scientific reports

OPEN

Physiotherapeutic and non-conventional approaches in patients with chronic low-back pain: a level I Bayesian network meta-analysis

Alice Baroncini¹, Nicola Maffulli^{2,3,4}, Luise Schäfer⁵, Nicola Manocchio⁶, Michela Bossa⁶, Calogero Foti⁶, Alexandra Klimuch⁵ & Filippo Migliorini^{5,7}

Chronic low back pain (cLBP) is a major cause of disability and healthcare expenditure worldwide. Its prevalence is increasing globally from somatic and psychosocial factors. While non-pharmacological management, and in particular physiotherapy, has been recommended as a first-line treatment for cLBP, it is not clear what type of physiotherapeutic approach is the most effective in terms of pain reduction and function improvement. This analysis is rendered more difficult by the vast number of available therapies and a lack of a widely accepted classification that can effectively highlight the differences in the outcomes of different management options. This study was conducted according to the PRISMA guidelines. In January 2024, the following databases were accessed: PubMed, Web of Science, Google Scholar, and Embase. All the randomised controlled trials (RCTs) which compared the efficacy of physiotherapy programs in patients with cLBP were accessed. Studies reporting on non-specific or mechanical cLPB were included. Data concerning the Visual Analogic Scale (VAS) or numeric rating scale (NRS), Roland Morris Disability Questionnaire (RMQ) and Oswestry Disability Index (ODI). Data from 12,773 patients were collected. The mean symptom duration was 61.2 ± 51.0 months and the mean follow-up was 4.3 ± 5.9 months. The mean age was 44.5 ± 9.4 years. The mean BMI was 25.8 ± 2.9 kg/m². The Adapted Physical Exercise group evidenced the lowest pain score, followed by Multidisciplinary and Adapted Training Exercise/Complementary Medicine. The Adapted Physical Exercise group evidenced the lowest RMQ score followed by Therapeutic Exercises and Multidisciplinary. The Multidisciplinary group evidenced the lowest ODI score, followed by Adapted Physical Exercise and Physical Agent modalities. Within the considered physiotherapeutic and nonconventional approaches to manage nonspecific and/or mechanic cLBP, adapted physical exercise, physical agent modalities, and a multidisciplinary approach might represent the most effective strategy to reduce pain and disability.

Keywords Physical, Therapy, Conservative, Pain

Chronic low back pain (cLBP) is one of the global leading causes of disability and healthcare expenditure¹⁻³. First-ever episodes of LBP have an incidence of 15%, and 80% of subjects experience at least one episode of activity-limiting LBP within one year⁴. The prevalence of cLBP is increasing not only because of population

¹GSpine4, IRCCS Ospedale Galeazzi – Sant'Ambrogio, Milano, Italy. ²Department of Orthopaedics, Faculty of Medicine and Psychology, University of Rome "La Sapienza", Rome, Italy. ³School of Pharmacy and Bioengineering, Faculty of Medicine, Keele University, Stoke on Trent ST4 7QB, UK. ⁴Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, London E1 4DG, UK. ⁵Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Medical Centre, 52074 Aachen, Germany. ⁶Physical and Rehabilitation Medicine, Clinical Sciences and Translational Medicine Department, Tor Vergata University, Rome, Italy. ⁷Department of Orthopedics and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical University, 39100 Bolzano, Italy. [⊠]email: migliorini.md@gmail.com

ageing and obesity but also as a consequence of psychosocial and economic strains^{5–7}. Thus, considerable efforts have been put in place to identify the most effective way to manage this condition^{8–11}. Recent guidelines suggest non-pharmacologic treatment as first-line therapy, accompanied by pharmacologic management when symptoms cannot be sufficiently controlled^{12–14}.

Physiotherapy has emerged as an effective and non-invasive approach for the management of cLBP, with the goal to improve pain and disability by acting on muscular strength and flexibility, range of motion, and muscular imbalance¹⁵⁻¹⁷. Furthermore, education and lifestyle modifications aim to provide patients with the tools to prevent future episodes of cLBP¹⁸⁻²¹. Different physiotherapeutic regimes have been developed and investigated in this setting^{22,23}. In particular, different forms of exercise, manual therapy, physical agent modalities, and education, or a combination of these in a multidisciplinary approach have been efficiently applied in the setting of cLBP^{24,25}. Available guidelines also highlight a discrepancy regarding the most effective physiotherapeutic management, and clear directions in this respect are lacking^{13,26,27}. The available literature has focused on one particular type of physiotherapy at a time or has directly compared a limited number of similar approaches^{28,29}. The lack of a widely accepted classification of the different physiotherapeutic management options has obviously made direct comparisons difficult. In particular, available classifications have failed to group physiotherapeutic approaches in a way that would allow to highlight possible outcome differences in terms of pain management and function improvement^{30,31}.

This investigation compared the efficacy of the different physiotherapeutic and non-conventional approaches in the setting of nonspecific and/or mechanic cLBP. A Bayesian network meta-analysis of level I studies was conducted for this purpose.

Methods

Eligibility criteria

All the randomised controlled trials (RCTs) which compared the efficacy of conventional and non-conventional physiotherapy programs in patients with cLBP were accessed. According to the authors' language capabilities, articles in English, German, Italian, French, and Spanish were eligible. Only RCTs with level I of evidence, according to the Oxford Centre of Evidence-Based Medicine³², were considered. Reviews, opinions, letters, and editorials were not considered. Animals, in vitro, biomechanics, computational, and cadaveric studies were not eligible. Studies reporting on non-specific³³ or mechanical³⁴, cLPB were included. The pain was defined as chronic when symptoms persisted for a minimum of three months⁷. Studies including patients with radiculopathy and/or neurologic symptoms were excluded from this analysis. Only studies which analysed patient-reported outcome measures (PROMs) were considered. Missing quantitative data under the outcomes of interest warranted the exclusion of the study.

Search strategy

This study was conducted according to the 2015 PRISMA Extension Statement for Reporting of Systematic Reviews Incorporating Network Meta-Analyses of Health Care Interventions³⁵. The following algorithm was established:

- P (Problem): cLBP;
- I (Intervention): Physiotherapy;
- C (Comparison): different modalities of physiotherapy;
- O (Outcomes): pain and disability.

In January 2024, the following databases were accessed: PubMed, Web of Science, and Embase. No time constraint was set for the search. The search was restricted to only RCTs. The medical subject headings (MeSH) used in PubMed are shown in the appendix. No additional filters were used in the database search.

Selection and data collection

Two authors (A.K., L.S.) performed the database search. Disagreements were settled by a third author (N.M.) with long experience on systematic reviews. All the resulting titles were screened by hand and, if suitable, the abstract was accessed. If the abstract matched the topic, the full text was accessed. If the full text was not accessible or available, the article was not considered for inclusion. A cross reference of the bibliography of the full text was also conducted to identify additional studies. All pdf of full texts were saved in a dedicated folder shared between the authors in a private cloud. Duplicates were deleted. Study selection and collection lasted three months and the search was updated at each revision phase (last update January, 28 2024).

Data categorisation

Categorization was carried out by three authors (M.N., B.M., F.C.) assessing therapeutic interventions reported in the articles identified. Two independent authors involved in Physical and Rehabilitation Medicine (PRM) used their expertise and referred to recent guidelines and/or systematic reviews regarding the topic of cLBP re-educational techniques to divide treatment protocols into 11 categories: Therapeutic Exercise (TE), Adapted Physical Exercise (APE), Adaptive Training Exercise/Complementary Medicine (CM), Manual Therapy (MT), Physical Agent modalities (PA), Education, Cognitive Re-education (CR), Multidisciplinarity, Kinesiotaping (KT), Sham Therapy (ST), No Intervention. It is important to highlight that most of these categories (TE, APE, MT, PA, Education, CR, Multidisciplinarity, KT and ST) were considered as physiotherapeutic approaches performed by a physiotherapist. Physiotherapy "is services provided by physiotherapists to individuals and populations to

develop, maintain and restore maximum movement and functional ability throughout the lifespan. The service is provided in circumstances where movement and function are threatened by ageing, injury, pain, diseases, disorders, conditions and/or environmental factors and with the understanding that functional movement is central to what it means to be healthy³⁶. Instead, Adaptive Training Exercise/Complementary Medicine are usually performed by professionals different from the physiotherapist". We decided to include the RCTs focused on these techniques because the results (in terms of improvement of the LBP) have been widely demonstrated in the published peer-reviewed literature. The first step was to consider interventions regarding exercise, which can be defined as "a series of specific movements with the aim of training or developing the body by a routine practice or as physical training to promote good physical health"³⁶. Many different types of treatments can fall under the term exercise therapy (ET), each with its own design, duration, frequency, intensity, and mode of delivery. ET aims to increase muscle strength and function, to improve joint range of motion, and consequently reduce pain and increase mobility²⁹. A key distinction has to be made between TE and APE. The former involves movement prescribed to correct impairments, restore muscular and skeletal function, and/or maintain a state of well-being, while APE involves exercise adaptations that could facilitate physical activity across a wide range of disabling conditions³⁷. When LBP is caused by suboptimal postures that place excessive or damaging loads upon the spine APE is applied through postural techniques such as McKenzie, Souchard, or Pilates. In addition, active and passive movements can be differentiated according to the degree of activity expressed by the patient in performing the exercise. Another distinction involved MT: spinal manipulation differs from mobilisation because it is performed through the application of high-velocity impulses and thrusts administered beyond the normal joints' range of motion (ROM), sometimes producing audible sounds. Physical agents are sources of energy that can be applied on the body surface with therapeutic purposes to improve the quality of life of the patient. They include heat, electrical current, vibration, laser, and ultrasounds, all of which are widely used for the treatment of chronic low back pain³⁸. Various techniques derived from Eastern Medicine, such as Shiatsu, Tai-Chi, Qi Gong, and Yoga have been included in the Complementary Medicine category. The educational category consists of studies in which the main techniques were advice to the patients and the *Back School*, a technique developed in Sweden in 1969 consisting of patient education and exercises aimed at optimizing functional recovery. Another category became necessary for CR, a technique widely used in neurological disorders; CR can be effectively applied to cLBP to help patients become more aware of their condition and their pain, improve confidence to engage with normal activities of daily living, and reach their life goals and ultimately engage in a healthy lifestyle³⁹. A final category involving a purely re-educational intervention is that regarding KT, a technique that uses of a thin functional elastic bandage applied to the patient's skin with the goal to reduce pain and increase blood flow and muscle performance while reducing muscle stiffness⁴⁰. Multidisciplinarity was used when two or more techniques were used at the same time without one of them being predominant. Lastly, two more self-explanatory categories were needed to completely divide screened papers: Sham Therapy (ST) and No Intervention.

Data items

Two authors (A.K., L.S.) independently performed data extraction. The following data at baseline were extracted: author and year of publication, journal of publication, men:women ratio, number of patients included with related mean age and BMI (kg/m²), mean length of symptoms duration prior to the physiotherapy, and the length of the follow-up. Data concerning the following patient-reported outcome measures (PROMs) were collected at baseline and at last follow-up: Visual Analog Scale (VAS) or numeric rating scale (NRS), Roland Morris Disability Questionnaire (RMQ)⁴¹ and Oswestry Disability Index (ODI)⁴². As VAS and NRS showed a high correlation, these were used interchangeably for the purpose of the present work⁴³. Data were extracted in Microsoft Office Excel version 16.72 (Microsoft Corporation, Redmond, USA).

Assessment of the risk of bias and quality of the recommendations

The risk of bias was evaluated in accordance with the guidelines in the Cochrane Handbook for Systematic Reviews of Interventions⁴⁴. Two reviewers (A.K. and L.S.) evaluated the risk of bias in the extracted studies independently. Disagreements were solved by a third senior author (N.M.). RCTs were evaluated using the risk of bias of the software Review Manager 5.3 (The Nordic Cochrane Collaboration, Copenhagen). The following endpoints were evaluated: selection, detection, performance, attrition, reporting, and other biases.

Synthesis methods

The statistical analyses were performed by the main author (F.M.) following the recommendations of the Cochrane Handbook for Systematic Reviews of Interventions⁴⁵. Cohen's Kappa (K) was used to quantify the inter-rater agreement among authors for full-text selection. The IBM SPSS version 25 was used. Cohen's K was interpreted according to Altman's definition⁴⁶: K <0.2: poor, 0.2 < K < 0.4: fair, 0.41 < K < 0.60: moderate, 0.61 < K < 0.80: good, and K >0.81 excellent. For descriptive statistics, IBM SPSS version 25 was used. The mean and standard deviation were used. To assess baseline comparability, data distribution was analysed using the Shapiro-Wilk test. Analysis of variance (ANOVA) and the Kruskal-Wallis test were used for parametric and non-parametric data, with P values > 0.1 considered satisfactory. The network meta-analyses were performed using STATA SoftwareMP (version 14; StataCorporation, College Station, Texas, USA). The network meta-analyses were performed through the STATA routine for Bayesian hierarchical random-effects model analysis using the inverse variance method. The standardized mean difference (STD) was used for continuous data. The overall inconsistency was evaluated through the equation for global linearity via the Wald test. If P_{Wald} > 0.1, the null hypothesis could not be rejected, and the consistency assumption is accepted at the overall level of each treatment. Both confidence (CI) and percentile (PrI) intervals were set at 95% in each interval plot. Edge plots were performed to display direct and indirect comparisons and respective statistical weights. Interval plots were performed to

rank treatments according to their estimated effect size. The funnel plots were performed to investigate the risk of bias related to each comparison. Greater plot asymmetries are associated with greater data variability, which indicates a greater risk of bias.

Ethical approval

This study complies with ethical standards.

Results

Study selection

2354 RCTs were retrieved. A total of 1156 studies were excluded because they were duplicates. Another 1006 articles did not fulfil the eligibility criteria and were therefore discarded. Reasons for non-inclusion include in detail: study design (N=697), low level of evidence (N = 148), therapy protocols that could not be classified into one of the 11 therapeutic categories of interest (TE, APE, CM, MT, PA, CR, KT, ST, Education, Multidisciplinarity, or No Intervention) (N = 149), and language limitations (N=12). After full-text evaluation, an additional 42 investigations were excluded because quantitative data on the outcomes of interest were not available. Finally, 150 RCTs were available for inclusion. The inter-examiner agreement between the authors was good (Cohen's K = 0.71) for full-text selection. The results of the literature search are shown in Figure 1.

Risk of bias assessment

The analysis of the risk of bias showed a low risk of selection bias because all included studies were RCTs. The allocation of patients to each treatment group was performed with a high degree of quality in most studies, resulting in a low to moderate risk of allocation bias. Moderate risk was present for the risk of detection and

Figure 1. PRISMA flow chart of the literature search.

