending back stale information.
In addition, even assuming to agree to receive stale informa-
tion, cache hits would happen only for those limited sets of
queries which are exactly equal each other, for example, two
users searching objects on the same area and with the same
property constraint. All these mean that the one-phase query
resolution strategy cannot be used when the reception stale
data is unacceptable and that caching might not be effective
because of the natural heterogeneity of query statements.

For this reason, we decided to move forward to the two-
phases strategy, which implies that qData contains only the
names of matching objects. These names can change over
time; thus, again, qData packet cannot be cached. However,
ICN caches can be fruitfully and safely used for next oData
packets: fruitfully, because an oData packet contains a single
spatial object whose cached version can be reused also by
heterogeneous queries, for example, having a partial overlap-
ping of the queried areas, and safely because there is no risk to
send back stale data neither after a spatial object update nor
after a removal. In fact, when an object changes, the object
name (oNames) is changed as well, and such a new name is

165254 VOLUME 7, 2019

A. Detti et al.: Exploiting Information-Centric Networking to Federate Spatial Databases

FIGURE 5. Active tiles of a DBS.

sent back in the list inside the qData, making it possible to
fetch the updated version of the object in the second phase.
Moreover, if the object is deleted, its oName will no longer
be included in the qData; thus, the deleted object will not be
fetched in the second phase.4

Finally, to avoid cache poisoning problems [20], Interest
and Data packets are signed by the sender and verified by the
receiver to avoid access to the federated data from unautho-
rized DBSs and to avoid information manipulation.

1) GLOBAL INDEXING
The federation uses a global indexing function based on a grid
strategy and a network synchronization procedure for which
every DBS eventually obtains the same version of the index.
We choose a grid methodology because it is more stable and
reduces the synchronization effort.

The grid regions are squared geographical tiles aligned
with world parallels and meridians (Fig. 5). Tiles have
N possible resolution levels, from level 0 to levelN−1. A tile
of level n containsM tiles of level n+1. For instance, in case
of M = 100, level 0 tiles have a lon/lat size of 1 degree,
level 1 tiles have a size of 0.1 degree, level 3 tiles have a size
of 0.01 degree, and so forth.

The index processor (Fig. 3) of the i-th DBS tessellates
the area covered by the stored spatial objects with a set Si
of nonoverlapping tiles, denoted as active tiles. Thus, a tile
is active if it intersects at least a stored object. For instance,
in Fig.5, we have a DBS storing three POIs. The tessellation
Si has a size len(Si) = 2, and it is formed by a level 2 and
a level 1 active tile. Because of the insertion, removal, and
deletion of spatial objects, the set of active tiles forming the
tessellation Si is periodically updated by the index processor.

When the tessellation Si is updated, the index processor
distributes it to other remote DBSs. In parallel, it receives
the tessellations Sj of remote DBSs. The global index G =⋃

i=1 Si is built by each DBS by merging the local and

4We observe that the two-phase strategy also doesn’t assure perfect data
consistency when the data are updated/deleted in the period of time between
qData and oData receptions. Likely, these are rare events because of the short
time period in which they can occur, and if these events are unacceptable,
ICN caching must be switched off.

FIGURE 6. Global index synchronization.

remote tessellations.5 Such a synchronization procedure uses
the ICN packet exchanges shown in Fig. 6, for which DBS
#1 has produced an updated tessellation S1. The procedure
exploits ICN multicast and security capabilities as follows:
We remind that the routing engine of any DBS announces
the multicast prefix index/notify and the unicast pre-
fix {dbsid}/index/data. Periodically (e.g., every 1s),
the index processor of DBS #1 sends an Interest packet
(vInterest) with index/notify as name prefix, followed
by /dbs#1/version = x, where x is an increasing
version number of the local tessellation S1. The vInterest
reaches the ICN network, which, in turn, carries out a mul-
ticast distribution toward any other node that announces
index/notify, that is, toward any other DBS of the fed-
eration. If the receiving DBS #n has an older version of S1,
it fetches the new set by sending an Interest (gInterest) for
dbs#1/index/data/version = x. The same gInter-
est can be sent by other DBS nearly at the same time, thus
triggering ICN multicast distribution for the returning Data
message (gData) too, which contains the updated version
of S1. To avoid the tampering of the global index or the acqui-
sition of the index from unauthorized entities, any related
Interest and Data packets are signed by the producing entity
and verified by the receiving one.

