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Abstract: Statistical inference for discrete-valued time series has not been
developed like traditional methods for time series generated by continuous
random variables. Some relevant models exist, but the lack of a homogenous
framework raises some critical issues. For instance, it is not trivial to ex-
plore whether models are nested and it is quite arduous to derive stochastic
properties which simultaneously hold across different specifications. In this
paper, inference for a general class of first order observation-driven mod-
els for discrete-valued processes is developed. Stochastic properties such
as stationarity and ergodicity are derived under easy-to-check conditions,
which can be directly applied to all the models encompassed in the class
and for every distribution which satisfies mild moment conditions. Consis-
tency and asymptotic normality of quasi-maximum likelihood estimators
are established, with the focus on the exponential family. Finite sample
properties and the use of information criteria for model selection are inves-
tigated throughout Monte Carlo studies. An empirical application to count
data is discussed, concerning a test-bed time series on the spread of an
infection.
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1. Introduction

The analysis of time series that are generated by continuous random variables
has a long tradition in statistics and dates back, in the parametric setting, to
[42] and [41], who introduced the concept of autoregression, a dynamic model
for the conditional mean of a stochastic process. In the same period, [37] de-
fined moving average processes as linear combinations of uncorrelated random
variables capable of capturing cyclical fluctuations. It was only in the seventies,
with the formalization by [4] of the class of ARMA models, that autoregressive
(AR) and moving average (MA) processes found their popularity and became
massively fitted to real data. The merit of Box and Jenkins’s work was the spec-
ification of a unified class of processes, generalizing ARMA models to account
for non-stationarity, seasonality, exogenous regressors, as well as the system-
atic treatment of all the sub-models belonging to the class, which led to the
development of well established inferential procedures.

The development of parametric models for count and binary data has not en-
joyed the same popularity, partly because linear processes are related to second
order stationarity, which fully characterizes Gaussian time series. For discrete
data, the concept of autocovariance needs to be adapted [38] and the Wold rep-
resentation has no direct interpretation, see the discussion in the recent hand-
book edited by [11]. Since the AR- and MA-like models first introduced by [43]
and [27], there have been some relevant specifications, such as the generalized
ARMA (GARMA) by [3] and their martingalized version, the M-GARMA by
[44], as well as the generalized linear ARMA (GLARMA) by [9]. An interesting
class of autoregression models for count data has been proposed by [20] and
[22], inspired by the generalized linear transformation of [30]. Integer-valued
time series with extreme observations have been dealt with by [25], based on
the beta-Negative Binomial distribution.

As recently acknowledged by [10], the analysis of discrete-valued time se-
ries would benefit from the specification of a unified framework able to encom-
pass most of the models available in the literature. As a matter of fact, it is
not trivial to explore whether models are nested, and, consequently, to derive
stochastic properties that simultaneously hold across models. In addition, model
comparison becomes crucial when direct relationships among different models
are unknown. The lack of a unified framework and, consequently, of systematic
analysis is also in contrast with the growing attention paid, in recent years, to
high dimensional data sets involving dynamic binary and count data, in differ-
ent contexts, such as number of clicks or amount of intra-day stock transactions
[12, 1]. Attempts in this direction have been made by [14] who provide a theo-
retical formulation which is useful in principle but less effective when the aim is
to implement and adapt models for real applications. Indeed, the quite general
framework developed by [14] encompasses several models for which stochastic
and inferential properties have been previously derived in the literature, but at
the price of conditions that are extremely complicated to verify in practice for
each model and distribution.

To summarize the main results developed in the literature, on the side of the
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stochastic properties, [29] develop notable results about strict stationarity and
ergodicity for the specific case of GARMA and Poisson Threshold autoregressive
models, using the theory of Markov chains. Conversely, conditions holding for
several models but requiring restrictive assumptions are discussed in [31], based
on contraction conditions, and in [16], based on the weak dependence approach.
[20] and [22] develop results on ergodicity employing a perturbation approach,
which is necessarily suited for the case of count data following a Poisson distri-
bution. Similar results are discussed in [5] under the assumption of a Negative
Binomial distribution as the data generating process. An interesting extension
to categorical time series has been recently proposed by [23].

As far as inference is concerned, the properties of the maximum likelihood
estimator (MLE) and Quasi MLE (QMLE) have been studied for some subsets
of discrete-valued models. [14] prove the consistency of MLE and QMLE for the
general framework they propose. Asymptotic normality, in the same setting, is
later discussed by [15]. Comparable results have been derived by [12], based on
the approach developed by [31], and by [1] for the specific case of the Poisson
distribution. However, the conditions needed to verify the properties of MLE
and QMLE are far from immediate.

This paper introduces a general class of observation-driven models for discrete-
valued stochastic processes that encompasses the existing models in the liter-
ature and includes novel specifications. In the terminology of [7], observation-
driven models are designed for time-varying parameters whose dynamics are
functions of the past observations only and are not driven by an idiosyncratic
noise term. Essentially, we specify a dynamic model for the conditional mean of
a density, or mass function for discrete-valued time series, which does not nec-
essarily belong to the exponential family. This generality allows one to estimate
alternative models designed to capture the past effects of the conditional mean
itself, of the lagged discrete-valued process and error-type components.

The stochastic theory and the likelihood inference are developed for first order
models in the class (i.e. with one lag of autoregression), through an extension
of the theory of [29] as far as stationarity and ergodicity are concerned, and of
[14] and [15] for the asymptotic properties of likelihood estimators. In addition
to the results that apply to novel models, we derive several new methodological
results for existing models, that were not yet proved in the literature, such as
strict-stationarity and ergodicity of first order GLARMA models and ergodicity
of M-GARMA models for discrete distributions.

In summary, a general modelling framework is introduced which aims (i) to
provide a unified specification for a broad class of discrete-valued time series
where relevant instances represent special cases, (ii) to provide direct relation-
ships among different models which belong to the framework but are not neces-
sarily nested within each other, (iii) to derive the stochastic properties for first
order models which hold simultaneously for the entire class (strict stationarity
and ergodicity), (iv) to implement QMLE inference that also allows us to define
model selection criteria across different, and not nested, models, (v) to derive
the asymptotic properties of QMLE, and (vi) to make all the models encom-
passed in the framework fully applicable in practice. With the focus on model
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comparison, models included in the general framework are applied for the analy-
sis of a test-bed time series in count data analysis, on the spread of an infection,
namely Escherichia coli, in the German region of North Rhine-Westphalia.

2. The general framework

Let {Yt}t∈T be a stationary stochastic process defined on the probability space
(Ω,F ,P) where F = {Ft}t∈T and Ft = σ(Yt−s, s ≥ 0) is the sigma-algebra
generated by the random variables Ys, s ≤ t, with E|Yt| < ∞ for all t ∈ T . We
specify a class of observation-driven models where the conditional density or
mass function of Yt, depending on a time-varying parameter μt = E(Yt|Ft−1),
is a member of the one-parameter exponential family

q(Yt|Ft−1) = exp {Yt f(Xt)−A (Xt) + d(Yt)} , (1)

Xt = g(μt) = ZT
t α+

k∑
j=1

γjg(μt−j)+

p∑
j=1

φjh(Yt−j)+

q∑
j=1

θj

[
h(Yt−j)− ḡ(μt−j)

νt−j

]
,

(2)
where the dynamics of the density (or mass) function q(Yt|Ft−1) are captured
by the parameter μt, or equivalently by Xt. The time-varying parameter μt is re-
lated to the process Xt by a twice-differentiable, one-to-one monotonic function
g(·), which is called the link function. The functions A(·) (log-partition) and d(·)
define the particular distribution [30]. The mapping f(·) is a twice-differentiable
bijective function, chosen according to the model of interest. Note that the pro-
cess {Yt}t∈T is observed whereas {μt}t∈T is not. However, from equation (2),
it can be shown, by backward substitutions, that the process {μt}t∈T is a de-
terministic function of the past Ft−1 and this is the reason why we refer to
“observation-driven models”. The function h(Yt) is called the “data-link func-
tion” since it is applied to the process Yt whereas ḡ(μt) is said the “mean-link
function” since it is applied only to the conditional mean, unlike the link function
g(·) which, in principle, can be applied to any parameter or moment of the prob-
ability distribution. Both the functions h(Yt) and ḡ(μt) are twice-differentiable,
one-to-one monotonic and their shape depends on the specific model (2) and
the distribution of interest in equation (1).

The vector Zt = [1, Z1t, . . . , Zst]
T

in equation (2) is a vector of covariates
and α is the corresponding coefficient vector with comparable dimensions. The
parameters φj measure an autoregressive-like effect of the observations; instead,
the parameters γj state the dependence of the process from its whole past mem-
ory (since μt−j depends on the past observations Yt−j−1, . . . ); finally, the pa-
rameters θj represent the analogous of a moving average component, since the
last term of (2) can be defined as a prediction error

εt =
h(Yt)− ḡ(μt)

νt
, (3)

where the process {νt}t∈T is some scaling sequence, typically: (i) νt = σt (Pear-
son residuals), (ii) νt = σ2

t (score-type residuals), (iii) νt = 1 (no scaling),
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and (iv) νt =
√

V[h(Yt) |Ft−1 ]. Note that every time the mean-link function
is selected as the conditional expectation of the data-link function for the pro-
cess, ḡ(μt) = E[h(Yt)|Ft−1], the difference h(Yt) − ḡ(μt) is a martingale differ-
ence sequence (MDS). Moreover, if νt =

√
V[h(Yt) |Ft−1 ], then the residuals in

equation (3) form a white noise (WN) sequence, with unit variance.

Each exponential family in the form (1) can be re-parametrized in the canon-
ical form:

q(Yt|Ft−1) = exp
{
Yt Qt − Ā (Qt) + d(Yt)

}
, (4)

where the sequence Qt = f(Xt) = f [g(μt)] = f̃(μt) is called the canonical
parameter, whereas the function f̃(·) = (f ◦ g)(·) is referred to as the canon-
ical link function and Ā (·) is a re-parametrization of A (·) with respect to
Qt. It is known that for the exponential family (4) the conditional mean is
μt = E(Yt|Ft−1) = Ā′(Qt) = f̃−1(Qt) = g−1(Xt) and the conditional variance
is σ2

t = V(Yt |Ft−1 ) = Ā′′(Qt). If g(·) is the canonical link function, then f̃ ≡ g
and the following simplification occurs: f(Xt) = Xt, so Qt = Xt = g(μt), which
gives again the distribution (1), with f(Xt) = Xt, so that (1) and (4) are exactly
the same. Clearly, the moments become μt = E(Yt|Ft−1) = A′(Xt) = g−1(Xt)
and σ2

t = V(Yt |Ft−1 ) = A′′(Xt). The function f(·) allows us to introduce non-
canonical shapes for g(·), thus adding flexibility to the model. We provide some
examples to clarify the nature of the framework.

Example 1 In the setting (1, 2), the Poisson distribution is obtained with
f(Xt) = Xt, g(μt) = log(μt), A [g(μt)] = μt and d(Yt) = log(1/Yt!). All the
derivatives of A(Xt) = exp(Xt) equal μt. However, this definition is based on
the equivalence g ≡ f̃ , which is the canonical link; hence equation (2) becomes
a log-linear model on the response log(μt). It is possible to model (2) with a
different shape of g(·); for example, one may be interested in a linear model for
the parameter of the Poisson μt, then g(μt) = μt and clearly g 	= f̃ . In this case,
the Poisson distribution is reconstructed from (1), by setting f(Xt) = log(Xt) =
log(μt), A(Xt) = Xt = μt and d(Yt) = log(1/Yt!). Again, by knowing that the
inverse of the canonical link f̃−1(·) = exp(·), the conditional expectation would
be E(Yt|Ft−1) = V(Yt|Ft−1) = f̃−1(Qt) = exp[f(Xt)] = μt.

Example 2 The Gaussian distribution (with known variance σ2) is obtained

by setting d(Yt) = log
[
−1/

√
2πσ2 exp

(
−Y 2

t /2σ
2
)]
, f(Xt) = Xt, g(μt) = μt/σ

2

and A [g(μt)] = μ2/2σ2. One can verify that μt = σ2Xt, so A(Xt) = σ2X2
t /2,

with first and second derivatives μt and σ2, respectively.

2.1. Related models

One of the most frequently used specifications in the area of discrete-valued time
series is the Generalized Autoregressive Moving Average model, GARMA [3].
Here, the distribution of the process is usually assumed to be the one-parameter
exponential family (1). From equation (2), the GARMA model is obtained when



1398 M. Armillotta et al.

k = 0, by setting g ≡ ḡ ≡ h and νt = 1, so that,

g(μt) = ZT
t α+

p∑
j=1

φjg(Yt−j) +

q∑
j=1

θj [g(Yt−j)− g(μt−j)] , (5)

where α =
(
1−
∑p

j=1 φjB
j
)
β, β is a vector of constants and B is the lag

operator. By rearranging the constant in terms of β we obtain the equation (3)
of [3].

A suitable extension of the GARMA model (5), the martingalized GARMA
(M-GARMA), has recently been introduced by [44]; it is derived from (2) by
setting k = 0, g(μt) ≡ ḡ(μt) = E[h(Yt) |Ft−1 ] and νt = 1:

ḡ(μt) = ZT
t α+

p∑
j=1

φjh(Yt−j) +

q∑
j=1

θj [h(Yt−j)− ḡ(μt−j)] . (6)

The relevant feature of the model is that it allows the residuals εt to be a
martingale difference sequence, i.e. E(εt|Ft−1) = 0.

Another similar model has been developed by [36], [34] and [9] with the name
GLARMA model; here again the distribution is the exponential family (1). We
can write the GLARMA model (2) by setting p = 0, h as the identity and
ḡ(μt) = E[h(Yt) |Ft−1 ] = E(Yt |Ft−1 ) = μt:

g(μt) = ZT
t α+

k∑
j=1

γjg(μt−j) +

q̃∑
j=1

θjεt−j , (7)

where α =
(
1−
∑k

j=1 γjB
j
)
β. Here q̃ = max(k, q) and θj = γj + τj for j =

1, . . . , q̃, where τj are free parameters. The formulation of the constant term
in equation (7) as a function of β is equivalent to equation (13) in [17], the
alternative definition of the GLARMA model originally introduced in [9]. Note
that here, if νt = σt, then the prediction error εt = (Yt −μt)/νt is a white noise
process with unit variance.