.....

performance bias, which was attributed to the lack of information on the blinding of investigators and patients during treatment and follow-up. In some studies, information on study dropouts during study enrollment or analysis was incompletely reported, resulting in moderate attrition bias. The risk of reporting bias was found to be overwhelmingly moderate, and the risk of other biases was mostly low. In summary, the risk of bias graph indicates a moderate quality methodological assessment of RCTs (Figure 2).

Study characteristics and results of individual studies

Data from 12,773 patients were collected. The mean symptom duration was 61.2 ± 51.0 months and the mean follow-up was 4.3 ± 5.9 months. The mean age was 44.5 ± 9.4 years. The mean BMI was 25.8 ± 2.9 kg/m². The generalities and demographics of the included studies are shown in Table 1.

Pain

The Adapted Physical Exercise group evidenced the lowest pain score (SMD -1.61; 95% CI -5.48 to 2.27), followed by Multidisciplinary (SMD 1.30; 95% CI -2.08 to 4.67) and Adapted Training Exercise/Complementary Medicine (SMD 1.64; 95% CI -1.30 to 4.59). The equation for global linearity found no statistically significant inconsistency (P_{Wald} = 0.1). These results are shown in Figure 3.

RMQ

The Adapted Physical Exercise group evidenced the lowest RMQ score (SMD -4.58; 95% CI -18.78 to 9.62) followed by Therapeutic Exercises (SMD -1.07; 95% CI -15.25 to 13.12) and Multidisciplinary (SMD 0.66; 95% CI -11.53 to 12.85). The equation for global linearity found no statistically significant inconsistency (P_{Wald} = 0.2). These results are shown in Figure 4.

ODI

The Multidisciplinary group evidenced the lowest ODI score (SMD 6.59; 95% CI –10.29 to 23.47), followed by Adapted Physical Exercise (SMD 11.49; 95% CI –12.65 to 35.62) and Physical Agent modalities (SMD 13.29; 95% CI –9.63 to 36.21). The equation for global linearity found no statistically significant inconsistency ($P_{Wald} = 0.08$). These results are shown in Figure 5.

Discussion

Within the considered physiotherapeutic and non-conventional approaches to manage nonspecific and/or mechanic cLBP, adapted physical exercise, physical agent modalities, and a multidisciplinary approach seemt to represent the most effective strategy in reducing pain and disability.

One of the main difficulties in comparing different types of physiotherapeutic management in cLBP is the lack of a comprehensive and widely accepted classification of the various available therapies. The present work is based on a novel, expert-based classification of the different types of physiotherapeutic and non-conventional approaches available for the management of cLBP. While different classifications have been proposed over time, none has been able to successfully highlight the different effectiveness of each kind of management in terms of disability and pain levels^{30,31}. As opposed to the previously published works, the presented classification was able not only to include all the treatments available in the current literature but also to differentiate between the efficacy of different types of management. Hopefully, this classification will simplify comparisons between different types of regimens.

APE showed to be one of the most efficient physiotherapeutic strategy, and it is also one of the most investigated commonly management option in the literature. The results of the present work contrast with those of a recent network meta-analysis (NMA) that compared different types of exercise and physiotherapeutic management in the setting of cLBP¹⁹⁶. While there is agreement that PE and MT are less effective than active therapy options, Owen et al.¹⁹⁶ reported no-to-low evidence for the efficacy of Pilates and McKenzie regimens for the management of cLBP. Both therapeutic options fall in the same APE category in the present work. This allowed

Figure 2. Cochrane risk of bias tool.

Author, year	Journal	Class of treatment	Type of movement	Type of Treatment	Patients (n)	Follow-up (months)	Mean age	Women (%)
Appa et al. 2015 ⁴⁷	J Orthop Sports Phys	Exercise	Low-load	Low-load motor control exercise	25	12	42.0	54
Masa et al., 2015	Ther	Exercise	High-load lifting	High-load lifting exercise	28		42.0	57
Balthazard et al.,	BMC Musculoskelet	Spinal manipulation	High velocity, low amplitude	Spinal manipulation and active exercise (mobility, passive stretching, motor control, strenghten- ing)	19	6	44.0	36
2012	Disora	Physical agents	Ultrasound	Detuned US & active exercise (mobility, passive stretch- ing, motor control, strenghtening)	18		42.0	30
Bhadauria et al.,		Exercise	Stabilization	Stabilization with verbal cues and tactile facilitation	12	0	32.8	50
2017 ⁴⁹	J Exerc Rehabil	Exercise	Strenghtening	Dynamic strenghten- ing	12		36.7	42
		Pilates	Contraction	Isometric contraction	12		35.3	8
		Back school	Individualized	Back school	68	12	57.9	70
Cecchi et al., 2010 ⁵⁰	Clin Rehabil	Physiotherapy	Individualized	Mobilization, active exercise, massage treatment of the soft tissues, propriocep- tive neuromuscular facilitation	68		60.5	61
		Spinal manipulation	Mobilization, manipulation	Spinal manipulation	69		58.1	69
		Motor control exercise	Individualized	Motor control exercise	77	10	54.6	58
Costa et al., 2009 ⁵¹	Phys Ther	Sham		Detuned US and detuned short-wave therapy	77		52.8	62
Vibe Fersum et al.,	Eur J Pain	Spinal manipulation	Individualized	Joint mobilization or manipulation (spine and pelvis)	59	36	43.1	52
2019		Cognitive functional therapy		Cognitive-behavioral	62		42.9	53
		Back school	Unknown	Back school	74	6	54.2	69
Garcia et al., 2013 ⁵³	Phys Ther	Mckenzie	Symptom guided	Educational com- ponent and postural training (mckenzie)	74		53.7	78
		Spinal stabilization	Stabilization	Spinal Stabilization & back school	35	24	43.4	68
Goldby et al., 2006 ⁵⁴	Spine	Spinal manipulation	Individualized	Spinal manipulation & back school	37		41.0	70
		Control		Back school	19		41.5	68
Halliday at al. 2016 ⁵⁵	J Orthop Sports Phys	Mckenzie	Symptom guided	Postural training (mckenzie)	32	2	48.8	80
	Ther	Motor control exercise	Contraction	Motor control exercise	30		48.3	80
Hohmann et al.,	Dtsch Arztehl Int	Hirudotherapy		Hirudotherapy & back school	25	2	59.3	88
2018 ⁵⁶	Dtsch Arztebl Int	Exercise	Various	Exercise & back school	19	1	56.5	95
Continued								

Author, year	Journal	Class of treatment	Type of movement	Type of Treatment	Patients (n)	Follow-up (months)	Mean age	Women (%)
		Multidisciplinary	Various	Group multidiscipli- nary rehabilitation: cognitive-behavioral stress management and applied relaxa- tion sessions, back school education including occupa- tional intervention and physical exercise program	59	24	46.0	98
Kaapa et al., 2006"	Spine	Physiotherapy	Various	Individual physi- otherapy: light active exercise (muscle stretching, spine mobilization, and deep trunk muscle exercises) and passive treatment (massage, spine traction, spinal mobilization and TNSUS)	61		46.5	
Kobayashi et al.,	Complement Ther	Shiatsu	Various	Shiatsu & standard care (compress or oral medicine)	30	2	67.4	67
201958	Med	Standard care		Standard care (compress or oral medicine)	29		68.3	62
Lawand et al., 2015 ⁵⁹	Joint Bone Spine	Exercise	Stretching	Global postural reed- ucation (Souchard)	30	6	49.4	81
		Control		Drugs	30		47.5	73
		Kinesio taping with tension	Traction	Kinesiotaping	27	0	25.0	100
Macedo et al., 2019 ⁶⁰	Physiotherapy	Kinesio taping no tension		Kinesiotaping	27		24.0	
		Sham		Sham tape	27		25.0	
		Control			27		24.0	
Maichrzycki et al		Massage	Deep tissue massage	Deep tissue massage	28	0	52.6	46
2014 ⁶¹	Sci World J	Massage	Deep tissue massage	Dtm & nsaid	26		50.8	50
		Mckenzie	Symptom guided	Mckenzie	110	3	48.8	25
Murtezani et al., 2015 ⁶²	J Back Musculoskelet Rehabil	Physical agents	Various	Interferential current, US, and heat	109		47.5	62
Sabin et al. 2018 ⁶³	Turk J Phys Med Rehab	Physical agents	Various	PT (hot pack,US and TENS treatment) & exercise (strenghten- ing and stretching)	50	12	50.4	64
		Control	Stretching and streng- htening	Active isotonic and isometric strengthen- ing exercises, stretch- ing exercises	50		46.2	62
		Yoga	Various	Yoga	127	9	46.4	57
Saper et al., 2017 ⁶⁴	Ann Intern Med	Aerobics	Various	Exercise	129		46.4	70
		Education		Education	64		44.2	66
		Stretching	Stretching	Stretching	13	2	53.5	62
Suh et al., 2019 ⁶⁵	Med	Walking exercise	Walking	Walking exercise (WE)	13		54.2	85
		Spinal stabilization	Stabilization	Spinal stabilization	10		57.4	60
		Spinal stabilization	Stabilization, walking	Stabilization & WE	12		54.8	67
Takabashi at al		Control		Nsaids	15	0	53.3	53
2017 ⁶⁶	Fukushima J Med Sci	Exercise	Stretching and streng- htening	Strengthening and stretching	18		57.6	56
Uzunkulaoğlu et al.,	Turk J Phys Med	Kinesio taping with tension	Traction	Kinesiotaping with tension	30	6	21.6	63
201867	Rehabil	Kinesio taping with- out tension		KT without tension	30		21.3	63
Yeung et al., 2003 ⁶⁸	J Altern Complement Med	Exercise	Various	Warm up and stretch- ing exercises	26	3	55.6	81
		Exercise	Various	Exercises & electroa- cupunture	26		50.4	85
Dufour et al., 2010 ⁶⁹	Spine	Exercise	Strenghtening	Aerobic training and strengthening exer- cises & education	129	24	41.2	57
Continued								

Author, year	Journal	Class of treatment	Type of movement	Type of Treatment	Patients (n)	Follow-up (months)	Mean age	Women (%)
		Exercise	Strengthening	Strengthening exercises (intensive muscle training)	143		40.6	56
Helmbout et al	Spine	Exercise	High-intensity strengthening	Progressive resistance muscle training	41	9	41.0	0
2004 ⁷⁰		Exercise	Low-intensity strengthening	Non-progressive, low-intensity resist- ance training	40		40.0	
	J Musculoskelet Pain	Sham		Sham	83	1	45.1	50
Jargam et al. 2005 ⁷¹		Tens		Tens	84			
Jarzeni et al., 2003		Acupuncture TENS		Acupuncture TENS	78			
		Tens	Biphasic	Tens	79			
Mang at al. 201172	Clin J Pain	Back school		Back school	181	12	50.2	65
Weng et al., 2011		Back school		Back school	163		49.5	63
Prommanon et al.,	J Phys Ther Sci	Back care pillow		US, hot pack and back care pillow	26	3	38.5	42
2015		Control		US and hot pack	26		39.7	50
Tauafian at al. 201174	Clin J Pain	Education		Education & drugs	97	6	44.6	73
Tavallall et al., 2011		Control		Control & drugs	100		45.9	83
Tavafian et al. 201475	Int J Rheum Dis	Education		Education & drugs	87	12	44.6	75
Tavallall et al., 2014		Control		Control & drugs	91		46.2	82
Alforth at al. 201676	Orthopäde	Mobilization	Mobilization	Mobilization	14	1	50.0	79
Alluti et al., 2010		Stabilization	Stabilization	Stabilization	13		43.0	54
Grande-Alonso et al.,	Pain Med	Multidisciplinary	Various	Multidisciplinary	25	3	39.9	56
201977		Multidisciplinary	Stabilization	Multidisciplinary	25		38.3	56
Al:	J Bodyw Mov Ther	Spinal manipulation	Various	Spinal manipulation	14	0	35.4	
Ali et al., 201978		Spinal manipulation	Various	Spinal manipulation	14		35.3	
Ahmedi et al. 202079	Clin Rehabil	Exercise	Individualized	Exercise (Feldenkrais method) & education	30	0	42.6	100
Anmadi et al., 2020		Education	Individualized	Home-based exercise & education	29		38.9	100
Almhdawi et al.,	Clin Rehabil	Exercise	Strengthening, stretching	Strengthening and stretching exercises	21	0	40.5	34
2020		Control			20		41.7	20
Added et al., 2016 ⁸¹	J. Orthop. Sports Phys. Ther.	Physiotherapy	Individualized	Manual therapyex- ercises	74	6	44.6	72
		Physiotherapy	Individualized	Exercises & KT	74	6	45.6	72
Arampatzis et al., 2017 ⁸²	Eur J Appl Physiol	Exercise	Lowmoderate intensity	Lowmoderate inten- sity exercises	20	0	31.9	40
2017		Control			20		31.4	45
Areeudomwong et al., 2016 ⁸³	Musculoskeletal Care	Exercise	Contraction	Proprioceptive neuromuscular facili- tation & contraction exercises	21	3	35.4	71
		Control			21		36.2	76
Page et al. 2018 ⁸⁴	J Back Musculoskelet Rehabil	Exercise	Core stabilization	Core stabilization	18	3	32.7	50
Dae et al., 2018		Exercise	Strenghtening	Strenghtening exercises	18		32.4	61
	Int J Med Res	Exercise	Contraction	Pelvic floor muscle exercise	23	0	29.1	44
Bi et al., 2013 ⁸⁵		Control	Strenghtening	US, short-wave dia- thermy and strength- ening exercises	24		30.9	46
Bicalho et al. 2010 ⁸⁶	Man Ther	Manipulation	High-velocity	Lumbar manipulation	20	0	29.5	75
Dicalilo et al., 2010		Control			20		26.5	60
	Spine J	Exercise	Various	Education & simple exercises	101	9	45.6	58
Bronfort et al., 2011 ⁸⁷		Spinal manipulation	High-velocity, low- amplitude	Spinal manipulation	100		45.2	66
		Exercise	Strengthening	Strenghtening exercises	100		44.5	57
	Med Sci Sports Exerc	Exercise	Resistance	Resistance exercises	25	4	28.9	50
Cai et al., 2017 ⁸⁸		Exercise	Contraction	Isometric contraction	24		26.1	
		Exercise	Stabilization	Stabilization	25		26.9	
Continued								

