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Abstract: Natural products are widely used as source for drugs development. An interesting example
is represented by natural drugs developed against human topoisomerase IB, a ubiquitous enzyme
involved in many cellular processes where several topological problems occur due the formation
of supercoiled DNA. Human topoisomerase IB, involved in the solution of such problems relaxing
the DNA cleaving and religating a single DNA strand, represents an important target in anticancer
therapy. Several natural compounds inhibiting or poisoning this enzyme are under investigation as
possible new drugs. This review summarizes the natural products that target human topoisomerase
IB that may be used as the lead compounds to develop new anticancer drugs. Moreover, the natural
compounds and their derivatives that are in clinical trial are also commented on.
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1. Introduction

Humankind has faced numerous challenges for its survival, even when the challenge
was an invisible enemy such as viruses, bacteria and other pathogens. Nature has always
provided help in order to allow its survival, and natural products (NPs) have been one
solution of human health problems [1,2]. Even nowadays, despite the advent of the
pharmaceutical industry, the availability of synthetic compound libraries and the power
of the high-throughput screening, scientists find it useful to look at nature as a source of
drugs [3,4].

The understanding of the power of NPs as a source of drugs started in the 19th century
with the isolation of morphine from Papaver somniferum, used as an analgesic and sleep-
inducing agent that, today, has developed into codeine, a painkiller [5,6]. The most famous
drug of natural origin is probably salicylic acid, initially called salicin, extracted from the
bark of the willow tree Salix alba [4,7]. Salicylic acid was the first NP produced in a large
scale by chemical synthesis in 1853 and gave rise to the famous drug aspirin [8]. Additional
examples are anti-malaria compounds such as artemisinin from the Chinese herb Artemisia
annua, used to treat the malaria-causing parasites Plasmodium falciparum, and quinine, used
since 2004 when it was approved by the US Food and Drug Administration (FDA), isolated
from the bark of Cinchona succiruba [4,7].

Several NPs have been found to display antitumor activity [9]. From bacterial sources,
we can list daunorubicin, an anthracycline from Streptomyces peucetius [10,11], and its
semi-synthetic derivate doxorubicin, which acts intercalating in DNA and blocking hu-
man topoisomerase II [12,13]. From plants, we can find vincristine and vinblastine, two
terpenes extracted from Catharanthus roseus [14,15], that inhibit the mitosis, binding to
microtubules [16–18]. Another important antitumor agent is camptothecin (CPT), ex-
tracted from the bark of the Chinese tree Camptotheca acuminata, and the soluble derivatives
irinotecan and topotecan, both efficient topoisomerase I poisons [19,20].
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DNA topoisomerases are a class of ubiquitous enzymes identified for the first time
in 1971 in Escherichia coli by James C. Wang [21]. Subsequently, this enzyme was found
in nuclear extracts from eukaryotic mouse embryo cells by Champoux and Dulbecco [22].
The enzyme is able to relax supercoiled DNA to introduce negative or positive supercoils
into DNA and to decatenate circular DNA. Indeed, DNA topoisomerases deal with all the
cellular processes that involve DNA topological issues and, in human cells, are involved in
regulating several fundamental processes: DNA replication, transcription and chromosome
segregation [23]. Human topoisomerases (hTops) are grouped into class I (hTopI) and II
(hTopII), according to their ability to cut one or both DNA strands to release the constrains
and unwind supercoiled DNA [24]. In the hTopI enzyme, catalysis occurs through a
tyrosine residue, located in the catalytic pocket at the C-terminal, which undergoes a nucle-
ophilic attack on the phosphodiester bond of DNA, forming a transient phosphotyrosyl
bond with the 3’ or 5’ DNA break (Figure 1). These two different types of bonds define two
subclasses of the enzyme named A and B when they bind the 3’ or 5’, respectively. Once
the rotation has been completed, the religation step can occur, bringing the reconstitution
of the phosphodiester backbone and the consequent release of the enzyme from the DNA
(Figure 1) [25–28]. It is worth noting that DNA unwinding is driven by torsional strain,
rather than powered by ATP hydrolysis [28,29].
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the modulation of the noncovalent enzyme–DNA interactions [31]. The core domain (215-
635) is highly conserved and is directly involved in the binding of the DNA substrate
[32,33]. Single mutations in this domain, such as glutamine 418, induce a different DNA-
binding specificity and modulate the enzyme–drug interactions [34]. The linker domain
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Figure 1. Schematic representation of the catalytic cycle of hTopI. Once the enzyme binds a super-
coiled DNA (1), the cleavage step occurs (2), followed by the controlled rotation of the cleaved strand
(3) and by a religation event (4) and the release of the unwound substrate (5).