Another promising stream of literature is due to [20], who introduced Poisson
autoregression, henceforth Pois AR, which is obtained when (1) is Pois(μt), with
f(Xt) = log(Xt), and in equation (2), we have q = 0 and g ≡ h : identity:

μt = ZT
t α+

k∑
j=1

γjμt−j +

p∑
j=1

φjYt−j . (8)

The parameters in equation (8) are constrained in the positive real line. A
variant of (8) is the log-linear Poisson autoregression, henceforth Pois log-AR,
[22] which is obtained by (2) when q = 0, f(Xt) = Xt, g(μt) = log(μt) and
h(Yt) = log(Yt + 1)

log(μt) = ZT
t α+

k∑
j=1

γj log(μt−j) +

p∑
j=1

φj log(Yt−j + 1) . (9)
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For Poisson data, the GARMA model (5) with identity or log links corresponds
to a constrained Poisson autoregression where γj = −θj and φj is replaced by
φj + θj , in equations (8) or (9). A model like (9) could also be used for Negative
Binomial data, by rewriting the distribution in terms of the expected value
parameter μt [5]:

q (Yt|Ft−1) =
Γ(ν + Yt)

Γ(Yt + 1)Γ(ν)

(
ν

ν + μt

)v (
μt

ν + μt

)Yt

(10)

where ν is the dispersion parameter (if integer, it is also known as the number
of failures) and the usual probability parameter would be pt =

ν
ν+μt

. The distri-

bution (10) with model (9) is obtained from the distribution (1), by setting the
non-canonical link g(μt) = log(μt) and Qt = log(1 − pt), rewritten as f(Xt) =

Xt − log(ν + eXt), with A(Xt) = −ν log
(

ν
ν+eXt

)
and d(Yt) = log Γ(ν+Yt)

Γ(Yt+1)Γ(ν) .

The Binary Autoregressive Moving Average (BARMA) model ([27, 38]), in-
troduced for Binomial data, is obtained when (1) is Bin(a, μt), where a is known
and the probability parameter pt = μt/a, and, in (2), γ = 0, h : identity (ḡ(μt)
reduces to μt) and c = 0. Then

g(μt) = ZT
t α+

p∑
j=1

φjYt−j +

q∑
j=1

θj [Yt−j − μt−j ] . (11)

Even though this model is designed for use with Binomial distributions, so
typically g : logit or g : probit, in general, the link function g can be any
suitable function.

Although the class of models (1)-(14) is quite general, all the link functions
involved are required to be continuous and bijective. Then, the framework pre-
sented in the current contribution does not include, for example, the Poisson
threshold model, as defined in [29, eq. 9] and [14, Sec. 1.2.1].

2.2. New model specifications

Other models of potential interest, which are not explicitly specified in the
existent literature, are instead encompassed in the framework (1)-(2). We discuss
a class of glink-ARMA models. As a relevant instance, consider the log-ARMA
model

log(μt) = ZT
t α+

k∑
j=1

γj log(μt−j) +

p∑
j=1

φj log(Yt−j + 1)

+

q∑
j=1

θj

[
log(Yt−j + 1)− ḡ(μt−j)

νt−j

] (12)

where f(Xt) = Xt, ḡ(μt) = E [log(Yt + 1)|Ft−1] and νt =
√
V [log(Yt + 1)|Ft−1].

The model (12) detects the autoregressive effect of the past lags of Yt and also
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accounts for a long past feedback effect, via lags of μt; then, a white noise predic-
tion error εt = [(log(Yt + 1)− ḡ(μt))/νt] is added to the functional transforma-
tion of the data, where E(εt) = 0 and V(εt) = 1. The same model (12), when (1)
is Bin(a, μt), is recovered by setting the non-canonical link Xt = g(μt) = log(μt)

and Qt = log
(

pt

1−pt

)
= log

(
μt

a−μt

)
, rewritten as f(Xt) = Xt − log(a − eXt),

with A(Xt) = a log
(

a
a−eXt

)
and d(Yt) = log

(
a
Yt

)
. Along the same lines, a

logit-ARMA model can be specified for Binomial data as a combination of the
BARMA model from [27] and an autoregressive component:

log

(
μt

a− μt

)
= ZT

t α+

k∑
j=1

γj log

(
μt−j

a− μt−j

)
+

p∑
j=1

φj Yt−j

+

q∑
j=1

θj [log(Yt−j + 1)− ḡ(μt−j)]

(13)

where, in equation (1) we have f(Xt) = Xt where the canonical link is Xt =

g(μt) = log
(

μt

a−μt

)
, with A(Xt) = a log(1+eXt) and d(Yt) = log

(
a
Yt

)
. A similar

model can also be specified by replacing the logit function with the probit link
function.

The usefulness of the specifications (12)-(13) can mainly be exploited when a
closed form expression is available for the conditional expectation ḡ(μt) (and
possibly for the standard deviation νt). For example, if the distribution of
Yt|Ft−1 is Log-normal (μt, σ

2), then ḡ(μt) = E [log(Yt + 1)|Ft−1] = log(μt) −
1/2σ2. For a comprehensive discussion on the closed form solutions see [44]. In
the case of Binomial or Poisson data, though, such closed forms are not available
and it seems reasonable to use an approximation based on the Taylor expansion
around the mean μt, like ḡ(μt) = E [h(Yt)|Ft−1] ≈ h(μt). This would reduce
models (12)-(13) to an interesting reparametrized version of the log-AR model
described in equation (9).

Despite the wide use of the Poisson model for count data and the default
Negative Binomial alternative to account for over-dispersion, both choices fail
when data present under-dispersion or an excess of zero value observations.
For instance, the use of generalized Poisson distributions is quite popular, as
well as the use of alternative link functions, when the canonical ones are not
appropriate to the scientific ground; see [35] for a discussion. Choosing the link
function in non-linear models is a relevant issue in case of over-dispersed and
under-dispersed count data as explicitly debated in [30]. Generalized approaches
to accommodate specific data structures may benefit from a flexible specification
of glink-ARMA type models.

3. Stochastic properties

In the following, we shall focus our attention to the baseline model in the class,
obtained by setting k = p = q = 1 in equation (2) with no covariates (ZT

t α = α)
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and unitary scaling sequence, νt = 1 for t ∈ T :

g(μt) = α+ γ g(μt−1) + φh(Y ∗
t−1) + θ

[
h(Y ∗

t−1)− ḡ(μt−1)
]
, (14)

where the function Y ∗
t modifies the values of Yt to lie within the domain of

h(·). Establishing stochastic properties and inferential results for model (2) is
typically challenging beyond the order one; see, for example, [14, Sec. 4]. In-
deed, in the vast majority of the contributions on observation-driven models
for integer-valued data the theoretical results are derived for first order models.
Remarkable exceptions are referred for the simpler linear INGARCH model [18].
For the same model, Poisson quasi maximum likelihood inference is discussed
in [1]. In [29, pg. 813], the authors seem to show a way to extend the ergod-
icity results of the GARMA(1,1) model, to the general lag (p,q) order, but in
fact, such an extension is possible after perturbing the original model with a
stochastic noise, which is equivalent to making a correction for continuity on
the starting integer-valued {Yt} process. For these reasons, the results of the
present contribution are derived for the framework (14).

In Remark 1 we discuss an extension which includes non-unitary scaling se-
quences. In addition, although the inclusion of time-varying covariates, Zt, in
model (14) may determine it to be, in general, non-stationary [29, pg. 810], the
addition of a non-time-varying random vector, Z, to (14) will keep all the results
of the present paper unaffected. Note that in the first order observation-driven
model (14) the series μt can be determined recursively by knowing only the
starting point μ0 and the observations Y0, . . . , Yt−1. This major simplification
is lost in the case of models with a lag order greater than the first.

3.1. Stationarity and ergodicity

The proof of the stability conditions is established for the baseline model (14)
by showing the ergodicity of a first order Markov chain process. In the present
section the random process {Yt} is not required to be distributed according to
the exponential family (1) but to satisfy only relatively mild moment condi-
tions, i.e. assumptions (A1)-(A2) below. Define μ0 = μ, g(μ) = x and ḡ(μ) =
ḡ(g−1(x)) = g̃(x), where g̃(·) ≡ ḡ◦g−1(·). In order to deal with different possible
domains of the process {μt}, we consider three separate cases:

Case 1 : q(Yt|Ft−1) for μ ∈ R. The domain of g and h is R and Y ∗
t = Yt;

Case 2 : q(Yt|Ft−1) for μ ∈ R
+ (or μ on one-sided open interval); the domain of

g and h is R+ and Y ∗
t = max {Yt, c} for some c ≥ 0;

Case 3 : q(Yt|Ft−1) for μ ∈ (0, a) where a > 0 (or bounded open interval); the
domain of g and h is (0, a) and Y ∗

t = min {max (Yt, c) , (a− c)} for some
c ∈ [0, a/2).

Denote with X = {Xt}t∈T a Markov chain where Xt = g(μt) belongs to the
state space S with σ-algebra FX and define P t(x,A) = P(Xt ∈ A | X0 = x)
for A ∈ FX to be the t-step transition probability with initial state X0 = x.
Consider the following assumptions:
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(A1) E(Yt | μt) = μt;

(A2) ∃δ > 0, r ∈ [0, 1 + δ) and l1, l2 ≥ 0 s.t. E(|Yt − μt|2+δ | μt) ≤ l1 |μt|r+l2;
(A3) g and h are bijective, increasing and
1. if ḡ(μt) = g(μt),

(a) h : R 
→ R concave on R
+ and convex on R

−, g : R 
→ R concave on
R

+ and convex on R
−, |γ|+ |φ| < 1,

(b) h : R+ 
→ R concave on R
+, g : R+ 
→ R concave on R

+, (|γ|+ |φ|)∨
|γ − θ| < 1,

(c) h : (0, a) 
→ R and g : (0, a) 
→ R, |γ − θ| < 1.
2. if ḡ(μt) 	= g(μt) and g̃(x) is Lipschitz with constant L ≤ 1,

(a) h : R 
→ R concave on R
+ and convex on R

−, g : R 
→ R concave on
R

+ and convex on R
−, |γ|+ |φ| < 1,

(b) h : R+ 
→ R concave on R
+, g : R+ 
→ R concave on R

+, |γ|+ (|φ| ∨
|θ|) < 1,

(c) h : (0, a) 
→ R and g : (0, a) 
→ R, |γ|+ |θ| < 1.
(A4) define πz(·) as the distribution of g(Yt) conditional on g(μt) = z; then,

πz(·) has the Lipschitz property supw,z∈R:w �=z ‖πw(·)− πz(·)‖TV / |w − z| < B <
∞, where ‖·‖TV is the total variation norm.

Theorem 1 Suppose that {Yt}t∈T has a distribution which satisfies (A1)-(A2),
with the process {μt}t∈T specified as in (14). Moreover, (A3)-(A4) hold. Then,
{μt}t∈T has a unique stationary distribution. This implies that {Yt}t∈T is strict-
sense stationary and ergodic.

The proof and some preliminary lemmata are postponed to the Appendix.
It can immediately be seen that in the special case where Yt is distributed ac-

cording to (1), Assumption (A1) automatically holds, because μt = E(Yt|Ft−1).
For model (14), the σ-algebra generated by μt is a subset of Ft−1, and for the
properties of conditional expectations, E(Yt|μt) = E[E(Yt|Ft−1)|μt] = μt. As-
sumption (A2) is a relatively mild moment condition generally satisfied for usual
discrete distributions encompassed in (1), such as, e.g., Poisson and Binomial
distributions, see also [29, Cor. 6-7]. Assumption (A3) involves several different
conditions depending on three factors: (i) the specific model employed; (ii) the
selected distribution, and (iii) the chosen link functions. To illustrate the im-
plication of (A3) on existing models, we consider two representative examples.

Example 3 When a GARMA model (5) is applied (with p = q = 1 and no
covariates) to Binomial data, we have ḡ(μ) = g(μ), so that we fall in the case
(A3).1. The domain of the observations involves (A3).1.(c), since y ∈ (0, a) and
μ ∈ (0, a), such that g(·) : (0, a) 
→ R, where g(y) = h(y). The monotonicity
conditions on the shape of the link functions g and h in (A3) are quite stan-
dard. For instance, the logit link function g(μ) = log(μ/(a − μ)) is bijective
and increasing. As γ = 0 in model (5), for the Binomial GARMA model, the
stationarity condition |θ| < 1 is obtained from (A3).

Example 4 For the GLARMA model (7) (with k = q = q̃ = 1 and no co-
variates) and Poisson data with monotone increasing link function g(μ) =
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log(eμ − 1), we have h(y) = y, i.e. h(·) is the identity, a monotone increas-
ing function. Moreover, ḡ(μt) = E[h(Yt)|Ft−1] = E[Yt|Ft−1] = μt is again
the identity function, so ḡ(μ) 	= g(μ) and g̃ is Lipschitz with constant L ≤
1, since |g̃(x) − g̃(x∗)| = |ḡ(g−1(x)) − ḡ(g−1(x∗))| = |g−1(x) − g−1(x∗)| ≤
maxx∈R |∂g−1(x)/∂x||x − x∗| ≤ |x − x∗|, where the last inequality follows by
∂g−1(x)/∂x = ex/(1 + ex) ≤ 1. This implies that the stationarity conditions
for GLARMA are entailed by assumption (A3).2. In particular, in the Pois-
son case, (A3).2.(b) is involved, with y ∈ R

+ and μ ∈ R
+. One observes that

g(μ) : R+ 
→ R is concave and the same holds for h(y). Since φ = 0 for model
(7), we have that, for the Poisson GLARMA model, the stationarity condition
|γ|+ |θ| < 1 is obtained from (A3).

Many other results in the same spirit of Examples 3-4 can be obtained from
Theorem 1, by selecting several different combinations of model, distribution,
and link function, i.e. aspects (i)-(iii) previously discussed. Section 3.2 analyses
the impact of the assumptions of Theorem 1 over the models introduced in
Section 2.

As far as Assumption (A4) is concerned, though it might not be immediate to
verify, it can usually be replaced, for the integer-valued distribution encompassed
in (1), with an alternative condition, which is easier to check:

(A5) The distribution of the process {Yt}t∈T is Poisson, Binomial, or Negative
Binomial (with known number of trial/failure), and g−1(·) is Lipschitz.

The equivalence of (A4) and (A5) has been proved in [29] for the Poisson and
Binomial distribution; the proof for the Negative Binomial is reported in the
Appendix. The required Lipschitz continuity of g−1(·) is easily met for the usual
link functions (e.g. logit, identity). However, there are exceptions, like the log
link function. The modified log link function [29, eq 12], employed in Example 4,
provides a viable alternative to avoid the problem.

Remark 1 Consider equation (14) with ḡ(μt) = E[h(Yt)|Ft−1] and scaling se-
quence νt = σ(μt) =

√
V[h(Yt) |Ft−1 ], i.e.

g(μt) = α+ γ g(μt−1) + φh(Yt−1) + θεt, (15)

where εt, as in equation (3), is a white noise with unit variance. Under the
conditions of the following corollary, the scaling sequence does not affect the
stationarity conditions.