Author, year	Journal	Class of treatment	Type of movement	Type of Treatment	Patients (n)	Follow-up (months)	Mean age	Women (%)
Azevedo et al., 2017 ⁸⁹	Phys Ther	Exercise	Strengthening, stretching	Strengthening and stretching exercises	74	4	40.4	58
		Control	Various	Education & exercises	74		43.4	65
Castro-Sánchez et al.,	Spine J	Spinal manipulation	High-velocity	Manipulation	31	0	43.0	65
201690		Spinal manipulation	Low-velocity	Manipulation	31		47.0	61
Bron et al. 2010 ⁹¹	Man Ther	Exercise	Various	Aerobic exercises	20	3	45.2	70
Ryan et al., 2010		Control		Education	18		45.5	61
Chhabra et al. 201892	Eur Spine J	Арр	Various	Exercises	45	0	41.4	
Clinabra et al., 2010		Control		Drugs	48		41.0	
Cortell-Tormo et al., 2018 ⁹³	J Back Musculoskelet Rehabil	Exercise	Various	Exercises for coor- dinated contrac- tion of transversus abdominis with lumbar multifidus	11	0	35.6	100
		Control		No intervention	8		35.6	100
Cruz-Díaz et al., 2015 ⁹⁴	Disabil Rehabil	Pilates	Individualized	Strengthening exercises	53	11	69.6	100
2015		Physiotherapy	Various	Tens	48		72.7	100
Cruz-Díaz et al.,	Complement Ther Med	Pilates	Various	Pilates	34	0	36.9	68
2017 ⁹⁵		Pilates	Various	Pilates	34		35.5	62
		Control		No intervention	30		36.3	63
Cuesta-Vargas et al.,	Am J Phys Med Rehabil	Multidisciplinary	Various	Multimodal rehab	24	0	37.6	58
2011		Multidisciplinary	Various	Multimodal rehab	25		39.8	54
Diab et al. 2013 ⁹⁷	J Back Musculoskelet Rehabil	Exercise	Traction	Lumbar traction	40	6	46.3	45
Diab et al., 2015		Exercise	Stretching	Strenghtening exercises	40		45.9	43
Koldaş Doğan et al., 2008 ⁹⁸	Clin Rheumatol	Aerobics	Walking	Aerobic exercises	19	1	37.1	79
		Physical agents	Various	Hot packs & US & TENS	18		41.5	78
		Control		Mobilitazion and stretching	18		42.1	78
	Forsch Komplement- med	Multidisciplinary	Individualized	Therapeutic conver- sation	20	0	48.8	85
Eardley et al., 201399		Sham	Individualized	Sham exercises	21		48.1	67
		Delayed			17		44.6	65
	Spine	Exercise	Climbing	Climbing exercises	10	0	51.9	60
Engbert et al., 2011 ¹⁰⁰		Exercise	Various	Trunk stabilization and strenghtening	13		50.4	46
de Oliveira et al.,	Phys Ther	Spinal manipulation	High-velocity	Spinal manipulation	74	0	46.0	68
2013 ¹⁰¹		Spinal manipulation	Region-specific	Spinal manipulation	74		46.3	80
Erança et al. 2012^{102}	J Manipulative Physiol Ther	Exercise	Stabilization	Spinal stabilising exercises	15	0	42.1	
11ança et al., 2012		Exercise	Stretching	Strenghtening exercises	15		41.5	
Fuisduish et al	Arch Phys Med Rehabil	Exercise	Various	Motivational inter- vention	44	12	43.3	57
1998 ¹⁰³		Exercise	Various	Spinal mobility & trunk and lower limbs exercises	49		44.9	45
Frost et al., 1995 ¹⁰⁴	BMJ	Exercise	Aerobics	Stretching & aerobic exercises	36	6	34.2	53
		Control		Back school	35		38.5	51
	BMJ	Mckenzie	Various	Mckenzie	74	11	57.5	78
Garcia et al., 2017 ¹⁰⁵		Control		Detuned pulsed ultrasound	73		55.5	74
Gardner et al., 2019 ¹⁰⁶	BMJ	Exercise	Individualized	Individualized exercises	37	10	44.0	66
		Control	Various	Exercise	38		45.0	49
Gavish at al 2015107	Physiotherapy	Exercise	Oscillation	Mobilization	18	1	53.2	33
Gavisii et al., 2015		Control		No intervention	18		47.1	56
Continued								

Author, year	Journal	Class of treatment	Type of movement	Type of Treatment	Patients (n)	Follow-up (months)	Mean age	Women (%)
	Clin J Pain	Exercise	Various	Self-corrections & stretches & strength- ening exercises	21	0	39.3	67
Geisser et al., 2005 ¹⁰⁸		Exercise	Various	Exercises & sham manipulation	18		38.7	56
		Non-specific exercise	Various	Non-specific exercise	15		36.5	80
		Non-specific exercise	Various	Non-specific exercise & sham manipulation	18		46.3	61
Gwon et al., 2020 ¹⁰⁹	Physiother Theory Pract	Exercise	Side bridge	Vibration & side- lying bridge exercise on a sling suspension system	15	0	21.9	2
		Exercise	Side bridge	Side-lying bridge exercise on a sling suspension system	15		21.6	2
	Spine J	Sham	Various	Sham manipulation	95	11	40.9	49
		Spinal manipulation	High velocity, low amplitude	Spinal manipulation	99		41.4	49
Haas et al., 2014 ¹¹⁰		Spinal manipulation	High velocity, low amplitude	Spinal manipulation	97		41.8	49
		Spinal manipulation	High velocity, low amplitude	Spinal manipulation	100		41.2	52
	Physiotherapy	Mckenzie	Symptom guided	Mckenzie	35	10	48.8	80
Halliday et al., 2019 ¹¹¹		Motor control exercise	Contraction	Motor control exercises	35		48.3	80
	Aust J Physiother	Exercise	High intensity	High-intensity progressive resistance exercise	23	4	44.0	0
Harts et al., 2008 ¹¹²		Exercise	Low intensity	Low-intensity resistance exercise program	21		42.0	
		Control		No intervention	21		41.0	
Marada et al. 2015 ¹¹³	Phys Ther	Exercise	Various	Individualized and submaximal exercises	86	12	49.6	52
		Motor control exercise	Symptom guided	Spine and pelvis stabilization	86		48.7	66
Javadian et al., 2012 ¹¹⁴	J Back Musculoskelet Rehabil	Exercise	Stabilization	Spinal stabilization	30	3		
		Exercise	Various	Active mobilization exercises				
Loss et al., 2020 ¹¹⁵	Chiropr Man Ther	Spinal manipulation	Thrust	Lumbar manipulation	12	0	41.7	50
		Control	Various	Sham manipulation	12		43.9	50
	J Strength Cond Res	Exercise	Strengthening	Strengthening exercises	60	0	42.4	31
Kell et al., 2011 ¹¹⁶		Exercise	Strengthening	Strenghtening exercises	60		41.7	37
		Exercise	Strengthening	Strenghtening exercises	60		42.8	33
		Control		No intervention	60		43.2	38
Kim et al., 2015 ¹¹⁷	Clin Rehabil	Exercise	Contraction	Core exercises & TENS	27	2	29.7	100
		Control		Tens	26		28.6	
Kim et al., 2018 ¹¹⁸	J Sport Rehabil	Exercise	Various	Exercises Using a sling	38	3	39.5	61
		Exercise	Stabilization	Stabilizing exercise	39		46.2	54
Tekur et al., 2008 ¹¹⁹	J Altern Complement Med	Yoga	Various	Yoga	40	0	49.0	53
		Exercise	Various	Active mobilization exercises	40		48.0	38
Tekur et al., 2012 ¹²⁰	Complement Ther Med	Yoga	Various	Yoga	40	0	49.0	53
		Exercise	Various	Active mobilization exercises	40		48.0	38
de Oliveira et al.,	J Physiother	Spinal manipulation	High-velocity	High-velocity thrust manipulation	71	5	45.0	77
2020121		Spinal manipulation	Various	'Generic manipula- tion'	72		45.0	78
Continued								

Author, year	Journal	Class of treatment	Type of movement	Type of Treatment	Patients (n)	Follow-up (months)	Mean age	Women (%)
	Medicina	Tai chi	Various	Tai chi	15	0	58.1	73
Zou et al. 2019 ¹²²		Exercise	Stabilization	Bridge exercises	15	-	58.4	73
Lou et un, 2015		Control		No intervention	13		60.7	77
				Education sessions	10			
Zhang et al., 2014 ¹²³	J Int Med Res	Education	Strenghtening	once a week for 12 weeks	25	0	22.3	33
		Control	Strenghtening	Lumbar strengthen- ing exercises	24		23.0	41
Zheng et al., 2012 ¹²⁴	J Tradit Chin Med	Massage	Pressure; traction	Deep massage to the tender point and peripheral taut band	30	0	43.0	44
		Control	Traction	Sham manipulation	30		42.0	50
	J Bodyw Mov Ther	Pilates	Various	Pilates	20	5	50.5	75
Yang et al., 2021 ¹²⁵		Control		Education program regarding low back pain	19		47.9	79
Waseem et al., 2018 ¹²⁶	J Back Musculoskelet Rehabil	Exercise	Core stabilization	Core & pelvic floor exercises	53	0	46.4	34
		Exercise	Various	Stretching	55		45.5	35
Williams et al., 2005 ¹²⁷	Pain	Yoga	Various	Yoga	20	0	48.7	65
		Control		Two 1-h lectures on occupationalphysical therapy	24		48.0	71
Verbrugghe et al., 2021 ¹²⁸	Int J Environ Res Public Health	Exercise	High-intensity strengthening	Cardiorespiratory training, general resistance training, and core muscle training - high intensity	16	6	44.3	68
		Control	Moderate-intensity strengthening	Cardiorespiratory training, general resistance training, and core muscle training - moderate intensity	13		44.0	68
Sipaviciene et al., 2020 ¹²⁹	Clin Biomech	Exercise	Stabilization	Dynamic stretching exercises & lumbar stabilization	35	3	38.3	100
		Exercise	Strengthening	Lumbar muscle strengthening exercise	35		38.5	100
Phattharasupharerk et al., 2018 ¹³⁰	J Bodyw Mov Ther	Qi gong	Various	Qi gong	36	0	35.7	67
		Control		General advice on managing low back pain	36		34.8	61
Magalhães et al., 2018 ¹³¹	Braz J Phys Ther	Exercise	Various	Stretching exercises of main muscle groups and motor control exercises	33	0	46.6	76
		Exercise	Various	Progressive and sub- maximal exercises	33		47.2	73
Monticone et al., 2013 ¹³²	Clin J Pain	Exercise	Various	Cognitive-behavioral	45	12	49.0	60
		Control	Various	Active and passive mobilizations of the spine, and exercises aimed at stretching and strengthening muscles, and improv- ing postural control	45		49.7	56
Monticone et al., 2014 ¹³³	Eur Spine J	Motor control exercise	Stabilizing	Spinal stabilising exercises	10	3	58.9	70
		Control	Various	Passive spinal mobi- lisation, stretching, muscle strengthen- ing, and postural control	10		56.6	40
Morone et al., 2011 ¹³⁴	Eur J Phys Rehabil Med	Back school	Various	Theoretical lessons	41	5	61.2	59
		Control		Drugs	29		58.6	72
Matarán-Peñarrocha et al., 2020 ¹³⁵	Clin Rehabil	Exercise	Various	Supervised exercise programme	32	6	54.3	53
Continued								

Author, year	Journal	Class of treatment	Type of movement	Type of Treatment	Patients (n)	Follow-up (months)	Mean age	Women (%)
		Exercise		Non-supervised home exercise pro- gramme	32		53.2	47
Laosee et al., 2020 ¹³⁶	Complement Ther Med	Massage	Pressure	Traditional thai massage	70	3	68.2	77
		Massage	Pressure	Traditional thai massage	70		69.1	71
Rittweger et al., 2002 ¹³⁷	Spine	Exercise	Extention	Isodynamic lumbar extension exercise	25	6	49.8	44
		Exercise	Vibration	Wbv	25		54.1	52
Prado et al., 2019 ¹³⁸	Physiother Theory Pract	Exercise	Stretching	Active exercises	27	0	35.0	70
		Control		No intervention	27		33.0	63
Vollenbroek-Hutten et al., 2004 ¹³⁹	Clin Rehabil	Multidisciplinary	Various	Multimodal rehab	69	6	38.5	
		Control		No intervention	73		39.5	
del Pozo-Cruz et al., 2011 ¹⁴⁰	J Rehabil Med	Exercise	Vibration	Wbv	25	0	58.7	74
		Control		No intervention	24		59.5	72
Kostadinovic et al., 2020 ¹⁴¹	J Back Musculoskelet Rehabil	Exercise	Stabilization; mobi- lization	Lumbar stabilization exercises and thoracic mobilization & TENS	40	0	44.1	55
		Exercise	Stabilization	Lumbar stabilization & TENS	40		44.3	58
Monticone et al., 2015 ¹⁴²	Eur J Pain	Exercise	Individualized	Exercises	75	24	53.2	63
		Control		Ergonomic advice	75		53.8	60
Járomi et al., 2018 ¹⁴³	J Clin Nurs	Back school	Various	Isometric & isotonic exercises	67	0	41.7	94
		Control		Brief writen lifestyle guidance	70		41.1	93
Liu et al., 2019 ¹⁴⁴	Int J Environ Res Public Health	Tai chi	Various	Tai chi	15	0	58.1	73
		Exercise	Stabilization	Active exercises (bridge)	15		58.4	73
		Control		No intervention	13		60.7	77
Lara-Palomo et al., 2012 ¹⁴⁵	Clin Rehabil	Massage	Interferential current	Interferential current	30	0	50.0	70
		Massage	Superficial pressure	Superficial manual massage	31		47.0	65
Saha et al., 2019 ¹⁴⁶	Complement Ther Clin Pract	Massage	Pressure	Spinal manipulation	25	1	52.2	68
		Control		No intervention	25		47.2	88
Segal-Snir et al., 2016 ¹⁴⁷	J Back Musculoskelet Rehabil	Exercise	Rotation	Rotation exercises	20	1	57.2	100
		Control		No intervention	15		54.7	100
Nambi et al., 2014 ¹⁴⁸	Int J Yoga	Yoga	Various	Yoga	30	6	44.3	63
		Control	Strenghtening, stretching	Strengthening and stretching of the abdominal and back muscles	30		43.7	43
Salamat et al., 2017 ¹⁴⁹	J Bodyw Mov Ther	Exercise	Stabilization	Stabilization exercise	12	0	35.8	
		Motor control exercise	Various	Exercises training to modify pain pro- vocative postures and movement patterns	12		36.1	
Salavati et al., 2015 ¹⁵⁰	J Bodyw Mov Ther	Exercise	Stabilization	Routine physiother- apy plus supervised, intensive stabilizing exercises	20	0	32.6	0
		Control	Various	Interferential therapy	20		29.9	0
Masharawi et al., 2013 ¹⁵¹	J Back Musculoskelet Rehabil	Exercise	Various	Exercises	20	2	52.5	100
		Control		No intervention	20		53.6	100
Natour et al., 2014 ¹⁵²	Clin Rehabil	Pilates	Various	Pilates	30	3	47.8	80
		Control		No intervention	30		48.1	77
Murtezani et al., 2011 ¹⁵³	Eur J Phys Rehabil Med	Exercise	Individualized	High-intensity aero- bis exercise	50	0	51.4	48
Continued								