The elements of the global index are stored in a local
spatial database, which could be either the same one used for
storing spatial objects of the customers or an additional faster
in-memory database. Each active tile is stored as a spatial
object with a squared shape and with the database identifier
(dbsid) as a property. Let us assume that a user submits to
the system a range query whose requested area is A. To single
out which DBSs is to be involved in the query resolution,
the query processor submits to the global index function a
range query requesting the same area A, thereby receiving
from the underlying database the set of intersecting active
tiles and, in turn, the set of database identifiers of the DBSs
to be contacted for solving the query.

5Note that different DBSs can have overlapped active tiles just because it
is the user who decides where to store her data rather than a sharding logic
like in [4]

VOLUME 7, 2019 165255

A. Detti et al.: Exploiting Information-Centric Networking to Federate Spatial Databases

a: ADAPTIVE TESSELLATION
Because of the tile heterogeneity, many possible tessella-
tions S may exist, and an optimization problem turns out
as follows: When the query processor asks the global index,
it obtains a list of candidate DBSs; however, some of them
could be false positives, which are not actually storing any
spatial objects intersecting the queried area. This is because
an active tile may be larger than the enclosed spatial objects.
For instance, in Fig. 5, the DBS stores three POIs and adver-
tises two active tiles whose covered area is greater than the
POIs’. Consequently, it may happen that a query intersects an
active tile but not the contained POI, thus generating a false
positive. The consequence of a false positive is the useless
sending of queries to DBSs, wasting network bandwidth and,
more importantly, processing capacity. The volume of false
positives is a measurement of the accuracy of the global
index: the better the accuracy, the fewer the number of false
positives.

A tessellation Smin made with the smallest possible tiles,
for example, the level 2 tiles in Fig. 5, has the pros of provid-
ing the highest possible accuracy. However, it has the con of
generating the highest number of active tiles to synchronize.
To give an idea of the involved numbers, if we exclusively
use level 2 for a DBS containing 1/3 of OpenStreetMap
European POIs, the resulting number of active tiles is in
the order of 4 · 105. Such a high number of active tiles has
many drawbacks, including a great number of bytes to be
transferred during the synchronization process and a higher
probability that insertion or removal operations can change
the set S, therefore increasing synchronization frequency, etc.

To summarize, smaller tiles provide better accuracy but
need a higher synchronization effort. Accordingly, a trade-
off shows up, and we can model it with the following opti-
mization problem: finding the best tessellation S with the
minimum cost CS , with the constraint that the number of
active tiles len(S) is not greater than the given value k , that
is,

minimize
S

CS (1)

subject to len(S) ≤ k (2)

We define the cost CS of a tessellation S as the difference
between the area covered by its tiles and the area covered by
the tiles of the tessellation Smin obtained using the smallest
possible tiles. The lower the cost, the higher the expected
accuracy. Indeed, if we have no constraint on k , the best
choice (zero cost) in terms of accuracy is to select the tessella-
tion Smin. We also define the cost Ct of a tile as the difference
between the area covered by the tile and the area covered by
its children tiles that belong to the minimum tessellation Smin.
It follows that the cost CS of a tessellation is the sum of the
costs Ct of its tiles. In [21], the authors demonstrate that such
a size-constrained weighted set cover problem is NP-hard.
Thus, we propose to use the following greedy algorithm 1.

Initially, the algorithm uses the tessellation Smin to build
a N -level tree T , whose nodes are the tiles of Smin plus all

Algorithm 1 Constrained Tessellation
k = max number of active tiles
N = number of resolution levels
T = hierarchical tree of tiles
leaves(T) = leaves of T
i next highest level to be added

Build T from Smin

constraint violation exception
if num. level 0 tiles of T > k then

return S = set of level 0 tiles of T
end if

tesselling iteration
i = 0

while number of leaves(T) > k do
while i < (N − 1) do

if (a new level-i active tile is necessary) then
Find the new level-i tile with min. cost Ct
Prune all its children from T
Break

end if
i = i+ 1
end while

end while
return S = leaves(T)

their parent tiles up to level 0. This tree may have many
disjointed roots, and thus, we add a common root node.
Starting from the tree T , the algorithm follows a top-down
reduction approach, and at the end of the iteration, the active
tiles of the tessellation are the leaves of the reduced tree.