Corollary 1 Let νt = σ(μt). Theorem 1 still holds true by replacing (14) with
(15) if the function σ(·) is:

1. increasing for μt ∈ R
+ and decreasing for μt ∈ R

−;
2. increasing for μt ∈ R

+;
3. monotone with respect to μt;

depending on the domain of μt.

Corollary 1 follows from Theorem 1 in a way that is non-straightforward to
prove; an outline of the proof is thus reported in the Appendix. Subsequent
corollaries will come without proof. The conditions on νt are, in general, widely
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satisfied. For example, if Yt belongs to the exponential family in (4), σ2(μ) =
A′′(Xt) = (g−1)′(g(μ)) where g is increasing by assumption, whereas σ2(μ) is
increasing since (g−1)′ is increasing; this holds as long as g is concave (g−1 is
convex) which is true for μ > 0. By contrast, σ2(μ) is decreasing if (g−1)′ is
decreasing which happens when g is convex: this is the case of μ < 0, which is
what was required.

Remark 2 It is worth noting that Assumption (A3) guarantees the existence
of the rth moment of all link functions (h, g, ḡ) provided that E|Yt|r < ∞,
for some integer r. Indeed, if Yt ∈ R, then μt ∈ R (Case 1 ) and, since h is
monotone increasing, concave in R

+ and convex in R
−, it is not hard to show

that |h(y)| ≤ a0+a1|y| for all y ∈ R and for some non-negative constants a0, a1.
Analogous inequalities hold for generic integers r > 1, by the binomial theorem.
Further details can be found in the Proof of Lemma 2 reported in the Appendix.
The same arguments apply to g, since |g(μ)| ≤ a0 + a1|μ|, for all μ ∈ R, which
follows by E|μt|r ≤ E|Yt|r. For the function ḡ(μt) = E[h(Yt)|Ft−1], one has that
E|ḡ(μt)|r ≤ E|h(Yt)|r. When Yt ∈ R

+ (Case 2 ), the same conclusions follow.
Finally, when Yt ∈ (0, a), for a > 0 (Case 3 ), the random variables are bounded.

3.2. Stochastic properties for relevant encompassed models

The results obtained in the previous section can be applied to specific models
belonging to the unified framework (14) or (15), and in particular to the first
order version of the novel models introduced in Section 2.2. We also specifically
derive the stochastic properties of the related models discussed in Section 2.1,
since for some of them the stochastic properties have not been fully addressed
in the literature. Consider the one lag model (14).

As a proof of coherence in our findings, it is worth noting that, when γ = 0
and g ≡ h ≡ ḡ, Theorem 1 reduces to Theorem 5 in [29], providing results for
the first order GARMA model

g(μt) = α+ φ g(Y ∗
t−1) + θ

[
g(Y ∗

t−1)− g(μt−1)
]
. (16)

Now we derive the stochastic properties for the first order BARMA model (11),
such as

g(μt) = α+ φYt−1 + θ (Yt−1 − μt−1) . (17)

Corollary 2 Suppose that, conditional on Ft−1, Yt is Bin(n, μt) with fixed
number of trials n, link function g : (0, a) 
→ R is bijective and increasing, g−1

is Lipschitz with constant not greater than 1 and |θ| < 1. Then the process
{μt}t∈T defined in (17) has a unique stationary distribution. Hence, the process
{Yt}t∈T is strictly stationary and ergodic.

Note that for Binomial distribution (A1)-(A2) hold. Here, the conditions (A3)
and (A5) on g and g−1 are clearly satisfied for usual link functions, like the
logit.
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To the best of our knowledge, no results are available for strict stationarity
in the GLARMA model, apart from the simplest case when k = 0, q = 1 [9, 17].
Define the GLARMA(1,1) model as

g(μt) = α+ γ g(μt−1) + θεt. (18)

Corollary 3 Suppose that {Yt}t∈T is distributed according to (1). The process
{μt}t∈T in (18) has a unique stationary distribution and {Yt}t∈T is strictly
stationary and ergodic, if (A2) holds and

1. g is bijective and increasing, and

(a) g : R 
→ R concave on R
+ and convex on R

−, |γ| < 1;
(b) g : R+ 
→ R concave on R

+, |γ|+ |θ| < 1;
(c) g : (0, a) 
→ R, |γ|+ |θ| < 1.

2. g−1 is Lipschitz with constant not greater than 1.

In the GLARMA model, the conditional distribution of {Yt}t∈T is part of the
exponential family, then (A1) holds true. Instead, (A3) and (A5) reduce to con-
ditions 1 and 2, which clearly are widely satisfied for the usual link functions. In
practical applications, the condition on the coefficients of the model is required
to establish its stationarity.

The proof of stationarity for the one lag M-GARMA model from (6) given in
[44] only holds for continuous variables. We generalize the result by deriving the
conditions for stationarity also for the case of discrete variables. They are shown
to be equivalent to those available for the GARMA model. This is reasonable
since the former is a special case of the latter. We now move to strict-stationarity
and ergodicity results for some of the novel models presented in Section 2.2.

We discuss the result for model (8), with no covariates and p = k = 1.
Note that the components of the model are all non-negative, ḡ is not present,
and θ = 0. Indeed, conditions (A3)1.(b) and (A3)2.(b) in Theorem 1 coincide,
providing the following conclusion.

Corollary 4 Suppose that, conditional on Ft−1, Yt is Pois(μt) and γ + φ < 1.
Then the process {μt}t∈T defined in (8) has a unique stationary distribution.
Hence, the process {Yt}t∈T is strictly stationary and ergodic.

These results are not new in the literature [20, 16].

Corollary 5 Suppose that {Yt}t∈T is distributed as in (1), g̃(x) is Lipschitz
with constant L ≤ 1, (A2), (A4) hold and |γ| + (|φ| ∨ |θ|) < 1. Then the
process {μt}t∈T defined in (12), with k = p = q = 1, has a unique stationary
distribution. Hence, the process {Yt}t∈T is strictly stationary and ergodic.

Assumption (A1) is met for the distribution (1). The condition (A3) on the
shape of the link function holds here, as g(μ) = log(μ). However, the Lipschitz
continuity on g̃(·) and the condition (A4) are required since g−1(·) does not
satisfy (A5). Note that the stationarity and ergodicity for the model (9), with
no covariates and p = k = 1, are established as a special case of Corollary 5,
with q = θ = 0.
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Corollary 6 Suppose that {Yt}t∈T is distributed as Bin(n, μt) with fixed num-
ber of trials n, g̃(x) is Lipschitz with constant L ≤ 1 and |γ|+ |θ| < 1. Then the
process {μt}t∈T defined in (13), with k = p = q = 1, has a unique stationary
distribution. Hence, the process {Yt}t∈T is strictly stationary and ergodic.

For Binomial distributions (A1)-(A2) hold and the conditions (A3) and (A5) are
satisfied for the logit link function. For space constraints, we do not show other
examples. However, based on the theoretical results developed for this flexible
framework, stationarity and ergodicity can be directly established for a wide
class of models under several discrete distributions.

For a better readability we have summarized, in Table 1, the stationarity
and ergodicity conditions found in this section concerning parameters of already
existing models, so as to allow the current results obtained by Theorem 1 to be
compared with the ones previously available in the literature. The last column
reports the papers where the previous conditions were established. For the log-
AR model the conditions determined by [14] are different and less restrictive
than ours. This is because the authors employed a different approach. However,
when the coefficients are positive the two conditions are equivalent. All the
other results found in the current contribution are new or equal the ones already
existing in the literature.

Table 1

Stationarity and ergodicity conditions for the parameters of models presented in Section 2.1.

Models Condition Count Binomial Work

GARMA
Previous |φ| ∨ |θ| < 1 |θ| < 1 [29]
Current |φ| ∨ |θ| < 1 |θ| < 1

M-GARMA
Previous − −
Current |φ| ∨ |θ| < 1 |θ| < 1

BARMA
Previous |θ| < 1∗ [27]
Current |θ| < 1

GLARMA
Previous − −
Current |γ|+ |θ| < 1 |γ|+ |θ| < 1

AR
Previous γ + φ < 1 [16]
Current γ + φ < 1

log-AR
Previous |γ + φ| ∨ |γ| ∨ |φ| < 1 [14]
Current |γ|+ |φ| < 1

Note: − not available. ∗ without proof.

4. Quasi-maximum likelihood inference

The aim of this section is to establish the asymptotic theory of the quasi max-
imum likelihood estimator of the parameter ρ = (α, γ, φ, θ). More precisely we
develop asymptotic results in the three following cases: (i) misspecified MLE:
misspecification occurs in the distribution (1) and/or in the model (2), and (ii)
QMLE: misspecification occurs in the distribution (1), (iii) correctly specified
MLE. Specifically, strong consistency is derived in the three cases; asymptotic
normality is derived for the QMLE and the MLE. Finite sample properties are
explored through an extensive simulation study, as well as the performance of
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information criteria for model selection. Tables including detailed and numerical
results are postponed to the Appendix.

4.1. Asymptotic properties

Assume that the variables in the process {Yn}n∈Z
are integer-valued. Let (Λ, d)

be a compact metric set of parameters, with suitable metric d(·), and consider

α̃, δ̃ ∈ R
+. Then, Λ =

{
ρ = (α, γ, φ, θ) ∈ R

4 : |α| ≤ α̃, |δ| = |φ+ θ| ≤ δ̃
}

is the

parameter set. We make explicit the dependence of the conditional distribution
(1) from the mean process by using the notation q(yt|Ft−1) = q(Xt; yt). Let
gρ〈Y−∞:t〉 be a stationary ergodic random process, not necessarily equal to the
process Xt = g(μt) in (14),

gρ〈Y−∞:t〉 = α+γgρ〈Y−∞:t−1〉+φh(Yt−1)+θ[h(Yt−1)− g̃(gρ〈Y−∞:t−1〉)] , (19)

and its sample counterpart is denoted by gρ〈y1:t−1〉(x), where x is the starting
value of the chain gρ〈·〉. The notation gρ〈ys:t〉(x) = gρyt

◦gρyt−1
◦ · · ·◦gρys

(x), s ≤ t
is the so-called Iterated Random Function (IRF), see [13], with

gρy1
(x) = α+ γx+ φh(y0) + θ[h(y0)− g̃(x)] . (20)

It is worth noting that in the special case of a correctly specified model, X0 =
gρ〈Y−∞:0〉 and equation (19) reduces exactly to the process in equation (14).
Let us define the log-likelihood function as follows:

Lρ
n,x〈Y1:n〉 := n−1 log

(
n∏

t=1

q(gρ〈Y1:t−1〉(x);Yt)

)
,

whose associated maximum likelihood estimator is

ρ̂n,x = argmax
ρ∈Λ

Lρ
n,x〈Y1:n〉 . (21)

We specify the following assumptions:

(H1) E[log |A′(gρ〈Y−∞:0〉)|]+ < ∞, E[log |f ′(gρ〈Y−∞:0〉)|]+ < ∞, E|Y0| < ∞,
(H2) E[A′(gρ〈Y−∞:0〉)4] < ∞, E[f ′(gρ〈Y−∞:0〉)4] < ∞,

E[A′′(gρ〈Y−∞:0〉)4] < ∞, E[f ′′(gρ〈Y−∞:0〉)4] < ∞, E(Y 4
0 ) < ∞,

which are mild conditions for the existence of moments, in general immediate to
verify; see the related section A.8 in the Appendix for some relevant examples.

Firstly, consistency for the misspecified MLE is proven, then the other two
ML estimators are derived as special cases of it.

Theorem 2 Suppose Theorem 1 and (H1) hold. Then, limn→∞ d(ρ̂n,x,P�) = 0,
a.s., ∀x ∈ S, with P� := argmaxρ∈Λ E {Y0 f [g

ρ〈Y−∞:0〉]−A[gρ〈Y−∞:0〉] + d(Y0)}.
Here, the almost sure limit is taken under the stationary distribution of {Yt}t∈T .
The proof is in the Appendix. Now the special case of correctly specified MLE
is treated. Let us denote Λ0 as the interior of the set Λ.
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Theorem 3 Assume that {Yn}n∈Z
is distributed according to (1) and satisfies

the recursion (14), with parameters ρ� ∈ Λ0. Moreover, assume that Theorem
2 holds. Then, for all x ∈ S, limn→∞ ρ̂n,x = ρ�, a.s.

We need to show that P� = {ρ�}. The proof is postponed to the Appendix. The
asymptotic consistency of QMLE is now established.

Corollary 7 Assume that {Yn}n∈Z
satisfies the recursion (14), with parameters

ρ� ∈ Λ0 and μ = A′(x�). Moreover, assume that Theorem 2 holds. Then, for all
x ∈ S,

lim
n→∞

ρ̂n,x = ρ�, a.s. (22)

where {x�} is the maximum of the function
∫
P (x�, dy) log q(x, y).

In practice, μ = A′(x�) states that the mean function has to be correctly spec-
ified regardless the true data generating process. The proof is analogous to
Theorem 3 and follows directly by Theorem 4.1 and [15, Thr 4.1]. Finally, we
investigate the conditions under which the QMLE (22) is asymptotically nor-
mally distributed for the model (14).

Theorem 4 Assume that Corollary 7 and (H2) hold. Moreover, assume that

J (ρ�) is non-singular. Then,
√
n(ρ̂n,x − ρ�)

D
=⇒ N(0,J (ρ�)

−1I(ρ�)J (ρ�)
−1),

where

I(ρ�) := E

[
(∇ρg

ρ�〈Y−∞:0〉) (∇ρg
ρ�〈Y−∞:0〉)′

(
∂

∂x
log q (gρ�〈Y−∞:0〉, Y1)

)2
]
,

J (ρ�) := E

[
(∇ρg

ρ�〈Y−∞:0〉) (∇ρg
ρ�〈Y−∞:0〉)′

∂2

∂x2
log q (gρ�〈Y−∞:0〉, Y1)

]
.

The proof relies on the argument of [15, Thr 4.2] and follows the fashion and the
notation used in the proof of Theorem 2, thus it is postponed to the Appendix. It
goes without saying that for correctly specified MLE, equation (21) is the exact
MLE and J (ρ�) = I(ρ�) in Theorem 4, providing the standard ML inference.

4.2. Finite sample properties

Finite sample properties of MLE and QMLE are explored through a simulation
study which considers some models illustrated in Section 2.1. Tables including
the details of the numerical results are stored in Section B of the Appendix.
All the results are based on s = 1, 000 replications, with different configurations
of the parameters and increasing sample size n = (200, 500, 1, 000). A correctly
specified MLE has been estimated on data coming from Bernoulli or Poisson dis-
tributions, across several models. For QMLE, data are generated from a Geomet-
ric distribution, with Poisson distribution fitted instead, for GARMA and log-
AR models. For Poisson and Geometric data, the log-link is employed g(μt) =
log(μt); instead, for the Bernoulli one, the logit g(μt) = log(μt)/ log(1 − μt) is
specified. For all the models involved, the mean of the estimators approaches
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the true value, for both the well-specified MLE and QMLE. Some convergence
problems arise for the BARMA model, but the standard error and the bias still
tend to reduce by increasing n; this gives evidence of convergence, although at
a slower rate. Turning to asymptotic normality, evidence of normality emerges
from the Kolmogorov-Smirnov (KS) test, even when the sample size is small.
The outcomes are in line with those of [15]. These results are coherent with the
theory presented so far.