Author, year	Journal	Class of treatment	Type of movement	Type of Treatment	Patients (n)	Follow-up (months)	Mean age	Women (%)
		Control	Various	IFC, TENS, ultra- sound, heat	51			49
Kogure et al., 2015 ¹⁵⁴	PLoS One	Spinal manipulation	Various	Arthrokinematic Approach-Hakata method	90	6	60.0	60
		Sham	Various	Sham manipulation	89		59.6	64
Ozsoy et al., 2019 ¹⁵⁵	Dove Med Press	Exercise	Core stabilization	Core stability training	21	0	68.1	29
		Exercise	Various	Core stability exercise and myofascial release technique	21		68.0	31
Jousset et al., 2004 ¹⁵⁶	Spine	Multidisciplinary	Various	Multimodal rehab	43	5	41.4	30
		Exercise	Individualized	Active exercises	41		39.4	37
Gracia et al., 2013 ⁵³	Phys Ther	Back school	Various	Back school	74	5	54.2	69
		Mckenzie	Individualized	Mckenzie	74		53.7	78
Roche-Leboucher et al., 2011 ¹⁵⁷	Spine	Exercise	Various	Isotonic exercises	68	12	40.8	32
		Exercise	Various	Isotonic exercises	64		38.7	38
Khalil et al., 1992 ¹⁵⁸	Spine	Spinal manipulation	Stretching	Spinal manipulation	14	0	41.1	43
		Control		Multimodal rehab	14		48.5	50
Mannion et al., 1999 ¹⁵⁹	Spine	Exercise	Various	Isometric exercises	46	6	46.3	61
		Aerobics	Low-impact	Stretching and aerobic and muscle- toning exercises	47		45.2	54
		Physical agents	Various	Variuous physical agents	44		43.7	55
Mannion et al., 2001 ¹⁶⁰	Spine	Exercise	Various	Strengthening, coor- dination and aerobic exercises	44	12	46.3	61
		Aerobics	Low-impact	Stretching and aerobic and muscle- toning exercises	43		45.2	54
		Physical agents	Various	Physical therapy	40		43.7	55
Yoon et al., 2012 ¹⁶¹	Ann Rehabil Med	Massage	Symptom guided	Deep cross-friction massge	12	1	50.3	58
		Tens	Various	Tens	10		53.3	60
Yang et al., 2019 ¹⁶²	J Healthc Eng	Exercise	Symptom guided	Exercises	5	0	35.0	20
		Control	Various	Manual therapy	3		50.3	100
Hicks et al., 2016 ¹⁶³	Clin J Pain	Control	Various	Moist heat treatment & US	31	3	69.5	52
		Exercise	Stabilization	Trunk muscle training program augmented with neu- romuscular electrical stimulation	26		70.7	58
Yalfani et al., 2020 ¹⁶⁴	J Bodyw Mov Ther	Water pilates	Various	Water pilates	12	0	25.2	100
		Pilates	Various	Pilates	12		24.7	100
Trapp et al., 2015 ¹⁶⁵	J Back Musculoskelet Rehabil	Exercise	Feedback	Exercises with bio- feedback	15	0	45.5	33
		Control	Various	Exercises & walking	15		40.6	40
Kofotolis et al., 2016 ¹⁶⁶	J Back Musculoskelet Rehabil	Pilates	Various	Pilates	37	0	42.7	100
		Control		No intervention	28		41.2	100
		Exercise	Strengthening	Trunk strenghtening exercises	36		39.1	100
Kuvacic et al., 2018 ¹⁶⁷	Complement Ther Clin Pract	Control		Education	15	0	33.6	53
		Yoga	Various	Yoga	15		34.7	40
Hernandez-Reif et al., 2001 ¹⁶⁸	Intern J Neuroscience	Massage	Various	Manual therapy	24	0	43.8	58
		Control	Various	Muscle relaxation exercise			36.7	50
Lewis et al., 2005 ¹⁶⁹	Spine	Exercise	Various	Active aerobic exercises	33	12	46.1	65
		Exercise	Individualized	Manual therapy	29		45.7	65
O'Keeffe et al., 2020 ¹⁷⁰	J Sports Med	Cognitive functional therapy	Individualized	Cognitive functional therapy	106	10 to 10.5	47.0	77
Continued								

Author, year	Journal	Class of treatment	Type of movement	Type of Treatment	Patients (n)	Follow-up (months)	Mean age	Women (%)
		Exercise	Various	Exercises & relaxa- tion & pain education	100		50.6	70
Kaeding et al., 2017 ¹⁷¹	Scand J Med Sci Sports	Exercise	Vibration	Whole body vibration	21	0	46.4	67
		Control		No intervention	20		44.6	70
Petrozzi et al., 2019 ¹⁷²	Chiropr Man Therap	Арр	Various	Cognitive-behavioral & exercises	54	< 10	50.1	54
		Control	Various	Manual therapy	54		50.6	59
Winter et al., 2015 ¹⁷³	J Back Musculoskelet Rehabil	Exercise	Rotation	Hip muscles rotation- stetching	10	0	45.9	45
		Exercise	Stretching	Multi-directional hip stretching	10		48.9	
		Exercise	Strengthening	Strenghtening exercises	10		38.3	
Massé-Alarie et al., 2017 ¹⁷⁴	Clin Neurophysiol	Physical agents	Contraction	Magnetic neuro- stimulation at lumbar level	11	0	33.2	45
		Sham	None	Sham magnetic stimulation	10		42.1	50
Martí-Salvador et al., 2018 ¹⁷⁵	Arch Phys Med Rehabil	Spinal manipulation	Various	Manipulation	33	2	43.4	52
		Sham	Various	Sham spinal manipu- lation	33		41.7	61
Aguilar-Ferrándiz et al., 2022 ¹⁷⁶	Nature	Kinesio taping	Without tension	KT application at paravertebral mus- culature	29	0	44.0	59
		Tens		Tens	29		46.0	72
Elgendy et al., 2022 ¹⁷⁷	Ortop Traumatol Rehabil	Physical agents	Various	Shock waves	15	0	32.7	
		Control	Stretching, strength- ening	Stretching & streng- htening exercises	15		33.3	
Fukuda et al., 2021 ¹⁷⁸	Braz J Phys Ther	Spinal manipulation	Joint mobilzation	Manual therapy & lumbar stabilization	35	12	35.2	53
		Spinal manipulation	Joint mobilization, strengthening	Manual therapy & lumbar stabilization	35		40.2	
Ma et al., 2021 ¹⁷⁹	Ann Palliat Med	Physical agents	Needling	Fu's subcutaneus needle	30	12	47.7	50
		Massage	Swedish massage	Swedish massage	30		49.2	63
Maggi et al., 2022 ¹⁸⁰	Aging Clin Exp Res	Kinesio taping	No tension	KT application at lumbar spine	57	3	66.8	72
		Control		Back school	62		67.8	82
Jalalvandi et al., 2022 ¹⁸¹	BMC Musculoskelet Disord	Exercise	Stretching, strength- ening	Exercises for strengthening and stretching of the back and pelvis muscles	22	0	37.9	73
		Tens		Tens	22		36.1	64
Atilgan et al., 2021 ¹⁸²	J Back Musculoskelet Rehabil	Exercise	Breathing, stabiliza- tion	Breathing exercises & core stabilization exercises	23	0	32.1	100
		Control	Stabilization	Lumbar stabilization	20		37.7	100
Pivovarsky et al., 2021 ¹⁸³	Einstein (Sao Paulo)	Sham		Sham TENS	35	0	40.8	69
		Tens		Tens	35		44.0	66
		Tens		Tens	35		42.6	77
Van Dillen et al., 2020 ¹⁸⁴	JAMA Neurol	Exercise	Various	Active exercises training for lumbar spine	74	12	42.4	68
		Exercise	Stretching, strength- ening	Strength and flex- ibility exercises	75		42.6	55
Vibe Fersum et al., 2012 ¹⁸⁵	Eur J Pain	Spinal manipulation	Joint mobilization	Joint mobilization or manipulation	43	0	42.9	49
		Cognitive functional therapy	Unknown	Cognitive-functional therapy	51		41.0	53
Ghroubi et al., 2007 ¹⁸⁶	Ann Readapt Med Phys	Spinal manipulation	Symptom guided	Spinal manipulation	32	1	39.1	84
		Sham		Sham spinal manipu- lation	32		37.4	75
Huber et al., 2019 ¹⁸⁷	BMC Musculoskelet Disord	Walking	Walking	Guided hiking in mountains	27	14	52.9	52
Continued								

Author, year	Journal	Class of treatment	Type of movement	Type of Treatment	Patients (n)	Follow-up (months)	Mean age	Women (%)
		Walking	Walking, heat	Balneotherapy	26		53.4	54
		Control		No intervention	27		43.8	63
Werners et al., 1999 ¹⁸⁸	Spine	Tens		Tens	74	3	38.3	43
		Massage	Traction	Lumbar traction	73		39.2	49
Kankaanpää et al., 1999 ¹⁸⁹	Spine	Exercise	Various	Training of trunk muscles	30	12	39.8	37
		Control	Various	Manual therapy	24		39.3	33
Marshall et al., 2008 ¹⁹⁰	Spine	Spinal manipulation	High velocity, low amplitude, various	Isometric then concentricexcentric exercises	12	9	34.3	50
		Spinal manipulation	High velocity, low amplitude	Manipulation	13		35.8	54
		Spinal manipulation	Non thrust, various	Abdominal stabiliza- tion	12		33.9	50
		Spinal manipulation	Non thrust	Education on how to stay active	13		41.7	42
Branchini et al., 2015 ¹⁹¹	F1000research	Spinal manipulation	Pressure	Manual therapy and fascial manipulation	11	3	48.0	64
		Control	Individualized	Respiratory reeduca- tion, propioception & stretching & core stability exercises,	13		44.0	69
Batıbay et al., 2020 ¹⁹²	J Orthop Sci	Pilates	Various	Pilates	28	0	49.3	100
		Exercise		Pelvic tilt, stretching and strenghtening exercises	25		48.4	100
Elabd et al., 2020 ¹⁹³	J Appl Biomech	Exercise	Stabilization, stretch- ing	Lumbar stabilization	25	0	26.8	52
		Exercise	Stabilization	Lumbar stabilization	25		27.4	
Dadarkhah et 2020 ¹⁹⁴	J Natl Med Assoc	Exercise	Core stabilization	Flexibility & strength- ening & cool-down exercises	28	12	49.0	57
		Exercise	Core stabilization	Flexibility & strength- ening & cool-down exercises	28		50.0	57
Nardin et al., 2022 ¹⁹⁵	Lasers Med Sci	Exercise	Aerobics	Deep water running	20	1	42.2	80
		Sham	Aerobics	Sham	20		42.8	75
		Physical agents		Laser-therapy (THOR DD2)	20		43.1	80

Table 1. Generalities and patient baseline of the included studies.

to aggregate data from different studies and achieve a higher numerosity for the analysed category. In turn, this might have led to stronger evidence supporting APE in the present work. In support of the role of APE in the setting of cLBP, a recent NMA by Fernandez-Rodriguez et al.²⁸ showed that the most effective treatment protocol included, among others, at least one session of Pilates or strength exercise per week. Similar results were also obtained by Hayden et al.¹⁹⁷, who compared APE schemes to other exercise and treatment types, and concluded that Pilates and McKenzie regimens promoted functional restoration and reduced pain intensity.

Recently, APE has gained popularity for the management of cLBP, and its use has been supported by a number of publications^{198–203}. In addition to its efficacy, APE presents further advantages such as the possibility of individualizing the therapeutic regimen according to the specific needs and interests of the patients^{204,205}. These characteristics can increase compliance with the management¹⁹⁷ and, consequently, its efficacy. Furthermore, APE protocols have been applied safely in elderly and fragile cLBP patients, a particularly relevant group considering population aging²⁰⁵. In this setting, APE seems to be able not only to improve pain and function but also to reduce the fear of falling and increase balance²⁰⁵. Interestingly, while improving symptoms and function, APE does not seem to increase trunk muscle size⁵⁵. This finding might be related to the short duration of the study (eight weeks)⁵⁵, but might also indicate that the efficacy of APE does not only rely on muscule size. This, in turn, might explain why APE was more effective than other forms of exercise. Possible intervening mechanisms might be the focus of APE on functional improvement or balance, or the encouraging effects of APE on psychosocial outcomes²⁰⁶ and improvement of kinesiophobia^{207,208}: further studies will be required to understand more clearly why this type of management is particularly effective in patients with cLBP.

This important finding can be explained considering that active physiotherapy involves the active participation of the patient in performing therapeutic exercises or activities that promote mobility, strength, and functional improvement¹⁷. It encourages patients to actively participate in their rehabilitation, fostering self-management and independence¹⁷. This translates into a greater awareness of patients of their means, in adapting their body to the surrounding environment. Patient do not feel that they have a disability that limits the activities of daily living, but, thanks to the Adapted Physical Exercise, subjects develop the means to differently tackle the required tasks.

Figure 3. From left to right: edge, interval, and funnel plot of the comparison pain.

Figure 4. From left to right: edge, interval, and funnel plot of the comparison RMQ.

Figure 5. From left to right: edge, interval, and funnel plot of the comparison ODI.

The application of physical agents also proved to be an effective strategy for the management of cLBP. Passive physiotherapy refers to interventions where the patient receives treatment without actively engaging in physical movements, as happens during the application of the physical agents. It relies on external therapeutic interventions facilitated by the physiotherapist on the affected muscles, which often appear hypercontracted in case of pain. Passive stretch reduces stiffness (viscoelastic stress relaxation) and decreases stretch-induced pain¹⁶. This could represent the first step to consequently work on the functional use of these muscles, as it happens in APE. In other terms, passive treatment can help with immediate pain relief, but active treatment keeps the patient functional in the long term.

Lastly, considering the weight of psychosocial factors in the setting of cLBP²⁰⁹, it is not surprising that multimodal therapy was effective under the outcomes of interest considered. Furthermore, the available evidence supports the hypothesis that multimodal management exerts a positive influence in return to work²¹⁰ and reduction of work absenteeism²¹¹. Heitz et al.²¹² identified several modifiable and non-modifiable risk factors for the development of persistent cLBP in patients with subacute and cLBP, 56 of them somatic and 61 of them psychosocial. These figures show clearly that focussing solely on the somatic aspects leaves out a vast number of psychological factors involved in the development of cLBP. These data and the evidence presented in the present work thus support the inclusion of psychologic management in the therapy of nonspecific cLBP. While similar positive findings around the employment of multimodal management in cLBP have been reported by different studies^{213–217}, future research should focus on what type of psychological therapy is best used in what type of setting²¹⁵.