For each step, the algorithm computes which is the high-
est resolution level of the next tile that has to be added to
the final tessellation to respect the constraint. Colloquially,
the question posed by the algorithm is ‘‘Is it necessary to add
a tile of level 0?’’; if not, ‘‘Is it necessary to add a tile of
level 1?’’; and so on. In general, it is necessary to add a
new level-i tile if we are not able to respect the constraint
by finishing the tessellation with all the remaining (smaller)
level-(i+ 1) tiles, but we are able to respect the constraint by
finishing the tessellation with all the remaining level-i tiles.

When the level i of the next tile has been identified, among
the tiles of this level not yet included in the tessellation,
the algorithm selects the one with the minimum tile cost Ct ,
and the related sub-tree is removed from T . Then the iter-
ation restarts and continues until the number of T leaves
respects the constraint k . There are some exceptional cases in
which respecting the constraint is impossible. This happens
when even the smallest possible tessellation entirely formed
by level 0 tiles has a size len(S) greater than k . In these
cases, such a minimum size tessellation is returned by the
algorithm.

165256 VOLUME 7, 2019

A. Detti et al.: Exploiting Information-Centric Networking to Federate Spatial Databases

IV. PERFORMANCE ANALYSIS
We implemented the architecture in Fig. 3 by using NDN
(a specific implementation of ICN) [22] and two different
NoSQL DBMSs: MongoDB and CouchBase. The related
software is available at [23]. The neutral format used to
express a federated database operation is JSON, used by
MongoDB, properly translated at the receiving side when the
local DBMS is different.

We set up a database federation formed from three sites
(i.e., three DBSs) connected to each other by a single
ICN node, emulating the network of an ICN provider.
We considered two configurations of the federation: in the
first configuration, named ‘‘1C+2M,’’ a site uses Couch-
Base, and two sites use MongoDB. In the second config-
uration, named ‘‘2C+1M,’’ we have two CouchBase sites
and one MongoDB site. The DBSs and the ICN network
node run on different servers connected by a Fast Ethernet
switch.

The data-set stored in the federated DBSs is made up
of 3 million European Point of Interests (POIs) gathered from
OpenStreetMap. Regarding the distribution of the data items,
we considered two types of locality: random and country
based. In the random case, every POI is stored in a randomly
chosen DBS; in case of country-based locality, each DBS
stores the POIs of a specific set of countries. The countries
have been grouped so as to have almost the same number of
POIs per DBS.

In addition to the permanent storage space provided by
the databases, that is, MongoDB or CouchBase, data items
can be opportunistically stored in the cache of ICN for-
warders too, whose capacity is set to 256,000 Data packets,
roughly 256,000 POIs. For the global index, we used the
three-level hierarchical grid shown in Fig. 5, and each DBS
has a default limit k on the advertised active tiles equal
to 20,000.

For the workload, we used trials formed by a sequence
of 5,000 spatial queries. Each query searches objects located
in a squared area randomly centered within European bor-
ders. The flow of queries is split among the three DBSs
according to a uniform distribution. The query inter-time
follows a Poisson distribution, and we define query rate the
inverse of the average inter-time. Each result is obtained by
averaging 10 trials, and all 95% confidence intervals are
smaller than 10%.

The main performance parameter that we considered is
the ‘‘maximum query rate’’ [4], which is the highest rate for
which the average time needed to solve a query has a stable
behavior, that is, the query response time does not have a
growing trend versus time. For instance, in Fig. 7, we report
the query response time experienced by the sequence of the
first 1,000 queries of a trial. In the unstable case, we used a
query rate greater than the maximum one, and we see that
the query response time tends to continuously grow like it
happens in an overloaded queuing system. Conversely, in the
stable case, we used a query rate lower than the maximum
one.

FIGURE 7. Stable and unstable system behavior.

FIGURE 8. Maximum query rate vs. query area, random storage.

Fig. 8 shows the maximum query rate versus the range
query area for different configurations of the federation and
for a random locality. The rate decreases as the query area
increases because the system takes more time to solve larger
queries. Indeed, the resolution of larger queries involves a
greater number of DBSs, thus increasing their load, and pro-
vides query responses with more POIs, thus requiring longer
transmission times.