In summary, Table A-1 in the Appendix reports the estimation results for
the GLARMA model when the data come from a Bernoulli distribution. The
estimates tend to be closer to the true value of the parameters as the sample size
increases, which confirms the consistency of the estimators. Consequently, the
bias is also reduced. Moreover, the estimates are significant at the usual levels
and the true value of the parameters falls into the confidence intervals. The KS
tests do not reject the normality of the estimators even with a small sample size.
The same comments hold true for all the combinations of parameters employed.
Similar results are obtained in Tables A-2 and A-3 which show the outcome
of simulations for the GARMA and log-AR models, respectively, performed on
data generated from the Geometric distribution in (10), but with Poisson distri-
bution fitted instead (QMLE). The GARMA model seems to be more accurate
on the approximation of the true values but some problems with the KS test are
found when a non-stationary region for the parameters ρ = (0.5, 0.4, 1.2) is in-
vestigated. Instead, the log-AR model could not be estimated in non-stationary
regions of the parameters.

4.3. Model selection

A crucial aspect in empirical applications is model selection. In likelihood infer-
ence, model selection is typically carried out based on information criteria such
as Akaike information criterion (AIC) and Bayesian information criterion (BIC).
To assess the effectiveness of AIC and BIC for selecting the most appropriate
model for the data at hand, we carry out an extensive simulation study with
competing one lag models log-AR, GARMA, and GLARMA for Poisson data.
The last two are also computed, together with the BARMA model, for Binomial
data. In extreme synthesis, when the sample size n is small, the selection for
some models can perform poorly, but when n is sufficiently large (n ≥ 500),
all the models allow the selection of the right data generating model with high
probability.

We simulate the first order log-AR, GARMA, and GLARMA models for
Yt|Ft−1 distributed according to a Pois(μt), with (α, φ, θ, γ) = (0.2, 0.4, 0.2, 0.3),
number of repetitions S = 1, 000 and sample sizes n = (250, 500, 1, 000). The
same is done by generating data from the first order BARMA, GARMA and
GLARMA models, with Bin(5, pt), pt = μt/a and g(μt) = log(μt)/ log(a− μt).
For the GARMA model, g(y�t ) = log(y�t )/ log(1−y�t ), y

�
t = min(max(yt, c), 5−c)

and c = 0.1, whereas, in the GLARMA model, st =
√

5pt(1− pt). For each
distribution, we generate S times a vector of data with length n from one model,
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Table 2

Frequency (%) of correct selection for AIC.

Binomial Poisson
n BARMA GARMA GLARMA log-AR GARMA GLARMA
200 62.3 97.2 60.0 53.6 99.2 95.1
500 74.4 99.7 58.0 70.5 99.9 99.4
1000 83.8 100 81.0 85.6 100 100

Fig 1. Top-left: Escherichia coli counts. Top-right: ACF. Bottom-left: mc plot for log-AR
model. Bottom-right: mc plot for GLARMA model. Dashed line is Poisson. Black line is NB.

then the data generated are employed in the estimation of all the three models.
The Akaike and the Bayesian information criteria are computed for each model.
Finally, the frequency of correct selection over the S repetitions is established,
counting the percentage of the number of times the information criteria selected
the model truly employed to generate the data. The same procedure is replicated
for all the models. The results for the AIC are summarized in Table 2 (results
for the BIC are identical).

For the Poisson distribution, the results are excellent in the GARMA and
the GLARMA models. The log-AR seems to show a slower convergence towards
the right model, but it reaches a satisfactory result with increasing n. The same
holds, in the case of Binomial data, for the BARMA and GLARMA models.
Finally, the GARMA model also works very well for the Binomial distribution.
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5. Application on disease cases of Escherichia coli in North
Rhine-Westphalia

We consider a test-bed time series, i.e. the weekly number of reported disease
cases caused by Escherichia coli in the state of North Rhine-Westphalia (Ger-
many) from January 2001 to May 2013. The data can be found in the R package
tscount [28]. The time series has a time length n = 646 and is plotted in Figure
1, with its sample autocorrelation function (ACF). There is a temporal correla-
tion which spreads over several lags with a greater magnitude compared to the
data set in the previous example. The slow decay of the ACF suggests the use
of a feedback mechanism.

For the data generating process we assume both the Poisson and the Negative
Binomial (NB) distribution in equation (10), where ν > 0 is the dispersion
parameter and μt is the conditional expectation. Indeed, equation (10) is defined
in terms of mean rather than of the probability parameter pt = ν

ν+μt
and it

accounts for overdispersion in the data as V(Yt|Ft−1) = μt (1 + μt/ν) ≥ μt. We
fit the following models

log-AR: log(μt) = α+ φ log(yt−1 + 1) + γ log(μt−1) ,
GARMA: log(μt) = α+ φ log(y�t−1) + θ

[
log(y�t−1)− log(μt−1)

]
,

GLARMA: log(μt) = α+ γ log(μt−1) + θεt ,

where y�t = max {yt, c} with c = 0.1, and εt = (yt−1 − μt−1)st−1. Different
values of 0 < c < 1 do not affect the estimates; while st is the square root
of the conditional variance st =

√
μt for the Poisson distribution and st =√

μt (1 + μt/ν) for the NB. In this likelihood-based framework, model selection
is based on information criteria, such as AIC and BIC. The Quasi Information
Criterion (QIC) introduced by [32] is also employed. It is a generalization of the
AIC which takes into account the usage of a working quasi-likelihood instead of
the true likelihood. QIC coincides with AIC in the case of well-specified models.
QMLE has been carried out. The log-likelihood function of the Poisson and
NB distributions is maximized by using a standard optimizer in R based on
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. The score functions
written in terms of predictor xt = logμt are:

χn(ρ) =
1

n

n∑
t=1

(
yt − expxt(ρ)

)∂xt(ρ)

∂ρ

χn(ρ) =
1

n

n∑
t=1

(
yt −

(yt + ν) expxt(ρ)

expxt(ρ) + ν

)
∂xt(ρ)

∂ρ
.

The solution of non-linear equation system χn(ρ) = 0, if it exists, provides the
QMLE of ρ (denoted by ρ̂). In NB models, estimation of ν is also required. The
moment estimator proposed in [6] is used:

ν̂ =

(
1

n

n∑
t=1

(yt − μ̂t)
2 − μ̂t

μ̂2
t

)−1

(23)
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where μ̂t = μt(ρ̂) is the estimator from the Poisson model. Then, with ν = ν̂
we estimate the NB model and obtain the new estimates for μ̂t, plug them into
(23), obtain a new value for ν̂, and repeat the procedure until a certain toler-
ance value is reached. The standard errors are computed from the “sandwich”
estimators in Theorem 4; each quantity has been replaced by its sample coun-
terpart. The results of the analysis are summarized in Table 3. For Log-AR,
GARMA and GLARMA the whole set of parameters is significant at the 5%
levels. The parameter ν̂ is generally around 10. All the information criteria se-
lect the NB GLARMA model as the best, in a goodness-of-fit sense. We then
assess the adequacy of the fit.

Table 3

MLE results for Escherichia coli infection.

Models α̂ φ̂ γ̂ θ̂ ν̂ AIC BIC QIC

Pois log-AR
0.441 0.437 0.416 -

- 13.115 26.527 27.043
(0.087) (0.062) (0.078) -

Pois GARMA
0.535 0.829 - -0.418

- 13.134 26.546 27.371
(0.095) (0.031) - (0.079)

Pois GLARMA
0.445 - 0.851 0.085

- 12.954 26.366 26.639
(0.098) - (0.033) (0.013)

NB log-AR
0.546 0.400 0.419 -

10.030 12.633 26.045 12.432
(0.102) (0.05) (0.073) -

NB GARMA
0.640 0.794 - -0.420

9.865 12.641 26.053 12.576
(0.111) (0.036) - (0.074)

NB GLARMA
0.483 - 0.839 0.142

10.892 12.578 25.990 12.114
(0.110) - (0.036) (0.019)

The adequacy of the fit has been checked through the behaviour of the stan-
dardized Pearson residuals et = [Yt − E(Yt|Ft−1)] /

√
V(Yt|Ft−1), which is done

by taking the empirical version êt from the estimated quantities. If the model is
correctly specified, the residuals should be white noise sequences with constant
variance. This can be seen from the ACF, which in our case appears uncorre-
lated. [8] introduced a non-randomized version of Probability Integral Transform
(PIT) for discrete data. It can be built based on the conditional cumulative dis-
tribution function

F (u|yt) =

⎧⎪⎨
⎪⎩
0, u ≤ Pt(yt − 1)

u−Pt(yt−1)
Pt(yt)−Pt(yt−1) , Pt(yt) ≤ u ≤ Pt(yt − 1)

1, u ≥ Pt(yt)

(24)

where Pt(·) is the cumulative distribution function (CDF) at time t (in our case
Poisson or NB). If the model is correct, u ∼ Uniform(0, 1) and the PIT (24)
will appear to be the cumulative distribution function of a Uniform(0, 1). The
PIT (24) is computed for each realization of the time series yt, t = 1 . . . , n and
for values u = j/J, j = 1, . . . , J , where J is the number of bins (usually equal to
10 or 20); then its mean F̄ (j/J) = 1/n

∑n
t=1 F (j/J |yt) is taken. The outcomes

are probability mass functions, obtained in terms of differences F̄ ( j
J )− F̄ ( j−1

J );
Figure 2 is a representative plot. The NB seems to be more appropriate for
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Fig 2. PIT’s for Escherichia coli counts. Top: Poisson. Bottom: NB.

the data as its PIT’s are quite near to Uniform(0, 1). Another control can be
performed by using the probability and marginal calibration (mc), as defined in
[24]. It compares the average of CDF selected, P̄ (x) = 1/n

∑n
t=1 Pt(x), against

the average of the empirical CDF, Ḡ(x) = 1/n
∑n

t=1 1(yt ≤ x). The mc is
plotted in Figure 1 for the log-AR and GLARMA models. In the other models
the results are similar. Both distributions seem to show a good concordance with
empirical distribution but the NB appears to perform better than the Poisson,
especially for the larger quantiles.

In order to assess the predictive power, we refer to the concept of sharp-
ness of the predictive distribution defined in [24]. It can be measured by some
average quantities related to the predictive distribution, which takes the form
1/n
∑n

t=1 d(Pt(yt)), and d(·) is a scoring rule. We adopt the usual scoring rules
employed in the literature: the logarithmic score (logs) − log pt(yt), where pt(·)
is the probability mass at the time t; the quadratic score (qs) −2pt(yt) + ‖p‖2,
where ‖p‖2 =

∑∞
k=0 p

2
t (k); the spherical score (sphs) −pt(yt)/‖p‖ and the ranked

probability score (rps)
∑∞

k=0[Pt(k) − 1(yt ≤ k)]. Numerical results for each
model are collected in Table 4. The NB GLARMA model provides the best
predictive performance for all the scoring rules analysed, and it is ultimately
chosen, since it has been also selected by the information criteria.

6. Discussion

We developed statistical inference for a first order class of models for discrete
time series which encompasses known models as well as new models of poten-
tial interest for the analysis of integer-valued time series. Stability conditions
have been derived for the models in the class and a large family of probability
distributions satisfying mild moment conditions. Consistency and asymptotic
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Table 4

Predictive performance for Escherichia coli infection.

Models Distribution logs qs sphs rps

log-AR
Poisson 3.5662 -0.0408 -0.2073 3.8480
NB 3.3245 -0.0442 -0.2110 3.7960

GARMA
Poisson 3.5759 -0.0406 -0.2071 3.8591
NB 3.3286 -0.0440 -0.2107 3.8105

GLARMA
Poisson 3.4859 -0.0420 -0.2097 3.7347
NB 3.2971 -0.0449 -0.2127 3.6801

normality of the quasi maximum likelihood estimators have been also estab-
lished, with the focus on the exponential family. The results about stochastic
and inferential properties make any model belonging to the class fully applicable
in practice.

An interesting extension of the present study may concern suitable specifica-
tions for multinomial data. Indeed, equation (1) describes an exponential family
dealing only with one time-varying parameter μt. However, there are cases where
several dynamic parameters characterize the distribution. Concerning discrete-
valued data, this is the case of categorical random variables. An extension of the
general framework to several parameters in the context of exponential families
may be considered following the results on multinomial logistic models in [23],
where exogenous covariates are also considered.

Another extension of potential interest may be the specification of multivari-
ate discrete models. Recently, [21] established the multivariate discrete-valued
extension of the (mixed) Poisson autoregression models (8)-(9). In line with such
developments, the extension to a multivariate setting may represent a challeng-
ing research advance, though complications may arise at the modelling and at
the inferential stage. For instance, as far as the stochastic properties are con-
cerned, the coupling condition employed in this paper to show stationarity and
ergodicity of the model (Lemma 4 in the Appendix) does not apply to multi-
variate processes. A possible direction to solve the problem may be based on the
perturbation approach, as described by [21, Sec. 3.1-3.2]. In addition, the choice
of a suitable multivariate version of the discrete probability mass function is non-
trivial. Although several alternatives have been proposed in the literature, see
the recent review in [19, Sec. 2], the choice of a suitable multivariate version of
the discrete probability mass function remains a challenging problem. As a mat-
ter of fact, multivariate discrete probability mass functions have a complicated
closed form and the associated likelihood inference is both theoretically and
computationally cumbersome. Furthermore, in many cases, multivariate proba-
bility mass functions imply restricted models, of limited use in applications: see
the discussion in [26] and [10]. A viable alternative may be the specification of
joint distribution of the integer vector {Yt} by a copula approach, as described
in [21, Sec. 2].

Along the lines traced in this discussion, we expect the specification of the
broad class of models will provide useful enhancements to study the dynamic
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trend of count and binary data.

Appendix A: Main proofs

A.1. Preliminary Lemmata for the Proof of Theorem 1

The proof of Theorem 1 is based on the following preliminary lemmata, stated
with the same notation as the theorem. First, a small set (Lemma 1) and a drift
condition are proved on the Markov chain Xt = g(μt) (Lemma 2); after that, the
weak Feller property is established for the chain (Lemma 3), which proves the
existence of a stationary distribution for {Xt}t∈T . Then, the asymptotic strong
Feller condition is verified (Lemma 4). Finally, the existence of a reachable point
is shown (Lemma 5) and, by combining all these results, the uniqueness of the
stationary distribution of the chain is proven. For definitions and properties
invoked in the lemmata, see [2, pg. 54-55].