This work does not come without limitations. The main one is represented by the heterogeneity in the inclusion criteria and therapeutic schemes in the available literature. Future studies should focus on adopting a uniform classification of different therapeutic options to allow easier comparability, and larger cohorts with subanalysis of patients in different age ranges or with different symptom durations will be helpful to analyze whether different patient cohorts can benefit from different management options. Three trained physical therapists (M.N., B.M., F.C.) collectively performed data categorisation to reduce the risk of bias related to data classification. However, they often faced bias and lack of information and needed further clarifications from the authors of the included studies. The inter-rater agreement was not evaluated during the literature search, which also might impact negatively the quality of the results of the present Baysiean network meta-analysis.

Conclusion

Within the considered physiotherapeutic and non-conventional approaches to manage nonspecific and/or mechanic cLBP, adapted physical exercise, physical agent modalities, and a multidisciplinary approach might represent the most effective strategy in reducing pain and disability.

Data availability

The datasets generated during and or analysed during the current study are available throughout the manuscript.

Received: 12 September 2023; Accepted: 15 May 2024 Published online: 21 May 2024

References

- Balague, F., Mannion, A. F., Pellise, F. & Cedraschi, C. Non-specific low back pain. Lancet 379(9814), 482–491. https://doi.org/ 10.1016/S0140-6736(11)60610-7 (2012).
- Hopayian, K., Raslan, E. & Soliman, S. The association of modic changes and chronic low back pain: A systematic review. J. Orthop. 35, 99–106. https://doi.org/10.1016/j.jor.2022.11.003 (2023).
- Migliorini, F. et al. Opioids for chronic low back pain management: a Bayesian network meta-analysis. Expert Rev. Clin. Pharmacol. 14(5), 635–641. https://doi.org/10.1080/17512433.2021.1903316 (2021).
- Hoy, D., Brooks, P., Blyth, F. & Buchbinder, R. The Epidemiology of low back pain. Best Pract. Res. Clin. Rheumatol. 24(6), 769–781. https://doi.org/10.1016/j.berh.2010.10.002 (2010).
- Hartvigsen, J. et al. What low back pain is and why we need to pay attention. Lancet 391(10137), 2356–2367. https://doi.org/10. 1016/S0140-6736(18)30480-X (2018).
- Delpierre, Y. Fear-avoidance beliefs, anxiety and depression are associated with motor control and dynamics parameters in patients with chronic low back pain. J. Orthop. 29, 44–49. https://doi.org/10.1016/j.jor.2022.01.005 (2022).
- Migliorini, F. et al. The pharmacological management of chronic lower back pain. Expert Opin. Pharmacother. 22(1), 109–119. https://doi.org/10.1080/14656566.2020.1817384 (2021).
- Wang, F., Sun, R., Zhang, S. D. & Wu, X. T. Comparison of thoracolumbar versus non-thoracolumbar osteoporotic vertebral compression fractures in risk factors, vertebral compression degree and pre-hospital back pain. J. Orthop. Surg. Res. 18(1), 643. https://doi.org/10.1186/s13018-023-04140-6 (2023).
- 9. Pourahmadi, M. et al. The effect of dual-task conditions on postural control in adults with low back pain: a systematic review and meta-analysis. J. Orthop. Surg. Res. 18(1), 555. https://doi.org/10.1186/s13018-023-04035-6 (2023).
- Lu, W. *et al.* Risk factors analysis and risk prediction model construction of non-specific low back pain: an ambidirectional cohort study. *J. Orthop. Surg. Res.* 18(1), 545. https://doi.org/10.1186/s13018-023-03945-9 (2023).
- 11. Zhang, S. K. *et al.* Effects of exercise therapy on disability, mobility, and quality of life in the elderly with chronic low back pain: a systematic review and meta-analysis of randomized controlled trials. *J. Orthop. Surg. Res.* **18**(1), 513. https://doi.org/10.1186/s13018-023-03988-y (2023).
- Foster, N. E. et al. Prevention and treatment of low back pain: evidence, challenges, and promising directions. Lancet 391(10137), 2368–2383. https://doi.org/10.1016/S0140-6736(18)30489-6 (2018).
- Qaseem, A., Wilt, T.J., McLean, R.M., Forciea, M.A., Clinical Guidelines Committee of the American College of P, Denberg, T.D., Barry, M.J., Boyd, C., Chow, R.D., Fitterman, N., Harris, R.P., Humphrey, L.L., Vijan, S. Noninvasive treatments for acute, subacute, and chronic low back pain: A clinical practice guideline from the american college of physicians. Ann. Intern. Med. 166 (7):514-530. https://doi.org/10.7326/M16-2367 (2017)
- Baroncini, A. *et al.* Management of facet joints osteoarthritis associated with chronic low back pain: A systematic review. *Surgeon* 19(6), e512–e518. https://doi.org/10.1016/j.surge.2020.12.004 (2021).
- Geneen, L. J. et al. Physical activity and exercise for chronic pain in adults: an overview of Cochrane Reviews. Cochrane Database Syst. Rev. 1(1), CD011279. https://doi.org/10.1002/14651858.CD011279.pub2 (2017).
- Riley, D. A. & Van Dyke, J. M. The effects of active and passive stretching on muscle length. *Phys. Med. Rehabil. Clin. N. Am* 23(1), 51–57. https://doi.org/10.1016/j.pmr.2011.11.006 (2012).
- Taylor, N. F., Dodd, K. J., Shields, N. & Bruder, A. Therapeutic exercise in physiotherapy practice is beneficial: a summary of systematic reviews 2002–2005. *Aust. J. Physiother.* 53(1), 7–16. https://doi.org/10.1016/s0004-9514(07)70057-0 (2007).
- Czaplewski, L. G., Rimmer, O., McHale, D. & Laslett, M. Modic changes as seen on MRI are associated with nonspecific chronic lower back pain and disability. J. Orthop. Surg. Res. 18(1), 351. https://doi.org/10.1186/s13018-023-03839-w (2023).
- Jia, C. Q. et al. Mid-term low back pain improvement after total hip arthroplasty in 306 patients with developmental dysplasia of the hip. J. Orthop. Surg. Res. 18(1), 212. https://doi.org/10.1186/s13018-023-03701-z (2023).
- Liu, K. et al. Efficacy and safety of extracorporeal shockwave therapy in chronic low back pain: a systematic review and metaanalysis of 632 patients. J. Orthop. Surg. Res. 18(1), 455. https://doi.org/10.1186/s13018-023-03943-x (2023).
- Park, H. J., Choi, J. Y., Lee, W. M. & Park, S. M. Prevalence of chronic low back pain and its associated factors in the general population of South Korea: a cross-sectional study using the National Health and Nutrition Examination Surveys. *J. Orthop. Surg. Res.* 18(1), 29. https://doi.org/10.1186/s13018-023-03509-x (2023).
- Hernandez-Lucas, P., Leiros-Rodriguez, R., Lopez-Barreiro, J. & Garcia-Soidan, J. L. Is the combination of exercise therapy and health education more effective than usual medical care in the prevention of non-specific back pain? A systematic review with meta-analysis. Ann. Med. 54(1), 3107–3116. https://doi.org/10.1080/07853890.2022.2140453 (2022).
- Miranda, L., Quaranta, M., Oliva, F. & Maffulli, N. Stem cells and discogenic back pain. Br. Med. Bull. 146(1), 73–87. https:// doi.org/10.1093/bmb/ldad008 (2023).
- Migliorini, F. *et al.* Between guidelines and clinical trials: evidence-based advice on the pharmacological management of non-specific chronic low back pain. *BMC Musculoskelet. Disord.* 24(1), 432. https://doi.org/10.1186/s12891-023-06537-0 (2023).
- Baroncini, A. *et al.* Acupuncture in chronic aspecific low back pain: a Bayesian network meta-analysis. J. Orthop. Surg. Res. 17(1), 319. https://doi.org/10.1186/s13018-022-03212-3 (2022).
- Oliveira, C. B. *et al.* Clinical practice guidelines for the management of non-specific low back pain in primary care: an updated overview. *Eur. Spine J.* 27(11), 2791–2803. https://doi.org/10.1007/s00586-018-5673-2 (2018).

- George, S. Z. et al. Interventions for the management of acute and chronic low back pain: Revision 2021. J. Orthop. Sports Phys. Ther. https://doi.org/10.2519/jospt.2021.0304 (2021).
- Fernandez-Rodriguez, R. et al. Best exercise options for reducing pain and disability in adults with chronic low back pain: Pilates, strength, core-based, and mind-body. A network meta-analysis. J. Orthop. Sports Phys. Ther. 52(8), 505–521. https://doi.org/10. 2519/jospt.2022.10671 (2022).
- Hayden, J. A., Ellis, J., Ogilvie, R., Malmivaara, A. & van Tulder, M. W. Exercise therapy for chronic low back pain. *Cochrane Database Syst. Rev.* 9(9), CD009790. https://doi.org/10.1002/14651858.CD009790.pub2 (2021).
- Grooten, W. J. A. et al. Summarizing the effects of different exercise types in chronic low back pain—a systematic review of systematic reviews. BMC Musculoskelet. Disord. 23(1), 801. https://doi.org/10.1186/s12891-022-05722-x (2022).
- Tagliaferri, S. D. *et al.* Classification approaches for treating low back pain have small effects that are not clinically meaningful: A systematic review with meta-analysis. *J. Orthop. Sports Phys. Ther.* 52(2), 67–84. https://doi.org/10.2519/jospt.2022.10761 (2022).
- Howick, J.C.I., Glasziou, P., Greenhalgh, T., Heneghan, C., Liberati, A., Moschetti, I., Phillips, B., Thornton, H., Goddard, O., Hodgkinson, M. The 2011 Oxford CEBM Levels of Evidence. Oxford Centre for Evidence-Based Medicine (2011). Available at http://www.cebmnet/indexaspx?o=5653
- Maher, C., Underwood, M. & Buchbinder, R. Non-specific low back pain. Lancet 389(10070), 736–747. https://doi.org/10.1016/ S0140-6736(16)30970-9 (2017).
- Borenstein, D. Mechanical low back pain-a rheumatologist's view. Nat. Rev. Rheumatol. 9(11), 643–653. https://doi.org/10.1038/ nrrheum.2013.133 (2013).
- Hutton, B. *et al.* The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. *Ann. Intern. Med.* 162(11), 777–784. https://doi.org/10.7326/M14-2385 (2015).
- Abenhaim, L. *et al.* The role of activity in the therapeutic management of back pain. Report of the International Paris Task Force on Back Pain. *Spine (Phila Pa 1976)* 25(4(Suppl)), 1S-33S. https://doi.org/10.1097/00007632-200002151-00001 (2000).
- Hutzler, Y. & Sherrill, C. Defining adapted physical activity: international perspectives. Adapt. Phys. Activ. Q. 24(1), 1–20. https:// doi.org/10.1123/apaq.24.1.1 (2007).
- Yurdakul, O. V., Beydogan, E. & Yilmaz Yalcinkaya, E. Effects of physical therapy agents on pain, disability, quality of life, and lumbar paravertebral muscle stiffness via elastography in patients with chronic low back pain. *Turk. J. Phys. Med. Rehabil.* 65(1), 30–39. https://doi.org/10.5606/tftrd.2019.2373 (2019).
- O'Sullivan, P. B. et al. Cognitive functional therapy: An integrated behavioral approach for the targeted management of disabling low back pain. Phys. Ther. 98(5), 408–423. https://doi.org/10.1093/ptj/pzy022 (2018).
- Castro-Sanchez, A. M. et al. Kinesio Taping reduces disability and pain slightly in chronic non-specific low back pain: a randomised trial. J. Physiother. 58(2), 89–95. https://doi.org/10.1016/S1836-9553(12)70088-7 (2012).
- Stevens, M. L., Lin, C. C. & Maher, C. G. The roland morris disability questionnaire. J. Physiother. 62(2), 116. https://doi.org/ 10.1016/j.jphys.2015.10.003 (2016).
- Fairbank, J. C. Oswestry disability index. J. Neurosurg. Spine 20(2), 239–241. https://doi.org/10.3171/2013.7.SPINE13288 (2014).
 Hjermstad, M.J., Fayers, P.M., Haugen, D.F., Caraceni, A., Hanks, G.W., Loge, J.H., Fainsinger, R., Aass, N., Kaasa, S., European Palliative Care Research C Studies comparing Numerical Rating Scales, Verbal Rating Scales, and Visual Analogue Scales for assessment of pain intensity in adults: a systematic literature review. J. Pain Symptom Manage. 41(6):1073-1093 (2011). https://
- doi.org/10.1016/j.jpainsymman.2010.08.016
 44. Cumpston, M., Li, T., Page, M.J., Chandler, J., Welch, V.A., Higgins, J.P., Thomas, J. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. *Cochrane Database Syst. Rev.* 10, D000142 (2019). https://doi.org/10.1002/14651858.ED000142
- Higgins, J.P.T.T.J., Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions version 6.2. Cochrane 2021. Available from www.training.cochrane.org/handbook. Accessed on February 2022.
- 46. Altman, D.G. London UCaHPSfMR, First Edition.
- 47. Aasa, B., Berglund, L., Michaelson, P. & Aasa, U. Individualized low-load motor control exercises and education versus a high-load lifting exercise and education to improve activity, pain intensity, and physical performance in patients with low back pain: a randomized controlled trial. *J. Ortho. Sports Phys. Therapy* **45**(2), 77–85 (2015).
- Balthazard, P. *et al.* Manual therapy followed by specific active exercises versus a placebo followed by specific active exercises on the improvement of functional disability in patients with chronic non specific low back pain: a randomized controlled trial. *BMC Musculoskelet. Disord.* 13, 162. https://doi.org/10.1186/1471-2474-13-162 (2012).
- Bhadauria, E.A., Gurudut, P. Comparative effectiveness of lumbar stabilization, dynamic strengthening, and Pilates on chronic low back pain: randomized clinical trial. J. Exerc. Rehabil. 13(4):477-485 (2017). https://doi.org/10.12965/jer.1734972.486
- Cecchi, F. *et al.* Spinal manipulation compared with back school and with individually delivered physiotherapy for the treatment of chronic low back pain: a randomized trial with one-year follow-up. *Clin. Rehabil.* 24(1), 26–36. https://doi.org/10.1177/02692 15509342328 (2010).
- Costa, L. O. P. et al. Motor control exercise for chronic low back pain: A randomized placebo-controlled trial. Phys. Therapy 89(12), 1275–1286. https://doi.org/10.2522/ptj.20090218 (2009).
- Vibe Fersum, K., Smith, A., Kvale, A., Skouen, J. S. & O'Sullivan, P. Cognitive functional therapy in patients with non-specific chronic low back pain-a randomized controlled trial 3-year follow-up. *Eur. J. Pain* 23(8), 1416–1424. https://doi.org/10.1002/ejp.1399 (2019).
- 53. Garcia, A. N. *et al.* Effectiveness of back school versus McKenzie exercises in patients with chronic nonspecific low back pain: a randomized controlled trial. *Physical therapy* **93**(6), 729–747 (2013).
- Goldby, L.J., Moore, A.P., Doust, J., Trew, M.E. A randomized controlled trial investigating the efficiency of musculoskeletal physiotherapy on chronic low back disorder. *Spine (Phila Pa 1976)* 31(10), 1083-1093 (2006). https://doi.org/10.1097/01.brs. 0000216464.37504.64
- Halliday, M. H. *et al.* A randomized controlled trial comparing the mckenzie method to motor control exercises in people with chronic low back pain and a directional preference. *J. Orthop. Sports Phys. Ther.* 46(7), 514–522. https://doi.org/10.2519/jospt. 2016.6379 (2016).
- Hohmann, C. D. et al. The effectiveness of leech therapy in chronic low back pain. Dtsch. Arztebl. Int. 115(47), 785–792. https:// doi.org/10.3238/arztebl.2018.0785 (2018).
- Kaapa, E.H., Frantsi, K., Sarna, S., Malmivaara, A. Multidisciplinary group rehabilitation versus individual physiotherapy for chronic nonspecific low back pain: a randomized trial. *Spine (Phila Pa 1976)* 31(4), 371-376 (2006). https://doi.org/10.1097/01. brs.0000200104.90759.8c
- Kobayashi, D., Shimbo, T., Hayashi, H. & Takahashi, O. Shiatsu for chronic lower back pain: randomized controlled study. Complement. Therap. Med. 45, 33–37 (2019).
- Lawand, P. et al. Effect of a muscle stretching program using the global postural reeducation method for patients with chronic low back pain: A randomized controlled trial. *Joint Bone Spine* 82(4), 272–277. https://doi.org/10.1016/j.jbspin.2015.01.015 (2015).