2. Human DNA Topoisomerase IB as the Tumor Target

HTopIB is a 91-KDa protein, made up of 765 amino acids, divided into 4 domains:
The N-terminal, the core, the linker and the C-terminal domain (Figure 2 Top). The N-
terminal domain (1–214) allows the enzyme nuclear localization [30] and is involved in the
modulation of the noncovalent enzyme–DNA interactions [31]. The core domain (215–635)
is highly conserved and is directly involved in the binding of the DNA substrate [32,33].
Single mutations in this domain, such as glutamine 418, induce a different DNA-binding
specificity and modulate the enzyme–drug interactions [34]. The linker domain (636–712)
has a fundamental role in the catalytic mechanism controlling the rotation of the free
DNA strand around the cleavage site [35,36]. Indeed, mutations that alter the flexibility
of the linker perturb the enzyme sensitivity to the drugs targeting the enzyme [37–40].
The C-terminal domain (713–765) contains Tyr 723, which undergoes the nucleophilic
attack to the substrate and forms together with Arg 488, Lys 532, Arg 590 and His 632 the
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catalytic site [23,41,42]. The mutation of Gly 717, located in this domain, causes a slight
rearrangement of the active site and perturbs the drug binding site [43].
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Figure 2. Structure of hTopIB. Top panel schematic representation of the hTopIB domains. The
N-terminal domain in yellow (1–214), the core in red (215–635), the linker in green (636–712) and
the C-terminal domain in light blue (713–765). The arrows represent the amino acids forming the
active site. Bottom panel is the 3D structure of the enzyme, where the domains are represented in the
same color.

There are two different types of drugs that can affect hTopIB catalysis: poisons and
inhibitors [44–46]. The poisons are compounds that lead to the stabilization of a ternary
complex between the enzyme, DNA and drug itself, turning the enzyme into a poison. In
detail, the catalytic cycle consists in the cutting of a single DNA strand, strand rotation
and, finally, religation of the relaxed substrate. In the presence of a poisoning drug that
intercalates DNA in correspondence to the cleavage site, the enzyme is inhibited to undergo
the religation step. The persistence of hTopIB on the nicked DNA leads to the stalling and
collapse of the replication fork and to the formation of DNA double-stranded breaks on the
enzyme cleavage site activating apoptosis and inducing cell death [47]. The inhibitors work
in a simpler manner; they inhibit the cleavage of the DNA by the enzyme or prevent the
binding to DNA. In this case, the persistence of supercoiled regions during cell replication
lead to the stall of the replication fork, the formation of DNA single-stranded breaks and a
consequent genomic damage that brings the cell to its death.

Poisons have clinical relevance, and their efficient cytotoxic effect is demonstrated by
the use of CPT, the first discovered hTopIB poison [19,48,49]. CPT is an E-ring lactone that
reversibly interacts with both DNA and hTopIB, intercalating between the DNA bases after
the DNA cleavage has occurred, trapping the enzyme on the DNA and bringing the cells
to death. The CPT derivatives, irinotecan and topotecan, are in clinical use, but they have
several side effects [44].
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The arising importance of hTopIB as a tumor target has pushed researchers to look
for novel natural sources to be used as lead compounds to selectively poison hTopIB
without the side effects observed for the CPT derivatives [20]. In a previous manuscript,
we reviewed the natural compounds targeting hTops up to 2012 [50]; here, we review the
natural compounds reported to target hTopIB from 2012 to now and the modified natural
compounds that are in clinical trials.

3. Natural Compounds with In Vitro and In Vivo Activity on hTopIB

NPs with in vitro and in vivo antitumor activity targeting hTopIB are listed in Table 1.

Table 1. Natural compounds with in vitro and/or in vivo anti-hTopIB activity.