Let Ex(·) denote the expectation under the probability Px(·) induced on the
path space of the chain {Xt}t∈T when the initial state X0 is deterministically
equal to x. Consider the following drift condition ∀x ∈ S:

ExV (X1) ≤ ηV (x) + b1{x∈A} (A-1)

where η ∈ (0, 1), b > 0, V : S → [1,∞) and A ⊂ S. We first prove that it is
possible to select a set A which is small.

Lemma 1 Define a set A = [−M,M ] ⊂ S, for some constant M > 0. Under
assumptions (A1)-(A3), for the chain {Xt}t∈T , A is small.

Proof Note that for any x ∈ A, Px(Y0 ∈ [a1(M), a2(M)]) > 3/4 where

a1(M) = g−1(−M)− [4(l1 max{|g−1(−M)|, |g−1(M)|}r + l2)]
1/(2+δ) ,

a2(M) = g−1(M)− [4(l1 max{|g−1(−M)|, |g−1(M)|}r + l2)]
1/(2+δ) .

Given X0 = x and μ0 = μ = g−1(x), we can write ḡ(μ) = ḡ(g−1(x)) =
(ḡ ◦ g−1)(x) = g̃(x) where the composite function g̃ is still monotonic (and
invertible), as a composition of monotonic functions. Then, with probability
at least 3/4, X1 ≥ min{b(a1(M)), b(a2(M))} − |γ|M − |θ||g̃(M)| and X1 ≤
min{b(a1(M)), b(a2(M))} + |γ|M + |θ||g̃(M)|, where b(a) = α + (φ + θ)h(a∗)
and a∗ is the operator ∗ applied to a. This shows that A is a small set, by
(A1)-(A3), in the fashion of [29, p. 812]. We omit the details. �
Lemma 2 Under assumptions (A1)-(A3), the chain {Xt}t∈T satisfies the drift
condition (A-1).

Proof Consider the small set A in Lemma 1. We shall consider two states,
x > M and x < −M , each one, in turn, facing three different cases, according
to the domain of the mean parameter μt, as described in Section 3.1. Set A as
defined in Lemma 1. Take V (x) = |x|. We only prove the case where x > M
and the mean process μt ∈ R (Case 1 ), as the other cases can be dealt with



1416 M. Armillotta et al.

in a similar manner. The interested reader can find full detailed proofs in [2,
pg. 55-59].

We assume, without loss of generality, that h(0) = 0, since replacing h(y)
with h(y)− h(0) simply changes the value of α. In this case, we assume that h
is concave on R

+ and convex on R
−, so that there are constants a0, a1 ≥ 0 such

that |h(y)| ≤ a0 + a1|y| for all y; the same assumptions hold for g. Consider

ExV (X1) ≤ |α|+ |γ|Ex|x|+ |φ|Ex|h(Y0)|+ |θ|Ex|h(Y0)− ḡ(μ)|. (A-2)

From equation (A-2), we need to show that

Ex|h(Y0)| ≤ x+ C . (A-3)

When h(μ) ≤ g(μ), this holds from a result in [29, Sec. A.7,] by replacing
g(·) by h(·). Instead, when h(μ) > g(μ), the result is unchanged by applying the
following inequality h(μ) = g(μ+δ) ≤ g(μ)+g(δ), where δ > 0, for the concavity
of the functions involved in the same domain. Next, we show that the term
Ex|h(Y0) − ḡ(μ)| in (A-2) is “small” relative to the linear term x. Specifically,
we prove that there are some constants C1, C2 such that Ex|h(Y0) − ḡ(μ)| ≤
C1x

r/(2+δ) + C2 for all x large enough. Since h(0) = 0 and h is monotonic
increasing, for x > M , by [29, eq. 23,],

Ex|h(Y0)− ḡ(μ)| = Ex|h(Y01Y0>0)− ḡ(μ) + h(Y01Y0<0)|
≤ Ex|h(Y01Y0>0)− ḡ(μ)|+ C.

Using the Markov inequality stated in [29, eq. 14], for any fixed ε ∈ (0, 1) and
x > M ,

Ex[|h(Y01Y0>0)− ḡ(μ)|1Y0≤(1−ε)μ] (A-4)

≤ Ex|ḡ(μ)1Y0≤(1−ε)μ|+ Ex|h(Y010<Y0≤(1−ε)μ)|
≤ ḡ(μ)Px(Y0 ≤ (1− ε)μ) + Ex[h(μ)1Y0≤(1−ε)μ)|

≤ ḡ(μ)(C1μ
r + C2)

ε2+δμ2+δ
+

h(μ)(C1μ
r + C2)

ε2+δμ2+δ
. (A-5)

If ḡ ≡ h 	= g, equation (A-5) reduces to Ch(μ)/μ2+δ−r . Recall that for y > 0,
a0 + a1y ≥ h(y), so that a0 + a1μ ≥ h(μ). Hence, μ ≥ (h(μ) − a0)/a1 and
(A-4) is bounded by: Ch(μ)/[h(μ)− a0]

2+δ−r = Ch̃(x)/[h̃(x)− a0]
2+δ−r which

converges to 0 as x → ∞. (h̃(·) = h(g−1(·)) = (h ◦ g−1)(·) is an increas-
ing function, since it is a composition of increasing functions, and is there-
fore bounded by a constant, for x > M . If ḡ(μt) = E[h(Yt)|Ft−1], it can
be showed that ḡ(μ) = Ex[h(Y0)]. As σ(X0) ⊆ F−1, for the tower property
Ex[h(Y0)] = E[h(Y0)|X0] = E[E[h(Y0)|F−1]|X0] = E[ḡ(μ)|x] = ḡ(μ). Moreover,
we notice that ḡ(μ) = Ex[h(Y0)] ≤ h[Ex(Y0)] = h(μ). Consequently, the above
bound applies here. If ḡ ≡ g 	= h we define (A-5) as g(μ)(C1μ

r+C2)/ε
2+δμ2+δ+

h(μ)(C1μ
r +C2)/ε

2+δμ2+δ = Cx/μ2+δ−r+Ch(μ)/μ2+δ−r and it is bounded by
Cx/[x−a0]

2+δ−r+Ch(μ)/[h(μ)−a0]
2+δ−r = Cx/[x−a0]

2+δ−r+Ch̃(x)/[h̃(x)−
a0]

2+δ−r, which converges to 0 as x → ∞. It only remains to show that

Ex|h(Y01Y0>0)− ḡ(μ)|1Y0>(1−ε)μ = Ex|h(Y0)− ḡ(μ)|1Y0>(1−ε)μ (A-6)
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is “small”. When ḡ ≡ h, this is straightforward by replacing g(·) by h(·) in [29, p.
826], establishing the existence of constants C1, C2, such that Ex|h(Y0)−ḡ(μ)| ≤
C1x

r/(2+δ) + C2, for all x large enough. For ḡ(μ) = Ex[h(Y0)], the expectation
(A-6) is bounded by Ex|h(Y0)|1Y0>(1−ε)μ+Ex|ḡ(μ)|1Y0>(1−ε)μ ≤ 2ḡ(μ) ≤ 2h(μ)

which is itself bounded by 2a0 + 2a1μ ≤ C2 + C1Ex|Y0| ≤ C2 + C1μ
r/(2+δ) ≤

C2 + C1x
r/(2+δ), for the concavity of h(·), for μ > 0 when x > M , [29, p. 824],

since μ ≤ x/[b1(x)(1− ε)] by equation (A-1) where b1(x) is bounded for x > M .
Then, Ex|h(Y0)− ḡ(μ)| ≤ C1x

r/(2+δ)+C2, also for ḡ(μ) = Ex[h(Y0)]. Combining
this result with (A-2) and (A-3), we have that, for all x enough large,

ExV (X1) ≤ C2 + |φ|x+ |θ|C1x
r/(2+δ) + |γ|x ≤ C + (|φ|+ |γ|+ ε)x;

this gives the final result. For any ε ∈ (0, 1) there is some constant G3 < ∞
such that for M large enough, ExV (X1) ≤ (|φ|+ |γ|+ ε)V (x) +G3.

When x < −M and μt ∈ R, the previous proof holds directly by symmetry.
In the other cases, according to the states discussed above, similar conditions
are found; for convenience the results organized according to the domain of x
and μt are reported below.

• For all x ∈ A, (Cases 1-3 ) There is some constant G(M) < ∞ such that
ExV (X1) ≤ G(M).

• For all x > M ,

– (Cases 1-2 ) For any ε ∈ (0, 1) there is some constant G3 < ∞ such
that for M large enough, ExV (X1) ≤ (|φ|+ |γ|+ ε)V (x) +G3.

– (Case 3 )

∗ If ḡ(μ) 	= g(μ) and ḡ(μ) = Ex[h(Y
∗
0 )] or ḡ ≡ h, there is some

constant U3 < ∞ such that ExV (X1) ≤ |γ|V (x) + U3 for all
x > M .

∗ If ḡ(μ) = g(μ), there is some constant W3 < ∞ such that
ExV (X1) ≤ |γ − θ|V (x) +W3 for all x > M .

• For all x < −M ,

– (Case 1 ) For any ε ∈ (0, 1) there is some constant G2 < ∞ such that
for M large enough, ExV (X1) ≤ (|φ|+ |γ|+ ε)V (x) +G2.

– (Cases 2-3 )

∗ If ḡ(μ) 	= g(μ) and ḡ(μ) = Ex[h(Y
∗
0 )] or ḡ ≡ h, there is some

constant U2 < ∞ such that ExV (X1) ≤ |γ|V (x) + U2 for all
x < −M .

∗ If ḡ(μ) = g(μ), there is some constant W2 < ∞ such that
ExV (X1) ≤ |γ − θ|V (x) +W2 for all x < −M .

These conditions can be combined to find the overall drift condition for all
x ∈ R, as follows. Consider Case 2 ; the other two cases are analogous. If x < −M
and ḡ(μ) = g(μ), since ε > 0, we can write ExV (X1) ≤ |γ − θ|V (x) + W2 ≤
(|γ − θ| + ε)V (x) +W2; where x > M , for M large enough, ExV (X1) ≤ (|φ| +
|γ| + ε)V (x) + G3. Set ξ = (|φ| + |γ|) ∨ |γ − θ|, then we can write ExV (X1) ≤
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(ξ + ε)V (x) + max {W2, G3}. For ε = (1 − ξ)/2, define η = ξ + ε = ξ+1
2 , and

choose M large enough. Then, for any x /∈ A, we have ExV (X1) ≤ ηV (x) + L,
establishing the drift condition (A-1) for |γ−θ|+(|φ|+|γ|) < 1. We remark that,
although the range of V is [0,∞), we can easily replace V with Ṽ (x) = |x|+ 1
to get the range [1,∞). The same holds if ḡ(μ) = Ex[h(Y

∗
0 )] or ḡ ≡ h 	= g, by

setting η = |φ|+ |γ|+ ε, giving the drift condition (A-1) for |φ|+ |γ| < 1. �
Lemma 3 Assume (A3) holds. Then, the chain {Xt}t∈T defined in equation
(14) is weak Feller.

Proof From (14) we have thatX1(x) = α+φh(Y ∗
0 (g

−1(x)))+θ[h(Y ∗
0 (g

−1(x)))−
g̃(x)] + γx. Since, by (A3), g−1 is continuous, Y0(g

−1(x)) ⇒ Y0(g
−1(x′)) as

x → x′. The function Y ∗
0 that maps Y0 to the domain of h is also continuous;

then, Y ∗
0 (g

−1(x)) ⇒ Y ∗
0 (g

−1(x′)) as x → x′. For the same reason, we have that
h(Y ∗

0 (g
−1(x))) ⇒ h(Y ∗

0 (g
−1(x′))) and g̃(x) ⇒ g̃(x′). So X1(x) ⇒ X1(x

′) as
x → x′; this shows the weak Feller property. �
Lemma 4 Assume that Lemma 3, (A3) and (A4) hold. Then, {Xt}t∈T is
asymptotic strong Feller.

Proof When g ≡ ḡ, it follows from equation (14) that X1(z) = α+φh(Y ∗
0 (z))+

θ[h(Y ∗
0 (z))− g̃(z)]+γz . By Lemma 3, the chain is weak Feller, so if h(Y ∗

0 (w)) =
h(Y ∗

0 (z)), then |X1(z)−X1(w)| = |−θ(g̃(z)− g̃(w))+γ(z−w)| = |γ−θ||z−w| .
From coupling theory, using [33, Prop. 3(g)] we can construct the random vari-
ables g(Y ∗

0 (z)) and g(Y ∗
0 (w)) in such a way that they have the marginal distribu-

tions πz and πw, and that P(g(Y ∗
0 (w)) = g(Y ∗

0 (z))) = 1− ‖πw(·)− πz(·)‖TV >
1 − B|z − w| , where the inequality holds by assumption (A4). Note that g(·)
and h(·) are one-to-one functions. Hence, we have g(Y ∗

0 (w)) = g(Y ∗
0 (z)) ⇐⇒

Y ∗
0 (w) = Y ∗

0 (z) ⇐⇒ h(Y ∗
0 (w)) = h(Y ∗

0 (z)) (where ⇐⇒ means “if and
only if”); so the conditional probability of g(Y ∗

0 (w)) = g(Y ∗
0 (z)) or h(Y

∗
0 (w)) =

h(Y ∗
0 (z)) is equivalent. Therefore, the probability that the chains couple at t = 1:

P[g(Y ∗
1 (w)) = g(Y ∗

1 (z))|h(Y ∗
0 (w)) = h(Y ∗

0 (z))] > 1−
∥∥πX1(z)(·)− πX1(w)(·)

∥∥
TV

(A-7)
which is bounded below by 1 − B|γ − θ||z − w|. Then, the lower bound of
the probability that the chains couple for all times t = 0, 1, . . . is obtained by

iterating (A-7): 1 − B|z − w|
∑∞

t=0(|γ − θ|)t = 1 − |z−w|B
1−|γ−θ| where the equality

holds by assumption (A3). The rest of the proof for the asymptotic strong
Feller property follows as in [29, p. 819]. It is sufficient to replace |θ| by |γ − θ|
anywhere. We omit the details. If g 	= ḡ and h(Y ∗

0 (w)) = h(Y ∗
0 (z)) we have

|X1(z)−X1(w)| = | − θ(g̃(z)− g̃(w)) + γ(z−w)| ≤ |θ||g̃(z)− g̃(w)|+ |γ||z−w|.
Since g̃(x) is Lipschitz with L ≤ 1, we obtain |X1(w)−X1(z)| ≤ (|θ|+|γ|)|z−w| .
Hence, it can be immediately be seen that the proof for the former case (ḡ ≡ g)
is also valid here by replacing |γ − θ| by |θ|+ |γ|. This completes the proof. �
Lemma 5 If (A3) holds, then a reachable point x0 exists for the chain (14).