- Macedo, Ld. B., Richards, J., Borges, D. T., Melo, S. A. & Brasileiro, J. S. Kinesio Taping reduces pain and improves disability in low back pain patients: a randomised controlled trial. *Physiotherapy* **105**(1), 65–75. https://doi.org/10.1016/j.physio.2018.07. 005 (2019).
- 61. Majchrzycki, M., Kocur, P. & Kotwicki, T. Deep tissue massage and nonsteroidal anti-inflammatory drugs for low back pain: a prospective randomized trial. *ScientificWorldJournal* **2014**, 287597. https://doi.org/10.1155/2014/287597 (2014).
- Murtezani, A. et al. A comparison of mckenzie therapy with electrophysical agents for the treatment of work related low back pain: A randomized controlled trial. J. Back Musculoskelet. Rehabil. 28(2), 247–253. https://doi.org/10.3233/BMR-140511 (2015).
- Sahin, N., Karahan, A. Y. & Albayrak, I. Effectiveness of physical therapy and exercise on pain and functional status in patients with chronic low back pain: a randomized-controlled trial. *Turk. J. Phys. Med. Rehabil.* 64(1), 52–58. https://doi.org/10.5606/ tftrd.2018.1238 (2018).
- 64. Saper, R. B. *et al.* Yoga, physical therapy, or education for chronic low back pain: a randomized noninferiority trial. *Annals Internal Med.* **167**(2), 85–94 (2017).
- Suh, J. H., Kim, H., Jung, G. P., Ko, J. Y. & Ryu, J. S. The effect of lumbar stabilization and walking exercises on chronic low back pain: A randomized controlled trial. *Medicine (Baltimore)* 98(26), e16173. https://doi.org/10.1097/MD.00000000016173 (2019).
- Takahashi, N., Omata, J. I., Iwabuchi, M., Fukuda, H. & Shirado, O. Therapeutic efficacy of nonsteroidal anti-inflammatory drug therapy versus exercise therapy in patients with chronic nonspecific low back pain: a prospective study. *Fukushima J. Med. Sci.* 63(1), 8–15. https://doi.org/10.5387/fms.2016-12 (2017).
- Uzunkulaoglu, A., Gunes Aytekin, M., Ay, S. & Ergin, S. The effectiveness of Kinesio taping on pain and clinical features in chronic non-specific low back pain: A randomized controlled clinical trial. *Turk. J. Phys. Med. Rehabil.* 64(2), 126–132. https:// doi.org/10.5606/tftrd.2018.1896 (2018).
- Yeung, C. K., Leung, M. C. & Chow, D. H. The use of electro-acupuncture in conjunction with exercise for the treatment of chronic low-back pain. J Altern Complement Med 9(4), 479–490. https://doi.org/10.1089/107555303322284767 (2003).
- Dufour, N., Thamsborg, G., Oefeldt, A., Lundsgaard, C., Stender, S. Treatment of chronic low back pain: a randomized, clinical trial comparing group-based multidisciplinary biopsychosocial rehabilitation and intensive individual therapist-assisted back muscle strengthening exercises. *Spine (Phila Pa 1976)* 35(5), 469-476 (2010). https://doi.org/10.1097/BRS.0b013e3181b8db2e
- 70. Helmhout, P, Harts, C., Staal, J., Candel, M. & De Bie, R. Comparison of a high-intensity and a low-intensity lumbar extensor training program as minimal intervention treatment in low back pain: a randomized trial. *Eur. Spine J.* **13**, 537–547 (2004).
- Jarzem, P. F., Harvey, E. J., Arcaro, N. & Kaczorowski, J. Transcutaneous electrical nerve stimulation [TENS] for chronic low back pain. J. Musculoskelet. Pain 13(2), 3–9 (2005).
- 72. Meng, K. *et al.* Intermediate and long-term effects of a standardized back school for inpatient orthopedic rehabilitation on illness knowledge and self-management behaviors: a randomized controlled trial. *Clin. J. Pain* **27**(3), 248–257 (2011).
- 73. Prommanon, B. *et al.* Effectiveness of a back care pillow as an adjuvant physical therapy for chronic non-specific low back pain treatment: a randomized controlled trial. *J. Phys. Therapy Sci.* **27**(7), 2035–2038 (2015).
- Tavafian, S. S., Jamshidi, A. R. & Mohammad, K. Treatment of chronic low back pain: a randomized clinical trial comparing multidisciplinary group-based rehabilitation program and oral drug treatment with oral drug treatment alone. *Clin. J. Pain* 27(9), 811–818. https://doi.org/10.1097/AJP.0b013e31821e7930 (2011).
- Tavafian, S. S., Jamshidi, A. R. & Mohammad, K. Treatment of low back pain: randomized clinical trial comparing a multidisciplinary group-based rehabilitation program with oral drug treatment up to 12 months. *Int. J. Rheum. Dis.* 17(2), 159–164. https://doi.org/10.1111/1756-185X.12116 (2014).
- Alfuth, M. & Cornely, D. Chronic low back pain: Comparison of mobilization and core stability exercises. Der. Orthopäde 45, 579–590 (2016).
- 77. Grande-Alonso, M. *et al.* Physiotherapy based on a biobehavioral approach with or without orthopedic manual physical therapy in the treatment of nonspecific chronic low back pain: a randomized controlled trial. *Pain Med.* **20**(12), 2571–2587 (2019).
- Ali, M. N., Sethi, K. & Noohu, M. M. Comparison of two mobilization techniques in management of chronic non-specific low back pain. J. Bodywork Move. Therap. 23(4), 918–923 (2019).
- 79. Ahmadi, H. et al. Comparison of the effects of the Feldenkrais method versus core stability exercise in the management of chronic low back pain: a randomised control trial. Clin. Rehabil. 34(12), 1449–1457 (2020).
- Almhdawi, K. A. *et al.* Efficacy of an innovative smartphone application for office workers with chronic non-specific low back pain: a pilot randomized controlled trial. *Clin. Rehabil.* 34(10), 1282–1291 (2020).
- 81. Added, M. A. N. *et al.* Kinesio taping does not provide additional benefits in patients with chronic low back pain who receive exercise and manual therapy: a randomized controlled trial. *J. Orthop. Sports Phys. Therapy* **46**(7), 506–513 (2016).
- Arampatzis, A. et al. A random-perturbation therapy in chronic non-specific low-back pain patients: a randomised controlled trial. Eur. J. Appl. Physiol. 117, 2547–2560 (2017).
- Areeudomwong, P., Wongrat, W., Neammesri, N. & Thongsakul, T. A randomized controlled trial on the long-term effects of proprioceptive neuromuscular facilitation training, on pain-related outcomes and back muscle activity, in patients with chronic low back pain. *Musculoskelet. Care* 15(3), 218–229 (2017).
- Bae, C.-R. et al. Effects of assisted sit-up exercise compared to core stabilization exercise on patients with non-specific low back pain: A randomized controlled trial. J. Back Musculoskelet. Rehabil. 31(5), 871–880 (2018).
- 85. Bi, X. et al. Pelvic floor muscle exercise for chronic low back pain. J. Int. Med. Res. 41(1), 146–152 (2013).
- Bicalho, E., Setti, J. A., Macagnan, J., Cano, J. L. & Manffra, E. F. Immediate effects of a high-velocity spine manipulation in paraspinal muscles activity of nonspecific chronic low-back pain subjects. *Man. Ther.* 15(5), 469–475. https://doi.org/10.1016/j. math.2010.03.012 (2010).
- Bronfort, G. *et al.* Supervised exercise, spinal manipulation, and home exercise for chronic low back pain: a randomized clinical trial. *The Spine J.* 11(7), 585–598 (2011).
- 88. Cai, C., Yang, Y., Kong, P.W. Comparison of lower limb and back exercises for runners with chronic low back pain (2017).
- Azevedo, D. C. et al. Movement system impairment-based classification treatment versus general exercises for chronic low back pain: randomized controlled trial. *Phys. Therapy* 98(1), 28–39 (2018).
- 90. Castro-Sánchez, A. M. *et al.* Short-term effectiveness of spinal manipulative therapy versus functional technique in patients with chronic nonspecific low back pain: a pragmatic randomized controlled trial. *The Spine J.* **16**(3), 302–312 (2016).
- Ryan, C. G., Gray, H. G., Newton, M. & Granat, M. H. Pain biology education and exercise classes compared to pain biology education alone for individuals with chronic low back pain: a pilot randomised controlled trial. *Man. Ther.* 15(4), 382–387. https://doi.org/10.1016/j.math.2010.03.003 (2010).
- 92. Chhabra, H., Sharma, S. & Verma, S. Smartphone app in self-management of chronic low back pain: a randomized controlled trial. *Eur. Spine J.* 27, 2862–2874 (2018).
- Cortell-Tormo, J. M. et al. Effects of functional resistance training on fitness and quality of life in females with chronic nonspecific low-back pain. J. Back Musculoskelet. Rehabil. 31(1), 95–105. https://doi.org/10.3233/BMR-169684 (2018).
- Cruz-Díaz, D. et al. Effects of a six-week Pilates intervention on balance and fear of falling in women aged over 65 with chronic low-back pain: A randomized controlled trial. *Maturitas* 82(4), 371–376 (2015).