The two federation configurations, 2C+1M and 1C+2M,
verify the ability of the system to smoothly handle hetero-
geneous DBSs and result in very similar performance. This
is because MongoDB and CouchBase sites provide similar
performance singularly; thus, a different mix of them does
not change the outcome. In fact, the figure shows that a
system composed by only one MongoDB DBS (1M) and a
system composed by only a CouchBase DBS (1C) provide
similar results. We point out that the maximum query rate
increases by having more DBSs in the federation (e.g., from
1M to 1C+2M), thereby showing the horizontal scalability
of the federated system; the more the available resources are,
the higher the sustainable load is.

VOLUME 7, 2019 165257

A. Detti et al.: Exploiting Information-Centric Networking to Federate Spatial Databases

FIGURE 9. Maximum query rate vs. query area,1C+2M.

FIGURE 10. Average query delay vs. query rate, 1C+2M, random storage.

Fig. 9 shows the impact of different locality configura-
tions: random and country based. We observe that locality
has significant impact on small query areas, up to 100 km2.
In these cases, better performance is achieved for a higher
data locality (country based) because in this case, the query
routing mechanism reduces the number of involved DBSs to
solve a query, consequently decreasing the database system’s
load and response time. This difference fades out as the query
area increases because larger queries involve more DBSs; for
very large areas, all DBSs are involved in both cases, thus
resulting in the same performance.

Fig. 10 shows the average query delay versus the query
rate in case of query areas of 100 and 1,000 km2. The
query time increases at the increase of the query area and
the query rate. The figure also shows that the system pro-
vides a stable performance when loaded with a query rate
lower than the maximum one, that is, 125 for 100 km2 and
45 for 1,000 km2. When the query rate gets close to the

FIGURE 11. Maximum query rate vs. query area with and without ICN
cache,1C+2M, random storage.

maximum one, the response time quickly grows, and the
system becomes unstable.6

Fig. 11 shows the maximum query rate versus the query
area in presence and absence of ICN caching. ICN caches
reduce the load of the DBSs and the time needed to fetch
matching objects. Consequently, the ICN caching functional-
ity improves the sustainable query rate; this benefit is higher
for large queries, which implies the exchange of many objects
per query. We note that caching performance depends on the
characteristics of the request pattern, including the popularity
of objects, the temporal correlation between requests of the
same object, etc. [24], [25]. In these measurements, we have
considered a flat popularity of the requested objects since
range queries are randomly centered in Europe and no tem-
poral correlation since the query inter-arrival times are expo-
nentially distributed. Literature results show that these condi-
tions reduce caching effectiveness, so further improvements
are expected for applications characterized by a nonuniform
spatial popularity of queried areas.

We now discuss benefits and trade-offs related to the global
indexing strategy discussed in Section III-D1. First of all,
we would like to highlight the importance of having a global
index, thus justifying the design effort made in this paper.
To this end, Fig. 12 shows the maximum query rate with
and without global indexing. In most cases, the resulting rate
is dramatically higher with global indexing. Thus, a well-
designed global indexing, enabling an effective query routing,
can really make a difference in the performance for federated
database applications. It is also worth observing that, when
the query area becomes very large, the performance with
indexing gets close to the flooding one since all DBSs are

6We note that the current implementation of the query processor uses a
thread pool of 4 threads with a waiting queue of 1,000 queries. Accordingly,
the system response in Fig. 10 resembles one of a queuing system with mul-
tiple servers and a finite waiting queue. Consequently, though not reported
in the figure, there is, however, an upper bound for the response time that we
measured in the order of 10s.

165258 VOLUME 7, 2019

A. Detti et al.: Exploiting Information-Centric Networking to Federate Spatial Databases

FIGURE 12. Maximum query rate vs. query area, with and without
(flooding) global indexing, random storage, 1C+2M.

FIGURE 13. Maximum query rate vs. query area for different values of the
number of active tiles and different tessellation, random storage, 1C+2M.

likely involved, and as a consequence, query routing tends to
be useless.

Fig. 13 shows the maximum query rate by varying the
constraint k of the adaptive tessellation, from 1,500 tiles up to
60,000 tiles. The figure also includes the results obtained by
using a simple unconstrained tessellation having all tiles of
the same size for three different configurations of the lat/lon
tile size, 1, 0.1, and 0.01 degrees, respectively. We observe
that a global index with higher accuracy, that is, a greater
number of tiles, provides considerable improvements only for
small queries (100 km2). This is because there are more false
positive events for smaller areas; consequently, a higher accu-
racy can avoid a significant number of them, thus allowing to
support a higher query rate. For larger queries, false positive
events become rare; therefore, the impact of higher accuracy
is lower.