Proof Consider {Xt}t∈T where Xt = g(μt) and xt is its sample counterpart.
Firstly, consider the case in which ḡ ≡ g and put, h(0) = 0 (which simply
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changes the value of the constant α). Equation (14) could be written as

xt = α+ γxt−1 + (θ + φ)h(Y ∗
t−1)− θg̃(xt−1). (A-8)

Let us consider the case Y ∗
t = 0, for t = 1, . . . , n. Hence, by (A-8), xt =

α + (γ − θ)xt−1. Then, set x = α/(1 − δ), where δ = γ − θ. Let x ∈ R and
let C be an open set containing x. Then, by setting x0 = x and for all t ≥ 1,
xt = α + δxt−1 = α

∑t−1
j=0 δ

j + δtx0. Since δ ≤ |γ − θ| < 1 for (A3), we have
limt→∞ xt = x so that ∃n ∈ N such that ∀t ≥ n, xt ∈ C. For such n we have

Pn(x,C) = Px(Xn ∈ C) ≥ Px(Xn ∈ C, Y ∗
0 = · · · = Y ∗

n−1 = 0)

= Px(Xn ∈ C|Y ∗
0 = · · · = Y ∗

n−1 = 0)Px(Y
∗
0 = · · · = Y ∗

n−1 = 0)

= Px(Y
∗
0 = · · · = Y ∗

n−1 = 0) > 0.

For the case ḡ(μt) = E[h(Y ∗
t )|Ft−1], it can be immediately be seen that ḡ(μt) =

0, for t = 1, . . . , n and (A-8) still holds, with γ instead of δ, as it follows by
(A3) that |γ| < 1. When ḡ ≡ h 	= g we consider the case Yt = c, for t = 1, . . . , n
so that μt = c, for t = 1, . . . , n and Y ∗

t = c, for t = 1, . . . , n; and finally, set
h(c) = 0 and (A-8) will be valid again, with γ instead of δ. �

A.2. Proof of Theorem 1

Theorem 1 follows directly from Lemmata 1-5. More precisely, if (A1)-(A2) and
(A3) hold, the process {Xt}t∈T has at least a stationary distribution. The result
is obtained by Lemmata 1-3 and Theorem 2 in [40]. Besides, if (A1)-(A4) hold,
the stationary distribution of the process {Xt}t∈T is unique. This is immediate
by Lemma 4, Lemma 5 and Theorem 3 in [29]. Finally, by Proposition 8 in [14],
the stationarity of {Yt}t∈T follows directly from the uniqueness of the stationary
distribution of {Xt}t∈T ; this completes the proof. �

A.3. Proof of Corollary 1

Let us define ν0 = ν(μ0) = ν(μ) = ν and set g(μ) = x. It is worth noting

that Ex

[
h(Y0)−g̃(x)

ν

]
=

Ex[h(Y
∗
0 )−g̃(x)]
ν . In fact ν is the standard deviation σ(μ)

of h(Y0), which is constant w.r.t x (and then w.r.t μ). For this reason when
x ∈ A and μ ∈ R (Case 1 ), the result of Lemma 2 holds here unchanged.
When we have x > M ; if ν is increasing w.r.t μ we have that as x → ∞
(μ → ∞) ν goes to infinity as well (and 1/ν → 0, then it is therefore bounded
for x > M) or converges to a specific constant. In both cases the proof of
Lemma 2 still holds with a modification of the constants C. The same thing
(with signs inverted) holds as x < −M , provided that ν is decreasing w.r.t μ.
Case 2, when x ∈ [−M,∞), holds as above, by setting without loss of generality,
that h(c) = 0, since replacing h(y) with h(y)− h(c) simply changes the value of
α; the same assumptions hold for g. When x < −M , we have 0 < μ = g−1(x) <
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g−1(0) = c, ν is only required to be monotone w.r.t μ, indeed if it is decreasing
σ(μ) > σ(c) = ξ, instead, if it is increasing σ(μ) > σ(0) = ξ, and then

ExV (X1) ≤ C + (|φ|+ |θ|/ν)a1Ex[Y01Y0≥c] + |θ|/ν|g̃(x)|+ |γ||x|
≤ C2 + C1/νμ+ |θ|/ν|g̃(x)|+ |γ||x|
≤ C2 + C1/ξc+ |θ|/ξ|g̃(x)|+ |γ||x|
≤ C∗ + |θ|/ξ(C∗

1 + C∗
2 c

r/(2+δ)) + |γ||x|

which provide the same stationarity condition obtained in absence of the scaling
sequence. For Case 3 we have 0 < μ < a, also ν is required to be monotone, if
it is increasing σ(μ) > σ(0) = δ, by contrast, if it is decreasing σ(μ) > σ(a) = δ,
then

ExV (X1) ≤ C+(|φ|+|θ|/δ)h(a−c)+|θ|/δ|g̃(x)|+|γ||x| ≤ C+|θ|/νh(a−c)+|γ||x|

which again provide the same stationarity condition. Then, Lemma 2 holds also
for the chain (15).

As far as the Feller properties are concerned, it is easy to see that the weak
Feller condition is satisfied since, in general, σ2(μ) is continuous for μ (and
then for x). Hence, Lemma 3 holds. Also, in order to prove Theorem 1, the
asymptotic strong Feller property remains to be verified. Define Ỹ0 = h(Y0)
and μ̃ = ḡ(μ). We compute the scaling sequence from the first order Taylor
expansion: b(Ỹ0) ≈ b(μ̃)+b′(μ̃)(Ỹ0−μ̃) so as to obtain V[b(Ỹ0)] ≈ b′(μ̃)2ν2 where
here ν2 = V[h(Y0)]. The function b is selected as Lipschitz with constant not
greater than 1. Then, by using the variance stabilizing transformation (VST)
we obtain a constant variance c2 w.r.t. the mean μ̃. After that, we take the

approximation h(Y0)−ḡ(μ)
ν ≈ b(Ỹ0)−b(μ̃)

c and show the asymptotic strong Feller
property on this approximated version. The remaining part of the proof is the
same as Lemma 4. We omit the details. Finally, as we are in the case where
ḡ(μt) = E[h(Yt)|Ft−1] here, the existence of a reachable point does not require
any modification of the proof for Lemma 5. Hence, for (15), Corollary 1 holds.
�

A.4. Proof of Theorem 2

Equation (20) may be rewritten in the following way. For the mean-value theo-
rem, g̃(xs) − g̃(0) = g̃′(us)xs = csxs for s = 0, . . . , t and 0 < us < xs. We can
replace g̃(x) with g̃(x) − g̃(0); this simply changes the value of the constant α
with α− θg̃(0). Then, set

gρy1
(x) = α+ γx+ (φ+ θ)h(y0)− θg̃(x) = α+ δh(y0) + r0x (A-9)

where δ = φ + θ, r0 = γ − θc0 and x0 = x. Then, for s ≤ t, by using IRF, we
have,

gρ〈ys:t〉(x) = α

t−s∑
j=0

j−1∏
i=0

rt−i + δ

t−s∑
j=0

j−1∏
i=0

rt−ih(y
∗
t−j) +

t−s∏
j=0

rjx , (A-10)
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where rt−i = 1 for i = −1. Moreover, from (A-10), and by equation (19), we can

define gρ〈Y−∞:t〉 := α
∑∞

j=0

∏j−1
i=0 rt−i + δ

∑∞
j=0

∏j−1
i=0 rt−ih(Y

∗
t−j). The proof is

carried out specifically for ḡ(·) 	= g(·). It is worth noting that
∣∣supj {cj}∣∣ ≤ 1 for

the Lipschitz continuity of g̃. Then, from Theorem 1, we have 0 < r− ≤ |rj | ≤
|γ|+|θcj | ≤ |γ|+|θ| ≤ r̃ < 1 where r− = min(rj). However, one can immediately
see that (A-9) also holds in the simpler case ḡ(·) = g(·), with r0 = r = γ − θ,
where |γ − θ| < 1 from Theorem 1. Let {Yn}n∈Z

be a strictly stationary and
ergodic process, satisfying Theorem 1. The proof of Theorem 2 holds if assump-
tions (B1)-(B3) in [14, Thr. 19] are verified. Assumptions (B1) and (B2) hold in
our case for the stationarity of Yt and the continuity of gρy(x) w.r.t. ρ and q(·; y)
w.r.t. x. Hence, the estimator ρ̂n,x is well-defined. Assumption (B3)-(iii) holds
here for the discreteness of Yt, see [14, Rmk. 18]. This condition is required in or-
der to obtain a solvable maximization problem. It remains to show (B3)-(i) and
(B3)-(ii). (B3)-(i): limm→∞ supρ∈Λ |gρ〈Y−m:0〉(x)− gρ〈Y−∞:0〉| = 0, a.s., which
ensures that, regardless of the initial value of X−m = x, X0 (and thus Xt) can be
approximated by a quantity involving the infinite past of the observations. (B3)-
(ii): limt→∞ supρ∈Λ |log q(gρ〈Y1:t−1〉(x);Yt)− log q(gρ〈Y−∞:t−1〉;Yt)| = 0, a.s.,
with the first element log q(gρ〈Y1:t−1〉(x);Yt) = Ytg

ρ〈Y1:t−1〉(x) − A[gρ〈Y1:t−1〉
(x)] + d(Yt), the second element is defined as log q(gρ〈Y−∞:t−1〉;Yt) = Ytg

ρ

〈Y−∞:t−1〉−A[gρ〈Y−∞:t−1〉]+d(Yt). Intuitively, this assumption allows the con-
ditional log-likelihood function to be approximated by a stationary sequence. In
order to prove (B3)-(i) note that, a.s.

sup
ρ∈Λ

|gρ〈Y−∞:0〉| ≤
α̃

1− r̃
+ δ̃

∞∑
j=0

r̃j |h(Y ∗
−j)| = ĝ〈Y−∞:0〉 , (A-11)

which has finite expectation, and then is finite according to (H1). In fact, h(Y ∗
t )

is stationary and |h(Y0)| ≤ a0 + a1|Y0|, for Case 1. For Case 2, h(Y ∗
0 ) ≤ a1Y

∗
0

and E[Y ∗
0 ] ≤ E[Y0] + c. In Case 3 h(·) and Yt are bounded so their expectations

are finite. It holds also that

|gρ〈Y−∞:t−1〉| ≤
α̃

1− r̃
+ δ̃

∞∑
j=0

r̃j |h(Y ∗
t−1−j)| (A-12)

|gρ〈Y1:t−1〉(x)| ≤ α̃
t−2∑
j=0

r̃j + δ̃
t−2∑
j=0

r̃j |h(Y ∗
t−1−j)|+ r̃t−1|x| (A-13)

which has a finite expectation by (H1). Let d1 = |gρ〈Y−m:0〉(x)− gρ〈Y−∞:0〉|
and j = m+ l + 1. Then,

d1 =

∣∣∣∣∣∣α
∞∑
l=0

m+l∏
i=0

r−i + δ

∞∑
l=0

m+l∏
i=0

r−ih(Y
∗
−m−l−1) +

m∏
j=0

rjx

∣∣∣∣∣∣
≤
∣∣∣∣∣
m∏
i=0

r−i

∣∣∣∣∣
∣∣∣∣∣α

∞∑
l=0

m+l+1∏
i=m+1

r−i + δ

∞∑
l=0

m+l+1∏
i=m+1

r−ih(Y
∗
−m−l−1)

∣∣∣∣∣+
∣∣∣∣∣∣
m∏
j=0

rjx

∣∣∣∣∣∣
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≤ r̃m+1

(
α̃

∞∑
l=0

r̃l + δ̃

∞∑
l=0

r̃l|h(Y ∗
−m−l−1)|+ |x|

)

converges to 0 as m → ∞ by (H1) and [14, Lem. 34]. Thus (B3)-(i) holds. We
now move to (B3)-(ii), supρ∈Λ |log q(gρ〈Y1:t−1〉(x);Yt)− log q(gρ〈Y−∞:t−1〉;Yt)|,
which is bounded by the sum of Yt supρ∈Λ |f [gρ〈Y1:t−1〉(x)]− f [gρ〈Y−∞:t−1〉] |
and supρ∈Λ |A [gρ〈Y1:t−1〉(x)]−A [gρ〈Y−∞:t−1〉]|. Consider

|gρ〈Y1:t−1〉(x)− gρ〈Y−∞:t−1〉| ≤ r̃t−1

(
α̃

∞∑
l=0

r̃l + δ̃

∞∑
l=0

r̃l−|h(Y ∗
−l)|+ |x|

)

= r̃t−1 (|x|+ ĝ〈Y−∞:0〉)

for (A-11), and for l = j when t− 1 = 0. This implies that

Yt sup
ρ∈Λ

|gρ〈Y1:t−1〉(x)− gρ〈Y−∞:t−1〉| ≤ Ytr̃
t−1 (|x|+ ĝ〈Y−∞:0〉) t→∞−−−→ 0 a.s.

according to (A-11) and by [14, Lem. 34], under (H1). Now, for the mean value
theorem, supρ∈Λ |A [gρ〈Y1:t−1〉(x)]−A [gρ〈Y−∞:t−1〉]| is bounded by

sup
ρ∈Λ

|A′(Ct−1)| |gρ〈Y1:t−1〉(x)− gρ〈Y−∞:t−1〉|

≤ sup
ρ∈Λ

|A′(Ct−1)| r̃t−1 (|x|+ ĝ〈Y−∞:0〉) (A-14)

as min {gρ〈Y1:t−1〉(x), gρ〈Y−∞:t−1〉} ≤ Ct−1 ≤ max {gρ〈Y1:t−1〉(x), gρ〈Y−∞:t−1〉}
and he function (A-14) tends to 0 as t → ∞, for [14, Lem. 34] and the finiteness
of E[(log |A′(Ct−1)|)+], which is true for (H1). The same argument of (A-14)
hold with f(·) instead of A(·), and the details are omitted. Then, (B3)-(ii) holds,
and this completes the proof. �

A.5. Proof of Theorem 3

Note that P (x,A) =
∫
A
q(x; y)μ(dy). By the stationarity of Yt and (H1), The-

orem 2 holds. It remains to prove that P� = {ρ�}, where ρ� = (α�, γ�, φ�, θ�).
This follows from [14, Prop. 21], once we have shown that

(LP1) X0 = gρ�〈Y−∞:0〉, a.s.
(LP2) x 
→ P (x; ·) is one-to-one, i.e, if P (x; ·) = P (x′; ·) implies that x = x′.
(LP3) gρ�〈Y−∞:0〉 = gρ〈Y−∞:0〉 a.s. implies that ρ = ρ�.