Compound Name Source Type of Inhibitor Reference

EGCG Camellia sinensis Not studied [51]
Kakuol Asarum sieboldii Catalytic Inhibitor [52]

Berberine Coptis chinensis and
Berberis vulgaris Catalytic Inhibitor [53]

Pinostrobin Honey and dietary
vegetables Poison [54]

SQDG Azadirachta indica Catalytic Inhibitor [55]
Benzoxazines Capparis sikimensis Catalytic Inhibitor [56]
Evodiamine Evodia rutaecarpa Poison [57]

Cytosporolide C Cytospora sp Not studied [58]

3.1. Epigallocatechin-3-Gallate

Epigallocatechin-3-gallate (EGCG) (Figure 3A) is a major polyphenolic constituent of
green tea extracted from Camellia sinensis leaves [59]. Over the years, this plant has received
a lot of attention for the health benefits associated with green tea consumption, such as
antioxidant effects, cancer chemoprevention, cardiovascular health improvement, weight
loss enhancement and skin protection from the damage caused by ionizing radiation.
Nowadays, several laboratories have demonstrated that EGCG possess cancer therapeutic
effects, and Mukhtar’s group at the University Hospitals of Cleveland has shown that
this compound has a dose-dependent inhibitory effect on several human carcinoma cell
lines [60]. In normal cell lines, EGCG does not have any cytotoxic effect, as tested by a
viability assay [60]. EGCG has a complex mechanism of action, and it has several targets,
such as nuclear factor kappa light-chain enhancer of activated B cells (NF-kB) [61], vascular
endothelial growth factor (VEGF) [62] and hTopIB [51]. A significant inhibition of hTopoIB
activity but not hTopII was observed through a relaxation assay [51].

3.2. Kakuol

Kakuol (Figure 3B) is a metabolic oxidation product isolated from the rhizomes of
Asarum sieboldii. Extracts from this plant, have antalgic, anti-inflammatory, anticonvulsive,
antitussive, antiallergic and antitumoral activities [63]. Studies of interactions of this
compound and its derivatives with hTopIB demonstrate that kakuol is a catalytic inhibitor
of this enzyme. The compound inhibits a cleavage reaction, and the effect is enhanced
preincubating the drug with the enzyme. The effect is due to the inhibition of the catalytic
activity and not to the prevention of DNA binding, as shown by the EMSA assay [64].

3.3. Berberine

Coptis chinensis and Berberis vulgaris are two Chinese plants that produce a natural
quaternary alkaloid called berberine [65]. This compound (Figure 3C) can be found in
roots, rhizome and the stem bark of plants, and it has been used since ancient times in
Chinese medicine. Berberine has several positive effects, such as antimicrobial [66], anti-
inflammatory [67], anti-arhythmic [68] and antitumor activity [52]. Regarding antitumor
activity, it has been observed that berberine and its derivatives are able to inhibit hTopIB in
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a dose-dependent manner. The inhibition is more evident when hTopIB is preincubated
with the compound [69]. The drug works as a catalytic inhibitor, since the enzyme is able
to bind, but not to cleave, the DNA in the presence of berberine.
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3.4. Pinostrobin

Pinostrobin (Figure 3D) is a flavonoid found in honey and in some dietary plants and
is used as a natural food supplement. The compound has shown antimicrobial [70], anti-
inflammatory [71], antioxidant [72] and antiproliferative properties [73]. Pinostrobin has
been studied by Jadaun et al., who suggested that the compound forms a ternary complex
with hTopIB and DNA [53]. The in vitro catalytic assay and in silico analysis indicate that
the binding of pinostrobin occurs at the interface of hTopIB and DNA in a CPT-like manner.
The authors propose that the compound can be used as the lead compound to develop new
hTopIB poisons.
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3.5. Sulfonoquinovosyl Diacylglyceride

Sulfonoquinovosyl diacylglyceride (SQDG), identified for the first time by Benson
and coworkers in photosynthetic bacteria and higher plants [74], is a plant sulfolipid
isolated from Azadirachta indica, showing antibacterial, antiviral [75] and antileukemic
activity [76]. SQGD (Figure 3E) is able to inhibit the hTopIB enzyme, as evaluated by
the relaxation assay and by a cleavage assay on a radiolabeled oligonucleotide [76]. The
results indicated that the compound acts as a catalytic inhibitor. The in vitro test on
acute lymphoblastic/lymphocytic leukemia cell lines overexpressing hTopIB and in vivo
experiments in nude mice demonstrate that SQDG treatment delays tumor growth and
reduces the expression of cell proliferation markers.