By using the unconstrained tessellation, we end up with a
global index having about 1,500, 60,000, and 400,000 active

FIGURE 14. Average size of global index advertisement for different
values of the number of active tiles, random storage, 1C+2M.

tiles per DBSs. These numbers cannot be controlled since
they depend on the stored spatial objects. Conversely,
the adaptive tessellation allows such control by configuring
the parameter k . By comparing adaptive and unconstrained
tessellation, we see that the former one allows reaching the
best performance with 10,000 tiles. Conversely, in the case
of unconstrained tessellation, we need about 60,000 tiles to
achieve the same result, thus increasing the signaling and
processing effort required to maintain the global index.

Ameasure of this effort is the average size of the announce-
ments (gData packets) made by DBSs to share their index
information; this metrics is shown in Fig. 14. As expected,
the higher the number of tiles, the greater the announcement
size. By comparing the cases of adaptive tessellation with
10,000 tiles and the case of unconstrained tessellation with
60,000 tiles, we observe that the former solution reduces the
signaling overhead of roughly 80% while providing the same
performance (Fig. 13).

Finally, Fig. 15 shows the ratio between the total number
of queries submitted to the federation and the number of
queries subsequently received by a single DBS. If we used
query flooding, any query would be sent to any DBS, thus
making such ratio equal to one. Therefore, the reported ratio
is a measure of the load reduction achieved, thanks to the
global indexing and query routing mechanisms. In the worst
case, the use of the global index reduces by about 50% and
even less when we increase the accuracy of the index, that
is, k . The reduction is higher for smaller query areas where the
index accuracy causes a greater impact. By comparing adap-
tive and unconstrained tessellations, we see that the adaptive
tessellation provides a lower DBS load for a similar amount
of tiles.

We conclude this section by pointing out that, with the
exclusion of Figs. 14 and 15, the obtained numerical results
clearly depend on the hardware and on the software code
that we have used, being the evaluation based on a real
implementation. Consequently, all the above results are of

VOLUME 7, 2019 165259

A. Detti et al.: Exploiting Information-Centric Networking to Federate Spatial Databases

FIGURE 15. Ratio between the total query submitted to the federation
and the query received by a single DBS out of three, random storage,
1C+2M.

interest more for the insights that they provide than for their
absolute numerical values.7

V. CONCLUSION
We have shown that multicast, caching, and data-centric
security off-the-shelf functionality offered by ICN are useful
instruments to cope with communication issues arising from
the federation of spatial databases. In fact, the results obtained
from a practical implementation and with real data-sets have
shown the ability of ICN to effectively federate heteroge-
neous databases while providing efficient query resolution
through global indexing and in-network caching.

It is worth to remind that the federation has some lim-
itations with respect to the use of a single database. First,
a federation can fully support only the subset of spatial oper-
ations that can be resolved by any SQL/NoSQL participating
database. For instance, the NoSQL MongoDB only supports
four geo-functions ($geoIntersects, $geoWithin, $near, and
$nearSphere), and the SQL PostGIS supports more than one
thousand geo-functions, including those of MongoDB; thus,
federating them limits the exploitable geo-function to the
ones of MongoDB. As a second limitation, we observe that
the federation introduces latency because of network RTT
and processing (e.g., query routing without a preconfigured
sharding logic), and it requires synchronization of meta-
data among databases (e.g., the global index). Consequently,
the rate of federated operations is limited too, and for highly
intensive database applications, other solutions should be
considered. For instance, in the case of rather static data-sets,
the integration of all of them in a single big local database
will likely provide better performance, but with the cost (and
potential privacy issue) of moving all the data in a single point
and maintaining them synchronized.

7After extensive searches in the literature and in the Web, we did not find
software solutions for federating heterogeneous NoSQL databases, and for
this reason, we have been unable to carry out a comparative analysis.

As future directions of this work, we observe that even
though we focused on spatial databases, the proposed ICN
federated architecture can be extended also for databases
storing plain objects but changing the global indexing strat-
egy. To this end, a possible approach is to generalize the
index tessellation process as follows: Let us assume that we
want to index a specific key of stored objects, for example,
the surname of a person, for an address book application.
We can map the index key (surname) to a 1D hash space and
then tessellate it with the same proposed adaptive algorithm
but using 1D segments rather than 2D tiles. In so doing,
we will obtain again the benefit of query routing shown in
the spatial database case.