- Cruz-Díaz, D., Bergamin, M., Gobbo, S., Martínez-Amat, A. & Hita-Contreras, F. Comparative effects of 12 weeks of equipment based and mat Pilates in patients with Chronic Low Back Pain on pain, function and transversus abdominis activation. A randomized controlled trial. *Complement. Ther. Med.* 33, 72–77 (2017).
- 96. Cuesta-Vargas, A. I. & Adams, N. A pragmatic community-based intervention of multimodal physiotherapy plus deep water running (DWR) for fibromyalgia syndrome: a pilot study. *Clin. Rheumatol.* **30**, 1455–1462 (2011).
- Diab, A. A. M. & Moustafa, I. M. The efficacy of lumbar extension traction for sagittal alignment in mechanical low back pain: a randomized trial. J. Back Musculoskelet. Rehabil. 26(2), 213–220 (2013).
- Koldaş Doğan, Ş, Sonel Tur, B., Kurtaiş, Y. & Atay, M. B. Comparison of three different approaches in the treatment of chronic low back pain. *Clin. Rheumatol.* 27, 873–881 (2008).
- Eardley, S., Brien, S., Little, P., Prescott, P. & Lewith, G. Professional kinesiology practice for chronic low back pain: single-blind, randomised controlled pilot study. *Complement. Med. Res.* 20(3), 180–188 (2013).
- Engbert, K., Weber, M. The effects of therapeutic climbing in patients with chronic low back pain: a randomized controlled study. Spine (Phila Pa 1976) 36(11), 842-849 (2011). https://doi.org/10.1097/BRS.0b013e3181e23cd1
- de Oliveira, R. F., Liebano, R. E., Costa Lda, C., Rissato, L. L. & Costa, L. O. Immediate effects of region-specific and non-regionspecific spinal manipulative therapy in patients with chronic low back pain: a randomized controlled trial. *Phys. Ther.* 93(6), 748–756. https://doi.org/10.2522/ptj.20120256 (2013).
- 102. Franca, F. R., Burke, T. N., Caffaro, R. R., Ramos, L. A. & Marques, A. P. Effects of muscular stretching and segmental stabilization on functional disability and pain in patients with chronic low back pain: a randomized, controlled trial. J Manip. Physiol. Ther. 35(4), 279–285. https://doi.org/10.1016/j.jmpt.2012.04.012. (2012).
- Friedrich, M., Gittler, G., Halberstadt, Y., Cermak, T. & Heiller, I. Combined exercise and motivation program: Effect on the compliance and level of disability of patients with chronic low back pain: A randomized controlled trial. *Arch. Phys. Med. Rehabil.* 79(5), 475–487. https://doi.org/10.1016/S0003-9993(98)90059-4 (1998).
- Frost, H., Klaber Moffett, J. A., Moser, J. S. & Fairbank, J. C. Randomised controlled trial for evaluation of fitness programme for patients with chronic low back pain. *BMJ* 310(6973), 151–154. https://doi.org/10.1136/bmj.310.6973.151 (1995).
- 105. Garcia, A. N. *et al.* McKenzie Method of Mechanical Diagnosis and Therapy was slightly more effective than placebo for pain, but not for disability, in patients with chronic non-specific low back pain: a randomised placebo controlled trial with short and longer term follow-up. *Br. J. Sports Med.* **52**(9), 594–600 (2018).
- 106. Gardner, T. *et al.* Combined education and patient-led goal setting intervention reduced chronic low back pain disability and intensity at 12 months: a randomised controlled trial. *Br. J. Sports Med.* **53**(22), 1424–1431 (2019).
- Gavish, L. et al. Novel continuous passive motion device for self-treatment of chronic lower back pain: a randomised controlled study. Physiotherapy 101(1), 75–81 (2015).
- Geisser, M. E., Wiggert, E. A., Haig, A. J. & Colwell, M. O. A randomized, controlled trial of manual therapy and specific adjuvant exercise for chronic low back pain. *Clin. J. Pain* 21(6), 463–470 (2005).
- 109. Gwon, A.-J., Kim, S.-Y. & Oh, D.-W. Effects of integrating Neurac vibration into a side-lying bridge exercise on a sling in patients with chronic low back pain: a randomized controlled study. *Physiother. Theory Pr.* 36(8), 907–915 (2020).
- Haas, M., Vavrek, D., Peterson, D., Polissar, N. & Neradilek, M. B. Dose-response and efficacy of spinal manipulation for care of chronic low back pain: a randomized controlled trial. *The Spine J.* 14(7), 1106–1116 (2014).
- 111. Halliday, M. H. *et al.* A randomized clinical trial comparing the McKenzie method and motor control exercises in people with chronic low back pain and a directional preference: 1-year follow-up. *Physiotherapy* **105**(4), 442–445 (2019).
- 112. Harts, C. C., Helmhout, P. H., de Bie, R. A. & Staal, J. B. A high-intensity lumbar extensor strengthening program is little better than a low-intensity program or a waiting list control group for chronic low back pain: a randomised clinical trial. Australian J. Physiother. 54(1), 23–31 (2008).
- Macedo, L. G. et al. Predicting response to motor control exercises and graded activity for patients with low back pain: preplanned secondary analysis of a randomized controlled trial. Phys. Therapy 94(11), 1543–1554 (2014).
- Javadian, Y., Behtash, H., Akbari, M., Taghipour-Darzi, M. & Zekavat, H. The effects of stabilizing exercises on pain and disability of patients with lumbar segmental instability. J. Back Musculoskelet. Rehabil. 25(3), 149–155 (2012).
- 115. Fagundes Loss, J. & de Souza da Silva, L., Ferreira Miranda, I., Groisman, S., Santiago Wagner Neto, E., Souza, C., Tarragô Candotti, C., Immediate effects of a lumbar spine manipulation on pain sensitivity and postural control in individuals with nonspecific low back pain: a randomized controlled trial. *Chiropr. Man. Ther.* 28, 1–10 (2020).
- 116. Kell, R. T., Risi, A. D. & Barden, J. M. The response of persons with chronic nonspecific low back pain to three different volumes of periodized musculoskeletal rehabilitation. J. Strength Cond. Res. 25(4), 1052–1064 (2011).
- 117. Kim, T. H., Kim, E. H. & Cho, H. Y. The effects of the CORE programme on pain at rest, movement-induced and secondary pain, active range of motion, and proprioception in female office workers with chronic low back pain: a randomized controlled trial. *Clin. Rehabil.* 29(7), 653–662. https://doi.org/10.1177/0269215514552075 (2015).
- Kim, Y. W., Kim, N. Y., Chang, W. H. & Lee, S. C. Comparison of the therapeutic effects of a sling exercise and a traditional stabilizing exercise for clinical lumbar spinal instability. J. Sport Rehabil. 27(1), 47–54. https://doi.org/10.1123/jsr.2016-0083 (2018).
- Tekur, P., Singphow, C., Nagendra, H. R. & Raghuram, N. Effect of short-term intensive yoga program on pain, functional disability and spinal flexibility in chronic low back pain: a randomized control study. *The J. Altern. Complement. Med.* 14(6), 637–644 (2008).
- 120. Tekur, P., Nagarathna, R., Chametcha, S., Hankey, A. & Nagendra, H. A comprehensive yoga programs improves pain, anxiety and depression in chronic low back pain patients more than exercise: an RCT. *Complement. Ther. Med.* **20**(3), 107–118 (2012).
- 121. de Oliveira, R. F., Costa, L. O. P., Nascimento, L. P. & Rissato, L. L. Directed vertebral manipulation is not better than generic vertebral manipulation in patients with chronic low back pain: a randomised trial. *J. Physiother.* 66(3), 174–179 (2020).
- 122. Zou, L. *et al.* The Effects of Tai Chi Chuan versus core stability training on lower-limb neuromuscular function in aging individuals with non-specific chronic lower back pain. *Medicina (Kaunas)* https://doi.org/10.3390/medicina55030060 (2019).
- Zhang, Y., Wan, L. & Wang, X. The effect of health education in patients with chronic low back pain. J. Int. Med. Res. 42(3), 815–820 (2014).
- 124. Zheng, Z. *et al.* Therapeutic evaluation of lumbar tender point deep massage for chronic non-specific low back pain. *J. Tradit. Chin. Med.* **32**(4), 534–537. https://doi.org/10.1016/s0254-6272(13)60066-7 (2012).
- 125. Yang, C.-Y. *et al.* Pilates-based core exercise improves health-related quality of life in people living with chronic low back pain: A pilot study. *J. Bodywork Move. Ther.* **27**, 294–299 (2021).
- Waseem, M., Karimi, H., Gilani, S. A. & Hassan, D. Treatment of disability associated with chronic non-specific low back pain using core stabilization exercises in Pakistani population. J. Back Musculoskelet. Rehabil. 32(1), 149–154. https://doi.org/10. 3233/BMR-171114 (2019).
- 127. Williams, K. A. et al. Effect of Iyengar yoga therapy for chronic low back pain. Pain 115(1-2), 107-117 (2005).
- 128. Verbrugghe, J. *et al.* High intensity training is an effective modality to improve long-term disability and exercise capacity in chronic nonspecific low back pain: a randomized controlled trial. *Int. J. Environ. Res. Public Health* **18**(20), 10779 (2021).
- Sipaviciene, S. & Kliziene, I. Effect of different exercise programs on non-specific chronic low back pain and disability in people who perform sedentary work. *Clin. Biomech.* 73, 17–27 (2020).

- Phattharasupharerk, S., Purepong, N., Eksakulkla, S. & Siriphorn, A. Effects of Qigong practice in office workers with chronic non-specific low back pain: a randomized control trial. J. Bodywork Move. Ther. 23(2), 375–381 (2019).
- MagaÎhães, M. O., Comachio, J., Ferreira, P. H., Pappas, E. & Marques, A. P. Effectiveness of graded activity versus physiotherapy in patients with chronic nonspecific low back pain: midterm follow up results of a randomized controlled trial. *Br. J. Phys. Ther.* 22(1), 82–91 (2018).
- 132. Monticone, M. *et al.* Effect of a long-lasting multidisciplinary program on disability and fear-avoidance behaviors in patients with chronic low back pain: results of a randomized controlled trial. *Clin. J. Pain* **29**(11), 929–938 (2013).
- 133. Monticone, M. *et al.* A multidisciplinary rehabilitation programme improves disability, kinesiophobia and walking ability in subjects with chronic low back pain: results of a randomised controlled pilot study. *Eur. Spine J.* **23**, 2105–2113 (2014).
- 134. Morone, G. *et al.* Quality of life improved by multidisciplinary back school program in patients with chronic non-specific low back pain: a single blind randomized controlled trial. *Eur. J. Phys. Rehabil. Med.* **47**(4), 533–541 (2011).
- 135. Matarán-Peñarrocha, G. A. *et al.* Comparison of efficacy of a supervised versus non-supervised physical therapy exercise program on the pain, functionality and quality of life of patients with non-specific chronic low-back pain: a randomized controlled trial. *Clin. Rehabil.* **34**(7), 948–959 (2020).
- Laosee, O., Sritoomma, N., Wamontree, P., Rattanapan, C. & Sitthi-Amorn, C. The effectiveness of traditional Thai massage versus massage with herbal compress among elderly patients with low back pain: A randomised controlled trial. *Complement. Ther. Med.* 48, 102253 (2020).
- 137. Rittweger, J., Just, K., Kautzsch, K., Reeg, P., Felsenberg, D. Treatment of chronic lower back pain with lumbar extension and whole-body vibration exercise: a randomized controlled trial. LWW (2002)
- Prado, É.R.A., Meireles, S.M., Carvalho, A.C.A., Mazoca, M.F., Motta Neto, A.D.M., Barboza Da Silva, R., Trindade Filho, E.M., Lombardi Junior, I., Natour, J. Influence of isostretching on patients with chronic low back pain. A randomized controlled trial. *Physiother. Theory Pr.* 37(2):287-294 (2021)
- 139. Vollenbroek-Hutten, M. M. *et al.* Differences in outcome of a multidisciplinary treatment between subgroups of chronic low back pain patients defined using two multiaxial assessment instruments: the multidimensional pain inventory and lumbar dynamometry. *Clin. Rehabil.* **18**(5), 566–579 (2004).
- 140. del Pozo-Cruz, B. *et al*. Effects of whole body vibration therapy on main outcome measures for chronic non-specific low back pain: a single-blind randomized controlled trial. *J. Rehabil. Med.* **43**(8), 689–694 (2011).
- 141. Kostadinović, S., Milovanović, N., Jovanović, J. & Tomašević-Todorović, S. Efficacy of the lumbar stabilization and thoracic mobilization exercise program on pain intensity and functional disability reduction in chronic low back pain patients with lumbar radiculopathy: A randomized controlled trial. J. Back Musculoskelet. Rehabil. 33(6), 897–907 (2020).
- 142. Monticone, M. *et al.* Group-based task-oriented exercises aimed at managing kinesiophobia improved disability in chronic low back pain. *Eur. J. Pain* **20**(4), 541–551. https://doi.org/10.1002/ejp.756 (2016).
- Járomi, M. et al. Back School programme for nurses has reduced low back pain levels: A randomised controlled trial. J. Clin. Nurs. 27(5-6), e895-e902 (2018).
- 144. Liu, J. *et al.* Chen-style tai chi for individuals (aged 50 years old or above) with chronic non-specific low back pain: a randomized controlled trial. *Int. J. Environ. Res. Public Health* **16**(3), 517 (2019).
- Lara-Palomo, I. C. et al. Short-term effects of interferential current electro-massage in adults with chronic non-specific low back pain: a randomized controlled trial. Clin. Rehabil. 27(5), 439–449 (2013).
- 146. Saha, F. J. et al. Gua Sha therapy for chronic low back pain: a randomized controlled trial. Complement. Therap. Clin. Pr. 34, 64–69 (2019).
- 147. Segal-Snir, Y., Lubetzky, V. A. & Masharawi, Y. Rotation exercise classes did not improve function in women with non-specific chronic low back pain: A randomized single blind controlled study. J. Back Musculoskelet. Rehabil. 29(3), 467–475. https://doi.org/10.3233/BMR-150642 (2016).
- 148. Nambi, G. S., Inbasekaran, D., Khuman, R., Devi, S. & Jagannathan, K. Changes in pain intensity and health related quality of life with Iyengar yoga in nonspecific chronic low back pain: a randomized controlled study. *Int. J. Yoga* 7(1), 48 (2014).
- Salamat, S. et al. Effect of movement control and stabilization exercises in people with extension related non-specific low back pain-a pilot study. J. Bodywork Move. Therap. 21(4), 860–865 (2017).
- 150. Salavati, M. *et al.* Effect of spinal stabilization exercise on dynamic postural control and visual dependency in subjects with chronic non-specific low back pain. *J. Bodywork Move. Therap.* **20**(2), 441–448 (2016).
- 151. Masharawi, Y. & Nadaf, N. The effect of non-weight bearing group-exercising on females with non-specific chronic low back pain: a randomized single blind controlled pilot study. *J. Back Musculoskelet. Rehabil.* **26**(4), 353–359 (2013).
- 152. Natour, J., Cazotti, Ld. A., Ribeiro, L. H., Baptista, A. S. & Jones, A. Pilates improves pain, function and quality of life in patients with chronic low back pain: a randomized controlled trial. *Clin. Rehabil.* **29**(1), 59–68 (2015).
- Murtezani, A., Hundozi, H., Orovcanec, N., Sllamniku, S. & Osmani, T. A comparison of high intensity aerobic exercise and passive modalities for the treatment of workers with chronic low back pain: a randomized, controlled trial. *Eur. J. Phys. Rehabil. Med.* 47(3), 359–366 (2011).
- 154. Kogure, A. *et al.* A randomized, single-blind, placebo-controlled study on the efficacy of the arthrokinematic approach-hakata method in patients with chronic nonspecific low back pain. *PLoS One* **10**(12), e0144325 (2015).
- Ozsoy, G. *et al.* The effects of myofascial release technique combined with core stabilization exercise in elderly with non-specific low back pain: a randomized controlled, single-blind study. *Clin. Interv. Aging* 14, 1729–1740 (2019).
- Jousset, N. *et al.* Effects of functional restoration versus 3 hours per week physical therapy: a randomized controlled study. Spine 29(5), 487–93 (2004).
- 157. Roche-Leboucher, G. *et al.* Multidisciplinary intensive functional restoration versus outpatient active physiotherapy in chronic low back pain: a randomized controlled trial. *Spine* **36**(26), 2235–2242 (2011).
- 158. Khalil, T. M. et al. Stretching in the rehabilitation of low-back pain patients. Spine 17(3), 311-317 (1992).
- Mannion, A. F., Muntener, M., Taimela, S. & Dvorak, J. A randomized clinical trial of three active therapies for chronic low back pain. Spine 24(23), 2435–2448. https://doi.org/10.1097/00007632-199912010-00004 (1999).
- Mannion, A., Müntener, M., Taimela, S. & Dvorak, J. Comparison of three active therapies for chronic low back pain: results of a randomized clinical trial with one-year follow-up. *Rheumatology* 40(7), 772–778 (2001).
- 161. Yoon, Y.-S., Yu, K.-P., Lee, K. J., Kwak, S.-H. & Kim, J. Y. Development and application of a newly designed massage instrument for deep cross-friction massage in chronic non-specific low back pain. *Annals Rehabil. Med.* **36**(1), 55–65 (2012).
- Yang, J., Wei, Q., Ge, Y., Meng, L. & Zhao, M. Smartphone-based remote self-management of chronic low back pain: A preliminary study. J. Healthc. Eng. 2019, 4632946. https://doi.org/10.1155/2019/4632946 (2019).
- Hicks, G. E., Sions, J. M., Velasco, T. O. & Manal, T. J. Trunk muscle training augmented with neuromuscular electrical stimulation appears to improve function in older adults with chronic low back pain: A randomized preliminary trial. *Clin. J. Pain* 32(10), 898–906. https://doi.org/10.1097/AJP.0000000000348 (2016).
- Yalfani, A., Raeisi, Z. & Koumasian, Z. Effects of eight-week water versus mat pilates on female patients with chronic nonspecific low back pain: Double-blind randomized clinical trial. J. Bodywork Move. Ther. 24(4), 70–75 (2020).
- Trapp, W. et al. A brief intervention utilising visual feedback reduces pain and enhances tactile acuity in CLBP patients. J. Back Musculoskelet. Rehabil. 28(4), 651–660 (2015).