3.6. Benzoxazines

Benzoxazines, such as 1,4-benzoxazin-3-ones and 2,4-Dihydroxy-1,4-benzoxazin-3-one
(Figure 3F), present in maize [77], wheat and rye [54] are a group of molecules showing
antimicrobial and antitumor activity [78,79]. In a recent work, Foto et al. demonstrated that
benzoxazines and their derivatives act as hTopIB inhibitors, interfering with the binding
of the enzyme to the DNA [55]. According to relaxation assay and EMSA experiments,
the DNA-binding capacity of hTopoIB is reduced by benzoxazines in a dose-dependent
concentration, suggesting a possible use of these molecules as a lead compound to develop
new drugs for cancer treatment.

3.7. Evodiamine

The Evodia rutaecarpa fruit, officially listed in the Chinese Pharmacopoeia, has been
used as an analgesic, anti-inflammatory and in the treatment of hypertension, suggesting a
beneficial use for a variety of therapeutic applications [80,81]. Researchers have isolated
from this fruit an alkaloid named evodiamine (EVO) reported in Figure 3G, that has shown
in vitro anticancer properties [82]. EVO inhibits hTopIB, as shown by a relaxation assay
on the supercoiled DNA [83]. The proposed mechanism of action is an inhibition of the
enzyme in a CPT-like manner. Chan et al. [56] reported that this compound is able to
trap hTopIB on DNA to form a ternary covalent complex. 3H-thymidine-labeled cells
were treated with EVO, and the cell extracts were subjected to KCl/SDS that induces
protein but not DNA precipitation, except when it is linked to a protein. The amount of
precipitated DNA, evaluated by autoradiography, is proportional to the amount of the
hTopIB-EVO-DNA complex, indicating a DNA EVO-trapping activity. The authors suggest
that the compound acts by stabilizing the covalent complex between hTopIB and DNA,
forming a barrier to the DNA replication fork and converting the ternary covalent complex
into a cell poison.

3.8. Cytosporolide C

Cytosporolide C (Cyto-C) (Figure 3H) is a NP isolated from the fungus Cytospora
spp. [84]. This compound has antimicrobial activity [85], but a novel bioactivity as an-
tiproliferative compound has been recently demonstrated, suggesting a potential use as an
anticancer drug [86]. The results demonstrate that Cyto-C inhibits the hTopIB relaxation
of a supercoiled DNA substrate and has an antiproliferative activity against A549 (non-
small-cell lung cancer cells), HCT-116 (human colon cancer cells) and MCF-7 (breast cancer
cells) cell lines. Cyto-C is an interesting hTopIB-specific inhibitor and a promising lead
compound for the development of new drugs for cancer treatment.

4. HTopIB Inhibition by Natural Compounds Coordinated with Metals

Some NPs display positive properties only upon metal coordination [87], and among
them, there are some hTopIB inhibitors, reported in Figure 4 and Table 2.
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Table 2. Natural compounds coordinated with metals showing an anti-hTopIB activity.

Compound Name Source Type of Inhibitor Reference

Zinc complexes of
polyhydroxybenzaldehyde

thiosemicarbazones

Plants natural
product Catalytic Inhibitor [88]

Chalcones-
Thiosemicarbazone
copper(II) complex

Piper methysticum,
Boesen-bergia rotunda,

Lophira alata
Catalytic Inhibitor [89]

Silibinin
oxidovanadium (IV) Silybum marianum Catalytic Inhibitor [90]

Thiosemicarbazones are fundamental compounds for regulating plants growth [57].
Zinc complexes of polyhydroxybenzaldehyde thiosemicarbazones (Figure 4A) interact
with hTopIB [91]. Incubation of the metal complex with hTopIB and DNA gives rise to two
different modes of actions: one concerns the binding of the metal complex to DNA, while
the other one involves the binding to the enzyme. When the drug is incubated with hTopIB
before adding the supercoiled DNA substrate, there is an inhibition of the enzyme activity
stronger than preincubating the compound with DNA. These experiments are an indication
that the binding of the metal complex to hTopIB is the main inhibition mechanism.
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Chalcones are intermediate products in flavonoids synthesis [92], found mainly in
Piper methysticum [58], Boesen-bergia rotunda [93] and Lophira alata [94]. Chalcones-derived
thiosemicarbazones (Figure 4B) are efficient in inhibiting hTopoIB only when coordinated
to a copper atom [88]. This complex, when preincubated with the enzyme, prevent the
binding to DNA, as demonstrated by the EMSA and relaxation assay, indicating that the
copper complex acts as an inhibitor and not as a poison.