ACKNOWLEDGMENT
The document reflects only the author’s view, European
Commission and Japanese MIC are not responsible for any
use that may be made of the information it contains.

REFERENCES
[1] R. H. Güting, ‘‘An introduction to spatial database systems,’’ J. Int. J. Very

Large Data Bases, vol. 3, no. 4, pp. 357–399, 1994.
[2] A. P. Sheth and J. A. Larson, ‘‘Federated database systems for managing

distributed, heterogeneous, and autonomous databases,’’ ACM Comput.
Surv., vol. 22, no. 3, pp. 183–236, Sep. 1990.

[3] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, ‘‘Networking named content,’’ in Proc. 5th Int. Conf.
Emerg. Netw. Exp. Technol., Jun. 2009, pp. 1–12.

[4] A. Detti, M. Orru, R. Paolillo, G. Rossi, P. Loreti, and L. Bracciale,
‘‘Application of information centric networking to NoSQL databases: The
spatio-temporal use case,’’ in Proc. IEEE Int. Symp. Local Metropolitan
Area Netw. (LANMAN), Jun. 2017, pp. 1–6.

[5] A. Morelli, M. Tortonesi, C. Stefanelli, and N. Suri, ‘‘Information-
centric networking in next-generation communications scenarios,’’ J. Netw.
Comput. Appl., vol. 80, pp. 232–250, Feb. 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1084804516303423

[6] A. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang,
‘‘NLSR: Named-data link state routing protocol,’’ in Proc. 3rd ACM
SIGCOMM Workshop Inf.-Centric Netw., 2013, pp. 15–20.

[7] I. Abdullahi, S. Arif, and S. Hassan, ‘‘Survey on caching approaches
in information centric networking,’’ J. Netw. Comput. Appl., vol. 56,
pp. 48–59, Oct. 2015. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1084804515001381

[8] Y. Yu, A. Afanasyev, D. Clark, K. C. Claffy, V. Jacobson, and L. Zhang,
‘‘Schematizing trust in named data networking,’’ in Proc. 2nd Int. Conf.
Inf.-Centric Netw., 2015, pp. 177–186.

[9] Y. Fang, M. Friedman, G. Nair, M. Rys, and A.-E. Schmid, ‘‘Spa-
tial indexing in Microsoft SQL server 2008,’’ in Proc. ACM SIG-
MOD Int. Conf. Manage. Data (SIGMOD), New York, NY, USA, 2008,
pp. 1207–1216, doi: 10.1145/1376616.1376737.

[10] A. Guttman, ‘‘R-trees: A dynamic index structure for spatial searching,’’
ACM SIGMOD Rec., vol. 14, no. 2, pp. 47–57, Jun. 1984.

[11] C. Ji, Z. Li, W. Qu, Y. Xu, and Y. Li, ‘‘Scalable nearest neigh-
bor query processing based on inverted grid index,’’ J. Netw. Com-
put. Appl., vol. 44, pp. 172–182, Sep. 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1084804514001295

[12] W. Wang, S. De, G. Cassar, and K. Moessner, ‘‘An experimental study
on geospatial indexing for sensor service discovery,’’ Expert Syst. Appl.,
vol. 42, no. 7, pp. 3528–3538, May 2015.

[13] Y. Fathy, P. Barnaghi, and R. Tafazolli, ‘‘Distributed spatial indexing for
the Internet of Things data management,’’ inProc. IFIP/IEEE Symp. Integr.
Netw. Service Manage. (IM), May 2017, pp. 1246–1251.

[14] A. P. Iyer and I. Stoica, ‘‘A scalable distributed spatial index for the
Internet-of-Things,’’ in Proc. Symp. Cloud Comput., 2017, pp. 548–560.

[15] ETSI Context Information Management (CIM) Group. NGSI-LD API.
Accessed: Oct. 9, 2019. [Online]. Available: https://www.etsi.org/deliver/
etsi_gs/CIM/001_099/009/01.01.01_60/gs_cim009v010101p.pdf

165260 VOLUME 7, 2019

http://dx.doi.org/10.1145/1376616.1376737

A. Detti et al.: Exploiting Information-Centric Networking to Federate Spatial Databases

[16] S. Bjeladinovic, ‘‘A fresh approach for hybrid SQL/NoSQL database
design based on data structuredness,’’ Enterprise Inf. Syst., vol. 12,
nos. 8–9, pp. 1202–1220, 2018, doi: 10.1080/17517575.2018.1446102.