Consider, for m ≥ 0,

gρ�〈Y−m:0〉(X−m−1) = α�

m∑
j=0

j−1∏
i=0

r�−i + δ�

m∑
j=0

j−1∏
i=0

r�−ih(Y
∗
−j) +

m∏
j=0

r�jX−m−1 .

For m → ∞ we have
∏m

j=0 r�jX−m−1 → 0 in fact supj {r�j} = r∗ ≤ r̃ < 1.
Hence, X0 = limm→∞ gρ�〈Y−m:0〉(X−m−1) = gρ�〈Y−∞:0〉, a.s. thus (LP1) holds.
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Moreover, (LP2) holds as well because P (x; ·) is the cumulative distribution
function of q(x; ·), which is the exponential family of parameter μ = g−1(x). It
remains to check (LP3). Consider gρ�〈Y−∞:0〉 − gρ〈Y−∞:0〉 equals

∞∑
j=0

j−1∏
i=0

(α�γ� − αγ) +

∞∑
j=0

j−1∏
i=0

(φ�γ� + θ�γ� − φγ − θγ)h(Y ∗
−j)

+

∞∑
j=0

j−1∏
i=0

(αθ − α�θ�) c−i +

∞∑
j=0

j−1∏
i=0

(
φθ + θ2 − φ�θ� − θ2�

)
c−ih(Y

∗
−j)

where δ� = φ� + θ�, r�s = γ� − θ�cs for −j + 1 ≤ s ≤ 0. Clearly, only if
α = α�, γ = γ�, θ = θ�, φ = φ� (so ρ = ρ�), we have g

ρ�〈Y−∞:0〉−gρ〈Y−∞:0〉 = 0,
which completes the proof. �

A.6. Proof of Theorem 4

The proof of the theorem is based on [15, Thm. 4.2], and requires to prove that all
the assumptions therein, (A1), (A4), (A5) and (A7), hold when the assumptions
of Theorem 4 hold. First of all, note that (A1) is satisfied for the stationarity of
Yt and (A4) is assumed in Theorem 4. Moreover, (A5) follows by μ = A′(x�).
It remains to prove assumption (A7). Let g•〈Y−∞:t−1〉 : ρ 
→ gρ〈Y−∞:t−1〉 and
g•〈Y1:t−1〉(x) : ρ 
→ gρ〈Y1:t−1(x)〉. We assume that the function x 
→ q(x, y) is
twice differentiable. For all twice differentiable xt : P → R and all y ∈ R, define

the score function χρ(xt(ρ), yt) = ∇ρxt(ρ)
∂ log q(xt,yt)

∂xt
and the Hessian matrix

Kρ(xt(ρ), yt) = ∇2
ρxt(ρ)

∂ log q(xt,yt)
∂xt

+∇ρxt(ρ)∇ρxt(ρ)
′ ∂2 log q(xt,yt)

∂x2
t

. In order to

prove asymptotic normality for the QMLE (21) by following the line of [15] the
following assumptions are required to hold true. Define ‖X‖ any suitable norm
for the object X.

(A7): ∀y ∈ R, the function x 
→ q(x, y) is twice continuously differentiable.
Moreover, there exists ε > 0 and a family of P-a.s. finite random variables
gρ〈Y−∞:t〉, for (ρ, t) ∈ P × Z, such that gρ�〈Y−∞:0〉 is in the interior of S, the
function ρ 
→ gρ〈Y−∞:0〉 is, P-a.s., twice continuously differentiable on some ball
B(ρ�, ε) and for all x ∈ S, almost surely

(i) limt→∞ ‖χρ� (g•〈Y1:t−1〉(x), Yt)− χρ� (g•〈Y−∞:t−1〉, Yt)‖ = 0,
(ii) limt→∞ supρ∈B(ρ�,ε) ‖Kρ (g•〈Y1:t−1〉(x), Yt)−Kρ (g•〈Y−∞:t−1〉, Yt)‖ = 0,

(iii) E
[
‖χρ� (g•〈Y−∞:0〉, Y1)‖2

]
,E
[
supρ∈B(ρ�,ε) ‖Kρ (g•〈Y−∞:0〉, Y1)‖

]
< +∞.

Intuitively, (A7) implies that the score function and the information matrix of
the data can be approximated by the infinite past of the process. We start from
(A7)-(i). Clearly limt→∞ ‖a− b‖ = 0 holds if limt→∞ |aj − bj | = 0 for all j.

Put χρ(·, ·) =
[
χα(·, ·), χφ(·, ·), χγ(·, ·), χθ(·, ·)

]′
. Consider the derivatives of the

(quasi) log-likelihood, say χρ� (g•〈Y1:t−1〉(x), Yt), as

[Ytf
′ [gρ�〈Y1:t−1〉(x)]−A′ [gρ�〈Y1:t−1〉(x)]]

∂gρ�〈Y1:t−1〉(x)
∂ρ�
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where, given that rj = γ − θcj ,for the product rule, ∂1 = ∂gρ�〈Y1:t−1〉(x)/∂γ�.
Then,

∂1 =

t−2∑
j=0

j−1∏
i=0

rt−1−i

j−1∑
i=0

1

rt−1−i

[
α� + (φ� + θ�)h(Y

∗
t−1−j)

]
+

t−2∏
j=0

rjx

t−2∑
i=0

1

ri

where we have made implicit r�j = γ� − θ�cj = rj to avoid excesses in the
notation. With trivial manipulations it follows that

|χγ� (g•〈Y1:t−1〉(x), Yt)− χγ� (g•〈Y−∞:t−1〉, Yt)|

= |Yt|
∣∣∣∣∂gρ�〈Y1:t−1〉(x)

∂γ�

∣∣∣∣ |f ′ [gρ�〈Y−∞:t−1〉]− f ′ [gρ�〈Y1:t−1〉(x)]|

+ |Yt| |f ′ [gρ�〈Y−∞:t−1〉]|
∣∣∣∣∂gρ�〈Y1:t−1〉(x)

∂γ�
− ∂gρ�〈Y−∞:t−1〉

∂γ�

∣∣∣∣
+

∣∣∣∣∂gρ�〈Y1:t−1〉(x)
∂γ�

∣∣∣∣ |A′ [gρ�〈Y−∞:t−1〉]−A′ [gρ�〈Y1:t−1〉(x)]| (A-15)

+ |A′ [gρ�〈Y−∞:t−1〉]|
∣∣∣∣∂gρ�〈Y1:t−1〉(x)

∂γ�
− ∂gρ�〈Y−∞:t−1〉

∂γ�

∣∣∣∣ . (A-16)

It is possible to verify that

∣∣∣∣∂gρ�〈Y−∞:0〉
∂γ

∣∣∣∣ ≤ |α|
∞∑
j=0

r̃j
j−1∑
i=0

1

r−
+ |φ+ θ|

∞∑
j=0

r̃j
∣∣h(Y ∗

−j)
∣∣ j−1∑
i=0

1

r−

= α̃

∞∑
j=0

r̃j

r−
j + δ̃

∞∑
j=0

r̃j

r−
j
∣∣h(Y ∗

−j)
∣∣ = ∂ĝ〈Y−∞:0〉

∂γ
< ∞ (A-17)

which is finite for (H2). For the same argument∣∣∣∣∂gρ�〈Y1:t−1〉
∂γ

∣∣∣∣ ≤ ∂ĝ〈Y1:t−1〉
∂γ

< ∞. (A-18)

Now the difference
∣∣∣∂gρ� 〈Y1:t−1〉(x)

∂γ�
− ∂gρ� 〈Y−∞:t−1〉

∂γ�

∣∣∣ is bounded by

|α�|
∞∑
l=0

r̃t+l−1

r−
(t+ l − 1)+

+ |φ� + θ�|
∞∑
l=0

r̃t+l−1

r−
(t+ l − 1) |h(Y ∗

l )|+
r̃t−1

r−
(t− 1) |x|

≤ r̃t−1

(
α̃

∞∑
l=0

r̃l

r−
l + δ̃

∞∑
l=0

r̃l

r−
l
∣∣h(Y ∗

−l)
∣∣)+

r̃t−1(t− 1)

(
α̃

∞∑
l=0

r̃l

r−
+ δ̃

∞∑
l=0

r̃l

r−

∣∣h(Y ∗
−l)
∣∣+ |x|

r−

)
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= r̃t−1 ∂ĝ〈Y−∞:0〉
∂γ

+ r̃t−1(t− 1)

(
ĝ〈Y−∞:0〉

r−
+

|x|
r−

)
t→∞−−−→ 0

almost surely, so that (A-16) tends to 0 as t → ∞ according to [14, Lem.
34], (H1) and equation (A-17). The mean value theorem allows to rewrite equa-

tion (A-15) as
∣∣∣∂gρ� 〈Y1:t−1〉(x)

∂γ�

∣∣∣ |A′′(Ct−1)| |gρ�〈Y−∞:t−1〉 − gρ�〈Y1:t−1〉(x)|, which
tends to 0 as t → ∞ for the same reason in (A-14) if the following expectation
is finite

E

(
log

∣∣∣∣∂gρ�〈Y1:t−1〉(x)
∂γ�

∣∣∣∣
)

+

+ E(log |A′′(Ct−1)|)+ . (A-19)

The first term of (A-19), E
(
log
∣∣∣∂gρ� 〈Y1:t−1〉(x)

∂γ�

∣∣∣)
+

≤ E
∣∣∣∂gρ� 〈Y1:t−1〉(x)

∂γ�

∣∣∣ < ∞
is finite, since, for (H2), the expectation of (A-18) is finite. The proof in the
second term of (A-19) follows from the mean-value theorem. Denote M =
E(log |A′(gρ�〈Y−∞:t−1〉)|)+ + E(log |A′(gρ�〈Y1:t−1〉(x))|)+ + 1, which is finite
for (H1). We can rewrite E (log |A′′(Ct−1)|)+ as

E

(
log

|A′(gρ�〈Y−∞:t−1〉)−A′(gρ�〈Y1:t−1〉(x))|
|gρ�〈Y−∞:t−1〉 − gρ�〈Y1:t−1〉(x)|

)
+

(A-20)

≤ M + E(− log |gρ�〈Y−∞:t−1〉 − gρ�〈Y1:t−1〉(x)|)+
≤ M − E (log |gρ�〈Y−∞:t−1〉 − gρ�〈Y1:t−1〉(x)|)−
= M − 1

2
E (|log |gρ�〈Y−∞:t−1〉 − gρ�〈Y1:t−1〉(x)||)+

+
1

2
E (log |gρ�〈Y−∞:t−1〉 − gρ�〈Y1:t−1〉(x)|)

≤ M +
1

2
E |gρ�〈Y−∞:t−1〉|+

1

2
E |gρ�〈Y1:t−1〉(x)|

which is finite as the expectations of (A-12) and (A-13) are for (H1). The same
results of (A-15) and (A-16) apply similarly for f ′(·), thus are omitted. Hence,
(A7)-(i) is proved. We now move to (A7)-(ii). Consider Kρ (g•〈Y1:t−1〉(x), Yt) as

[Ytf
′ [gρ〈Y1:t−1〉(x)]−A′ [gρ〈Y1:t−1〉(x)]]

∂2gρ〈Y1:t−1〉(x)
∂ρ ∂ρ′

+

+
∂gρ〈Y1:t−1〉(x)

∂ρ

∂gρ〈Y1:t−1〉(x)
∂ρ′

[Ytf
′′ [gρ〈Y1:t−1〉(x)]−A′′ [gρ〈Y1:t−1〉(x)]] .

The proof is shown for a single derivative, the proof of the others is immediate.
The term

∣∣Kθ (g•〈Y1:t−1〉(x), Yt)−Kθ (g•〈Y−∞:t−1〉, Yt)
∣∣ is bounded by[

|Yt| |f ′ (gρ〈Y−∞:t−1〉)|+ |A′ (gρ〈Y−∞:t−1〉)|
]

×
∣∣∣∣∂2gρ〈Y1:t−1〉(x)

∂θ2
− ∂2gρ〈Y−∞:t−1〉

∂θ2

∣∣∣∣ (A-21)
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+

∣∣∣∣∂2gρ〈Y1:t−1〉(x)
∂θ2

∣∣∣∣ |A′ [gρ〈Y−∞:t−1〉]−A′ [gρ〈Y1:t−1〉(x)]| (A-22)

+

∣∣∣∣∂2gρ〈Y1:t−1〉(x)
∂θ2

∣∣∣∣ |Yt| |f ′ [gρ〈Y−∞:t−1〉]− f ′ [gρ〈Y1:t−1〉(x)]| (A-23)

+

(
∂gρ〈Y1:t−1〉(x)

∂θ

)2

|A′′ [gρ〈Y−∞:t−1〉]−A′′ [gρ〈Y1:t−1〉(x)]| (A-24)

+

(
∂gρ〈Y1:t−1〉(x)

∂θ

)2

|Yt| |f ′′ [gρ〈Y−∞:t−1〉]− f ′′ [gρ〈Y1:t−1〉(x)]| (A-25)

+

[
|Yt| |f ′′ (gρ〈Y−∞:t−1〉)|+ |A′′ (gρ〈Y−∞:t−1〉)|

]

×
∣∣∣∣∣
(
∂gρ〈Y1:t−1〉(x)

∂θ

)2

−
(
∂gρ〈Y−∞:t−1〉

∂θ

)2
∣∣∣∣∣ .