A similar behavior is observed with the flavonoid silibinin, extracted from Silybum
marianum [95,96] and chrysin from Passiflora caerulea [97]. The two flavonoids did not show
any effect on hTopIB, but silibinin inhibits the enzyme when forming oxidovanadium(IV)
complexes [98]. The results demonstrate that the silibinin oxidovanadium(IV) complex
(Figure 4C) acts by preventing the formation of the enzyme–DNA complex. The compound
has a positive effect on human colon cancer cell line HT-29, as tested by a cell viability
assay, suggesting its possible use in antitumor treatments.

5. Natural Compounds from Marine Organism

Due to their different growing environments, marine and, in particular, Antarctic
organisms have developed NPs with novel characteristics that deserve to be investigated.
Hereafter, the effects of these NPs targeting hTopIB are presented in Table 3.

Table 3. Natural products of marine origins inhibiting hTopIB.

Compound Name Source Type of Inhibitor Reference

Bacillosporin C Penicillium
purpurogenum species Not studied [67]

α-Methoxylated ∆5,9
fatty acids Asteropus niger Catalytic Inhibitor [99]

Lamellarin D Lamellaria spp. Poison [100]

BDDE Leathesia nana,
Rhodomela confervoides Catalytic Inhibitor [101]

Deoxyvariolin B Kirckpatrickia variolosa Not studied [102]
Discorhabdins Latrunculia biformis Not studied [103]

5.1. Bacillosporin C

Bacillosporin C (Bac-C) (Figure 5A) is an oxaphenalenone, an important class of
phenolic natural products, isolated from fungi, such as Penicillium purpurogenum [89].
P. purpurogenum has the ability to synthesize a variety of substances with antibacterial
activity and inhibitory effects on several human cancer cell lines. The strains with large
biotechnological potential are mutants resistant to antibiotics [104]. An example is the
marine G59 strain producing Bac-C. Bac-C can target hTopIB, as shown by an experimental
bioassay and docking simulation [51]. The screening of 128 compounds, by docking them
on the hTopI–DNA complex, permitted the selection of compounds found to be hTopIB
inhibitors through a relaxation assay on a supercoiled DNA substrate. The researchers
did not investigate the mechanism of action; thus, the compounds cannot be classified as
catalytic inhibitors or poisons.

5.2. Alpha-Methoxylated δ5,9 Fatty Acids

Sponges are the source of new phospholipid fatty acids, having long chains (C23–C30)
with no counterpart in the terrestrial world [105]. α-Methoxylated ∆5,9 fatty acids (Figure 5B)
were extracted and isolated from the Caribbean sponge Asteropus niger [106]. The com-
pound is able to inhibit hTopIB with a mechanism of action different from that displayed
by CPT. Indeed, the compound does not bind to the DNA-hTopIB complex but directly
interacts with the enzyme, preventing the catalytic tyrosine to do the nucleophilic attack
on the DNA phosphate bond [106].
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4,5-dihydroxybenzyl) ether (BDDE), (E) Variolin B and (F) Discorhabdin C. The structures are repre-
sented by Marvinsketch, as reported on PubChem.
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5.3. Lamellarin D

Lamellarin D (LAM-D) (Figure 5C) is a hexacyclic marine alkaloid isolated for the first
time from a mollusk of the genus Lamellaria [90], with a cytotoxic effect on the tumor cells
lines [107,108]. On the basis of its chemical structure and on a molecular modeling analysis,
it has been suggested that LAM-D can bind to DNA and interact with hTopIB, affecting
its catalytic mechanism [109]. LAM-D inhibits the relaxation of supercoiled DNA in a
dose-dependent manner. The researchers, investigating the cleavage/religation reaction,
demonstrated that LAM-D stabilizes the DNA–enzyme complex, turning the enzyme into
a poison, acting like CPT. LAM-D has appeared as a new potent hTopIB poison [99] that
should be further investigated to develop a new non-CPT derivatives drug.