- Kofotolis, N., Kellis, E., Vlachopoulos, S. P., Gouitas, I. & Theodorakis, Y. Effects of Pilates and trunk strengthening exercises on health-related quality of life in women with chronic low back pain. J. Back Musculoskelet. Rehabil. 29(4), 649–659 (2016).
- 167. Kuvacic, G., Fratini, P., Padulo, J., Antonio, D. I. & De Giorgio, A. Effectiveness of yoga and educational intervention on disability, anxiety, depression, and pain in people with CLBP: A randomized controlled trial. *Complement. Ther. Clin. Pract.* 31, 262–267. https://doi.org/10.1016/j.ctcp.2018.03.008 (2018).
- Hernandez-Reif, M., Field, T., Krasnegor, J. & Theakston, H. Lower back pain is reduced and range of motion increased after massage therapy. Int. J. Neurosci. 106(3-4), 131–145. https://doi.org/10.3109/00207450109149744 (2001).
- Lewis, J. S., Hewitt, J. S., Billington, L., Cole, S., Byng, J., & Karayiannis, S. A randomized clinical trial comparing two physiotherapy interventions for chronic low back pain (2005).
- O'Keeffe, M., O'Sullivan, P., Purtill, H., Bargary, N. & O'Sullivan, K. Cognitive functional therapy compared with a group-based exercise and education intervention for chronic low back pain: a multicentre randomised controlled trial (RCT). Br. J. Sports Med. 54(13), 782–789 (2020).
- Kaeding, T. S. et al. Whole-body vibration training as a workplace-based sports activity for employees with chronic low-back pain. Scand. J. Med. Sci. Sports 27(12), 2027–2039. https://doi.org/10.1111/sms.12852 (2017).
- 172. Petrozzi, M. J. *et al.* Addition of MoodGYM to physical treatments for chronic low back pain: a randomized controlled trial. *Chiropr. Man. Therap.* **27**(1), 1–12 (2019).
- 173. Winter, S. Effectiveness of targeted home-based hip exercises in individuals with non-specific chronic or recurrent low back pain with reduced hip mobility: A randomised trial. *J. Back Musculoskelet. Rehabil.* **28**(4), 811–825 (2015).
- Masse-Alarie, H., Beaulieu, L. D., Preuss, R. & Schneider, C. Repetitive peripheral magnetic neurostimulation of multifidus muscles combined with motor training influences spine motor control and chronic low back pain. *Clin. Neurophysiol.* 128(3), 442–453. https://doi.org/10.1016/j.clinph.2016.12.020 (2017).
- Martí-Salvador, M., Hidalgo-Moreno, L., Doménech-Fernández, J., Lisón, J. F. & Arguisuelas, M. D. Osteopathic manipulative treatment including specific diaphragm techniques improves pain and disability in chronic nonspecific low back pain: a randomized trial. Arch. Phys. Med. Rehabil. 99(9), 1720–1729 (2018).
- 176. Aguilar-Ferrándiz, M. E. *et al.* Effects of a supervised exercise program in addition to electrical stimulation or kinesio taping in low back pain: a randomized controlled trial. *Sci. Rep.* **12**(1), 11430 (2022).
- 177. Elgendy, M. H., Mohamed, M. & Hussein, H. M. A single-blind randomized controlled trial investigating changes in electrical muscle activity, pain, and function after shockwave therapy in chronic non-specific low back pain: pilot study. *Ortop. Traumatol. Rehabil.* 24(2), 87–94. https://doi.org/10.5604/01.3001.0015.8266 (2022).
- Fukuda, T. Y. *et al.* Does adding hip strengthening exercises to manual therapy and segmental stabilization improve outcomes in patients with nonspecific low back pain? A randomized controlled trial. *Braz. J. Phys. Ther.* 25(6), 900–907. https://doi.org/ 10.1016/j.bjpt.2021.10.005 (2021).
- 179. Ma, K. L. *et al.* Fus subcutaneous needling versus massage for chronic non-specific low-back pain: a randomized controlled clinical trial. *Ann. Palliat. Med.* **10**(11), 11785–11797 (2021).
- Maggi, L., Celletti, C., Mazzarini, M., Blow, D., Camerota, F. Neuromuscular taping for chronic non-specific low back pain: a randomized single-blind controlled trial. *Aging Clin. Exp. Res.* 1-7 (2022).
- Jalalvandi, F., Ghasemi, R., Mirzaei, M. & Shamsi, M. Effects of back exercises versus transcutaneous electric nerve stimulation on relief of pain and disability in operating room nurses with chronic non-specific LBP: a randomized clinical trial. BMC Musculoskelet. Dis. 23(1), 1–9 (2022).
- Atilgan, E. D. & Tuncer, A. The effects of breathing exercises in mothers of children with special health care needs: A randomized controlled trial. J. Back Musculoskelet. Rehabil. 34(5), 795–804. https://doi.org/10.3233/BMR-200327 (2021).
- 183. Pivovarsky, M. L. F. *et al.* Immediate analgesic effect of two modes of transcutaneous electrical nerve stimulation on patients with chronic low back pain: a randomized controlled trial. *Einstein (Sao Paulo)* **19**, eAO6027 (2021).
- Van Dillen, L. R. *et al.* Effect of motor skill training in functional activities vs strength and flexibility exercise on function in people with chronic low back pain: a randomized clinical trial. *JAMA Neurol.* 78(4), 385–395 (2021).
- 185. Vibe Fersum, K., O'Sullivan, P., Skouen, J., Smith, A. & Kvåle, A. Efficacy of classification-based cognitive functional therapy in patients with non-specific chronic low back pain: A randomized controlled trial. *Eur. J. Pain* 17(6), 916–928 (2013).
- Ghroubi, S., Elleuch, H., Baklouti, S., Elleuch, M.-H. Les lombalgiques chroniques et manipulations vertébrales. Étude prospective à propos de 64 cas. In: Annales de réadaptation et de médecine physique, vol 7. Elsevier, pp 570-576 (2007).
- Huber, D. et al. Green exercise and mg-ca-SO4 thermal balneotherapy for the treatment of non-specific chronic low back pain: a randomized controlled clinical trial. BMC Musculoskelet. Dis. 20(1), 1–18 (2019).
- Werners, R., Pynsent, P. B. & Bulstrode, C. J. Randomized trial comparing interferential therapy with motorized lumbar traction and massage in the management of low back pain in a primary care setting. *Spine (Phila Pa 1976)* 24(15), 1579–1584. https:// doi.org/10.1097/00007632-199908010-00012 (1999).
- 189. Kankaanpää, M., Taimela, S., Airaksinen, O. & Hänninen, O. The efficacy of active rehabilitation in chronic low back pain: effect on pain intensity, self-experienced disability, and lumbar fatigability. *Spine* 24(10), 1034–1042 (1999).
- Marshall, P. W. & Murphy, B. A. Muscle activation changes after exercise rehabilitation for chronic low back pain. Arch. Phys. Med. Rehabil. 89(7), 1305–1313 (2008).
- Branchini, M. et al. Fascial Manipulation* for chronic aspecific low back pain: a single blinded randomized controlled trial. F1000Research 4, 1208 (2015).
- Batıbay, S., Külcü, D. G., Kaleoğlu, Ö. & Mesci, N. Effect of Pilates mat exercise and home exercise programs on pain, functional level, and core muscle thickness in women with chronic low back pain. J. Orthop. Sci. 26(6), 979–985 (2021).
- Elabd, A. M. *et al.* Efficacy of integrating cervical posture correction with lumbar stabilization exercises for mechanical low back pain: a randomized blinded clinical trial. *J. Appl. Biomech.* 37(1), 43–51 (2020).
- 194. Dadarkhah, A. *et al.* Remote versus in-person exercise instruction for chronic nonspecific low back pain lasting 12 weeks or longer: a randomized clinical trial. *J. Natl. Med. Assoc.* **113**(3), 278–284 (2021).
- 195. Nardin, D. M. K. *et al.* Effects of photobiomodulation and deep water running in patients with chronic non-specific low back pain: a randomized controlled trial. *Lasers Med. Sci.* **37**(4), 2135–2144 (2022).
- 196. Owen, P. J. *et al.* Which specific modes of exercise training are most effective for treating low back pain? Network meta-analysis. *Br. J. Sports Med.* 54(21), 1279–1287. https://doi.org/10.1136/bjsports-2019-100886 (2020).
- 197. Hayden, J. A. *et al.* Some types of exercise are more effective than others in people with chronic low back pain: a network metaanalysis. *J. Physiother.* **67**(4), 252–262. https://doi.org/10.1016/j.jphys.2021.09.004 (2021).
- Alhakami, A. M., Davis, S., Qasheesh, M., Shaphe, A. & Chahal, A. Effects of McKenzie and stabilization exercises in reducing pain intensity and functional disability in individuals with nonspecific chronic low back pain: a systematic review. J. Phys. Ther. Sci. 31(7), 590–597. https://doi.org/10.1589/jpts.31.590 (2019).
- 199. de Campos, T. F., Maher, C. G., Clare, H. A., da Silva, T. M. & Hancock, M. J. Effectiveness of McKenzie method-based selfmanagement approach for the secondary prevention of a recurrence of low back pain (SAFE Trial): Protocol for a pragmatic randomized controlled trial. *Phys. Ther.* 97(8), 799–806. https://doi.org/10.1093/ptj/pzx046 (2017).
- Lam, O. T. et al. Effectiveness of the McKenzie method of mechanical diagnosis and therapy for treating low back pain: Literature review with meta-analysis. J. Orthop. Sports Phys. Ther. 48(6), 476–490. https://doi.org/10.2519/jospt.2018.7562 (2018).

- Marshall, A. *et al.* Changes in pain self-efficacy, coping skills, and fear-avoidance beliefs in a randomized controlled trial of yoga, physical therapy, and education for chronic low back pain. *Pain. Med.* 23(4), 834–843. https://doi.org/10.1093/pm/pnab3 18 (2022).
- Namnaqani, F. I., Mashabi, A. S., Yaseen, K. M. & Alshehri, M. A. The effectiveness of McKenzie method compared to manual therapy for treating chronic low back pain: a systematic review. J. Musculoskelet. Neuronal Interact. 19(4), 492–499 (2019).

 Patti, A. *et al.* Effects of Pilates exercise programs in people with chronic low back pain: a systematic review. *Medicine (Baltimore)* 94(4), e383. https://doi.org/10.1097/MD.0000000000383 (2015).

- 204. Cimarras-Otal, C. *et al.* Adapted exercises versus general exercise recommendations on chronic low back pain in industrial workers: A randomized control pilot study. *Work* **67**(3), 733–740. https://doi.org/10.3233/WOR-203322 (2020).
- 205. Marini, S. *et al.* Proposal of an adapted physical activity exercise protocol for women with osteoporosis-related vertebral fractures: A pilot study to evaluate feasibility, safety, and effectiveness. *Int. J. Environ. Res. Public Health* https://doi.org/10.3390/ijerph1614 2562 (2019).
- Kuhnow, A., Kuhnow, J., Ham, D. & Rosedale, R. The McKenzie Method and its association with psychosocial outcomes in low back pain: a systematic review. *Physiother. Theory Pract.* 37(12), 1283–1297. https://doi.org/10.1080/09593985.2019.1710881 (2021).
- 207. Domingues de Freitas, C., Costa, D. A., Junior, N. C. & Civile, V. T. Effects of the pilates method on kinesiophobia associated with chronic non-specific low back pain: Systematic review and meta-analysis. *J. Bodyw. Mov. Ther.* **24**(3), 300–306. https://doi. org/10.1016/j.jbmt.2020.05.005 (2020).
- Jadhakhan, F., Sobeih, R. & Falla, D. Effects of exercise/physical activity on fear of movement in people with spine-related pain: a systematic review. Front. Psychol. 14, 1213199. https://doi.org/10.3389/fpsyg.2023.1213199 (2023).
- Snelgrove, S. & Liossi, C. Living with chronic low back pain: a metasynthesis of qualitative research. Chronic. Illn. 9(4), 283–301. https://doi.org/10.1177/1742395313476901 (2013).
- Norlund, A., Ropponen, A. & Alexanderson, K. Multidisciplinary interventions: review of studies of return to work after rehabilitation for low back pain. J. Rehabil. Med. 41(3), 115–121. https://doi.org/10.2340/16501977-0297 (2009).
- 211. Kamper, S. J. *et al.* Multidisciplinary biopsychosocial rehabilitation for chronic low back pain: Cochrane systematic review and meta-analysis. *BMJ* **350**, h444. https://doi.org/10.1136/bmj.h444 (2015).
- Heitz, C. A. *et al.* Comparison of risk factors predicting return to work between patients with subacute and chronic non-specific low back pain: systematic review. *Eur. Spine J.* 18(12), 1829–1835. https://doi.org/10.1007/s00586-009-1083-9 (2009).
- 213. Depreitere, B., Jonckheer, P., Coeckelberghs, E., Desomer, A. & van Wambeke, P. The pivotal role for the multidisciplinary approach at all phases and at all levels in the national pathway for the management of low back pain and radicular pain in Belgium. *Eur. J. Phys. Rehabil. Med.* **56**(2), 228–236 (2020).
- Peterson, K., Anderson, J., Bourne, D., Mackey, K. & Helfand, M. Effectiveness of models used to deliver multimodal care for chronic musculoskeletal pain: A rapid evidence review. J. Gen. Intern. Med. 33(Suppl 1), 71–81. https://doi.org/10.1007/s11606-018-4328-7 (2018).
- 215. Reese, C. & Mittag, O. Psychological interventions in the rehabilitation of patients with chronic low back pain: evidence and recommendations from systematic reviews and guidelines. *Int. J. Rehabil. Res.* **36**(1), 6–12. https://doi.org/10.1097/MRR.0b013 e32835acfec (2013).
- van Erp, R. M. A., Huijnen, I. P. J., Jakobs, M. L. G., Kleijnen, J. & Smeets, R. Effectiveness of primary care interventions using a biopsychosocial approach in chronic low back pain: A systematic review. *Pain Pract.* 19(2), 224–241. https://doi.org/10.1111/ papr.12735 (2019).
- 217. van Middelkoop, M. *et al.* A systematic review on the effectiveness of physical and rehabilitation interventions for chronic nonspecific low back pain. *Eur. Spine J.* **20**(1), 19–39. https://doi.org/10.1007/s00586-010-1518-3 (2011).

Author contributions

F.M.: conception and design, statistical analysis, drafting (original and revision); N.M.: supervision, drafting (revision); F.C.: drafting (original); B.M.: drafting (original); M.N.: drafting (original); L.S.: literature search, study selection and data extraction, risk of bias assessment; A.K.: literature search, study selection and data extraction, risk of bias assessment; A.B.: drafting (original). All authors have agreed to the final version to be published and agree to be accountable for all aspects of the work.

Funding

The authors received no financial support for the research, authorship, and or publication of this article.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-024-62276-9.

Correspondence and requests for materials should be addressed to F.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024