[17] D. McLeod and D. Heimbigner, ‘‘A federated architecture for database
systems,’’ in Proc. Nat. Comput. Conf., May 1980, pp. 283–289.

[18] R. Laurini, ‘‘Spatial multi-database topological continuity and indexing:
A step towards seamless GIS data interoperability,’’ Int. J. Geograph. Inf.
Sci., vol. 12, no. 4, pp. 373–402, 1998.

[19] H. Dharmasiri and M. Goonetillake, ‘‘A federated approach on het-
erogeneous NoSQL data stores,’’ in Proc. Int. Conf. Adv. ICT Emerg.
Regions (ICTer), 2013, pp. 234–239.

[20] G. Bianchi, A. Detti, A. Caponi, and N. Blefari-Melazzi, ‘‘Check before
storing: What is the performance price of content integrity verification in
LRU caching?’’ ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 3,
pp. 59–67, 2013.

[21] L. Golab, F. Korn, F. Li, B. Saha, and D. Srivastava, ‘‘Size-constrained
weighted set cover,’’ in Proc. IEEE 31st Int. Conf. Data Eng. (ICDE),
Apr. 2015, pp. 879–890.

[22] NDN Project. Accessed: Oct. 9, 2019. [Online]. Available: http://named-
data.net/

[23] ICN Federated Database Software. Accessed: Oct. 9, 2019. [Online].
Available: https://github.com/ICN2020/ICN-database-Fed

[24] N. B. Melazzi, G. Bianchi, A. Caponi, and A. Detti, ‘‘A general, tractable
and accurate model for a cascade of LRU caches,’’ IEEE Commun. Lett.,
vol. 18, no. 5, pp. 877–880, May 2014.

[25] A. Detti, L. Bracciale, P. Loreti, and N. B. Melazzi, ‘‘Modeling LRU cache
with invalidation,’’ Comput. Netw., vol. 134, pp. 55–65, Apr. 2018.

ANDREA DETTI is currently a Professor of
wireless networks and cloud computing with the
University of Rome ‘‘Tor Vergata’’. His research
activity spans on different topics in the area of
computer networks and copes with framework
design, analytical modeling, as well as perfor-
mance evaluation through simulation and test-bed.
He is the coauthor of more than 80 articles on jour-
nals and conference proceedings, and has partici-
pated to several EU-funded projects with coordina-

tion and research roles. His current research area is focused on information-
centric-network (ICN), software defined networks (SDN), cloud computing,
and the IoT.

GIULIO ROSSI received the master’s degree in
internet engineering from the University of Rome
Tor Vergata, Italy, in 2016. He worked at the same
university with interests in information centric net-
working, no SQL databases, and the IoT.

NICOLA BLEFARI MELAZZI is currently a Full
Professor of telecommunications with the Univer-
sity of Rome ‘‘Tor Vergata’’, Italy. He is currently
the Director of CNIT, a consortium of 37 Italian
Universities. He has participated in over 30 inter-
national projects, and has been the principal inves-
tigator of several EU funded projects. He has been
an Evaluator for many research proposals and a
Reviewer for numerous EU projects. He is the
author/coauthor of about 200 articles, in interna-

tional journals and conference proceedings. His research interests include
the performance evaluation, design and control of broadband integrated
networks, wireless LANs, satellite networks, and of the Internet. He has
also worked on multimedia traffic modeling, mobile and personal commu-
nications, quality of service in the Internet, ubiquitous computing, reconfig-
urable systems and networks, service personalization, autonomic computing,
SDN/NFV, and ICT solutions for intelligent transport systems.

VOLUME 7, 2019 165261

http://dx.doi.org/10.1080/17517575.2018.1446102

	INTRODUCTION
	RELATED CONCEPTS AND WORKS
	INFORMATION-CENTRIC NETWORKS
	SPATIAL DATABASES
	FEDERATED DATABASE SYSTEMS

	ICN FEDERATED DATABASES
	FUNCTIONAL ARCHITECTURE
	JOINING PROCEDURE
	QUERY RESOLUTION
	EXPLOITATION OF IN-NETWORK CACHING
	GLOBAL INDEXING

	PERFORMANCE ANALYSIS
	CONCLUSION
	REFERENCES
	Biographies
	ANDREA DETTI
	GIULIO ROSSI
	NICOLA BLEFARI MELAZZI