5.4. Bis(2,3-dibromo-4,5-dihydroxybenzyl) Ether

Marine bromophenols, found in sponges and algae have been always attracted food
and pharmaceutical company due to their multiple bioactivities, such as antioxidant [110],
antimicrobials [111] and antidiabetic activity [112]. Among marine bromophenols, bis
(2,3-dibromo-4,5-dihydroxybenzyl) ether (BDDE) (Figure 5D), isolated from marine algae
Leathesia nana and Rhodomela confervoides, has been shown to inhibit the proliferation of
several tumor cells lines and induce apoptosis in human myelogenous leukemia cell line
K562 [113]. A relaxation assay of a supercoiled DNA in the presence of different amounts of
BDDE indicates that the compound inhibits hTopIB in a dose-dependent manner. BDDE is
not able to trap the enzyme–DNA cleavable complex, and no nicked DNA is observed [113].
These data suggest that BDDE behave as a catalytic inhibitor rather than a poison.

5.5. Variolin B

Variolin B (Figure 5E) is a NP from the Antarctic sponge Kirckpatrickia variolosa and is
reported to have antitumor and antiviral properties [100]. Due to its planar structure and
the presence of a central aromatic ring, a cytotoxic effect through DNA intercalation has
been proposed [114]. The more soluble derivative deoxyvariolin B has been developed and
tested as an hTopIB inhibitor. This compound partially affects hTopIB activity, inhibiting
the relaxation of supercoiled DNA [115]. This result suggests the possibility of developing
new variolin B derivatives with improved antitumor efficacy.

5.6. Discorhabdins

Discorhabdins (Figure 5F) are a subclass of pyrroloiminoquinone alkaloids [116]
associated with the chemical defense of the Antarctic sponge Latrunculia biformis, turning
its color from green to brown to deter predators such as sea stars [101]. These NPs have
shown a strong anticancer activity in different cancer types, such as human colon cancer,
adenocarcinoma and leukemia, but its mechanism of action is still unknown [117]. Li et al.
suggested hTopIB as the possible target applying a structure-based docking approach [118].
This result comes from a computational study but appears promising and suggests that
discorhabdins can be experimentally tested against hTopIB.

6. HTopIB Poisons Derived from Natural Compounds in Preclinical and Clinical Trial

The best characterized NP against hTopoIB is CPT [44,49,102]. Two water-soluble
derivatives, both approved by the FDA in 1996, are currently used in clinics, irinotecan
for colon carcinomas [119,120] and topotecan for ovarian cancers [121]. Topotecan has
been subsequently also approved for small cell lung cancer and, in combination with
cisplatin, for stage IV-B cervical carcinoma [103,122]. Another interesting CPT derivative
is belotecan [123], approved in South Korea in 2003 for the treatment of non-small cell
lung cancer [124,125] and ovarian cancer [126]. New drugs, targeting hTopIB, are also
under development, because some tumors show resistance to the currently in use CPT
derivatives [127,128].

Drugs having a completed or ongoing clinical trial are listed in Table 4 [129].
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Table 4. Drugs targeting hTopIB under clinical trial [129].

Study Study Purpose Time Frame Sample Size NCT

Phase I Study
Clinical Trial of

Camptothecin-20-O-
Propionate Hydrate (CZ48)
Malignant Lymphoma of
Extranodal and/or Solid

Organ Site and Solid Tumor

Describe the dose limiting
toxicities and adverse event
profile of Camptothecin-20-

O-Propionate hydrate (CZ48)
administered orally every

day for 4 weeks

July 2008–February
2020

65
participants NCT02575638

A Phase I Study
Indenoisoquinoline LMP744

in Adults With Relapsed
Solid Tumors and

Lymphomas

Establish the safety,
tolerability and the

maximum tolerated dose
(MTD) of LMP744

administered intravenously
(IV) in patients with

refractory solid tumors and
lymphomas

February 2017–ongoing
(estimated completion

October 2022)

53
participants NCT03030417

Phase II Study
Evaluate the Efficacy and

Safety of TLC388
(Lipotecan®) as Second-line
Treatment in Subjects With

Poorly Differentiated
Neuroendocrine Carcinomas

Evaluate the efficacy and
safety of Lipotecan®

monotherapy in subjects
with poorly differentiated

neuroendocrine carcinomas.
Only those subjects who
have failed to first line

chemotherapy

July 2015–ongoing (last
update 3 April 2019

23
participants NCT02457273

Phase II Study
Study of Etirinotecan Pegol

(NKTR-102) in the treatment
of patients with metastatic
and Recurrent Non-Small

Cell Lung Cancer (NSCLC)
after failure of 2nd line

treatment.