By the definition of second derivative it can be easily shown that∣∣∣∣∂2gρ〈Y1:t−1〉(x)
∂θ2

− ∂2gρ〈Y−∞:t−1〉
∂θ2

∣∣∣∣ ≤ 2r̃t−1(t− 1)2
(
7
∂2ĝρ〈Y−∞:0〉

∂θ2
+

|x|
r2−

)

which is finite as ∂2ĝρ〈Y−∞:0〉
∂θ2 = α̃

∑∞
l=0

r̃l

r2−
l2 +

(
α̃+ φ̃+ 1

)∑∞
l=0

r̃l

r2−
l2
∣∣h(Y ∗

−l)
∣∣

has a finite expectation, according to (H1). So, the first element (A-21) tends to 0
as t → ∞ for (H1), by [14, Lem. 34]. The same holds for the elements (A-22) and
(A-23) since (A-19) is verified (the only difference here is that the expectation

of the second derivative is required to be finite but E
(
log
∣∣∣∂2gρ〈Y1:t−1〉(x)

∂θ2

∣∣∣)
+
≤

E
∣∣∣∂2gρ〈Y1:t−1〉(x)

∂θ2

∣∣∣ < ∞ always for (H1)). Equations (A-24) and (A-25) also

tend to 0 as t → ∞ because of [14, Lem. 34] and E (log |A′′′(Ct−1)|)+ < ∞,
E (log |f ′′′(Ct−1)|)+ < ∞; the proof is analogous to (A-20). Finally, it follows
that the last element also tends to 0 as t → ∞ for (H1), by [14, Lem. 34],
because it can be rewritten as∣∣∣∣∂gρ〈Y1:t−1〉(x)

∂θ

∣∣∣∣
∣∣∣∣∂gρ〈Y1:t−1〉(x)

∂θ
− ∂gρ〈Y−∞:t−1〉

∂θ

∣∣∣∣
+

∣∣∣∣∂gρ〈Y−∞:t−1〉
∂θ

∣∣∣∣
∣∣∣∣∂gρ〈Y1:t−1〉(x)

∂θ
− ∂gρ〈Y−∞:t−1〉

∂θ

∣∣∣∣
completing the proof for (A7)-(ii). It remains to show (A7)-(iii): the score is
bounded by

(
Y 2
1 f

′ [gρ�〈Y−∞:0〉]2 +A′ [gρ�〈Y−∞:0〉]2
) 4∑

i=1

(
∂ĝ〈Y−∞:0〉

∂ρi

)2

which provides a finite expectation for the Hölder’s inequality and condition
(H2). An analogously result holds for the Hessian ‖Kρ (g•〈Y−∞:0〉, Y1)‖; detailed
proofs can be found in [2, Ch. 3]; this completes the proof. �
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A.7. Proof of equivalence of (A4) and (A5) for Negative Binomial

For dTV (g(Y
∗
t (z)), g(Y

∗
t (w))) = dTV (Yt(z), Yt(w)), the coupling inequality, as

in [39], ensures that dTV (Yt(z), Yt(w)) ≤ P(Yt(z) 	= Yt(w)). So, bounding
P(Yt(z) 	= Yt(w)) with a Lipschitz function is equivalent to proving Assump-
tion (A4). Suppose that z > w and let Yt(z) ∼ NB(a, pz = a

g−1(z)+a ) and

Yt(w) ∼ NB(a, pw = a
g−1(w)+a ); set Yt(z) = U + Yt(w), so U = Yt(z) − Yt(w),

and, by using the discrete-variable convolution, we have

P(U = u) =

∞∑
k=0

P(Yt(w) = k)P(Yt(z) = k + u)

=
∞∑
k=0

(
a+ k − 1

k

)
paz(1− pz)

k

(
a+ k + u− 1

k + u

)
paw(1− pw)

k+u

and then

P(U = 0) = (pzpw)
a

∞∑
k=0

(
a+ k − 1

k

)2

[(1− pz)(1− pw)]
k .

The coupling probability could be written as

P(Yt(z) 	= Yt(w)) = P(U 	= 0) = 1− P(U = 0)

≤ 1− (pzpw)
a

∞∑
k=0

(
a+ k − 1

k

)
[(1− pz)(1− pw)]

k

= 1−
(

pzpw
1− (1− pz)(1− pw)

)a

= 1−
(

1

1 + 1−pz

pz
+ 1−pw

pw

)a

= 1−
(

1

D

)a

= 1−
(

g−1(w)− g−1(z)

D (g−1(w)− g−1(z))

)a

≤ 1−
(
− ζ(z − w)

D (g−1(w)− g−1(z))

)a

(A-26)

= 1−
(

ζ(z − w)

D (g−1(z)− g−1(w))

)a

≤ 1−
(
ζ(z − w)

aD∗

)a

(A-27)

where D ≥ 1 and and D
(
g−1(z)− g−1(w)

)
= D1. In equation (A-27) we put

D∗ = max {D,D1}. The inequality (A-26) holds because the function g−1(·) is
Lipschitz with constant ζ. Then, (A-27) is Lipschitz as well with constant ζ for
z ∈ [w,w + aD∗/ζ], since the absolute value of its derivative is bounded by ζ,
and this gives the desired result. �
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A.8. Insights about conditions (H1)-(H2)

In this section, conditions (H1)-(H2) introduced in Section 4.1, are verified for
particular cases of interest, with the aim of showing that (i) they hold for a
large variety of models and (ii) they are easily verifiable. Of course, existence
of moments of Yt cannot be directly proved, as they rely on the unknown un-
conditional distribution of of Yt. However, moments conditions are quite usual
assumptions in the context of ML inference. We focus on other expectations. For
convenience in terms of notation, in this paragraph we write gρ〈Y−∞:t〉 = Xt.

We start from the standard case in which the link g(·) is canonical; here
the conditions on the derivative of f(·) hold automatically, since f(Xt) = Xt,
f ′(Xt) = 1 and f ′′(Xt) = 0, hence the respective expectations are finite. The
moment condition for the derivatives of A(·) can be easily proved by noting that,
from the properties of the exponential family, A′(Xt) ≡ g−1(Xt); in this case,
the inverse of the link function is Lipschitz continuous in our case of interest;
see Assumption (A5). Then, we can write g−1(Xt)− g−1(0) ≤ L|Xt| and

(log |g−1(Xt)|)+ = (log |g−1(Xt)− g−1(0) + g−1(0)|)+ (A-28)

≤ log� |g−1(Xt)− g−1(0)|+ b

≤ log� (L|Xt|) + b ,

where b = log� |g−1(0)|, log�(x) = log(1 + x) and the second inequality holds
for its sub-additivity. By taking the expectation

E(log |A′(Xt)|)+ ≤ E (log� (L|Xt|)) + log� |g−1(0)| ≤ LE|Xt|+ b . (A-29)

So the expectation in (A-29) is finite because the expectation of Xt is finite
when E|Yt| < ∞, see the proof of (A-12). This proves (H1).

Assumption (H2) is required only in the context of asymptotic normality
for QMLE. We remind that, if g is canonical, then Qt = Xt is the canoni-
cal parameter, and by Corollary 7, we have A′(Xt) = μt = E(Yt|Ft−1) and
E[A′(Xt)

4] = E
[
E(Yt|Ft−1)

4
]
≤ E

[
E(Y 4

t |Ft−1)
]
= E(Y 4

t ) < ∞. Then, we
also have E |A′′(Xt)| ≤ |L| < ∞, as A′(·) is Lipschitz, and this verifies as-
sumption (H2). However, there are cases where the canonical link function
g is not Lipschitz; for example, g(·) = log(·). Here the proof is immediate:
E(log |A′(Xt)|)+ = E(log | exp(Xt)|)+ = E|Xt| < ∞. Moreover, E

[
A′(Xt)

4
]
=

E
[
A′′(Xt)

4
]
≤ E(Y 4

t ) < ∞.
Checking conditions (H1)-(H2) for a non-canonical link function g(·) clearly

depends on its specific shape. We give here some relevant examples. Suppose one
wants to model the expectation μt linearly as in (8), with a Poisson distribution
coming from (1); this is done by setting f(Xt) = log(Xt) = log(μt) and A(Xt) =
Xt = μt > 0. Here, the expectations involving A(·) are finite, as A′(Xt) = 1
and A′′(Xt) = 0. The expectations of the derivatives f ′(Xt)

4 = 1/X4
t ≤ 1/α4

and f ′′(Xt)
4 = 1/X8

t ≤ 1/α8 are bounded; in fact μt > 0, the parameters
(α, γ, φ, θ) > 0, then Xt = μt ≥ α, completing the proof.

Another common model with non-canonical link function used in the liter-
ature is (9) for the Negative Binomial (10); it is derived by (1) when d(Yt) =
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Table A-1

Simulations for GLARMA(1,1); Yt|Ft−1 ∼ Be(pt), s = 1, 000.

n α γ θ α γ θ α γ θ

True 0.500 -0.400 0.800 0.500 0.400 0.200 0.500 0.400 1.200

200

Est. 0.522 -0.441 0.795 0.721 0.147 0.176 0.558 0.341 1.193

Std.Dev 0.206 0.372 0.315 1.187 1.414 0.342 0.281 0.265 0.347

Lower 0.509 -0.464 0.776 0.647 0.059 0.154 0.541 0.324 1.172

Upper 0.535 -0.418 0.815 0.794 0.234 0.197 0.576 0.357 1.215

Bias 0.022 -0.041 -0.005 0.221 -0.253 -0.024 0.058 -0.059 -0.007

KS 0.218 0.638 0.577 0.937 0.994 0.791 0.293 0.927 0.318

500

Est. 0.509 -0.432 0.791 0.604 0.274 0.184 0.517 0.381 1.189

Std.Dev 0.124 0.219 0.187 0.762 0.911 0.207 0.168 0.171 0.219

Lower 0.501 -0.446 0.779 0.557 0.218 0.171 0.506 0.370 1.176

Upper 0.517 -0.418 0.803 0.651 0.331 0.197 0.527 0.391 1.203

Bias 0.009 -0.032 -0.009 0.104 -0.126 -0.016 0.017 -0.019 -0.011

KS 0.387 0.965 0.931 0.555 0.616 0.780 0.320 0.437 0.465

1000

Est. 0.502 -0.407 0.796 0.592 0.292 0.193 0.514 0.387 1.198

Std.Dev 0.086 0.154 0.141 0.565 0.673 0.151 0.120 0.122 0.147

Lower 0.496 -0.417 0.788 0.557 0.250 0.184 0.506 0.379 1.189

Upper 0.507 -0.398 0.805 0.627 0.333 0.203 0.521 0.394 1.207

Bias 0.002 -0.007 -0.004 0.092 -0.108 -0.007 0.014 -0.013 -0.002

KS 0.361 0.265 0.673 0.866 0.732 0.957 0.714 0.850 0.784

log [Γ(ν + Yt)/(Γ(Yt + 1)Γ(ν))], A(Xt) = −ν log (ν/(ν + μt)) = ν log(ν+eXt)−
ν log(ν) and f(Xt) = log (μt/(ν + μt)) = Xt − log(ν + eXt). We know that
ν > 0, hence E[A′(Xt)

4] = E[(νeXt/(ν + eXt))4] ≤ ν4 < ∞ and E[A′′(Xt)
4] =

E[(ν2eXt/(ν + eXt)2)4] ≤ exp(ν) < ∞. In the same fashion, f ′(Xt)
4 = (ν/(ν +

eXt))4 ≤ 1 and f ′′(Xt)
4 = (νeXt/(ν + eXt)2)4 ≤ 1, which have finite expecta-

tions.

Appendix B: Simulation results for finite sample properties

In this section, the numerical results concerning the finite sample properties
discussed in Section 4.2 are presented. Table A-1 summarizes the estimation
results for the GLARMA model when the data come from a Bernoulli distri-
bution. Tables A-2 and A-3 show the outcome of simulations for GARMA and
log-AR models performed on data generated from Geometric distribution in
(10), but with Poisson distribution fitted instead (QMLE). The first row of the
tables reports the true parameter values; the following two rows show the mean
of the estimated parameters, obtained by averaging out the results from all sim-
ulations along with the corresponding standard error. The subsequent two rows
present the lower and upper limits of the confidence interval for the estimated
mean. Finally, the last two rows correspond to the bias of the mean and the
p-value of the Kolmogorov-Smirnov (KS) test for normality on the standardized
MLE/QLME obtained from the simulations.
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Table A-2

Simulations QMLE of Poisson GARMA(1,1); Yt|Ft−1 ∼ Geom(pt), s = 1, 000.

n α φ θ α φ θ α φ θ

True 0.500 -0.400 0.800 0.500 0.400 0.200 0.500 0.400 1.200

200

Est. 0.485 -0.412 0.810 0.483 0.375 0.217 0.515 0.381 1.167

Std.Dev 0.110 0.153 0.177 0.106 0.117 0.144 0.253 0.068 0.172

Lower 0.478 -0.421 0.799 0.476 0.367 0.209 0.499 0.377 1.156

Upper 0.492 -0.402 0.821 0.489 0.382 0.226 0.530 0.386 1.177

Bias -0.015 -0.012 0.010 -0.017 -0.025 0.017 0.015 -0.019 -0.033

KS 0.339 0.576 0.817 0.197 0.910 0.669 0.001 0.732 0.455

500

Est. 0.494 -0.406 0.806 0.492 0.392 0.204 0.497 0.392 1.192

Std.Dev 0.065 0.102 0.115 0.067 0.077 0.091 0.200 0.051 0.127

Lower 0.490 -0.412 0.799 0.488 0.387 0.199 0.484 0.389 1.184

Upper 0.498 -0.400 0.813 0.496 0.396 0.210 0.509 0.395 1.199

Bias -0.006 -0.006 0.006 -0.008 -0.008 0.004 -0.003 -0.008 -0.008

KS 0.418 0.566 0.640 0.851 0.963 0.285 0.000 0.375 0.015

1000

Est. 0.494 -0.401 0.800 0.493 0.395 0.203 0.504 0.395 1.187

Std.Dev 0.048 0.071 0.080 0.046 0.054 0.066 0.169 0.041 0.108

Lower 0.491 -0.405 0.795 0.490 0.392 0.199 0.493 0.392 1.180

Upper 0.497 -0.396 0.805 0.496 0.398 0.207 0.514 0.397 1.194

Bias -0.006 -0.001 -0.000 -0.007 -0.005 0.003 0.004 -0.005 -0.013

KS 0.272 0.370 0.549 0.984 0.936 0.988 0.000 0.198 0.050

Table A-3

Simulations QMLE of Poisson log-AR(1); Yt|Ft−1 ∼ Geom(pt), s = 1, 000.

n α φ γ α φ γ

True 0.500 -0.400 0.800 0.500 0.400 0.200

200

Est. 0.451 -0.411 0.858 0.553 0.385 0.155

Std.Dev 0.219 0.130 0.266 0.274 0.110 0.237

Lower 0.437 -0.419 0.841 0.536 0.379 0.141

Upper 0.464 -0.402 0.874 0.571 0.392 0.170

Bias -0.049 -0.011 0.058 0.053 -0.015 -0.045

KS 0.198 0.981 0.060 0.907 0.399 0.673

500

Est. 0.482 -0.401 0.820 0.528 0.395 0.177

Std.Dev 0.133 0.077 0.165 0.176 0.065 0.144

Lower 0.474 -0.405 0.810 0.517 0.391 0.168

Upper 0.490 -0.396 0.830 0.539 0.399 0.186

Bias -0.018 -0.001 0.020 0.028 -0.005 -0.023

KS 0.562 0.898 0.405 0.845 0.957 0.780

1000

Est. 0.488 -0.400 0.813 0.517 0.397 0.185

Std.Dev 0.097 0.054 0.120 0.132 0.047 0.107

Lower 0.482 -0.404 0.806 0.509 0.394 0.178

Upper 0.494 -0.397 0.820 0.526 0.400 0.192

Bias -0.012 -0.000 0.013 0.017 -0.003 -0.015

KS 0.656 0.517 0.772 0.567 0.551 0.942
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