Estimate the objective
response rate (Complete

Response or Partial
Response, as measured by

RECIST version 1.1) for
patients with metastatic or

recurrent NSCLC being
treated with etirinotecan

pegol after failure of
second-line therapy.

January 2013–ongoing
(last update April 2020)

40
participants NCT01773109

A Phase II Study
LY01610 (Irinotecan

Hydrochloride Liposome
Injection) in Patients with
Small Cell Lung Cancer

Evaluate the efficacy and
safety of LY01610 in subjects
with extensive small cell lung
cancer that progressed after
first-line anti-tumor therapy

November
2019–Ongoing

(estimated completion
September 2022)

90
participants NCT04381910

Camptothecin-20(S)-O-propionate hydrate (CZ48) [130], obtained reacting CPT with
propionic anhydride, is in Phase 1 clinical trials to evaluate its dose-limiting toxicities
profile. The drug has been administered for the treatment of malignant lymphoma of
extranodal and/or solid organ sites and solid tumors.

LMP744, an indenoisoquinoline with improved characteristics over CPT deriva-
tives [131], is in phase 1 for the treatment of solid tumors and lymphomas. Indenoisoquino-
lines have a chemical stability larger than CPT derivatives, produce stable DNA-hTopIB
cleavage complexes and exhibit a sequence preference for the DNA cleavage sites. The
drug has activity against CPT-resistant cell lines and produces irreversible DNA–protein
crosslinks. LMP744 exhibits antitumor activity with lower toxicity than other agents in
preclinical studies. The treatment of patients with LMP744 is expected to reduce the tumor
burden at doses that are well-tolerated. Among indenoisoquinoline derivatives, CYB-L10
is not yet in clinical trial, but preclinical studies indicated an interesting cytotoxicity pro-
file and an hTopIB inhibition higher than CPT [132]. CYB-L10 is active in vitro against
60 clinical cancer cell lines and displays an antitumor efficiency in an HCT-116 xenograft
nude mice model with no obvious loss of weight of the body of the mice at a 20-mg/kg
dose [132].
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Lipotecan®, which is the trade name of TLC388, is on a phase II trial to evaluate the
drug efficacy and safety in subjects with poorly differentiated neuroendocrine carcino-
mas [133]. The Abramson Cancer Center of the University of Pennsylvanian is testing
erinotecan pegol (NKTR-102), a hTopIB inhibitor polymer conjugate, made up of irinotecan
conjugated with polyethylene glycol (PEG), administered to subjects with metastatic and
recurrent NSCLC, after the failure of second-line therapy. Luye Pharma Group Ltd. is
testing in a phase II trial, irinotecan hydrochloride liposome (LY01610), in patients with
extensive-stage small cell lung cancer (SCLC) that progressed after first-line antitumor
therapy. Irinotecan liposome is formulated with irinotecan into a liposomal dispersion. The
liposome is a unilamellar lipid bilayer vesicle that encapsulates an aqueous space contain-
ing irinotecan in a gelated or precipitated state as sucrose octasulfate salt. Administration
via a liposomal formulation results in prolonged intratumor exposure at levels above the
threshold for antitumor activity.

7. Conclusions

Analysis of the literature indicates that several natural compounds are targeting
hTopIB, a ubiquitous enzyme involved in several fundamental cellular processes [23,
134]. The development of these molecules into selective and efficient antitumor drugs
still requires several passages. However, besides the CPT derivatives already in clinical
use, there are interesting indenoisoquinoline compounds and additional CPT derivatives
that are in clinical trials [129,135]. We believe that attention must be paid to additional
natural compounds, such as NPs coming from the marine and Antarctic worlds (Table 3
and Figure 5). This type of environment has selected organisms adapted to extreme
life conditions, producing NPs with no counterparts in the terrestrial world [14]. These
compounds, chemically different from CPT, may have the potential to overcome the diffuse
drug resistance caused by intense and long-lasting treatments of CPT derivatives and offer
a more personalized patient treatment [127].
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